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Abstract

A new form of the variational autoencoder (VAE)
is proposed, based on the symmetric Kullback-
Leibler divergence. It is demonstrated that learn-
ing of the resulting symmetric VAE (sVAE)
has close connections to previously developed
adversarial-learning methods. This relationship
helps unify the previously distinct techniques of
VAE and adversarially learning, and provides
insights that allow us to ameliorate shortcom-
ings with some previously developed adversarial
methods. In addition to an analysis that moti-
vates and explains the sVAE, an extensive set of
experiments validate the utility of the approach.

1 Introduction

Generative models [Pu et al., 2015, 2016b] that are descrip-
tive of data have been widely employed in statistics and
machine learning. Factor models (FMs) represent one com-
monly used generative model [Tipping and Bishop, 1999],
and mixtures of FMs have been employed to account for
more-general data distributions [Ghahramani and Hinton,
1997]. These models typically have latent variables (e.g.,
factor scores) that are inferred given observed data; the la-
tent variables are often used for a down-stream goal, such
as classification [Carvalho et al., 2008]. After training,
such models are useful for inference tasks given subsequent
observed data. However, when one draws from such mod-
els, by drawing latent variables from the prior and pushing
them through the model to synthesize data, the synthetic
data typically do not appear to be realistic. This suggests
that while these models may be useful for analyzing ob-
served data in terms of inferred latent variables, they are
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also capable of describing a large set of data that do not
appear to be real.

The generative adversarial network (GAN) [Goodfellow
et al., 2014] represents a significant recent advance toward
development of generative models that are capable of syn-
thesizing realistic data. Such models also employ latent
variables, drawn from a simple distribution analogous to
the aforementioned prior, and these random variables are
fed through a (deep) neural network. The neural network
acts as a functional transformation of the original random
variables, yielding a model capable of representing so-
phisticated distributions. Adversarial learning discourages
the network from yielding synthetic data that are unrealis-
tic, from the perspective of a learned neural-network-based
classifier. However, GANs are notoriously difficult to train,
and multiple generalizations and techniques have been de-
veloped to improve learning performance [Salimans et al.,
2016], for example Wasserstein GAN (WGAN) [Arjovsky
and Bottou, 2017, Arjovsky et al., 2017] and energy-based
GAN (EB-GAN) [Zhao et al., 2017].

While the original GAN and variants were capable of syn-
thesizing highly realistic data (e.g., images), the models
lacked the ability to infer the latent variables given ob-
served data. This limitation has been mitigated recently
by methods like adversarial learned inference (ALI) [Du-
moulin et al., 2017], and related approaches. However, ALI
appears to be inadequate from the standpoint of inference,
in that, given observed data and associated inferred latent
variables, the subsequently synthesized data often do not
look particularly close to the original data.

The variational autoencoder (VAE) [Kingma and Welling,
2014] is a class of generative models that precedes GAN.
VAE learning is based on optimizing a variational lower
bound, connected to inferring an approximate posterior
distribution on latent variables; such learning is typically
not performed in an adversarial manner. VAEs have been
demonstrated to be effective models for inferring latent
variables, in that the reconstructed data do typically look
like the original data, albeit in a blurry manner [Dumoulin
et al., 2017, Pu et al., 2016a, 2017a]. The form of the VAE
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has been generalized recently, in terms of the adversarial
variational Bayesian (AVB) framework [Mescheder et al.,
2016]. This model yields general forms of encoders and de-
coders, but it is based on the original variational Bayesian
(VB) formulation. The original VB framework yields a
lower bound on the log likelihood of the observed data,
and therefore model learning is connected to maximum-
likelihood (ML) approaches. From the perspective of de-
signing generative models, it has been recognized recently
that ML-based learning has limitations [Arjovsky and Bot-
tou, 2017]: such learning tends to yield models that match
observed data, but also have a high probability of generat-
ing unrealistic synthetic data.

The original VAE employs the Kullback-Leibler diver-
gence to constitute the variational lower bound. As is well
known, the KL distance metric is asymmetric. We demon-
strate that this asymmetry encourages design of decoders
(generators) that often yield unrealistic synthetic data when
the latent variables are drawn from the prior. From a dif-
ferent but related perspective, the encoder infers latent vari-
ables (across all training data) that only encompass a subset
of the prior. As demonstrated below, these limitations of
the encoder and decoder within conventional VAE learning
are intertwined.

We consequently propose a new symmetric VAE (sVAE),
based on a symmetric form of the KL divergence and asso-
ciated variational bound. The proposed sVAE is learned
using an approach related to that employed in the AVB
[Mescheder et al., 2016], but in a new manner connected
to the symmetric variational bound. Analysis of the sVAE
demonstrates that it has close connections to ALI [Du-
moulin et al., 2017], WGAN [Arjovsky et al., 2017] and
to the original GAN [Goodfellow et al., 2014] framework;
in fact, ALI is recovered exactly, as a special case of the
proposed sVAE. This provides a new and explicit linkage
between the VAE (after it is made symmetric) and a wide
class of adversarially trained generative models. Addition-
ally, with this insight, we are able to ameliorate much of the
aforementioned limitations of ALI, from the perspective of
data reconstruction. In addition to analyzing properties of
the sVAE, we demonstrate excellent performance on an ex-
tensive set of experiments.

2 Review of Variational Autoencoder

2.1 Background

Assume observed data samples x ∼ q(x), where q(x)
is the true and unknown distribution we wish to approxi-
mate. Consider pθ(x|z), a model with parameters θ and
latent code z. With prior p(z) on the codes, the mod-
eled generative process is x ∼ pθ(x|z), with z ∼ p(z).
We may marginalize out the latent codes, and hence the
model is x ∼ pθ(x) =

∫
dzpθ(x|z)p(z). To learn θ,

we typically seek to maximize the expected log likelihood:
θ̂ = argmaxθ Eq(x) log pθ(x), where one typically invokes
the approximation Eq(x) log pθ(x) ≈ 1

N

∑N
n=1 log pθ(xn)

assuming N iid observed samples {xn}n=1,N .

It is typically intractable to evaluate pθ(x) directly, as∫
dzpθ(x|z)p(z) generally doesn’t have a closed form.

Consequently, a typical approach is to consider a model
qφ(z|x) for the posterior of the latent code z given ob-
served x, characterized by parameters φ. Distribution
qφ(z|x) is often termed an encoder, and pθ(x|z) is a de-
coder [Kingma and Welling, 2014]; both are here stochas-
tic, vis-à-vis their deterministic counterparts associated
with a traditional autoencoder [Vincent et al., 2010]. Con-
sider the variational expression

Lx(θ,φ) = Eq(x)Eqφ(z|x) log
[pθ(x|z)p(z)

qφ(z|x)
]

(1)

In practice the expectation wrt x ∼ q(x) is evaluated via
sampling, assuming N observed samples {xn}n=1,N . One
typically must also utilize sampling from qφ(z|x) to eval-
uate the corresponding expectation in (1). Learning is ef-
fected as (θ̂, φ̂) = argmaxθ,φ Lx(θ,φ), and a model so
learned is termed a variational autoencoder (VAE) [Kingma
and Welling, 2014].

It is well known that Lx(θ,φ) = Eq(x)[log pθ(x) −
KL(qφ(z|x)‖pθ(z|x))] ≤ Eq(x)[log pθ(x)]. Alterna-
tively, the variational expression may be represented as

Lx(θ,φ) = −KL(qφ(x, z)‖pθ(x, z)) + Cx (2)

where qφ(x, z) = q(x)qφ(z|x), pθ(x, z) = p(z)pθ(x|z)
and Cx = Eq(x) log q(x). One may readily show that

KL(qφ(x,z)‖pθ(x,z))
= Eq(x)KL(qφ(z|x)‖pθ(z|x)) + KL(q(x)‖pθ(x)) (3)
= Eqφ(z)KL(qφ(x|z)‖pθ(x|z)) + KL(qφ(z)‖p(z))(4)

where qφ(z) =
∫
q(x)qφ(z|x)dx. To max-

imize Lx(θ,φ), we seek minimization of
KL(qφ(x, z)‖pθ(x, z)). Hence, from (3) the goal is
to align pθ(x) with q(x), while from (4) the goal is to
align qφ(z) with p(z). The other terms seek to match the
respective conditional distributions. All of these condi-
tions are implied by minimizing KL(qφ(x, z)‖pθ(x, z)).
However, the KL divergence is asymmetric, which yields
limitations wrt the learned model.

2.2 Limitations of the VAE

The support Sεp(z) of a distribution p(z) is defined as the

member of the set {S̃εp(z) :
∫
S̃ε
p(z)

p(z)dz = 1 − ε} with

minimum size ‖S̃εp(z)‖ ,
∫
S̃ε
p(z)

dz. We are typically in-

terested in ε→ 0+. For notational convenience we replace
Sεp(z) with Sp(z), with the understanding ε is small. We also
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define Sp(z)− as the largest set for which
∫
Sp(z)−

p(z)dz =

ε, and hence
∫
Sp(z)

p(z)dz +
∫
Sp(z)−

p(z)dz = 1. For

simplicity of exposition, we assume Sp(z) and Sp(z)− are
unique; the meaning of the subsequent analysis is unaf-
fected by this assumption.

Consider −KL(q(x)‖pθ(x)) = Eq(x) log pθ(x) − Cx,
which from (2) and (3) we seek to make large when
learning θ. The following discussion borrows insights
from [Arjovsky et al., 2017], although that analysis was
different, in that it was not placed within the con-
text of the VAE. Since

∫
Sq(x)−

q(x) log pθ(x)dx ≈ 0,

Eq(x) log pθ(x) ≈
∫
Sq(x)

q(x) log pθ(x)dx, and Sq(x) =

(Sq(x)∩Spθ(x))∪ (Sq(x)∩Spθ(x)−). If Sq(x)∩Spθ(x)− 6=
∅, there is a strong (negative) penalty introduced by∫
Sq(x)∩Spθ(x)−

q(x) log pθ(x)dx, and therefore maximiza-

tion of Eq(x) log pθ(x) encourages Sq(x) ∩ Spθ(x)− = ∅.
By contrast, there is not a substantial penalty to Sq(x)− ∩
Spθ(x) 6= ∅.

Summarizing these conditions, the goal of maximizing
−KL(q(x)‖pθ(x)) encourages Sq(x) ⊂ Spθ(x). This im-
plies that pθ(x) can synthesize all x that may be drawn
from q(x), but additionally there is (often) high probability
that pθ(x) will synthesize x that will not be drawn from
q(x).

Similarly, −KL(qφ(z)‖p(z)) = h(qφ(z)) +
Eqφ(z) log p(z) encourages Sqφ(z) ⊂ Sp(z), and
the commensurate goal of increasing differential en-
tropy h(qφ(z)) = −Eqφ(z) log qφ(z) encourages that
Sqφ(z) ∩ Sp(z) be as large as possible.

Hence, the goal of large −KL(q(x)‖pθ(x)) and
−KL(qφ(z)‖p(z)) are saying the same thing, from dif-
ferent perspectives: (i) seeking large −KL(q(x)‖pθ(x))
implies that there is a high probability that x drawn from
pθ(x) will be different from those drawn from q(x), and
(ii) large −KL(qφ(z)‖p(z)) implies that z drawn from
p(z) are likely to be different from those drawn from
qφ(z), with z ∈ {Sp(z) ∩ Sqφ(z)−} responsible for the
x that are inconsistent with q(x). These properties are
summarized in Fig. 1.

Considering the remaining terms in (3) and (4), and us-
ing similar logic on −Eq(x)KL(qφ(z|x)‖pθ(z|x)) =
h(qφ(z|x)) + Eq(x)Eqφ(z|x) log pθ(z|x), the
model encourages Sqφ(z|x) ⊂ Spθ(z|x). From
−Eqφ(z)KL(qφ(x|z)‖pθ(x|z)) = h(qφ(x|z)) +
Eqφ(z)Eqφ(x|z) log pθ(x|z), the model also encour-
ages Sqφ(x|z) ⊂ Spθ(x|z). The differential en-
tropies h(qφ(z|x)) and h(qφ(x|z)) encourage that
Sqφ(z|x) ∩ Spθ(z|x) and Sqφ(x|z) ∩ Spθ(x|z) be as large
as possible. Since Sqφ(z|x) ⊂ Spθ(z|x), it is anticipated
that qφ(z|x) will under-estimate the variance of pθ(x|z),
as is common with the variational approximation to the

𝑝"(𝑥|𝑧)
𝑞)(𝑧|𝑥)

𝑝(𝑧)

𝑞(𝑥)

Encoder Decoder

𝑞(𝑥)

𝑞)(𝑧)
𝑝(𝑧)

𝑝"(𝑥)

Figure 1: Characteristics of the encoder and decoder of the con-
ventional VAE Lx, for which the support of the distributions sat-
isfy Sq(x) ⊂ Spθ(x) and Sqφ(z) ⊂ Sp(z), implying that the gen-
erative model pθ(x) has a high probability of generating unreal-
istic draws.
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Figure 2: Characteristics of the new VAE expression, Lz .

posterior [Blei et al., 2017].

3 Refined VAE: Imposition of Symmetry

3.1 Symmetric KL divergence

Consider the new variational expression

Lz(θ,φ) = Ep(z)Epθ(x|z) log
[qφ(z|x)q(x)

pθ(x|z)
]

(5)

= −KL(pθ(x, z)‖qφ(x, z)) + Cz (6)

where Cz = −h(p(z)). Using logic analogous to that ap-
plied to Lx, maximization of Lz encourages distribution
supports reflected in Fig. 2.

Defining Lxz(θ,φ) = Lx(θ,φ) + Lz(θ,φ), we have

Lxz(θ,φ) = −KLs(qφ(x, z)‖pθ(x, z)) +K (7)

where K = Cx + Cz , and the symmetric KL divergence
is KLs(qφ(x, z)‖pθ(x, z)) , KL(qφ(x, z)‖pθ(x, z)) +
KL(pθ(x, z)‖qφ(x, z)). Maximization of Lxz(θ,φ)
seeks minimizing KLs(qφ(x, z)‖pθ(x, z)), which simul-
taneously imposes the conditions summarized in Figs. 1
and 2.

One may show that

KLs(qφ(x,z)‖pθ(x,z)) = Ep(z)KL(pθ(x|z)‖qφ(x|z))
+ Eqφ(z)KL(qφ(x|z)‖pθ(x|z)) + KLs(p(z)‖qφ(z)) (8)

= Epθ(x)KL(pθ(z|x)‖qφ(z|x))
+ Eq(x)KL(qφ(z|x)‖pθ(z|x)) + KLs(pθ(x)‖q(x)) (9)
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Considering the representation in (9), the goal of small
KLs(pθ(x)‖q(x)) encourages Sq(x) ⊂ Spθ(x) and
Spθ(x) ⊂ Sq(x), and hence that Sq(x) = Spθ(x). Fur-
ther, since −KLs(pθ(x)‖q(x)) = Eq(x) log pθ(x) +
Epθ(x) log q(x) + h(pθ(x)) − Cx, maximization of
−KLs(pθ(x)‖q(x)) seeks to minimize the cross-entropy
between q(x) and pθ(x), encouraging a complete match-
ing of the distributions q(x) and pθ(x), not just shared sup-
port. From (8), a match is simultaneously encouraged be-
tween p(z) and qφ(z). Further, the respective conditional
distributions are also encouraged to match.

3.2 Adversarial solution

Assuming fixed (θ,φ), and using logic analogous to
Proposition 1 in [Mescheder et al., 2016], we consider

g(ψ) = Eqφ(x,z) log(1− σ(fψ(x, z))
+ Epθ(x,z) log σ(fψ(x, z)) (10)

where σ(ζ) = 1/(1 + exp(−ζ)). The scalar function
fψ(x, z) is represented by a deep neural network with pa-
rameters ψ, and network inputs (x, z). For fixed (θ,φ),
the parameters ψ∗ that maximize g(ψ) yield

fψ∗(x, z) = log pθ(x, z)− log qφ(x, z) (11)

and hence

Lx(θ,φ) = Eqφ(x,z)fψ∗(x, z) + Cx (12)
Lz(θ,φ) = −Epθ(x,z)fψ∗(x, z) + Cz (13)

Hence, to optimizeLxz(θ,φ) we consider the cost function

`(θ,φ;ψ∗) = Eqφ(x,z)fψ∗(x, z)

− Epθ(x,z)fψ∗(x, z) (14)

Assuming (11) holds, we have

`(θ,φ;ψ∗) = −KLs(qφ(x, z)‖pθ(x, z)) ≤ 0 (15)

and the goal is to achieve `(θ,φ;ψ∗) = 0 through joint
optimization of (θ,φ;ψ∗). Model learning consists of al-
ternating between (10) and (14), maximizing (10) wrt ψ
with (θ,φ) fixed, and maximizing (14) wrt (θ,φ) with ψ
fixed.

The expectations in (10) and (14) are approximated by
averaging over samples, and therefore to implement this
solution we need only be able to sample from pθ(x|z)
and qφ(z|x), and we do not require explicit forms for
these distributions. For example, a draw from qφ(z|x)
may be constituted as z = hφ(x, ε), where hφ(x, ε) is
implemented as a neural network with parameters φ and
ε ∼ N (0, I).

3.3 Interpretation in terms of LRT statistic

In (10) a classifier is designed to distinguish between sam-
ples (x, z) drawn from pθ(x, z) = p(z)pθ(x|z) and
from qφ(x, z) = q(x)qφ(z|x). Implicit in that ex-
pression is that there is equal probability that either of
these distributions are selected for drawing (x, z), i.e.,
that (x, z) ∼ [pθ(x, z) + qφ(x, z)]/2. Under this
assumption, given observed (x, z), the probability of
it being drawn from pθ(x, z) is pθ(x, z)/(pθ(x, z) +
qφ(x, z)), and the probability of it being drawn from
qφ(x, z) is qφ(x, z)/(pθ(x, z) + qφ(x, z)) [Goodfellow
et al., 2014]. Since the denominator pθ(x, z) + qφ(x, z)
is shared by these distributions, and assuming function
pθ(x, z)/qφ(x, z) is known, an observed (x, z) is inferred
as being drawn from the underlying distributions as

if pθ(x, z)/qφ(x, z) > 1, (x, z)→ pθ(x, z) (16)
if pθ(x, z)/qφ(x, z) < 1, (x, z)→ qφ(x, z) (17)

This is the well-known likelihood ratio test (LRT) [Trees,
2001], and is reflected by (11). We have therefore derived
a learning procedure based on the log-LRT, as reflected in
(14). The solution is “adversarial,” in the sense that when
optimizing (θ,φ) the objective in (14) seeks to “fool” the
LRT test statistic, while for fixed (θ,φ) maximization of
(10) wrtψ corresponds to updating the LRT. This adversar-
ial solution comes as a natural consequence of symmetriz-
ing the traditional VAE learning procedure.

4 Connections to Prior Work

4.1 Adversarially Learned Inference

The adversarially learned inference (ALI) [Dumoulin et al.,
2017] framework seeks to learn both an encoder and de-
coder, like the approach proposed above, and is based on
optimizing

(θ̂, φ̂) = argminθ,φmax
ψ
{Epθ(x,z) log σ(fψ(x, z))

+Eqφ(x,z) log(1− σ(fψ(x, z)))} (18)

This has similarities to the proposed approach, in that the
term maxψ Epθ(x,z) log σ(fψ(x, z)) + Eqφ(x,z) log(1 −
σ(fψ(x, z))) is identical to our maximization of (10) wrt
ψ. However, in the proposed approach, rather than directly
then optimizing wrt (θ,φ), as in (18), in (14) the result
from this term is used to define fψ∗(x, z), which is then
employed in (14) to subsequently optimize over (θ,φ).

Note that log σ(·) is a monotonically increasing function,
and therefore we may replace (14) as

`′(θ,φ;ψ∗) = Eqφ(x,z) log σ(fψ∗(x,z))

+Epθ(x,z) log σ(−fψ∗(x,z)) (19)

and note σ(−fψ∗(x, z;θ,φ)) = 1 − σ(fψ∗(x, z;θ,φ)).
Maximizing (19) wrt (θ,φ) with fixed ψ∗ corresponds to
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the minimization wrt (θ,φ) reflected in (18). Hence, the
proposed approach is exactly ALI, if in (14) we replace
±fψ∗ with log σ(±fψ∗).

4.2 Original GAN

The proposed approach assumed both a decoder pθ(x|z)
and an encoder pγ(z|x), and we considered the symmetric
KLs(qφ(x, z)‖pθ(x, z)). We now simplify the model for
the case in which we only have a decoder, and the synthe-
sized data are drawn x ∼ pθ(x|z) with z ∼ p(z), and we
wish to learn θ such that data synthesized in this manner
match observed data x ∼ q(x). Consider the symmetric

KLs(q(x)‖pθ(x)) = Ep(z)Epθ(x|z)fψ∗(x)

−Eq(x)fψ∗(x) (20)

where for fixed θ

fψ∗(x) = log(pθ(x)/q(x)) (21)

We consider a simplified form of (10), specifically

g(ψ) = Ep(z)Epθ(x|z) log σ(fψ(x))
+Eq(x) log(1− σ(fψ(x)) (22)

which we seek to maximize wrt ψ with fixed θ, with opti-
mal solution as in (21). We optimize θ seeking to maximize
−KLs(q(x)‖pθ(x)), as argmaxθ `(θ;ψ

∗) where

`(θ;ψ∗) = Eq(x)fψ∗(x)− Epθ(x,z)fψ∗(x) (23)

with Eq(x)fψ∗(x) independent of the update parameter
θ. We observe that in seeking to maximize `(θ;ψ∗),
parameters θ are updated as to “fool” the log-LRT
log[q(x)/pθ(x)]. Learning consists of iteratively updat-
ing ψ by maximizing g(ψ) and updating θ by maximizing
`(θ;ψ∗).

Recall that log σ(·) is a monotonically increasing function,
and therefore we may replace (23) as

`′(θ;ψ∗) = Epθ(x,z) log σ(−fψ∗(x)) (24)

Using the same logic as discussed above in the context
of ALI, maximizing `′(θ;ψ∗) wrt θ may be replaced by
minimization, by transforming σ(µ) → σ(−µ). With this
simple modification, minimizing the modified (24) wrt θ
and maximizing (22) wrt ψ, we exactly recover the orig-
inal GAN [Goodfellow et al., 2014], for the special (but
common) case of a sigmoidal discriminator.

4.3 Wasserstein GAN

The Wasserstein GAN (WGAN) [Arjovsky et al., 2017]
setup is represented as

θ = argminθmax
ψ
{Eq(x)fψ(x)− Epθ(x,z)fψ(x)} (25)

where fψ(x) must be a 1-Lipschitz function. Typically
fψ(x) is represented by a neural network with parame-
ters ψ, with parameter clipping or `2 regularization on the
weights (to constrain the amplitude of fψ(x)). Note that
WGAN is closely related to (23), but in WGAN fψ(x)
doesn’t make an explicit connection to the underlying like-
lihood ratio, as in (21).

It is believed that the current paper is the first to con-
sider symmetric variational learning, introducing Lz , from
which we have made explicit connections to previously
developed adversarial-learning methods. Previous efforts
have been made to match qφ(z) to p(z), which is a con-
sequence of the proposed symmetric VAE (sVAE). For ex-
ample, [Makhzani et al., 2016] introduced a modification
to the original VAE formulation, but it loses connection to
the variational lower bound [Mescheder et al., 2016].

4.4 Amelioration of vanishing gradients

As discussed in [Arjovsky et al., 2017], a key distinction
between the WGAN framework in (25) and the original
GAN [Goodfellow et al., 2014] is that the latter uses a bi-
nary discriminator to distinguish real and synthesized data;
the fψ(x) in WGAN is a 1-Lipschitz function, rather than
an explicit discriminator. A challenge with GAN is that as
the discriminator gets better at distinguishing real and syn-
thetic data, the gradients wrt the discriminator parameters
vanish, and learning is undermined. The WGAN was de-
signed to ameliorate this problem [Arjovsky et al., 2017].

From the discussion in Section 4.1, we note that the key
distinction between the proposed sVAE and ALI is that the
latter uses a binary discriminator to distinguish (x, z) man-
ifested via the generator from (x, z) manifested via the en-
coder. By contrast, the sVAE uses a log-LRT, rather than
a binary classifier, with it inferred in an adversarial man-
ner. ALI is therefore undermined by vanishing gradients
as the binary discriminator gets better, with this avoided by
sVAE. The sVAE brings the same intuition associated with
WGAN (addressing vanishing gradients) to a generalized
VAE framework, with a generator and a decoder; WGAN
only considers a generator. Further, as discussed in Sec-
tion 4.3, unlike WGAN, which requires gradient clipping
or other forms of regularization to approximate 1-Lipschitz
functions, in the proposed sVAE the fψ(x, z) arises natu-
rally from the symmetrized VAE and we do not require im-
position of Lipschitz conditions. As discussed in Section
6, this simplification has yielded robustness in implemen-
tation.

5 Model Augmentation

A significant limitation of the original ALI setup is an in-
ability to accurately reconstruct observed data via the pro-
cess x → z → x̂ [Dumoulin et al., 2017]. With the
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proposed sVAE, which is intimately connected to ALI,
we may readily address this shortcoming. The variational
expressions discussed above may be written as Lx =
Eqφ(x,z) log pθ(x|z)−Eq(x)KL(qφ(z|x)‖p(z)) and Lz =
Epθ(x,z) log pφ(z|x) − Ep(z)KL(pθ(x|z)‖q(x)). In both
of these expressions, the first term to the right of the equal-
ity enforces model fit, and the second term penalizes the
posterior distribution for individual data samples for be-
ing dissimilar from the prior (i.e., penalizes qφ(z|x) from
being dissimilar from p(z), and likewise wrt pθ(x|z) and
q(x)). The proposed sVAE encourages the cumulative dis-
tributions qφ(z) and pθ(x) to match p(z) and q(x), re-
spectively. By simultaneously encouraging more peaked
qφ(z|x) and pθ(x|z), we anticipate better “cycle consis-
tency” [Zhu et al., 2017] and hence more accurate recon-
structions.

To encourage qφ(z|x) that are more peaked in the space
of z for individual x, and also to consider more peaked
pθ(x|z), we may augment the variational expressions as

L′x = (λ+ 1)Eqφ(x,z) log pθ(x|z)
−Eq(x)KL(qφ(z|x)‖p(z)) (26)

L′z = (λ+ 1)Epθ(x,z) log pφ(z|x)
−Ep(z)KL(pθ(x|z)‖q(x)) (27)

where λ ≥ 0. For λ = 0 the original variational expres-
sions are retained, and for λ > 0, qφ(z|x) and pθ(x|z)
are allowed to diverge more from p(z) and q(x), respec-
tively, while placing more emphasis on the data-fit terms.
Defining L′xz = L′x + L′z , we have

L′xz = Lxz + λ[Eqφ(x,z) log pθ(x|z)
+ Epθ(x,z) log pφ(z|x)] (28)

Model learning is the same as discussed in Sec. 3.2, with
the modification

`′(θ,φ;ψ∗) = Eqφ(x,z)[fψ∗(x,z) + λ log pθ(x|z)]
− Epθ(x,z)[fψ∗(x,z)− λ log pφ(z|x)] (29)

A disadvantage of this approach is that it requires explicit
forms for pθ(x|z) and pφ(z|x), while the setup in Sec. 3.2
only requires the ability to sample from these distributions.

We can now make a connection to additional related work,
particularly [Pu et al., 2017b], which considered a simi-
lar setup to (26) and (27), for the special case of λ = 1.
While [Pu et al., 2017b] had a similar idea of using a sym-
metrized VAE, they didn’t make the theoretical justification
presented in Section 3. Further, and more importantly, the
way in which learning was performed in [Pu et al., 2017b]
is distinct from that applied here, in that [Pu et al., 2017b]
required an additional adversarial learning step, increas-
ing implementation complexity. Consequently, [Pu et al.,
2017b] did not use adversarial learning to approximate the
log-LRT, and therefore it cannot make the explicit connec-
tion to ALI and WGAN that were made in Sections 4.1 and
4.3, respectively.

Figure 3: sVAE results on toy dataset. Top: Inception Score for
ALI and sVAE with λ = 0, 0.01, 0.1. Bottom: Mean Squared
Error (MSE).

6 Experiments

In addition to evaluating our model on a toy dataset, we
consider MNIST, CelebA and CIFAR-10 for both recon-
struction and generation tasks. As done for the model
ALI with Cross Entropy regularization (ALICE) [Li et al.,
2017], we also add the augmentation term (λ > 0 as dis-
cussed in Sec. 5) to sVAE as a regularizer, and denote the
new model as sVAE-r. More specifically, we show the re-
sults based on the two models: i) sVAE: the model is de-
veloped in Sec. 3 to optimize g(ψ) in (10) and `(θ,φ;ψ∗)
in (14). ii) sVAE-r: the model is sVAE with regulariza-
tion term to optimize g(ψ) in (10) and `′(θ,φ;ψ∗) in (29).
The quantitative evaluation is based on the mean square er-
ror (MSE) of reconstructions, log-likelihood calculated via
the annealed importance sampling (AIS) [Wu et al., 2016],
and inception score (IS) [Salimans et al., 2016].

All parameters are initialized with Xavier [Glorot and Ben-
gio, 2010] and optimized using Adam [Kingma and Ba,
2015] with learning rate of 0.0001. No dataset-specific tun-
ing or regularization, other than dropout [Srivastava et al.,
2014], is performed. The architectures for the encoder, de-
coder and discriminator are detailed in the Appendix. All
experimental results were performed on a single NVIDIA
TITAN X GPU.

6.1 Toy Data

In order to show the robustness and stability of our model,
we test sVAE and sVAE-r on a toy dataset designed in the
same manner as the one in ALICE [Li et al., 2017]. In this
dataset, the true distribution of data x is a two-dimensional
Gaussian mixture model with five components. The latent
code z is a standard Gaussian distributionN (0, 1). To per-
form the test, we consider using different values of λ for
both sVAE-r and ALICE. For each λ, 576 experiments with
different choices of architecture and hyper-parameters are
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Figure 4: sVAE results on MNIST. (a) is reconstructed images
by sVAE-r: in each block, column one is ground-truth and column
two is reconstructed images. (b) are generated sample images by
sVAE-r. Note that λ is set to 0.1 for sVAE-r.

conducted. In all experiments, we use mean square error
(MSE) and inception score (IS) to evaluate the performance
of the two models. Figure 3 shows the histogram results for
each model. As we can see, both ALICE and sVAE-r are
able to reconstruct images when λ = 0.1, while sVAE-r
provides better overall inception score.

6.2 MNIST

The results of image generation and reconstruction for
sVAE, as applied to the MNIST dataset, are shown in Fig-
ure 4. By adding the regularization term, sVAE overcomes
the limitation of image reconstruction in ALI. The log-
likelihood of sVAE shown in Table 1 is calculated using
the annealed importance sampling method on the binarized
MNIST dataset, as proposed in [Wu et al., 2016]. Note that
in order to compare the model performance on binarized
data, the output of the decoder is considered as a Bernoulli
distribution instead of the Gaussian approach from the orig-
inal paper. Our model achieves -79.26 nats, outperforming
normalizing flow (-85.1 nats) while also being competitive
to the state-of-the-art result (-79.2 nats). In addition, sVAE
is able to provide compelling generated images, outper-
forming GAN [Goodfellow et al., 2014] and WGAN-GP
[Ishaan Gulrajani, 2017] based on the inception scores.

Table 1: Quantitative Results on MNIST. † is calculated using
AIS. ‡ is reported in [Hu et al., 2017].

Model log p(x) ≥ IS

NF (k=80) [Rezende et al., 2015] -85.1 -
PixelRNN [Oord et al., 2016] -79.2 -
AVB [Mescheder et al., 2016] -79.5 -
ASVAE [Pu et al., 2017b] -81.14 -
GAN [Goodfellow et al., 2014] -114.25 † 8.34 ‡

WGAN-GP [Ishaan Gulrajani, 2017] -79.92 † 8.45 ‡

DCGAN [Radford et al., 2016] -79.47 † 8.93
sVAE (ours) -80.42 † 8.81
sVAE-r (ours) -79.26 † 9.12

Figure 5: CelebA generation results. Left block: sVAE-r gener-
ation. Right block: ALICE generation. λ = 0, 0.1, 1 and 10 from
left to right in each block.

Figure 6: CelebA reconstruction results. Left column: The
ground truth. Middle block: sVAE-r reconstruction. Right block:
ALICE reconstruction. λ = 0, 0.1, 1 and 10 from left to right in
each block.

6.3 CelebA

We evaluate sVAE on the CelebA dataset and compare the
results with ALI. In experiments we note that for high-
dimensional data like the CelebA, ALICE [Li et al., 2017]
shows a trade-off between reconstruction and generation,
while sVAE-r does not have this issue. If the regularization
term is not included in ALI, the reconstructed images do
not match the original images. On the other hand, when
the regularization term is added, ALI is capable of recon-
structing images but the generated images are flawed. In
comparison, sVAE-r does well in both generation and re-
construction with different values of λ. The results for both
sVAE and ALI are shown in Figure 5 and 6.
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Figure 7: sVAE-r and ALICE CIFAR quantitative evaluation
with different values of λ. Left: IS for generation; Right: MSE
for reconstruction. The result is the average of multiple tests.

Generally speaking, adding the augmentation term as
shown in (28) should encourage more peaked qφ(z|x) and
pθ(x|z). Nevertheless, ALICE fails in the inference pro-
cess and performs more like an autoencoder. This is due to
the fact that the discriminator becomes too sensitive to the
regularization term. On the other hand, by using the sym-
metric KL (14) as the cost function, we are able to alleviate
this issue, which makes sVAE-r a more stable model than
ALICE. This is because sVAE updates the generator using
the discriminator output, before the sigmoid, a non-linear
transformation on the discriminator output scale.

6.4 CIFAR-10

The trade-off of ALICE [Li et al., 2017] mentioned in
Sec. 6.3 is also manifested in the results for the CIFAR-10
dataset. In Figure 7, we show quantitative results in terms
of inception score and mean squared error of sVAE-r and
ALICE with different values of λ. As can be seen, both
models are able to reconstruct images when λ increases.
However, when λ is larger than 10−3, we observe a de-
crease in the inception score of ALICE, in which the model
fails to generate images.

Table 2: Unsupervised Inception Score on CIFAR-10

Model IS

ALI [Dumoulin et al., 2017] 5.34 ± .05
DCGAN [Radford et al., 2016] 6.16 ± .07
ASVAE [Pu et al., 2017b] 6.89 ± .05
WGAN-GP 6.56 ± .05
WGAN-GP ResNet [Ishaan Gulrajani, 2017] 7.86 ± .07
sVAE (ours) 6.76 ± .046
sVAE-r (ours) 6.96 ± .066

The CIFAR-10 dataset is also used to evaluate the genera-
tion ability of our model. The quantitative results, i.e., the
inception scores, are listed in Table 2. Our model shows
improved performance on image generation compared to
ALI and DCGAN. Note that sVAE also gets comparable re-
sult as WGAN-GP [Ishaan Gulrajani, 2017] achieves. This
can be interpreted using the similarity between (23) and
(25) as summarized in the Sec. 4. The generated images
are shown in Figure 8. More results are in the Appendix.

(a) sVAE CIFAR unsupervised generation.

(b) sVAE-r (with λ = 1) CIFAR unsupervised generation.

(c) sVAE-r (with λ = 1) CIFAR unsupervised reconstruction.
First two rows are original images, and the last two rows are the
reconstructions.

Figure 8: sVAE CIFAR results on image generation and
reconstruction.

7 Conclusions

We present the symmetric variational autoencoder (sVAE),
a novel framework which can match the joint distribution of
data and latent code using the symmetric Kullback-Leibler
divergence. The experiment results show the advantages of
sVAE, in which it not only overcomes the missing mode
problem [Hu et al., 2017], but also is very stable to train.
With excellent performance in image generation and recon-
struction, we will apply sVAE on semi-supervised learning
tasks and conditional generation tasks in future work. Mor-
ever, because the latent code z can be treated as data from a
different domain, i.e., images [Zhu et al., 2017, Kim et al.,
2017] or text [Gan et al., 2017], we can also apply sVAE to
domain transfer tasks.
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