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A A simple Bayesian distributed system based on S2G-MCMC

We provide the detailed architecture of the simple Bayesian distributed system described in Section 4.
We put the single-chain and multiple-chain distributed SG-MCMCs into a unified framework. Suppose
there are S servers and W workers, the one with S = 1 corresponds to the single-chain distributed
SG-MCMC, whereas the one with S > 1 corresponds to the multiple-chain distributed SG-MCMC.
The servers and workers are responsible for the following tasks:

• Each worker runs independently and communicates with a specific server. They are respon-
sible for computing the stochastic gradients§ of the parameter given by the server. Once the
stochastic gradient is computed, the worker sends it to its assigned server and receive a new
parameter sample from the server.

• Each server independently maintains its own state vector and timestamp. At the l-th
timestamp¶, it receives a stale stochastic gradient∇θÛτl(θ) , ∇θŨ(θ(l−τl)h) from worker
w, updates the state vector xlh to x(l+1)h and increments the timestamp, then sends the new
parameter sample θ(l+1)h to worker w.

The sending and receiving in the servers and workers are performed asynchronously, enabling
minimum communication cost and latency between the servers and workers. At testing, all the
samples from the servers are collected and applied to a test function. Apparently, the training
time using multiple servers is basically the same as using a single server because the sampling in
different servers is independent. Figure 5 depicts the architecture of the proposed Bayesian distributed
framework. Algorithm 2 details the algorithm on the servers and workers.

Algorithm 2 Asynchronous Distributed SG-MCMC
Server

Output: {xh, . . . ,xLh}
Initialize x0 ∈ Rm;
Send θ0 to all assigned workers;
for l = 0, 1, . . . , L− 1 do

Receive a stale stochastic gradient∇Ũ(l−τl)h from a worker w.
Update xlh to x(l+1)h using ∇Ũ(l−τl)h. (*)
Send θ(l+1)h to the worker w.

end for
Workerrepeat

Receive θlh from server s.
Compute ∇Ũlh with a minibatch.
Send ∇Ũlh to server s.

until stop

§This is the most expensive part in an SG-MCMC algorithm.
¶Each server is equipped with a timestamp because they are independent with each other.
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Figure 5: Architecture of the proposed Bayesian distributed framework. In the multi-server case, the
dash lines on the servers indicate a simple averaging operation for testing, otherwise the servers are
independent. Section 3.3 provides more details.

The update rule (*) of the state vector in Algorithm 2 depends on which SG-MCMC algorithm is
employed. For instance, Algorithm 1 describes the update rule of the SGHMC with a 1st-order Euler
integrator.

B Assumptions

First, following [25], we will need to assume the corresponding SDE of SG-MCMC to be either
elliptic or hypoelliptic. The ellipticity/hypoellipticity describes whether the Brownian motion is able
to spread over the whole parameter space. The SDE of the SGLD is elliptic, while for other SG-
MCMC algorithms such as the SGHMC, the hypoellipticity assumption is usually reasonable. When
the domain x is on the torus, the ellipticity and hypoellipticity of an SDE guarantees the existence of
a nice solution for the Poisson equation (5). The assumption is summarized in Assumption 2.

Assumption 2. The corresponding SDE of a SG-MCMC algorithm is either elliptic or hypoelliptic‖.

When x is extended to the domain of Rp for some integer p > 0, we need some assumptions on the
solution of the Poisson equation (5). Note (5) can be equivalently written in an integration form [35]
using Itô’s formula:

1

t

∫ t

0

φ(xs)ds− φ̄ (6)

=
1

t
(ψ(xt)− ψ(x0))− 1

t

∫ t

0

∇ψ(xs) · g(xs)dws .

Intuitively, ψ needs to be bounded if the discrepancy between φ̂L and φ̄ were to be bounded. This is
satisfied if the SDE is defined in a bounded domain [25]. In the unbounded domain as for SG-MCMC
algorithms, it turns out the following boundedness assumptions on ψ suffice [17].
Assumption 3. 1) ψ and its up to 3rd-order derivatives, Dkψ, are bounded by a function V ,
i.e., ‖Dkψ‖ ≤ CkVpk for k = (0, 1, 2, 3), Ck, pk > 0. 2) the expectation of V on {xlh}
is bounded: supl EVp(xlh) < ∞. 3) V is smooth such that sups∈(0,1) Vp (sx + (1− s) y) ≤
C (Vp (x) + Vp (y)), ∀x,y, p ≤ max{2pk} for some C > 0.

Furthermore, in our proofs the expectation of a function under a diffusion needs to be expanded in a
Taylor expansion style, e.g., Eφ(xt) =

∑`
i=0

ti

i!L
iφ(x0) + t`+1r`,F,φ(x0) by using Kolmogorov’s

‖The SDE of the SGLD can be verified to be elliptic. For other SG-MCMC algorithms such as the SGHMC,
the hypoellipticity assumption is usually reasonable, see [25] on how to verify hypoellipticity of an SDE.
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backward equation. To ensure the remainder term r`,F,φ(x0) to be bounded, it suffices to make the
following assumption on the smoothness and boundedness of F (x) [35, 17].

Assumption 4. F (x) is infinitely differentiable with bounded derivatives of any order; and |F (x)| ≤
A(1 + |x |s) for some integer s > 0 and A > 0.

C Notation

For simplicity, we will simplify some notation used in the proof as follows:

∇θŨl(θlh) , ∇θŨlh , G̃lh

∇θUl(θlh) , ∇θUlh , Glh

ψ(Xlh) , ψlh

D Proof of Theorem 2

In S2G-MCMC, for the l-th iteration, suppose a stochastic gradient with a staleness τl is used, e.g.,
G̃(l−τl)h. First, we will bound the difference between G̃(l−τl)h and the stochastic gradient at the l-th
iteration G̃lh, by using the Lipschitz property of G̃lh, with the following lemma.

Lemma 8. Let flh ,
∥∥xlh−x(l−1)h

∥∥, the expected difference between G̃(l−τl)h and G̃lh is bounded
by: ∥∥∥E(G̃(l−τl)h − G̃lh

)∥∥∥ =
l−1

max
i=l−τl

|Lifih|Cτh+O(h2), (7)

where the expectation is taken over the randomness of the SG-MCMC algorithm, e.g., the randomness
from stochastic gradients and the injected Gaussian noise.

Proof. Note the randomness of G̃lh comes from two sources, the injected Gaussian noise and the
stochastic gradient noise. We denote the expectations with respect to these two randomness as Eζ
and Eg , respectively. The whole expectation thus can be decomposed as E = EζEg .

Applying the Lipschitz property of G̃lh, we have∥∥∥E(G̃(l−τl)h − G̃lh
)∥∥∥ =

∥∥Eζ (G(l−τl)h −Glh
)∥∥

≤ Eζ
∥∥(G(l−τl)h −Glh

)∥∥
≤ CEζ

∥∥(θ(l−τl)h − θlh)∥∥
≤ CEζ

∥∥∥∥∥
l−1∑

i=l−τl

(
θ(ih) − θ(i+1)h

)∥∥∥∥∥
≤ C

l−1∑
i=l−τl

Eζ
∥∥(θ(ih) − θ(i+1)h

)∥∥
≤ C

l−1∑
i=l−τl

Eζ
∥∥x(i+1)h−xih

∥∥

From the definition of Kth-order integrator, i.e., Eζf(xlh) = eL̃lhf(x(l−1)h) +O(hK+1), if we let

f(xlh) =
∥∥xlh−x(l−1)h

∥∥ , flh ,

where x(l−1)h is the starting point in the l-th iteration, and note that

f(x(l−1)h) = 0 .
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We have

C

l−1∑
i=l−τl

Eζ
∥∥x(i+1)h−xih

∥∥ , C

l−1∑
i=l−τl

Eζf(xlh) (8)

≤C
l−1∑

i=l−τl

(
eLihf(x(i−1)h) +O(hK+1)

)
(9)

≤C
l−1∑

i=l−τl

|Lifih|h+O(h2) (10)

≤ l−1
max
i=l−τl

|Lifih|Cτh+O(h2) ,

where (10) is obtained by expanding the exponential operator and the assumption that the high order
terms are bounded.

Now we proceed to prove Theorem 2. The basic technique follows [17], thus we skip some derivations
for some steps.

Proof of Theorem 2. Before the proof, let us first define some notation. First, define the operator
∆Vl for each l as a differential operator as for any function ψ:

∆Vlψ ,
(
G̃l−τl −Gl

)
· ∇pψ .

Second, define the local generator, L̃l, for an Itô diffusion, where the true gradient in (1) is replaced
with the stochastic gradient from the l-th iteration, i.e., L̃lf(Xt) ,(

F̃l(xt) · ∇+
1

2

(
σ(xt)σ(xt)

T
)

:∇∇T
)
f(xt) ,

for a compactly supported twice differentiable function f , where F̃l is the same as F but with the full
gradient Glh replaced with the stochastic gradient G̃lh. Based on these definitions, we have

L̃l = L+ ∆Vl .

Following [17], for an SG-MCMC with a Kth-order integrator, and a test function φ, we have:

E[ψ(xlh)] =
(
I + hL̃l

)
ψ(x(l−1)h) (11)

+

K∑
k=2

hk

k!
L̃kl ψ(x(l−1)h) +O

(
hK+1

(K + 1)!
L̃K+1

l ψ(l−1)h

)
,

where I is the identity map. Sum over l = 1, · · · , L in (11), take expectation on both sides, and use
the relation L̃l = L+∆Vl to expand the first order term. We obtain

L∑
l=1

E[ψ(xlh)] = ψ(x0) +

L−1∑
l=1

E[ψ(xlh)]

+ h

L∑
l=1

E[Lψ(x(l−1)h)] + h

L∑
l=1

E[∆Vlψ(x(l−1)h)]

+

K∑
k=2

hk

k!

L∑
l=1

E[L̃kl ψ(x(l−1)h)]

+O

(
hK+1

(K + 1)!

∑
l

EL̃K+1

l ψ(l−1)h

)
.
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Divide both sides by Lh, use the Poisson equation (5), and reorganize terms. We have:

E[
1

L

∑
l

φ(xlh)− φ̄] =
1

L

L∑
l=1

E[Lψ(x(l−1)h)] (12)

=
1

Lh
(E[ψ(xlh)]− ψ(x0))− 1

L

∑
l

E[∆Vlψ(x(l−1)h)]

−
K∑
k=2

hk−1

k!L

L∑
l=1

E[L̃kl ψ(x(l−1)h)] +O

(
hK

(K + 1)!L

∑
l

EL̃K+1

l ψ(l−1)h

)

According to [17], the term
∑
l E[L̃kl ψ(x(l−1)h)] is bounded by

∑
l E[L̃kl ψ(X(l−1)h)]

= O

(
1

h
+ hK−k+1

∑
l

EL̃K+1

l ψ(l−1)h

)
, (13)

Substituting (13) into (12), after simplification, we have: E
(
1
L

∑
l φ(xlh)− φ̄

)
=

1

Lh
(E[ψ(xlh)]− ψ(x0))︸ ︷︷ ︸

C1

− 1

L

∑
l

E[∆Vlψ(x(l−1)h)]︸ ︷︷ ︸
C2

−
K∑
k=2

O

(
hk−1

Lh
+
hK

L

∑
l

1

k!
EL̃Kl ψ(l−1)h

)
+

hK

(K + 1)!L

∑
l

EL̃K+1

l ψ(l−1)h ,

According to the assumption, the term C1 is bounded. For term C2, according to the Cauchy–Schwarz
inequality, we have

|C2| =
1

L

∣∣∣∣∣∑
l

E
(
G̃(l−τl)h −Glh

)
· E∇ψ(l−1)h

∣∣∣∣∣
≤ 1

L

∑
l

∣∣∣E(G̃(l−τl)h −Glh
)
· E∇ψ(l−1)h

∣∣∣
≤ 1

L

∑
l

∥∥∥E(G̃(l−τl)h −Glh
)∥∥∥∥∥E∇ψ(l−1)h

∥∥
≤ 1

L

∑
l

(∥∥∥E(G̃(l−τl)h − G̃lh
)∥∥∥+

∥∥∥E(G̃lh −Glh)∥∥∥)∥∥E∇ψ(l−1)h
∥∥

=
1

L

∑
l

∥∥∥E(G̃(l−τl)h − G̃lh
)∥∥∥∥∥E∇ψ(l−1)h

∥∥
Applying (7) from Lemma 8, we have

|C2| ≤
1

L

∑
l

(
l

max
i=l−τl

‖Li‖ ‖E∇ψlh‖Cτlh
)

≤ max
l
‖Ll‖max

l
‖E∇ψlh‖Cτh .

As a result, collecting low order terms, the bias can be expressed as:∣∣∣Eφ̂− φ̄∣∣∣ =

∣∣∣∣∣E
(

1

L

∑
l

φ(xlh)− φ̄

)∣∣∣∣∣
=

∣∣∣∣∣C1

Lh
− C2 + hK

K∑
k=1

1

(k + 1)!L

∑
l

EL̃k+1

l ψ(l−1)h

∣∣∣∣∣ .
(14)
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As a result, there exists some constant D1 independent of (L, h, τ), such that∣∣∣Eφ̂− φ̄∣∣∣ ≤ D1

∣∣∣∣ 1

Lh

∣∣∣∣+ |C2|+
∣∣M1τh+

∣∣M2h
K
∣∣∣∣ (15)

=D1

(
1

Lh
+M1τh+M2h

K

)
,

where M1 , maxl ‖Ll‖maxl ‖E∇ψlh‖C, M2 ,
∑K
k=1

1
(k+1)!L

∑
l EL̃

k+1

l ψ(l−1)h. (15) follows
by substituting the inequality for C2 above. This completes the proof.

E Proof of Theorem 3

Proof. Similar to the proof of Theorem 2, we first expand Eψlh using the property of Kth-order
integrator as

L∑
l=1

E (ψ(xlh)) =

L∑
l=1

ψ(x(l−1)h) + h

L∑
l=1

Lψ(x(l−1)h)

+ h

L∑
l=1

∆Vlψ(x(l−1)h) +

K∑
k=2

hk

k!

L∑
l=1

L̃kl ψ(x(l−1)h)

+O

(
hK+1

(K + 1)!

∑
l

L̃K+1

l ψ(l−1)h

)
.

Substituting the Poisson equation (5) into the above equation, dividing both sides by Lh and rear-
ranging related terms arrives

φ̂−φ̄ =
1

Lh
(Eψ(xLh)− ψ(x0)) (16)

− 1

Lh

L∑
l=1

(
Eψ(l−1)h − ψ(l−1)h

)
− 1

L

L∑
l=1

∆Vlψ(l−1)h

−
K∑
k=2

hk−1

2L

L∑
l=1

L̃kl ψ(x(l−1)h) +O

(
hK

L(K + 1)!

∑
l

L̃K+1

l ψ(l−1)h

)
Taking square on both sides, we have there exists some positive constant D, such that

(
φ̂− φ̄

)2
≤ D

 (EψLh − ψ0)
2

L2h2︸ ︷︷ ︸
A1

+
1

L2h2

L∑
l=1

(
Eψ(l−1)h − ψ(l−1)h

)2
︸ ︷︷ ︸

A2

+

(
1

L

L∑
l=1

∆Vlψ(l−1)h

)2

︸ ︷︷ ︸
A3

+

K∑
k=2

h2(k−1)

k!L2

(
L∑
l=1

L̃kl ψ(l−1)h

)2

︸ ︷︷ ︸
A4

+

(∑
l L̃

K+1

l ψ(l−1)h

L(K + 1)!

)2

h2K︸ ︷︷ ︸
A5


(17)

After taking expectation, we have

E
(
φ̂− φ̄

)2
≤ C (EA1 + EA2 + EA3 + EA4 + EA5)

A1 is easily bounded by the assumption that ‖ψ‖ ≤ V p0 <∞. From the proof of Theorem 3 in [17],
A2 and A4 are also bounded, which are summarized in Lemma 9.
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Lemma 9. The terms EA2 and EA4 are bounded by:

EA2 = O

(
1

Lh

)
EA4 = O

(
1

Lh
+ h2K

K∑
k=2

1

Lk!

∑
l

L̃k+1

l ψ(l−1)h

)
.

We are left to show a bound for EA3. First we have

EA3 = E

(
1

L

L∑
l=1

∆Vlψ(l−1)h

)2

=E

(
1

L

L∑
l=1

(
G̃(l−τl)h −Glh

)
· ∇pψ(l−1)h

)2

=
1

L2

L∑
i=1

L∑
j=1

E
[(
G̃(i−τi)h −Gih

)
· ∇pψ(i−1)h

(
G̃(j−τj)h −Gjh

)
· ∇pψ(j−1)h

]
Using the Cauchy–Schwartz inequality, we have

≤ 1

L2

L∑
i=1

L∑
j=1

∥∥∥E(G̃(i−τi)h −Gih
)∥∥∥∥∥∥E(G̃(j−τj)h −Gjh

)∥∥∥∥∥E∇ψ(i−1)h
∥∥ ∥∥E∇ψ(j−1)h

∥∥
≤ 1

L2

L∑
i=1

L∑
j=1

(∥∥∥E(G̃(i−τi)h − G̃ih
)∥∥∥+

∥∥∥E(G̃ih −Gih)∥∥∥)(∥∥∥E(G̃(j−τj)h − G̃jh
)∥∥∥+

∥∥∥E(G̃jh −Gjh)∥∥∥)∥∥E∇ψ(i−1)h
∥∥ ∥∥E∇ψ(j−1)h

∥∥
=

1

L2

L∑
i=1

L∑
j=1

∥∥∥E(G̃(i−τi)h − G̃ih
)∥∥∥∥∥∥E(G̃(j−τj)h − G̃jh

)∥∥∥∥∥E∇ψ(i−1)h
∥∥ ∥∥E∇ψ(j−1)h

∥∥
Applying (7) from Lemma 8, we have

EA3 ≤ max
l
‖E∇ψlh‖2 max

l
(Llflh)

2
C2τ2h2 .

Collecting low order terms from the above bounds, we have there exists some constantD2 independent
of (L, h, τ), such that

E
(
φ̂− φ̄

)2
≤C1

Lh
+ C2h

2K + max
l
‖E∇ψlh‖2 max

l
‖Ll‖2 C2τ2h2

≤D2

(
1

Lh
+ M̃1τ

2h2 + M̃2h
2K

)
,

where M̃1 , maxl ‖E∇ψlh‖2 maxl (Llflh)
2
C2, M̃2 , E

(
1

L(K+1)!

∑
l L̃

K+1

l ψ(l−1)h

)2
. This

completes the proof.

F Proof of Theorem 4

In the proof, we will use the following simple result stated Lemma 10.
Lemma 10. Let (M1, · · · ,MN ) be a set of independent martingale, i.e, E [Mn|F ] = 0, where F
is the filtration generated byMn. Then we have

E

( N∑
n=1

Mn

)2

|F

 =

N∑
n=1

E
[
M2

n|F
]
. (18)
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Proof.

E

( N∑
n=1

Mn

)2

|F

 = E

 N∑
i=1

N∑
j=1

MiMj |F


=E

[
N∑
i=1

M2
i |F

]
+
∑
i 6=j

E [Mi|F ]E [Mj |F ]

=

N∑
i=1

E
[
M2

i |F
]
.

In the following we will omitted the filtration F in the expectation for simplicity. We we now ready
to prove Theorem 4.

Proof. By definition, we have

Var
(
φ̂L

)
= E

(
φ̂L − φ̄−

(
Eφ̂L − φ̄

))2
Substitute (12) and (16) into the above equation, we have

φ̂L − Eφ̄ = − 1

Lh

∑
l

(
Eψ(l−1)h − ψ(l−1)h

)
− 1

L

∑
l

(A1 − EA1)−
∑
k

hk−1

k!L

∑
l

(A2 − EA2)− hK

(K + 1)!L

∑
l

(A3 − EA3) ,

where

A1 , ∆Vlψ(l−1)h

A2 , L̃kl ψ(l−1)h

A3 , L̃K+1
l ψ(l−1)h .

Take square on both sides, following by expectation, and note that all (Ai − EAi) are martingale
for i = 1, 2, 3, which allows us to use (18) from Lemma 10. We have there exists a constant D
independent of (L, h, τ), such that

Var
(
φ̂L

)
≤ D

 1

L2h2
E

(∑
l

(
Eψ(l−1)h − ψ(l−1)h

))2

+
1

L2

∑
l

E (A1 − EA1)
2

+
∑
k

h2(k−1)

(k!L)2

∑
l

E (A2 − EA2)
2

+
h2K

((K + 1)!L)2

∑
l

E (A3 − EA3)
2

)

≤ D

 1

L2h2
E

(∑
l

(
Eψ(l−1)h − ψ(l−1)h

))2

︸ ︷︷ ︸
B1

+
1

L2

∑
l

E (A1 − EA1)
2

+

K∑
k=2

h2(k−1)

(k!L)2

∑
l

EA2
2 +

h2K

((K + 1)!L)2

∑
l

EA2
3

)
.
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According to Lemma 9, B1 is bounded by

B1 = O

(
1

Lh

)
.

Furthermore, according to the assumptions, both EA2
2 and EA2

3 are bounded. The delayed parameter
τ exists in E (A1 − EA1)

2, we have

E (A1 − EA1)
2

=E
(
∆Vlψ(l−1)h − E∆Vlψ(l−1)h

)2
=E

((
G̃(l−τl)h −Glh

)
· ∇pψ(l−1)h − E

(
G̃(l−τl)h −Glh

)
· ∇pψ(l−1)h

)2
Expanding the terms, we have there exists a constant D1 such that

E (A1 − EA1)
2

≤D1E
(
G̃(l−τl)h · ∇pψ(l−1)h − EG̃(l−τl)h · ∇pψ(l−1)h

)2
+D1E

(
Glh · ∇pψ(l−1)h − EGlh · ∇pψ(l−1)h

)2
=D1E

(
G̃(l−τl)h · ∇pψ(l−1)h

)2
+D1E

(
Glh ·

(
∇pψ(l−1)h −∇pψ(l−1)h

))2
≤D1

(
E
∥∥∥G̃(l−τl)h

∥∥∥2 E∥∥∇pψ(l−1)h
∥∥2 + E ‖Glh‖2 E

∥∥∇pψ(l−1)h −∇pψ(l−1)h
∥∥2)

≤D1 sup
l

{
E
∥∥∥G̃lh∥∥∥2 E ‖∇pψlh‖2 + E ‖Glh‖2 E ‖∇pψlh‖2

}
.

According to the assumptions, the above bound is bounded, and does not depend on τ . As a result,

1

L2

∑
l

E (A1 − EA1)
2 ≤ D1

L
.

In addition, the bounds for both EA2
2 and EA2

3 are given in Lemma 9, which are higher-order terms
with respect to h, i.e., O

(
h2K

)
.

Collecting low order terms, we have there exists a constant D independent of (L, h, τ), such that the
variance is bounded by:

Var
(
φ̂L

)
≤ D

(
1

Lh
+ h2K

)
= D

(
1

WL̄h
+ h2K

)
.

G Proof of Theorem 6

We separate the proof for the bias and MSE, respectively.
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Proof for the bias. According to the definition of φ̂SL, we have

∣∣∣Eφ̂SL − φ̄∣∣∣ =

∣∣∣∣∣E
S∑
s=1

Ts
T
φ̂Ls
− φ̄

∣∣∣∣∣
=

∣∣∣∣∣
S∑
s=1

Ts
T
E
(
φ̂Ls
− φ̄

)∣∣∣∣∣
≤

S∑
s=1

Ts
T

∣∣∣Eφ̂Ls − φ̄
∣∣∣

=

S∑
s=1

Ts
T
D1

(
1

Lshs
+
(
M1τhs +M2h

K
s

))
(19)

=D1

(
S

T
+

S∑
s=1

Ts
T

(
M1τhs +M2h

K
s

))

≤D1

(
S

T
+
STm
T

(
M1τhm +M2h

K
m

))
, (20)

where Tm , maxl Tl, hm , maxl hl, (19) follows by substituting the bias from Theorem 2 for each
server into the formula.

Similarly, for the MSE bound, we have

E
(
φ̂SL − φ̄

)2
= E

(
S∑
s=1

Ts
T

(
φ̂Ls − φ̄

))2

=

S∑
s=1

T 2
s

T 2
E
(
φ̂Ls
− φ̄

)2
+
∑
i 6=j

TiTj
T2

E
[
φ̂Li
− φ̄

]
E
[
φ̂Lj
− φ̄

]

≤
S∑
s=1

T 2
s

T 2
E
(
φ̂Ls − φ̄

)2
+
∑
i 6=j

TiTj
T 2

∣∣∣Eφ̂Li − φ̄
∣∣∣ ∣∣∣Eφ̂Lj − φ̄

∣∣∣ .
Substituting the bounds for single chain bias and MSE from Theorem 2 and Theorem 3, respectively,
we have

≤
S∑
s=1

T 2
s

T 2
D′2

(
1

Ts
+
(
M̃1τ

2h2s + M̃2h
2K
s

))
+
∑
i 6=j

TiTj
T 2

D1

(
1

Ti
+
(
M1τhi +M2h

K
i

))
D1

(
1

Tj
+
(
M1τhj +M2h

K
j

))

≤D2

 1

T
+
S2 − S
T 2

+
∑
i,j

TiTj
T 2

(
M2

1 τ
2h2m +M2

2h
2K
m

)
≤D2

(
1

T
+
S2 − S
T 2

+
S2T 2

m

T 2

(
M2

1 τ
2h2m +M2

2h
2K
m

))
,

where D2 = max{D′2, D2
1}, Tm , maxl Tl, hm , maxl hl, the last equality collects the low order

terms. This completes the proof.
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H Proof of Theorem 7

Proof. Following the proof of Theorem 6, for the variance, we have

E
(
φ̂SL − Eφ̂

)2
= E

(
S∑
s=1

Ts
T

(
φ̂Ls
− Eφ̂Ls

))2

=

S∑
s=1

T 2
s

T 2
E
(
φ̂Ls
− φ̄Ls

)2
+
∑
i 6=j

TiTj
T2

E
[
φ̂Li
− Eφ̂Li

]
E
[
φ̂Lj
− Eφ̂Lj

]

=

S∑
s=1

T 2
s

T 2
E
(
φ̂Ls
− φ̄Ls

)2
.

Substituting the variance bound in Theorem 4 for each server, we have

E
(
φ̂SL − Eφ̂

)2
≤ D

S∑
s=1

T 2
s

T 2

(
1

Lshs
+ h2Ks

)

=D

S∑
s=1

(
Ts
T 2

+
T 2
s

T 2
h2Ks

)

=D

(
1

T
+

S∑
s=1

T 2
s

T 2
h2Ks

)

I Additional Results

See Figure 6 7 8 9 10 11. The content of the figures is described in the titles.
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Figure 6: Testing loss vs. #workers. From top down, each row corresponds to the a9a, MNIST and
CIFAR dataset, respectively.
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Figure 7: Testing loss vs. #servers. From left to right, the first row corresponds to the a9a, MNIST
datasets, and the second row corresponds to the CIFAR dataset, respectively.
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Figure 8: Testing loss vs. #servers. From top down, each row corresponds to the a9a, MNIST and
CIFAR dataset, respectively. Each server is associated with 1 worker.
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Figure 9: Testing loss vs. #servers. From top down, each row corresponds to the a9a, MNIST and
CIFAR dataset, respectively. Each server is associated with 2 workers.
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Figure 10: Testing loss vs. #servers. From top down, each row corresponds to the a9a, MNIST and
CIFAR dataset, respectively. Each server is associated with 4 workers.
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Figure 11: Testing loss vs. #servers. From top down, each row corresponds to the a9a, MNIST and
CIFAR dataset, respectively. Each server is associated with 6 workers.
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