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Abstract

Bayesian nonparametrics, since its introduction, has gained increasing attention in
machine learning due to its flexibility in modeling. Essentially, Bayesian nonpara-
metrics defines distributions over infinite dimensional objects such as discrete distri-
butions and smooth functions. This overcomes the fundamental problem of model
selection which is hard in traditional machine learning, thus is appealing in both ap-
plication and theory. Among the Bayesian nonparametric family, random probability
measures have played important roles in modern machine learning. They have been
used as priors for discrete distributions such as topic distributions in topic models.
However, a general treatment and analysis of the random probability measure has
not been fully explored in the machine learning community.

This thesis introduces the normalized random measure (NRM), built on theories
of Poisson processes and completely random measures from the statistical commu-
nity. Then a family of dependent normalized random measures, including hierarchi-
cal normalized random measures, mixed normalized random measures and thinned
normalized random measures, are proposed based on the NRM framework to tackle
different kinds of dependency modeling problems, e.g., hierarchical topic modeling
and dynamic topic modeling. In these dependency models, various distributional
properties and posterior inference techniques are analyzed based on the general the-
ory of Poisson process partition calculus. The proposed dependent normalized ran-
dom measure family generalizes some popular dependent nonparametric Bayesian
models such as the hierarchical Dirichlet process, and can be easily adapted to differ-
ent applications. Finally, more generalized dependent random probability measures
and possible future work are discussed.

To sum up, the contributions of the thesis include:

• Transfer the theory of the normalized random measure from the statistical to machine
learning community. Normalized random measures, which were proposed re-
cently in the statistical community, generalize the Dirichlet process to a large
extent, thus are much more flexible in modeling real data. This thesis forms
the most extensive research to date in this area.

• Explore different ideas about constructing dependent normalized random measures. Ex-
isting Bayesian nonparametric models only explore limited dependency struc-
tures, with probably the most popular and successful being hierarchical con-
struction, e.g., the hierarchical Dirichlet process (HDP). The dependency mod-
els in the thesis not only extend the HDP to hierarchical normalized random
measures for more flexible modeling, but also explore other ideas by control-
ling specific atoms of the underlying Poisson process. This results in many
dependency models with abilities to handle dependencies beyond hierarchical
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dependency such as the Markovian dependency. In addition, by constructing
the dependency models in such ways, various distributional properties and
posterior structures can be well analyzed, resulting in much more theoretically
clean models. These are lacked of in the hierarchical dependent model.

• All the models proposed are extensively tested, through both synthetic data and
real data, such as in topic modeling of documents. Experimental results have
shown superior performance compared to realistic baselines, demonstrating
the effectiveness and suitability of the proposed models.
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Chapter 1

Introduction

Probability modeling is a powerful tool and becoming increasing popular in mod-
ern machine learning. In probability modeling, we are given some observations
denoted as X = {x1, x2, · · · , xn}, which are assumed to be generated from a model
M. A model is usually parameterized by a set of parameters, e.g., a Gaussian model
is represented by its mean and covariance; thus given a particular kind of model
(sometimes called the structure of the model) we can think of the parameters as com-
pleting the model. For convenience, we often use the parameters to represent the
model, leaving the kind of model as implicit. The conditional distribution of the
observations given the model is called

Likelihood: p(X|M) .

The goal of the modeling is to find a suitable model M∗ that explains the data X.
There are two popular ways of addressing this problem: one is to directly optimize
the likelihood P(X|M), resulting in the maximal likelihood (ML) estimation of the
model; the other is to employ priors for the model p(M), and do maximum a poste-
riori (MAP) via point estimation or Bayesian inference on the conditional distribution
p(M|X). The point estimation of MAP finds an optimal point of the posterior usu-
ally by optimization, thus lacks the flexibility of Bayesian inference on the whole
posterior distribution. While in Bayesian inference, the posterior is related to the
joint likelihood p(M, X) = p(M)p(X|M) via the well known Bayes Theorem:

p(M|X) =
p(M, X)

p(X)
=

p(M)p(X|M)

p(X)
.

This thesis focuses on the latter case, which is usually called Bayesian methods for
machine learning. We can see that in this setting, the model prior p(M) plays an
important role in Bayesian inference, much research has therefore focused on defin-
ing suitable priors for different machine learning problems. Traditional Bayesian
methods focus on cases where the model M is parameterized by a finite number
of parameters, known as parametric Bayesian methods. However, these kinds of meth-
ods encounter the problem that model complexity does not scale with the data size,
which would easily cause over-fitting. As a result, modern machine learning has
embraced nonparametric Bayesian methods (or Bayesian nonparametrics), in which the

1
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model M is parameterized with an infinite number of parameters, and the model
complexity would grow with data size1 and is hopefully free of over-fitting. This is
the setting considered in this thesis.

Given the appealing properties of Bayesian nonparametrics, this thesis will focus
on a subclass of Bayesian nonparametric priors called discrete random probability mea-
sures (RPM). Specifically, the normalized random measure (NRM), a recently studied
RPM in the statistical community, will be extended to construct dependent normalized
random measures. Then their properties will be analyzed and applications to machine
learning will be studied. As is well known, discrete random probability measures
are fundamental in machine learning. For example, in topic models [Blei et al., 2003],
this corresponds to topic distributions where a topic is defined to be a discrete dis-
tribution over vocabulary words; also, in social network modeling, the friendship of
one person could be modeled by a random probability measure f , with entry fi rep-
resenting the probability of being friends with i. In addition, dependency modeling
is ubiquitous in modern machine learning. For instance, in the topic modeling above,
usually we are more interested in modeling how topics in each document correlate
with each other instead of simply modeling topic distributions for a single document;
and in friendship modeling in social network, we are more excited in modeling the
correlation of friends between people. The reason is that by dependency modeling,
we not only obtain information sharing within data, but also are able to do predic-
tion for unseen data. This thesis focuses on constructing dependency models from
the normalized random measure framework. It explores different ways of depen-
dency modeling including the hierarchical dependency modeling and Markovian
dependency modeling, which are commonly seen in real applications.

Before going into details of this topic, a brief overview of some popular Bayesian
nonparametric priors is first given in the following in order to help the reader get a
better understanding of Bayesian nonparametrics in machine learning.

1.1 Some Popular Nonparametric Bayesian Priors

Generally speaking, Bayesian nonparametric priors define distributions over infinite
dimensional objects, such as discrete distributions, smooth functions, infinite di-
mensional binary matrices, kd-tree structures, continuous time Markov chains, etc.
These distributions correspond to the stochastic processes called Dirichlet processes,
Gaussian processes, Indian buffet processes, Mondrian processes and fragmentation-
coagulation processes, respectively. A brief overview of these stochastic processes
will be given in the following.

1.1.1 Dirichlet processes

The Dirichlet process is a distribution over discrete distributions, meaning that each
draw/sample from it is a discrete distribution. Formally, let D be a random prob-

1It can be estimated from the data.
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A Draw from a Dirichlet process

Figure 1.1: A draw from a Dirichlet process.

ability measure on X, α be a positive measure on X, (X1, X2, · · · , Xn) an arbitrary
partition of X, then D is called a Dirichlet process with base measure α if [Ferguson,
1973]

(D(X1), D(X2), · · · , D(Xn)) ∼ Dir (α(X1), α(X2), · · · , α(Xn)) .

This consistent constructed definition of D meets the conditions of Kolmogorov con-
sistency theorem [Çinlar, 2010], guaranteeing the existence of the Dirichlet process on
space X. Because each draw from D is a discrete distribution, it can be written as

D =
∞

∑
k=1

wkδθk ,

where 0 < wk < 1, ∑k wk = 1, θk’s are drawn i.i.d. from X and δθ is a point mass
at θ. Also note that wk’s can be constructed from a stochastic process called the
stick-breaking process [Sethuraman, 1994], which will be described in more detail in
Chapter 4. Throughout the thesis the Dirichlet process will be denoted as DP(α, H)
where α(X) defined above is simplified as α, and H is the base distribution used to
draw the samples θk’s. A realization of the DP is illustrated in Figure 1.1.

1.1.2 Pitman-Yor processes

As a generalization of the Dirichlet process, the Pitman-Yor process (PYP) first arises
in the statistics community from a comprehensive study of excursion lengths and
related phenomena of a class of Bessel processes indexed by a parameter 0 ≤ σ < 1,
see for example [Pitman and Yor, 1997]. Specifically, they were interested in studying
the distribution of a decreasing sequence {wk} summing to one. An interesting
distribution is the two parameter Poisson-Dirichlet distribution constructed via a stick-
breaking process derived in [Perman et al., 1992]:

Definition 1.1 (Poisson-Dirichlet distribution). For 0 ≤ σ < 1 and θ > −σ, suppose
that a probability Pσ,θ governs independent random variables Vk such that Vk has Beta(1−
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σ, θ + k σ) distribution. Let

w1 = V1, wk = (1−V1) · · · (1−Vk−1)Vk k ≥ 2 , (1.1)

yielding w = (w1, w2, ...). Define the Poisson-Dirichlet distribution with parameters σ, θ,
abbreviated PD(σ, θ) to be the Pσ,θ distribution of w.

Note this does assume a particular ordering of the entries in w. Here our σ

parameter is usually called the discount parameter in the literature, and θ is called the
concentration parameter. The DP is the special case where σ = 0, and has some quite
distinct properties such as slower convergence of the sum ∑∞

k=1 wk to one. General
results for the discrete case of the PYP are reviewed in Buntine and Hutter [2012].
Also note there are some other interesting processes of this class of distributions,
for example, PD( 1

2 , 0) corresponds to Brownian Motion and PD( 1
2 , 1

2 ) corresponds to
Brownian Bridge.

A suitable definition of a Poisson-Dirichlet process is that it extends the Poisson-
Dirichlet distribution by attaching each weight wk to a random point drawn from
a space Θ with base distribution H. This is denoted as PYP(σ, θ, H(·)) and can be
represented as ∑k wkδθk . Thus the PYP is a functional on distributions: it takes as
input a base distribution and yields as output a discrete distribution with a finite or
countable set of possible values on the same domain. The treatment of the PYP from
a Bayesian perspective can be found in [Pitman, 1996, 2006], and Gibbs sampling
methods for the PYP via stick-breaking prior were proposed by Ishwaran and James
[2001]. From this the stick-breaking presentation of the PYP was popularized in
machine learning community. Later Ishwaran and James [2003] showed how such
processes could be used practically in complex Bayesian mixture models, also giving
it its current name, the Pitman-Yor process (PYP).

1.1.3 Gaussian processes

The Gaussian process defines distributions over smooth functions–continuous func-
tions. We use GP(µ, K) to denote this stochastic process, which is parameterized by
a mean function µ : X 7→ R and a kernel function K : X×X 7→ R+, where X denotes
its domain. Different from the DP, now each draw of GP is a random function f ,
such that for arbitrary (X1, X2, · · · , Xn) ∈ X, ( f (X1), f (X2), · · · , f (Xn)) is multivari-
ate normal distributed, i.e.

f ∼ GP(µ, K)⇒

( f (X1), f (X2), · · · , f (Xn)) ∼ N
(
(µ(X1), · · · , µ(Xn)) ,

(
K(Xi, Xj)

)N
i.j=1

)
,

where N(µ, Σ) means a multivariate normal distribution with mean µ and covari-
ance Σ,

(
K(Xi, Xj)

)N
i,j=1 means a N × N kernel matrix with the (i, j)-element being

K(Xi, Xj).
From the definition we can see that different from the DP, the samples Xi’s in

GP are dependent via the kernel function K, thus is suitable for modeling correlated
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Figure 1.2: Sampled functions drawn from a Gaussian process with zero mean and
squared exponential kernel.

observed data. Figure 1.2 shows some sampled functions drawn from a GP with zero
mean and squared exponential kernel function [Rasmussen and Williams, 2006].

1.1.4 Indian buffet processes

The Indian buffet process (IBP) defines distributions over infinite dimensional binary
matrices, or more precisely speaking, over infinite column binary matrices. It can be
seen as compositions of Beta processes and Bernoulli processes [Thibaux and Jordan,
2007], but probably the most intuitive way of understanding the IBP is via the Indian
buffet metaphor [Griffiths and Ghahramani, 2011], i.e., the IBP defines distributions
over the following Indian buffet seating process:

• In an Indian buffet restaurant, there are infinite number of dishes served in a
line. N customers come into the restaurant one after another.

• The first customer starts at the left of the buffet, takes the first Poisson(α) dishes
and stops as his plate becomes overburdened.

• The i-th customer moves along the buffet, chooses the k-dish with probability
mk
i , where mk is the number of previous customers choosing dish k; having

reaching the end of last customer, he tries a Poisson( α
i ) number of new dishes.

If we use a binary matrix X to record the choices of the customers where each row
corresponds to one customer and each column corresponds to one dish, i.e., Xik = 0
means dish k was not chosen by customer i, Xik = 1 means it was chosen. At
the end of the process, we can get a distribution of the choices of the dishes by
all the customers, which is essentially a distribution over infinite dimensional binary
matrices. We will use IBP(α) to denote the Indian buffet process. Figure 1.3 illustrates
a draw from the IBP with α = 5.
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Figure 1.3: A draw from an Indian buffet process, where rows represent customers,
columns represent dishes. Color “white” corresponds to value “1”, “black” corre-

sponds to “0”.

1.1.5 Mondrian processes

The Chinese restaurant process (CRP) [Aldous, 1985], obtained by integrating out the
random measure in the Dirichlet process, defines a distribution over a partition of
the natural numbers N = {1, 2, · · · }. That is, if we use zx ∈ N to denote the cluster
assignment for data x, then the joint distribution of (zx : x ∈ X) is called the Chinese
restaurant process. We can think of it as a distribution over a one-dimensional space,
e.g., the indexes are represented by positive integers which are one dimensional.
The Mondrian process [Roy and Teh, 2009] generalizes this to arbitrary dimensional
space. For example, in a two-dimensional case, suppose x ∈ X1 and y ∈ X2 are
objects to be modeled (X1 and X2 do not necessary be the same space), we define a
collocation cluster assignment variable zxy for the pair (x, y) to denote which cluster
the pair (x, y) is in. This can be model with a generalization of the CRP, called a
two-dimensional Mondrian process, which defines the joint distribution over (zxy :
x ∈ X1, y ∈ X2).

We can see from the above example that the Mondrian process is defined via
partitioning the n-dimensional index space, this is equivalent to constructing a ran-
domized n-dimensional kd-tree, where we sequentially and randomly choose one
dimension each time, and then do a random cut on this dimension [Roy and Teh,
2009]. For instance, in the two dimension case where we want to construct a random
kd-tree on the rectangle (a, A)× (b, B), we denote the resulting Mondrian process as
m ∼ MP(λ, (a, A), (b, B)), where λ is the parameter of the Mondrian process control-
ling the number of cuts in the process. Now we do the following cutting:

• Let λ′ = λ− E where E ∼ Exp(A− a + B− b):2

2Exp(x) means the exponential distribution with parameter x.
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Figure 1.4: A draw from a Mondrian process on space [0, 1]× [0, 1].

– If λ′ < 0: stop the cutting process, the resulting cutting configuration is a
draw from the MP.

– Otherwise, uniformly choose a cutting point on (a, A) ∪ (b, B), and do a
cut (vertically or horizontally) on the corresponding dimension. Assume
the cutting point is on x ∈ (a, A) (it is similar when x ∈ (b, B)), this results
in two independent MPs after the cutting:

m< ∼ MP(λ′, (a, x), (b, B)), m> ∼ MP(λ′, (x, A), (b, B))

and then we recurse on m< and m>, respectively.

Roy and Teh [2009] show this construction results in nice theoretical properties in-
cluding self-consistency, which is essential in defining valid stochastic processes [Çin-
lar, 2010]. Figure 1.4 shows a draw from a two dimensional Mondrian process, which
defines a partition over the two dimensional space [0, 1]× [0, 1].

1.1.6 Fragmentation-Coagulation processes

The fragmentation-coagulation process (FCP) [Teh et al., 2011] is an instance of the
more general Markov jump processes [Rao, 2012]. It defines distributions over con-
tinuous time Markov chains with states representing random split and merge oper-
ations. This is particularly interesting in modeling sequential data associated with
random split and merge phenomena such as genetic variations.

The fragmentation-coagulation process is essentially the dynamic version of the
Chinese restaurant process, where in each time, the tables can split or merge ac-
cording to some probabilities. Formally, it is described via sequentially sitting N
customers into the dynamic Chinese restaurant process [Teh et al., 2011] (i is used to



8 Introduction

C

C

C

C

F

F

C

customer 1

customer 2

customer 3

customer 4

customer 5

(2, 3)
(2, 3, 4)

(1, 2, 4)

(2, 4)

(3)

(3, 5)

(1, 4)

(2)

(2, 3, 5)

Figure 1.5: A draw from a Fragmentation-Coagulation process, where F means frag-
mentation and C means coagulation.

index customers and t to index time):

• i = 1: The first customer sits at a table for the duration of the process.

• t = 0: For the subsequent customers, at time t = 0, they sit at the tables
according to the standard Chinese restaurant process. For the other times, i.e.,
t > 0, the following circumstances might happen:

• If prior to time t, customer i is sitting with some other people:

– Let i be sitting at table c prior to t, which will split into two tables at time
t, then i will join one of the tables with probabilities proportional to the
number of customers on those tables.

– Otherwise if c is to merge with another table, then i will join the combined
table.

– Otherwise, with some probability i will fragment out to create a new table
at time t.

• Otherwise the table where i is sitting at will have some probability to merge
with other existing tables at time t.

The above description defines a distribution over the dynamic seating arrange-
ments of the Chinese restaurant process, and is called the fragmentation-coagulation
process. Figure 1.5 illustrates a realization of the FCP via fragmentation (F) and
coagulation (C) events.

1.2 Nonparametric Bayesian Models for Machine Learning

Given well defined nonparametric Bayesian priors such as those described in the
previous section, we can apply them to machine learning problems by identifying the
likelihood terms and then perform Bayesian inference on the posterior. This section
briefly introduces some typical machine learning problems with the nonparametric
Bayesian priors defined in the last section.
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Figure 1.6: LDA topic model.

1.2.1 Hierarchical Dirichlet process latent Dirichlet allocation

This model, known as HDP-LDA, was first proposed by Teh et al. [2006] as a Bayesian
nonparametric extension of the popular latent Dirichlet allocation (LDA) topic model [Blei
et al., 2003]. By using the HDP as the prior for topic distributions in the LDA, it can
automatically infer the number of topics in the corpus, allowing much more flexible
modeling for documents.

Specifically, in the LDA model, a document is assumed to have the following
generating process:

• Draw K topics distributions {φk} i.i.d. from the Dirichlet distribution with
parameter β:

φk ∼ Dirichlet(β), k = 1, 2, · · · , K

• For each document d:

– Draw its topic distribution µd from a Dirichlet distribution with parameter
α:

µd ∼ Dirichlet(α) .

– For the `-th word wd` in document d:

∗ Draw its topic indicator zd` from the discrete distribution:

zd` ∼ Discrete(µd) .

∗ Generate the word wd` from the corresponding topic:

wd` ∼ Discrete(φzd`
) .

The corresponding graphical model is shown in Figure 1.6. In HDP-LDA, the
topic distribution for each document is replaced with a Dirichlet process, and these
DPs are coupled with the same hierarchical structure as the LDA to achieve topic
sharing, e.g., they are drawn from a parent DP. This model in essence equals to
letting the number of topics K in LDA go to infinite. In formulation, the generative
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process for the HDP-LDA is described as:

D0|α0, H ∼ DP(α0, H) a common DP

Dd|α, D0 ∼ DP(α, D0) for each document d

ϕd`|Dd ∼ Dd, wd`|ϕd` ∼ Discrete(ϕd`) for each word wd`

where H is the Dirichlet base distribution, thus each draw ϕd` from Dd is a discrete
distribution, which is used to draw the words wd` for document d. More details of
the model will be introduced in Chapter 4.

1.2.2 Language modeling with Pitman-Yor processes

For a long time since its proposal, the Pitman-Yor process did not find its justifica-
tion in the modeling, i.e., the distinction between DP and PYP in modeling has not
been discovered, in fact, people even found DP is a much better process to use if one
were trying to model logarithmic behavior [Arratia et al., 2003]. A first significant
work demonstrating the advantage of Pitman-Yor processes over Dirichlet processes
is done by Goldwater et al. [2006], where Pitman-Yor processes are introduced to
model power-law phenomena in language models. At the same time, Teh [2006a,b]
proposed to use Pitman-Yor processes for n-gram lauguage modeling in natural lan-
guage processing.

Specifically, in n-gram language modeling, we are trying to model the probability
of sequences of words p(w1, w2, · · · , wn). In a k-gram model, it is assumed that word
wi only depends on its previous k− 1 words, e.g., p(wi|wi−k+1, · · · , wi−1, θ) where θ

is the model parameter. Using the PYP to model these distributions, we can construct
a hierarchy of word distributions, i.e.:

p(wi|wi−k+1, · · · , wi−1, {σi, θi}) ∼ PYP (σi, θi, p(wi−1|wi−k, · · · , wi−2, {σi−1, θi−1}))
for i = 1, 2, · · · , n .

In this way, the word distribution of wi given its previous k− 1 words is a smooth
variant of the word distribution of wi−1 given its previous k− 1 words. The Pitman-
Yor process is shown to be superiors to the Dirichlet process in this setting because
words in natural language follows the Zip-Law, which is in correspondence with
the power-law property in the Pitman-Yor process. In term of posterior inference
techniques, the most popular one is based on the Chinese restaurant process repre-
sentation of the PYP, please refer to Teh [2006b] for details.

1.2.3 Gaussian process regression

The Gaussian process can be used as a prior for regression problems [Rasmussen and
Williams, 2006], where the goal is to find a smooth function that fits the data well. The
Gaussian process, in essence, meets the requirement of the problem. Furthermore, it
provides a nonparametric Bayesian way to do the modeling where we do not need
to explicitly specify the form of the regression function, thus is nonparametric. To
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utilize the conjugacy property, we usually choose a Gaussian likelihood, resulting in
the following Gaussian process regression:

f ∼ GP(µ, K) draw a random function f

xi ∼ N(xi; f (xi), σI), for i = 1, 2, · · · , N

where xi ∈ R, σ > 0, and I is a N×N identity matrix. The advantage of the Gaussian
likelihood is that it enables analytical prediction formulation under the framework.
Other likelihood functions usually do not have this property, but we can use some
approximation techniques such as the Laplacian approximation to make the problem
analytically and efficiently computable [Rasmussen and Williams, 2006].

1.2.4 Infinite latent feature models

The Indian buffet process is usually used as a nonparametric Bayesian prior for the
infinite latent feature models [Zhou et al., 2009; Griffiths and Ghahramani, 2011].
Specifically, with the infinite dimensional matrix Z drawn from the IBP, we take each
row zi as the feature indicator vector for an object, e.g., ‘1’ means the feature is on
while ‘0’ means off. In the image modeling [Griffiths and Ghahramani, 2011], image
xi is assumed be generated from a K-dimensional Gaussian distribution with mean
zi A and covariance matrix ΣX = σ2

X I, where A is a K × D weighting matrix and D
is the dimension of the image. In other words, the whole generative process can be
written as:

Z ∼ IBP(α) draw feature indicators for all the images

xi ∼ N(xi; zi A, σ2
X I) generate image xi

To sum up, using the IBP in the latent feature modeling, the number of features
for each object can be inferred from the data, providing an advance way of modeling
than traditional latent feature models such as principal component analysis [Pearson,
1901].

1.2.5 Relational modeling with Mondrian processes

The Mondrian process defines partitions over n-dimensional positive integer-valued
tensors, i.e., it partitions a n-dimensional cubic into a set of blocks, with each block
representing a unique cluster adopted with its own parameters, thus it is ideal to
be used as a prior for relational data. For example, the author network data could
be represented as a 2-dimensional relational data. We use X, Y to represent these
two dimensions, if an author i ∈ X co-authors with another author j ∈ Y for some
paper, we assume that they are in the same block/cluster in the partition, and use
zij to denote the corresponding block index. Roy and Teh [2009] consider the case of
2-dimensional relational data with binary observations, i.e., linked or unlinked. They
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use the following process for the generative model:

M|λ ∼ MP(λ, [0.1], [0, 1]) a random partition on [0, 1]× [0, 1]

φs ∼ Beta(a0, a1) parameters for each block in M

ξi ∼ Uniform(0, 1) x-axes for each data i

ηi ∼ Uniform(0, 1) y-axes for each data i

Rij|ξ, η, φ, M ∼ Bernoulli(φzij) connection between i and j

where zij is determined by matching its x and y values with the block locations in M.
It can be seen that generalizing the model to arbitrary dimensional relational data
is straightforward, and the Mondrian process represents as a powerful and flexible
nonparametric Bayesian prior for the modeling.

1.2.6 Genetic variations modeling with fragmentation-coagulation processes

The construction of the fragmentation-coagulation process (FCP) facilitates it to model
time evolving phenomena where latent cluster structures are assumed to be evolving
over time. Teh et al. [2011] use the FCP to model SNP sequence (haplotype) evolution
in generic applications. In the SNP sequence, there are M locations on a chunk of
the chromosome, with simple binary observations. Furthermore, observations are
assumed to be Markovian dependent, e.g., the observation on location m on a SNP
sequence depends on the observation on location m− 1. Given a chunk of such se-
quence, the observations in each location are again assumed to exhibit latent cluster
structures (i.e., the observations at a specific location follow a Chinese restaurant pro-
cess. Given the latent cluster structure at a location, the binary observations are then
generated from Bernoulli distributions. Specifically, the whole model can be written
as the following hierarchical construction:

C ∼ FGP(µ, R) sample a fragmentation-coagulation configuration

β j ∼ Beta(a, b) for each location j

θcj ∼ Bernoulli(β j) for each cluster c in location j

p(xij = θcij j) = 1− ε for each observation i in location j

where (µ, R) are hyperparameters in the FGP, ε is a noise probability, cij ∈ C de-
notes the cluster that i is in at location j, the generative process can be illustrated in
Figure 1.7. For more details on the construction, please refer to [Teh et al., 2011].

1.3 Dependent Random Probability Measures

The thesis focuses on a particular nonparametric Bayesian prior called the random
probability measure (RPM), which is essentially a generalization of the Dirichlet pro-
cess. In an RPM, each draw is a discrete distribution, and it has close relationship
with the Poisson process, which will be explored in the thesis. The construction
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Figure 1.7: SNP sequence example. xij means the observation in cluster i at location
j, θij is the binary random variable for cluster i in location j, the numbers (1, 2, 3, 4)

denote the sequences. The figure shows 4 SNP sequences of 4 locations.

of an RPM from Poisson processes results in a flexible and large class of random
probability measures. Furthermore, due to the analytic distributional probability of
the Poisson process, the RPMs discussed in the thesis allow feasible and efficient
posterior inference algorithms to be designed.

1.3.1 Poisson processes

The Poisson process is a well studied stochastic process [Kingman, 1993], and is prob-
ably the simplest and most intuitive stochastic process in the literature. Because of
the simplicity, it has many theoretically nice distributional properties such as com-
plete randomness and analytical integration. This makes it the basis for many other
more advanced stochastic processes such as the Dirichlet process [Ferguson, 1973]
and the Markov process [Kolokoltsov, 2011; Rao, 2012].

A concise introduction of the Poisson process and its distributional properties
will be given in Chapter 2. It will also be clear how the thesis is built on the Poisson
process in the rest of the chapters.
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1.3.2 Completely random measures

Completely random measures (CRM) are also fundamental in the development of
models in this thesis. The CRM is quite similar to the Poisson process in definition
but more general. Actually it can be shown that completely random measures can
be constructed from Poisson processes as well [Kingman, 1993]. Note similar to the
Poisson process, samples from the CRM are also discrete random measures. Thus the
CRM also forms the basis for random probability measures studied in this thesis, e.g.,
an NRM is obtained by doing a normalization step on the CRM. Subsequently, the
resulting RPM could inherit some nice properties from the CRM, as will be shown in
the thesis.

1.3.3 Random probability measures

Finally, the random probability measure (RPM) forms the main stream of the thesis.
It will be shown how to obtain a RPM with the following transformations in the
thesis:

Poisson process linear functional
=⇒ CRM transformation

=⇒ RPM

Basically, we first take a linear functional of the Poisson random measure to get a
CRM, then we can apply suitable transformations on the CRM to get a RPM, e.g., to
get a normalized random measure (NRM), the transformation is simply a normalization
operation. We can of course perform other more complicated transformations, for
example, first apply some transformations on the individual atoms before doing the
normalization. Chapter 8 will discuss this idea in more detail.

1.3.4 Dependent random probability measures

A further development on random probability measures is the family of dependent ran-
dom probability measures, which has found various important applications in machine
learning. From the statistical aspect, dependent random probability measures have
also been well studied. After developing the notation of dependent nonparametric pro-
cesses in [MacEachern, 1999], MacEachern [2000] specified a model called dependent
Dirichlet process, where atoms of a set of Dirichlet processes are characrized by a
stochastic process. The idea was further developed in his following papers such as
[MacEachern, 2001; MacEachern et al., 2001]. Since then a lot of followup works had
been proposed by others. For instance, James [2003] specified the random probability
measure with a Gamma process and developed dependent semiparametric intensity
models. A related approach but for hazard rate mixtures has been developed recently
by Lijoi and Bernardo [2014]. Also, De Iorio et al. [2004] proposed a construction of
dependent random measures with an ANOVA model. Finally, a recent work using
dependent Bayesian nonparametric models for species data application can be found
in [Arbel et al., 2014].

We note that most of the above mentioned works were done from the statistical
aspect, this thesis aims to develop dependent random probability measures from the
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machine learning aspect, where tractability and computational feasibility are two of
the major issues. To sum up, the thesis makes a contribution towards this by bridging
the gap between statistical tools for RPMs and real applications.

1.4 Thesis Contributions

To be more precise, parts of the thesis are based on my following published joint
work

• Parts of Chapter 3 appeared in our technical report [Chen et al., 2012a], where I
did the related theory of normalized random measures by borrowing some
ideas from existing work in the statistical community. Wray Buntine con-
tributed by simplifying some theorems in the paper and derived the computa-
tional formula for TN,K

σ,M in Section 3.4.1. Both the coauthors helped with polish-
ing the draft and helpful discussions.

• Chapter 4 is unpublished, and built partly based on some theory of hierarchi-
cal modeling with normalized random measures in [Chen et al., 2013b, Ap-
pendix. D]. All are my individual work.

• Chapter 5 is based on our published paper at International Conference on Ma-
chine Learning (ICML). I did the theory and implementation of the model, the
other two authors participated in the work with helpful discussion and paper
polish.

• Most content of Chapter 6 and Chapter 7 appeared in our published work
in International conference on Machine Learning [Chen et al., 2013a], a joint
work started from my visit to Yee Whye Teh at UCL. With very inspiration
and helpful discussions with Yee Whye Teh and Vinayak Rao, I did the related
theory and implementation of the models. All the coauthors especially Vinayak
Rao helped with polishing the paper.

• Section 8.3 of Chapter 8 is based on discussion with Yee Whye Teh and Vinayak,
as well as Vinayak Rao’s unpublished technical report on Poisson-Kingman
processes [Rao, 2013]. Other parts are my own work.

• Except wherever stated above, all the other parts of the thesis are done by my
own.

Furthermore, some other work during my PhD not included in the thesis include
four of our published papers [Chen et al., 2011; Du et al., 2012; Chen et al., 2014a;
Lim et al., 2013; Chen et al., 2014b] and one submitted manuscript [Ding et al., 2014].

The contributions of the thesis include:

• Review the theory of Poisson processes and a recent technique called Poisson
process partition calculus, and relates it to the well known Palm formula.



16 Introduction

• Transfer the theory of the normalized random measure from the statistical to machine
learning community. The normalized random measure generalizes the Dirichlet
process (DP) to a large extend, overcomes some limitations of the DP such
as the incapability for power-law distribution modeling, thus is much more
flexible in modeling real data. This thesis forms the most extensive research to
date in this area.

• Explore different ideas about constructing dependent normalized random measures. Ex-
isting Bayesian nonparametric models only explore limited dependency struc-
tures such as the hierarchical dependency by, for example the hierarchical
Dirichlet process (HDP). The dependency models in the thesis not only extend
the HDP to hierarchical normalized random measures for more flexible model-
ing, but also explore other ideas by controlling specific atoms of the underlying
Poisson process. This results in many dependency models with abilities to
handle dependencies beyond hierarchical dependency such as the Markovian
dependency. In addition, by constructing the dependency models in such ways,
various distributional properties and posterior structures can be well analyzed,
resulting in much more theoretically clean models. These properties cannot be
achieved with the hierarchical dependent model.

• Test all the models proposed in the thesis extensively with both synthetic data
and real data such as documents for topic modeling. Experimental results have
shown superior performance compared to realistic baselines, demonstrating
the effectiveness and suitability of the proposed models.

1.5 Thesis Outline

The rest of the chapters go as follows:

Chapter 2 This chapter introduces the Poisson process on a general probability space. It
starts by relating some real life phenomena with the Poisson process, then intro-
duces the definition of Poisson process, how to define probability distributions
on Poisson random measures, and reviews some nice theoretical distributional
properties of the Poisson process. Finally, it introduces a recently proposed
calculus tool–the Poisson process partition calculus, and relates this with the
well known Palm formula for Poisson processes, which will be used frequently
in the rest of the thesis.

Chapter 3 This chapter introduces the normalized random measure (NRM). Specifically,
it shows explicitly how an NRM is constructed from Poisson processes. Some
distributional properties and posterior will be analyzed using the Poisson pro-
cess partition calculus described in Chapter 2. Several forms of the posteriors
for the NRM will also be compared and several versions of the posterior sam-
pling algorithms are derived. Finally, experiments on NRM mixtures will be
presented.
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Chapter 4 This chapter builds hierarchical models to deal with hierarchical correlated data
based on the NRM–hierarchical normalized random measures (HNRM). The
construction is the same as the hierarchical Dirichlet process (HDP) [Teh et al.,
2006] except that NRMs are used instead of DPs. This on the one hand makes
the modeling more flexible, i.e., allows modeling of power-law distributions; on
the other hand, it complicates the model’s posterior structure, requiring more
sophisticated methods for posterior inference. Fortunately, it is shown that by
introducing auxiliary variables, posterior inference can be performed almost as
easily as for the HDP.

Chapter 5 This chapter constructs a time evolving hierarchical normalized random mea-
sure for dynamic topic modeling. It borrows ideas from some existing work
by allowing topics to be born, to die and vary at each time. Some theoretical
analysis of the model as well as the correlation structure induced by the cor-
related operators are derived, then posterior inference is performed based on
an approximate Gibbs sampling algorithm. Finally, experimental results are
shown.

Chapter 6 This chapter introduces a more theoretically clean dependency model called
mixed normalized random measures (MNRM). It extends the work of Rao and Teh
[2009] by generalizing the Gamma process to any completely random measure.
The idea of the construction is to augment the domain space of the underlying
Poisson process with an additional spatial space to index the region information.
Based on such a construction, we can obtain some theoretically nice properties
of the MNRM, for example, the dependent RPMs are marginally NRMs, and
after marginalization, they form a generalized Chinese restaurant process. The
MNRM can also be used to model time evolving documents for topic modeling.

Chapter 7 In addition to the MNRM, this chapter proposes an alternative construction
of dependent normalized random measures called thinned normalized random
measures (TNRM). Instead of weighting the atoms of the Poisson process in
each region, TNRM explicitly deletes some of the atoms, resulting in a thinned
version of the original NRM and achieving the goal of sparse Bayesian non-
parametric modeling. This construction also preserves the property that the
DNRMs are marginally NRMs, however, it will result in a much more complex
posterior structure than the MNRM. Thanks to the Poisson process partition
calculus, a slice sampler can be designed to sample from the posterior. One
advantage of the TNRM compared to the MNRM is its sparse representation,
making it a preferable choice in modeling.

Chapter 8 This chapter discusses two extensions of the above dependent NRM models.
One is to combine the MNRM and TNRM to strengthen the advantages of
both; the other is to apply the dependency operators on a more general class
of random probability measures called the Poisson-Kingman process. Ideas of
the two constructions are described, posterior inferences are also discussed in
this chapter.
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Chapter 9 This chapter summarizes the thesis and discusses some potential directions for
future research.



Chapter 2

Poisson Processes

2.1 Introduce

This chapter introduces the concept of Poisson processes, a basic tool arising in
probability theory, then reviews some of the properties of Poisson processes that
are proved useful in developing the statistical models in this thesis, and finally in-
troduces some profound calculation methods based on Poisson processes called the
Poisson process partition calculus.

Generally speaking, the Poisson process generalizes the Poisson distribution, a
well studied probability distribution over integers, by extending it to be a distribution
over integer valued measures. The Poisson process endows the property of complete
randomness [Kingman, 1967], acting as a basic tool for constructing a variety of
stochastic processes. A formal introduction of the Poisson process can be found, for
example in [Kingman, 1993; Çinlar, 2010].

Turning to practical applications, we note that all the phenomena revealing com-
plete randomness can be reasonably modeled by the Poisson process. For example:
the arrival of customers in a bank during the work time can be taken as a Poisson
process on the real line R+; the location of stars over the sky seen from the earth can
be deemed as a Poisson process over the surface of a sphere; and more abstractly,
the words in a document can also be modeled as a Poisson process on an abstract
probability space so that the word count is equal to the value of the random measure
induced by the Poisson process.

In the following, the theory of Poisson processes will be built up based on measure
theory, starting from measurable spaces. The reason for resorting to measure theory
is that most of the stochastic processes do not endow density functions, the evalua-
tion of a stochastic process is represented by measure, thus we need to borrow tools
from measure theory to study their distributional properties. Generally speaking, a
measurable space is a pair (E, E) where E is a set and E is a σ-algebra on E, which
composes of all the subsets of E that is closed under complements and countable
unions [Çinlar, 2010]. Actually, from [Çinlar, 2010], the σ-algebra of a set E can be
taken as composed of all the measurable functions: f : E −→ R, thus the goal of
measure theory is to study the properties of the measurable functions in that space.

In the rest of this chapter, some basic definitions about probability are reviewed,
following by a detailed introduction of Poisson processes and their distributional
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properties. Most of the proofs are given in the text for completeness and easier
understanding.

2.2 Poisson Processes

This section formally defines the Poisson process in a modern probability setting,
where everything is defined based on the concept of probability spaces.

Definition 2.1 (Probability Spaces [Çinlar, 2010]). A probability space is composed
of three parts, denoted as (Ω,H,P), where the set Ω is called the sample space, its
elements are called outcomes. The σ-algebra H is composed of all subsets of Ω, with
elements H ∈ H called the events, and finally P is a probability measure on (Ω,H).

Given a probability space, we can define random variables and their distributions
on it. It differs from the traditional view in that now a random variable is defined
as a mapping. The random variable may project to a different space to the proba-
bility space (Ω,H,P) one starts with. This different space is denoted (S , S) below.
Formally:

Definition 2.2 (Random Variables and their Distributions [Çinlar, 2010]). Let (S , S)
be a measurable space, a random variable is defined as a mapping X : Ω→ S taking
values in S satisfying1 that for ∀A ∈ S,

X−1A M
= {X ∈ A} ≡ {ω ∈ Ω : X(w) ∈ A} ∈ H ,

thus X−1 A is the subset of Ω mapping into A. Under this setting, define the distri-
bution of X as a probability measure P on (S , S) such that for ∀A ∈ S,

P(A) = P(X−1A) ≡ P(ω ∈ Ω : X(ω) ∈ A) .

The notation P(X = A) will be sometimes simplified as P(A) in the thesis and the
corresponding density function is denoted as p(X).

A familiar instance of the distributions is the Poisson distribution, which is the
most elemental object in developing the theory for Poisson processes.

Definition 2.3 (Poisson Distributions). A random variable X taking values in N =
{0, 1, · · · , ∞} is said to have the Poisson distribution with mean λ in (0, ∞) if

p(X = k|c) = e−λλk

k!
, k ∈N, (2.1)

then X < ∞ almost surely and E[X] = Var[X] = λ. In such setting, the Poisson
distribution is denoted as Poi(λ).

1Where M= means “defined as” and this notation will be used for the rest of the thesis.
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Note that a distribution is uniquely identified by its characteristic function, i.e., it
is a one to one mapping. Furthermore, the characteristic functional–the generaliza-
tion of the characteristic function for random variables, is a powerful tool in studying
properties of stochastic processes. The following specifies the characteristic function
of a Poisson random variable.

Proposition 2.1 (Characteristic Function of Poi(λ)). For a Poisson random variable X ∼
Poi(λ), the corresponding characteristic function is given by

ϕX(t) = E
[
eitX
]
= e−λ(1−eit) ,

where t ∈ R and i is the imaginary unit.

Proof. Let θ ∈ C be any complex numbers, then we have

E
[
eθX
]
=

∞

∑
k=0

eθk λk

k!
e−λ

=e−λ
∞

∑
k=0

(
λeθ
)k

k!

=e−λeλeθ
= e−λ(1−eθ) .

Letting θ = it completes the proof.

Now one can define Poisson processes and the induced Poisson random measures.
Basically this extends the Poisson distribution to an arbitrary measurable space.

Definition 2.4 (Poisson Processes & Poisson Random Measures [Çinlar, 2010]). Let
(S , S) be a measure space (called the state space). Let ν(·) be a measure on it. A
Poisson process on S is defined to be a random subset Π ∈ S such that if N (A) is
the number of points of Π in the measurable subset A ⊆ S , then

a) N (A) is a random variable having the Poisson distribution with mean ν(A),

b) whenever A1, · · · , An are in S and disjoint, the random variables N (A1), · · · ,
N (An) are independent.

The induced integer-value random measure N (·) is called a Poisson random measure
and the Poisson process is denoted as Π ∼ PoissonP(ν), where ν is called the mean
measure of the Poisson process.

Figure 2.1 shows a realization of the Poisson process on the 2D space with mean
measure ν as uniform distribution.

Note that the Poisson random measure N is an infinite dimensional object, i.e., it
is a random integer-valued function and can be evaluated for ∀A ∈ S . To describe a
Poisson random measure, we construct a product space based on the state space S :
(F , F)

M
= (

⋃∞
n=1 Sn,

⋃∞
n=1 Sn), where Sn = ⊗n

i=1S and Sn = ⊗n
i=1S. A realization of
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v = area = 3.1
#points ~ Poisson(3.1)

v = area = 6.4
#points ~ Poisson(6.4)

Figure 2.1: A draw from a Poisson process on space R×R with mean measure as
the uniform distribution, can can be interpreted as area.

a Poisson process can thus be regarded as a random element on (F , F), represented
as Π = (Π1, Π2, · · · ), i.e., it is an infinite sequence. Now for each element Π ∈ F ,
define NΠ(A) = #{A ∩Π} for ∀A ∈ S to be the #points Πk in A, this is an integer
value measure on S . Considering all elements in the space F , the construction then
induces a probability measure P on a set of measures {NΠ : Π ∈ F}, i.e., a distri-
bution over the realization of the Poisson process (see [Theorem 2.15 Çinlar, 2010]
for detailed assignment of measures for each realization, but note that the assign-
ment should satisfy Kolmogorov’s consistency condition). This probability measure is
called the probability laws of the Poisson random measure N . As is shown in [Daley
and Vere-Jones, 1998], the space where N lies on is the space of boundedly finite
measures, we denote it as (M, M) thus P is a probability measure on spaceM.

Definition 2.5 (Probability Laws of Poisson Random Measures [Çinlar, 2010]). The
distribution of elements (each corresponds to one realization of a Poisson process) of
space (F , F) is called the probability law of the Poisson random measure N , denoted
by P(N |ν),2 where ν is the mean measure of the corresponding Poisson process.

Given the definition of probability law of a (Poisson) random measure, it is now
sensible to talk about the expectation over a stochastic process (Poisson process).
Specifically, let g : M → R be a measurable function, then the expectation of g(N )
over N is defined as

E [g(N )]
M
=
∫
M

g(N )P(dN |ν) . (2.2)

2.3 Properties

The Poisson process has many attractive properties. Below some representative ones
are listed. Most of the proofs for the theorems can be found, for example in [King-
man, 1993; Çinlar, 2010].

2Sometimes it is also written as Pν(N ).
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The first theorem is about the disjointness of Poisson processes, which states that
the points in two independent Poisson processes are disjoint almost surely. Intu-
itively this is true since the mean measure of the Poisson process is non-atomic,
leading to that the probability of assigning a point w ∈ S with counts two (i.e., the
two Poisson processes both contain the point w) is equal to zero.

Theorem 2.2 (Disjointness Theorem [Kingman, 1993]). Let ν1, ν2 be diffuse measures3

on S , Π1 ∼ PoissonP(ν1) and Π2 ∼ PoissonP(ν2) be independent Poisson processes on S ,
let A ∈ S be a measurable set such that ν1(A) and ν2(A) are finite. Then Π1 and Π2 are
disjoint with probability 1 on A:

P(Π1 ∩Π2 ∩ A = ∅) = 1 .

The next theorem, the Restriction Theorem, discloses a “symmetric” property of
the Poisson process, which states that restricting a Poisson process to a measurable
set results in another Poisson process with mean measure restricted to that set.

Theorem 2.3 (Restriction Theorem [Kingman, 1993; Çinlar, 2010]). Let Π ∼ PoissonP(ν)
be a Poisson process on S and let S1 be a measurable subset of S . Then the random count-
able set Π1 = Π ∩ S1 can be regarded either as a Poisson process on S with mean measure
ν1(A) = ν(A ∩ S1), ∀A ∈ S, or as a Poisson process on S1 whose mean measure is the
restriction of ν to S1.

An informal proof of the above theorem goes as follows: Consider a Poisson
process on S , which is essentially a random set of points, according to the definition
of Poisson processes, the average number of points in an infinitesimal region dw
of S would be ν(dw), thus the average number of points in S1 would be ν(S1) by
integrating over S1, which is the mean measure of Π1. Furthermore the randomness
property of Π1 follows from Π.

The Restriction Theorem can be thought of as an intersection operation. On the other
hand, it is natural to define a joint operation, which is essentially the idea behind the
following Superposition Theorem, stating that by joining a countable set of independent
Poisson process results in another Poisson process with an updated mean measure.

Theorem 2.4 (Superposition Theorem [Kingman, 1993; Çinlar, 2010]). Let (Πi ∼
PoissonP(νi)) be a countable set of independent Poisson processes on S . Then their superpo-
sition: Π = ∪∞

i=1Πi is a Poisson process with measure measure ν = ∑∞
i=1 νi. Consequently,

the corresponding Poisson random measure of Π is N = ∑∞
i=1Ni, where Ni is the Poisson

random measure corresponding to Πi.

The intuition behind the proof of the Superposition Theorem is straightforward: by
the disjointness of independent Poisson processes in Theorem 2.2, the #points of Π in
A ∈ B would be ∑iNi(A), resulting in the same form for the mean measure. The
Poisson distributed property of N (A) follows from the additive property of Poisson
random variables and the randomness of Π follows from the randomness of Πi’s.

3A measure is called diffuse measure if and only if there are no minimal non-empty sets.
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Given a Poisson process, it would be worthwhile to ask what is the resulting
process if we take a transformation f (w) for each point (w ∈ Π) of the Poisson
process. Interestingly, under certain conditions, the resulting process is still a Poisson
process with different mean measure. Now let us denote the transformed space be T
and let B ⊆ T , by transformation f , this would induce an integer random measure
N ∗ on T denoting #points in B, defined by

N ∗(B) = #{ f (Π) ∩ B} . (2.3)

Now if f (w)(w ∈ Π) are distinct, we have

N ∗(B) = #{w ∈ Π : f (w) ∩ B} = N ( f−1(B)) ,

where N is the Poisson random measure for Π. Thus the probability law of N ∗(B)
is P(N ∗(B)) = P(N ( f−1(B))). This is shown to be a Poisson random measure in
the following Mapping Theorem.

Theorem 2.5 (Mapping Theorem [Kingman, 1993; Çinlar, 2010]). Let Π be a Poisson
process with σ-finite mean measure ν on space (S , S), let f : S → T be a measurable
function such that the induced random measure (2.3) has no atoms. Then f (Π) is a Poisson
process on T with mean measure ν f (B) M= ν( f−1(B)), ∀B ∈ T where T is the σ-algebra of
T .

As is discussed in [Rao, 2012], a common mapping function f is the projection
operator π : S × T → T , which maps a Poisson process on a product space S × T
down to a subspace T , forming a new Poisson process. Another direction, lifting
a Poisson process onto a higher dimensional space through a transition probability
kernel, is done by the following Marking Theorem. Note the transition kernel in the
Marking Theorem in [Kingman, 1993] is deterministic, while it is possible to generalize
it to be a random probability kernel, see for example [Çinlar, 2010]. The following
Marking Theorem adapts to this case.

Theorem 2.6 (Marking Theorem [Çinlar, 2010]). Let Π ∼ PoissonP(ν) be a Poisson
process onW , Q a transition probability kernel from (W , W) into (Θ,B(Θ)). Assume that
given Π M

= {wi}, the variables θi ∈ Θ are conditionally independent and have the respective
distribution Q(wi, ·). Then

1) {θi} forms a Poisson process on (Θ,B(Θ)) with mean measure
(νQ)(dθ)

M
=
∫
W ν(w)Q(w, dθ)dw;

2) (wi, θi) forms a Poisson process on (W ×Θ, W⊗ B(Θ)) with mean measure ν× Q,
defined as (ν×Q)(dw, dθ)

M
= ν(dw)Q(w, dθ).

Remark 2.7. Note the usual notation for Marking Theorem is the statement 2) in The-
orem 2.6, statement 1) can be seen as a generalization of the Mapping Theorem in
Theorem 2.5 by letting the function f to be random. Also 1) can be obtained from 2)
by applying the Restriction Theorem of Theorem 2.3.
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The Marking Theorem 2.6 is quite general. By defining different transformation
kernels Q, we can get many variants of it. There are two special cases of Q that
are interesting and will be used in constructing dependent random measures in the
following chapters, which are called subsampling and point transition. It will be shown
here that these are defined via two specific transition kernels Q’s, for the definition,
see for example [Lin et al., 2010; Chen et al., 2012a] for details.

Definition 2.6 (Subsampling of Poisson processes). Subsampling of a Poisson process
with sampling rate q(w) is defined to be selecting the points of the Poisson process
via independent Bernoulli trials with acceptance rate q(w). It forms a new Poisson
process with atoms (wi, zi) where zi ∈ {0, 1}. This is equivalent to defining the
transition kernel in Theorem 2.6 as

Θ = {0, 1}
Q(w, 1) = q(w)

Q(w, 0) = 1− q(w)

Definition 2.7 (Point transition of Poisson processes). Point transition of a Poisson
process Π on space (W , W), denoted as T(Π), is defined as moving each point of the
Poisson process independently to other locations following a probabilistic transition
kernel Q : W×W → [0, 1] such that Q in Theorem 2.6 satisfying

Θ =W
Q(w, ·) is a probability measure ∀w ∈ W
Q(·, A) is integrable ∀A ∈W

It follows directly from Theorem 2.6 that subsampling and transition form new
Poisson processes with modified mean measures:

Corollary 2.8 (Subsampling Theorem). Let Π ∼ PoissonP(ν) be a Poisson process on
the space W and q : W → [0, 1] be a measurable function. If we independently draw
zw ∈ {0, 1} for each w ∈ Π with P(zw = 1) = q(w), and let Πk = {w ∈ Π : zw = k} for
k = 0, 1, then Π0 and Π1 are independent Poisson processes on W with S1−q(Π)

M
= Π0 ∼

PoissonP((1− q)ν) and Sq(Π)
M
= Π1 ∼ PoissonP(qν).

Corollary 2.9 (Transition Theorem). Let Π ∼ PoissonP(ν) be a Poisson process on space
(W , W), T a probability transition kernel4, and denote T(Π) the resultant Poisson process
after transition, then

T(Π) ∼ PoissonP(νT ). (2.4)

where νT can be considered as a transformation of measures overW defined as (νT )(A) :=∫
W T (w, A)ν(dw) for A ∈ W .

The proof of Theorem 2.6 is done through an application of the Laplace func-
tional formula for (wi, θi). An important result of the Laplace function related to the

4We replace Q in Theorem 2.6 with T to emphasis it as a transition kernel.
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Poisson process is known as Campbell’s Theorem below, which is particularly useful
in calculations involving Poisson random measures. For completeness a proof of the
theorem is included following [Çinlar, 2010, Theorem 3.2], but will be delayed after
introducing Theorem 2.10, which will be used in the proof of Theorem 2.6.

Theorem 2.10 (Campbell’s Theorem [Kingman, 1993; Çinlar, 2010]). Let Π be a Poisson
process on S with mean measure ν, f : S −→ R be a measurable function. Denote the
Poisson random measure of Π as N with probability law P(dN |ν), M as the space of
boundedly finite measures. Define the following sum

Σ = ∑
w∈Π

f (w) ≡
∫
S

f (w)N (dw) (2.5)

1. Σ is absolutely convergent with probability one if and only if∫
S

min (| f (w)|, 1) ν(dw) < ∞ . (2.6)

2. Under the condition (2.6):

E
[
eθΣ
]
M
=
∫
M

eθΣP(dN |ν) (2.7)

= exp
{∫
S

(
eθ f (w) − 1

)
ν(dw)

}
, (2.8)

where θ ∈ C. Moreover,

E [Σ] =
∫
S

f (w)ν(dw) , (2.9)

var(Σ) =
∫
S

f (w)2ν(dw) . (2.10)

Proof. We first prove the formula (2.7). To do this, first assume f to be simple, i.e.,

f =
K

∑
k=1

fk1Sk ,

where ∪K
k=1Sk = S and Sk ∩ Sk′ = ∅(∀k 6= k′) is a partition of S . Then it is easily

seen that

Σ = ∑
w∈Π

f (w) =
K

∑
k=1

fkN(Sk)
M
=

K

∑
k=1

fkNk .
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Now for θ ∈ C, we have

E
[
eθΣ
]
=

K

∏
k=1

E
[
eθ fk Nk

]
(1∗)
=

K

∏
k=1

exp
{
(eθ fk − 1)ν(Sk)

}
(2∗)
= exp

{
K

∑
k=1

∫
Sk

(eθ f (x) − 1)ν(dx)

}

= exp
{∫
S
(eθ f (x) − 1)ν(dx)

}
, (2.11)

where (1∗) follows by the fact that Nk is a Poisson random variable with mean ν(Sk)
and by applying Proposition 2.1, (2∗) follows by the definition of f .

Since we know that any positive measurable function f can be expressed as the
limit of an increasing sequence ( f j) of simple functions, moreover, any measurable
function can be expressed as the difference between two positive functions, thus by
monotone convergence argument we conclude that for any measurable function f ,
(2.7) follows. This completes the proof of (2.7).

To prove condition (2.6), let θ = −u where u > 0 in (2.7), which results in

E
[
e−uΣ

]
= exp

{
−
∫
S

(
1− e−u f (w)

)
ν(dw)

}
. (2.12)

If (2.6) holds, from (2.12) we see that for small u we have

lim
u→0

E
[
e−uΣ

]
= exp

{
−
∫
S

u f (w)ν(dw)

}
u→0−−→ exp(0) = 1 ,

meaning that Σ is a finite random variable. On the other hand, if (2.6) does not hold,
for a fixed u > 0, we can find a f satisfying u f (x) is small enough for ∀x ∈ S such
that

1− e−u f (x) −→ u f (x) ,

⇒ E
[
e−uΣ

]
−→ 0 .

This implies Σ = ∞ with probability 1. Thus (2.6) is proved.

To prove (2.9), take the derivative on two sides of (2.7) with respect to θ we have

d
dθ

E
[
eθΣ
]
=

d
dθ

exp
{∫
S

(
eθ f (w) − 1

)
ν(dw)

}
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⇒E
[
ΣeθΣ

]
= exp

{∫
S

(
eθ f (w) − 1

)
ν(dw)

}
d
dθ

∫
S

(
eθ f (w) − 1

)
ν(dw)

= exp
{∫
S

(
eθ f (w) − 1

)
ν(dw)

} ∫
S

f (w)eθ f (w)ν(dw)

Letting θ = 0 we obtain the formula (2.9).
To prove (2.10), similar to the proof of (2.9), taking the second derivative of (2.7)

with respect to θ and letting θ = 0, we get

E
[
Σ2] = (∫

S
f (w)ν(dw)

)2

+
∫
S

f (w)2ν(dw) .

Using the relation var(Σ) = E
[
Σ2]−E [Σ]2 we obtain the formula (2.10).

To show how Campbell’s Theorem is used, I prove Theorem 2.6 with the above
theorem in the following.

Proof of Theorem 2.6. The second statement will be proved here since the first one can
be easily derived from it. Let M be the random measure formed by (wi, θi), then for
positive real-value f̃ inW ⊗B(Θ),

L(Π1, (θi))
M
= e−M f̃ = e−∑i f̃ (wi ,θi) = ∏

i
e− f̃ (wi ,θi) .

So the conditional expectation of e−M f̃ given Π1 is

L(Π1)
M
=
∫
M
L(wi, dθ)

= ∏
i

∫
M

Q(wi, dθ)e− f̃ (wi ,θ)

Let f (w) = log(
∫
M Q(w, dθ)e− f̃ (w,θ)) in the Campbell’s Theorem, applying the result

of (2.7) we have

E
[
e−M f

]
= E [L(Π1)]

= exp
{
−
∫
W
(1−

∫
M

Q(w, dθ)e− f̃ (w,θ))ν(dw)

}
= exp

{
−
∫
W
(1−

∫
M

Q(w, dθ)e− f̃ (w,θ))ν(dw)

}
= exp

{
−
∫
W
(
∫
M

Q(w, dθ)−
∫
F

Q(w, dθ)e− f̃ (w,θ))ν(dw)

}
= exp

{
−
∫
W×M

(1− e− f̃ (w,θ))Q(w, dθ)ν(dw)

}
According to the unity of a Poisson random measure and its Laplace functional, we

conclude M is a Poisson process with mean measure ν×Q.
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Real applications involving Poisson processes often require evaluating the expec-
tation of a functional form under Poisson random measures, e.g., sometimes we want
to calculate the posterior of a model constructed from Poisson processes on S given
observations. In such cases, we can think of the expectation to be taken with respect
to the joint distribution of a Poisson random measure N and some fixed points in
S , we denote this joint distribution as P(·|ν, w). To define the joint distribution, we
should rely on measure theory by first defining a joint measure for a Poisson process
and some fixed points.

Formally, let us define this joint distribution from the following construction.
Recall that essentially the Poisson process defines a mapping from the probability
space (Ω,H,P) to space (F , F) in Definition 2.5, with the state space being (S , S).
Now for an event A ∈ F (which is essentially a functional defined on the space
F ) and an event W ∈ S (similarly is a function on S), define Campbell’s measure
C(A, W) as

C(A, W) = E [IA(Π)Π(W)] ,

where Π ∈ F means the measure induced by a realization of a Poisson process, IA(·)
is an indicator function. Essentially, the above measure gives the expected #points in
W given the Poisson processes in the even A. Since for any A, C(A, ·) is absolutely
continuous w.r.t. the mean measure ν, this allows us to define the Radon-Nikodym
derivative of C(A, ·):

PA(·|ν, w)
M
=

dC(A, ·)
dν

(w) .

PA(·|ν, w) defines a distribution with respect to (ν, w) (up to a constant), and is
called the Palm distribution [Bertoin, 2006; Daley and Vere-Jones, 1998]. The subscript
A will be omitted when A is taken to be the whole space F for simplicity, written
as P(·|ν, w). This describes how the joint measure changes with respect to the mean
measure ν, and is exactly the joint distribution of N and one point w ∈ S (up to
a constant) that we want to defined above. We can also think of PA(·|ν, w) as the
posterior distribution of the Poisson process given an observation w. Note that by
the independence of the Poisson process and w, P(·|ν, w) can be written by disinte-
grating as P(dN |ν, w) = N (dw)P(dN |ν). Based on this, the Palm formula [Bertoin,
2006] or called Slivnyak’s theorem [Slivnyak, 1962] and Mecke’s Formula [Serfoso, 1999]
states that the distribution of a prior Poisson random measure N under P(·|ν, w) is
identical to the distribution of N + δw. Specifically, we have

Theorem 2.11 (Palm Formula [Slivnyak, 1962; Bertoin, 2006]). Let Π be a Poisson
process on S with mean measure ν and Poisson random measure N , f : S → R and
G : S × N → R are functions of w ∈ S and of (w,N ) respectively, then the following
formula holds:

E

[∫
S

f (w)G(w,N )N (dw)

]
=
∫
S

E [G(w, δw +N )] f (w)ν(dw) . (2.13)
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In another form, it can be represented as∫
M

∫
S

f (w)G(w,N )N (dw)P(N |ν) =
∫
S

∫
M

G(w, δw +N )P(dN |ν) f (w)ν(dw) .

(2.14)

The case of representing the function G in the above Palm formula as a positive
process can be found in [Çinlar, 2010, Theorem 6.2]. Now instead of starting from
the Palm distribution to prove the Palm formula in Theorem 2.11, an alternative proof is
given in the next section from a general results of the Poisson process partition calculus,
which can be found in Theorem 2.13.

2.4 Poisson Process Partition Calculus

Poisson process partition calculus [James, 2002, 2005] is a general framework targeted
at analyzing the posterior structure of random measures constructed from Poisson
random measures. It has a number of general results as shown in [James, 2002,
2005], but I will only list a few below for the purpose of this thesis.

Let N be a Poison random measure defined on a complete and separable space
S with mean measure ν, the Laplace functional of N obtained by applying Theo-
rem 2.10 is denoted as follows

LN ( f |ν) =
∫
M

e−N ( f )P(dN |ν) M=
∫
M

e−
∫
S f (w)N (dw)P(dN |ν) (2.15)

= exp
{
−
∫
S
(1− e− f (w))ν(dw)

}
, (2.16)

where f : S → R+ is a measurable function.

Theorem 2.12 ([James, 2005]). Let f : S → R+ be measurable and g : M → R be a
function onM, then the following formula holds∫

M
g(N )e−N ( f )P(dN |ν) = LN ( f |ν)

∫
M

g(N )P(dN |e− f ν) , (2.17)

where P(dN |e− f ν) is the law of a Poisson process with intensity e− f (w)ν(dw). In other
words, the following absolute continuity result holds:

e−N ( f )P(dN |ν) = LN ( f |ν)P(dN |e− f ν) , (2.18)

meaning that exponentially tilting (with e−N ( f )) a Poisson random measure with mean mea-
sure ν ends up another Poisson random measure with an updated mean measure e− f ν.

Proof. By the unity of Laplace functionals for random measure on S , it suffices to
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check this result for the case g(N ) = e−N (h) for h : S → R+. Then we have∫
M

g(N )e−N ( f )P(dN |ν) =
∫
M

e−N ( f+h)P(dN |ν) (2.19)

= exp
{
−
∫
S

(
1− e−( f+h)(w)

)
ν(dw)

}
(2.20)

= exp
{
−
∫
S

(
(1− e− f (w))ν(dw) + (e− f (w) − e−( f+h)(w))ν(dw)

)}
(2.21)

= exp
{
−
∫
S

(
1− e− f (w)

)
ν(dw)

}
exp

{
−
∫
S

(
1− e−h(w)

)
e− f (w)ν(dw)

}
(2.22)

= LN ( f |ν)
∫
M

g(N )P(dN |e− f ν) . (2.23)

I develop the following theorem to reveal the relation between Theorem 2.12 and
the celebrated Palm formula in Theorem 2.11. Specifically, the Palm formula is seen
to be a special case of the result in Theorem 2.12.

Theorem 2.13. The Palm formula is a special case of Theorem 2.12.

Proof. In Theorem 2.12, let

g(N ) =
∫
S

f (w)N (dw) ,

according to (2.17), we have∫
M

g(N )e−N ( f )P(dN |ν) = E

[∫
S

f (w)e−N ( f )N (dw)

]
(2.24)

= E
[
e−N ( f )

] ∫
M

∫
S

f (w)N (dw)P(dN |e− f ν) (2.25)

= E
[
e−N ( f )

] ∫
S

f (w)e− f (w)ν(dw) (2.26)

=
∫
S

E
[
e−N ( f )

]
f (w)e− f (w)ν(dw) (2.27)

=
∫
S

E
[
e−(N+δw)( f )e f (w)

]
f (w)e− f (w)ν(dw) (2.28)

=
∫
S

E
[
e−(N+δw)( f )

]
f (w)ν(dw) (2.29)

=
∫
S

∫
M

e−(N )( f )P(N |ν, w) f (w)ν(dw) , (2.30)

where (2.24) follows by definition, (2.25) by applying (2.17), (2.26) by applying (2.9)
of Theorem 2.10, (2.27) by moving the expectation term into the integral, ((2.29)) by
moving e f (w) out and cancellation, (2.30) by a change of measure: Ñ = N + δw.

Now if we let
G(w,N ) = e−N ( f ) ,
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we get the Palm formula as in Theorem 2.11:∫
M

∫
S

f (w)G(w,N )N (dw)P(N |ν) =
∫
S

∫
M

G(w, δw +N )P(dN |ν, w) f (w)ν(dw) .

Under the framework of the Poisson process partition calculus, the Palm formula
of Theorem 2.11 can be easily extended to the case of conditioning on a set of points,
e.g., w = (w1, · · · , wn) ∈ S ⊗ · · · ⊗ S︸ ︷︷ ︸

n

M
= Sn. I call it the extended Palm formula, which

is stated in Theorem 2.14 and adapted from [James, 2002, Lemma 2.2].

Theorem 2.14 (Extended Palm Formula [James, 2002]). Let Π be a Poisson process on S
with mean measure ν and Poisson random measure N , f : Sn → R and G : Sn ×N → R

are functions of w ∈ Sn and of (w,N ) respectively, then the following formula holds:

E

[∫
Sn

f (w)G(w,N )
n

∏
i=1
N (dwi)

]
= ∑

p

∫
Sn(p)

E

[
G(w,

n(p)

∑
i=1

δwi +N )

]
n(p)

∏
i=1

f (wi)ν(dwi) ,

(2.31)

where p means a partition over integers (1, 2, · · · , n), n(p) means the #ties in this partition
configuration, and ∑p means sum over all the partitions of (1, 2, · · · , n).

Theorem 2.14 is seen true by iteratively applying the Palm formula on the joint
distribution of the Poisson random measure N and the points w. A proof within the
Poisson process partition calculus framework can be found in [James, 2002].



Chapter 3

Normalized Random Measures

3.1 Introduction

In Bayesian nonparametric modeling, a particularly important prior is the prior for
discrete distributions since there are a lot of interesting applications involving the
inference of such distributions, e.g., topic distributions in topic models, word distri-
butions for topics in text modeling, as well as mixing distributions in general mix-
ture models. By employing priors on these discrete distributions, they form random
probability measures (PRM). The Poisson process introduced in the last chapter con-
stitutes the foundation for constructing random probability measures. This chapter
introduces normalized random measures (NRM) based on this framework, reviews
and extends related underlying theory for the NRM. Generally speaking, an NRM
can be regarded as a random discrete distribution represented as ∑∞

k=1 wkδθk , where
both wk and θk are appropriate random variables with flexible probability distribu-
tion functions. Based on the NRM, an instance called normalized generalized Gamma
processes (NGGs) is specified where the distribution of (wk, θk) has a specific form.
The NGG is a particular kind of the NRM that is theoretical nice (e.g., with the
power-law property) and computationally feasible (e.g., efficient Gibbs samplers with
an analytic posterior), and will be frequently used in the rest of the thesis.

This chapter is structured as follows: first some mathematical background of
completely random measures (CRMs) and their construction from Poisson processes
is introduced in Section 3.2. The CRM is fundamental because the concepts of NRMs
and NGGs are built on it. Posterior inference for the NRM is developed in Sec-
tion 3.3, then sampling formulas for the NGG is elaborated in Section 3.4 based on
the marginal posterior results of [James et al., 2009]; in addition to the marginal sam-
pler, slice sampler for NRMs is also introduced using techniques from [Griffin and
Walker, 2011] in Section 3.5.2. Experiments for testing the NGG mixture with dif-
ferent samplers are described in Section 3.6. Proofs are given in the Appendix of
Section 3.8.

33
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θ

R
+

Counting process:

N (·) = ∑k δ(wk ,θk)
(·)

→

θ

R
+

Completely random measure:

µ̃(·) = ∑k wkδθk (·)

Figure 3.1: Constructing a completely random measure from a counting random
measure N (·, ·) with points at (wk, θk).

3.2 Completely Random Measures

This section briefly introduces background of completely random measures and the
corresponding normalized random measures. Section 3.2.1 explains how to construct
completely random measures from Poisson processes. Constructing normalized ran-
dom measures (NRMs) from CRMs is discussed in Section 3.2.2 along with details of
the NGG, a particular kind of NRM for which the details have been worked out.

First an illustration of the basic construction for an NRM for a target domain Θ is
given. The Poisson process is used to create a countable (and usually) infinite set of
points in a product space of R+ ×Θ, as shown in the left of Figure 3.1. The resulting
distribution is then a discrete one on these points, which can be pictured by dropping
lines from each point (w, θ) down to (0, θ), and then normalizing all these lines so
their sum is one. The resulting picture shows the set of weighted impulses that make
up the constructed CRM on the target domain.

3.2.1 Constructing completely random measures from Poisson processes

The general class of completely random measure (CRM) [Kingman, 1967], usually
admits a unique decomposition as the summation over three parts: 1) a deterministic
measure, 2) a purely atomic measure with fixed atom locations and 3) a discrete
measure with random jumps and atoms. However it suffices to consider only the
part with random jumps and atoms in real applications. This is also called pure
jump processes [Ferguson and Klass, 1972], which has the following form

µ̃ =
∞

∑
k=1

wkδθk , (3.1)

where wk’s and θk’s are all random variables; w1, w2, · · · > 0 are called the jump
sizes of the process, and θ1, θ2, · · · are a sequence of independent random variables
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drawn from a base measurable space (Θ,B(Θ))1. Note that (wk, θk)’s drawn from the
Poisson process will also be called atoms throughout the thesis.

It is shown that these kinds of CRMs can be constructed from Poisson processes
with specific mean measures ν(·). Formally, given a Poisson random measure N with
mean measure ν, denote the corresponding Poisson process as Π ∼ PoissonP(ν), a
completely random measure can be constructed as

Definition 3.1 (Completely Random Measure). A completely random measure µ̃ defined
on (Θ,B(Θ)) is defined to be a linear functional of the Poisson random measure N ,
with mean measure ν(dw, dθ) defined on a product space S = R+ ⊗Θ:

µ̃(B) =
∫

R+×B
wN (dw, dθ), ∀B ∈ B(Θ). (3.2)

The mean measure ν(dw, dθ) is called the Lévy measure of µ̃.

The general treatment of constructing random measures from Poisson random
measures can be found in [James, 2005]. Note that the random measure µ̃ in con-
struction (3.2) has the same form as Equation (3.1) because N (·) is composed of a
countable number of points. It can be proven to satisfy the conditions of a completely
random measure [Kingman, 1967] on Θ, meaning that for arbitrary disjoint subsets
{Ai ∈ Θ} of the measurable space, the random variables {µ̃(Ai)} are independent.

For the completely random measure defined above to always be finite, it is neces-
sary that

∫
R+×Θ w ν(dw, dθ) be finite, and therefore for every z > 0, ν([z, ∞)×Θ) =∫ ∞

z

∫
Θ ν(dw, dθ) is finite [Kingman, 1993]. It follows that there will always be a finite

number of points with jumps wk > z for that z > 0. Therefore in the bounded prod-
uct space [z, ∞)⊗Θ the measure ν(dw, dθ) is finite. So it is meaningful to sample
those atoms (wk, θk) with wk > z by first getting the count of points K sampled from
a Poisson with (finite) mean ν([z, ∞)×Θ), and then to sample the K points accord-
ing to the distribution of ν(dw,dθ)

ν([z,∞)×Θ)
. This provides one way of sampling a completely

random measure.
Without loss of generality, it is assumed that the Lévy measure of Equation (3.2)

can be decomposed as

ν(dw, dθ) = Mρη(dw|θ)H(dθ) ,

where η denotes the hyper-parameters if any2, H(dθ) is a probability measure on Θ

so H(Θ) = 1, and M is called the mass parameter of the Lévy measure. Note the
total measure of ρη(dw|θ) is not standardized in any way so in principle some mass
could also appear in ρη(dw|θ). The mass is used as a concentration parameter for
the random measure.

A realization of µ̃ on Θ can be constructed by sampling from the underlying
Poisson process in a number of ways, either in rounds for decreasing bounds z using

1B(Θ) means the σ-algebra of Θ, we sometimes omit this and use Θ to denote the measurable
space.

2The subscript η in ρη might sometimes be omitted for simplicity in the rest of the thesis.
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the logic just given above, or by explicitly sampling the jumps in order. The later
goes as follows [Ferguson and Klass, 1972]:

Lemma 3.1 (Sampling a CRM). Sample a CRM µ̃ with Lévy measure ν(dw, dθ) =
Mρη(dw|θ)H(dθ) as follows.

• Draw i.i.d. samples θk from the base measure H(dθ).

• Draw the corresponding weights wk for these i.i.d. samples in decreasing order, which
goes as:

– Draw the largest jump w1 from the cumulative distribution function P(w1 ≤
j1) = exp

{
−M

∫ ∞
j1

ρν(dw|θ1)
}

.

– Draw the second largest jump w2 from the cumulative distribution function
P(w2 ≤ j2) = exp

{
−M

∫ j1
j2

ρν(dw|θ2)
}

.

– · · ·

• The random measure µ̃ then can now be realized as µ̃ = ∑k wkδθk .

As a random variable is uniquely determined by its Laplace transformation, the
random measure µ̃ is uniquely characterized by its Laplace functional or more pre-
cisely the characteristic functional through the Lévy-Khintchine representation of a
Lévy process [Çinlar, 2010], which is stated in Lemma 3.2.

Lemma 3.2 (Lévy-Khintchine Formula). Given a completely random measure µ̃ (we con-
sider the case where it only contains random atoms) constructed from a Poisson process
on a produce space R+ ⊗Θ with Lévy measure ν(dw, dθ). For any measurable function
f : R+ ×Θ −→ R+, the following formula holds:

E
[
e−µ̃( f )

]
M
= E

[
e−
∫

Θ f (w,θ)N (dw,dθ)
]

= exp
{
−
∫
W×Θ

(
1− e− f (w,θ)

)
ν(dw, dθ)

}
, (3.3)

where the expectation is taken over the space of bounded finite measures. The formula can be
proved using Campbell’s Theorem in Chapter 2. Using (3.3), the characteristic functional of
µ̃ is given by

ϕµ̃(u)
M
= E

[
e
∫

Θ iuµ̃(dθ)
]
= exp

{
−
∫
W×Θ

(
1− eiuw

)
ν(dw, dθ)

}
, (3.4)

where u ∈ R and i is the imaginary unit.

Now instead of dealing with µ̃ itself, we deal with ν(dw, dθ), which is called the
Lévy measure of µ̃, whose role in generating the measure via a Poisson process was
explained above.

In the case where the jumps wk’s of the measure are independent on the data θ’s,
i.e., ρη(dw|θ) = ρη(dw), µ̃ is called homogeneous, which simplifies the calculations
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a lot and will be considered in this thesis. When f does not depend on θ, (3.3)
simplifies to

E [exp {− f µ̃(B)}] = exp
{
−M p(B)

∫
R+

[1− exp {−w f }] ρη(dw)

}
. (3.5)

Note the term inside the exponential plays an important role in subsequent theory,
so it is given a name.

Definition 3.2 (Laplace exponent). The Laplace exponent, denoted as ψη( f ) for a CRM
with parameters η is given by

ψη( f ) =
∫

R+×Θ
[1− exp {−w f }] ν(dw, dθ)

= M
∫

R+
[1− exp {−w f }] ρη(dw) (homogeneous case) . (3.6)

Note that to guarantee the positiveness of jumps in the random measure, ρη(dw)
in the Lévy measure must satisfy

∫ ∞
0 ρη(dw) = +∞ [Regazzini et al., 2003], which

leads to the following equations:

ψη(0) = 0, ψη(+∞) = +∞. (3.7)

That ψη( f ) is finite for finite positive f implies (or is a consequence of)
∫ ∞

0 wρη(dw)
being finite.

Remark 3.3. There are thus four different ways to define or interpret a CRM:

1. via the linear functional of Equation (3.2),

2. through the Lévy-Khintchine representation of Equation (3.3) using the Laplace
exponent,

3. sampling in order of decreasing jumps using Lemma 3.1, and

4. sampling in blocks of decreasing jump values as discussed before Lemma 3.1.

3.2.2 Normalized random measures

Given a completely random measure, a normalized random measure is obtained by
simply transforming it to be a probability measure, as given by the definition below.

Definition 3.3 (Normalized Random Measure (NRM)). Based on (3.2), a normalized
random measure on (Θ,B(Θ)) is defined as3

µ =
µ̃

µ̃(Θ)
. (3.8)

3In this thesis, we always use µ to denote a normalized random measure, while use µ̃ to denote its
unnormalized counterpart if not explicitly stated.
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The idea of constructing a random probability measure by normalizing a subor-
dinator, in the spirit of [Ferguson, 1973] for the Dirichlet case, can be found in litera-
ture such as [Kingman, 1975; Perman et al., 1992; Pitman, 2003; James, 2005]. While
James [2002] had considered constructions of general normalized random measures,
Regazzini et al. [2003] studied the problem of normalizing a completely random mea-
sure defined on R. This is termed normalized random measures with independent
increment (NRMI) and the existence of such random measures is proved. This idea
can be easily generalized from R to any parameter space Θ, e.g., Θ being the Dirichlet
distribution space in topic modeling. Also note that the idea of normalized random
measures can be taken as doing a transformation, denoted as Tr(·), on completely
random measures, that is µ = Tr(µ̃). In the normalized random measure case, Tr(·)
is a transformation operator such that Tr(µ̃(Θ)) = 1. A concise survey of other kinds
of transformations can be found in [Lijoi and Prunster, 2010].

Taking different Lévy measures ν(dw, dθ) of (3.3), we can obtain different NRMs.
Throughout the thesis, the following notation is used to denote a NRM:

µ ∼ NRM(η, M, H(·)) ,

where M is the total mass parameter, which usually needs to be sampled in the
model, and H(·) is called the base probability measure where θk’s are drawn from,
η is the set of other hyper-parameters to the measure on the jumps, depending on
the specific NRMs (in the DP case, η is empty). Note that a specific class of NRMs
called normalized generalized Gamma processes (NGG) is interesting and has useful dis-
tributional properties. To introduce this, let us start with the unnormalized version–
generalized Gamma processes:

Definition 3.4 (Generalized Gamma Process). Generalized Gamma processes are
completely random measures proposed by Brix [Brix, 1999] for constructing shot
noise Cox processes. They have the Lévy measures as

ν(dw, dθ) =
e−bw

w1+σ
dwH(dθ), where b > 0, 0 < σ < 1. (3.9)

By normalizing the generalized Gamma process as in (3.8), we obtain the normalized
generalized Gamma process (NGG).

Sometimes we also need the Gamma distribution. Because there are several pa-
rameterizations of this in use, for clarification, we define it here.

Definition 3.5 (Gamma distribution). The Gamma distribution has two parameters,
shape a and scale b, and is denoted Ga(a, b) with density function

p(x|a, b) =
1

Γ(a)ba xa−1e−bx .

The Lévy measure of the generalized Gamma process can be formulated in different
ways [Favaro and Teh, 2013], some via two parameters while some via three pa-
rameters, but they can be transformed to each other by using a change of variable
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formula. For ease of representation and sampling, we convert the NGG into a unified
form with two parameters using the following lemma.

Lemma 3.4. Let a normalized random measure be defined using Lévy measure ν(dw, dθ).
Then scaling w by λ > 0 yields an equivalent NRM up to a factor. That is, the normalized
measure obtained using ν(dw/λ, dθ) is equivalent to the normalized measure obtained using
λ ν(dt, dθ).

By this lemma, without loss of generality, we can instead represent the NGG by
absorbing the parameter b into the mass parameter M. Thus the case of b = 1 will
be used in the rest of the thesis.

Definition 3.6 (Normalized Generalized Gamma). The NGG with shape parameter
σ, total mass (or concentration) parameter M and base distribution H(·), denoted
NGG(σ, M, H(·)), has Lévy measure ν(dw, dθ) = M ρσ(dw)H(dθ) where4

ρσ(dw) =
σ

Γ(1− σ)

e−w

w1+σ
dw .

Note that similar to the two parameter Poisson-Dirichlet process (or Pitman-Yor
process) [Pitman and Yor, 1997], the normalized generalized Gamma process with
σ 6= 0 can also produce power-law phenomenon, making it different from the Dirich-
let process and suitable for applications where long tail distributions are preferable,
e.g., topic-word distributions in topic modeling. The following power-law property
had been well developed in statistical literature such as [Pitman, 2003; Lijoi et al.,
2007; James, 2013], and the explict form of the random variable Sσ,M below was first
given in [Pitman and Yor, 1997].

Proposition 3.5 (Power-law of NGG). Let Kn be the number of components induced by
the NGG with parameter σ and mass M or the Dirichlet process with total mass M. Then for
the NGG, Kn/nσ → Sσ,M almost surely, where Sσ,M is a strictly positive random variable
parameterized by σ and M. For the DP, Kn/ log(n)→ M.

Figure 3.2 demonstrates the power law phenomena in the NGG compared to
the Dirichlet process (DP). It is sampled using the generalized Blackwell-MacQueen
sampling scheme [James et al., 2009]. Each data to be sampled can choose an existing
cluster or create a new cluster, resulting in K clusters with N data points in total.

Many familiar stochastic processes are special/limiting cases of normalized gen-
eralized Gamma processes, e.g., Dirichlet processes arise when σ → 0. Normalized
inverse-Gaussian processes (N-IG) arise when σ = 1

2 and b = 1
2 . If b → 0, we get the

σ-stable process, and if σ → 0 and b depends on x, we get the extended Gamma process.
These special classes are listed below.

• Dirichlet Processes:

ν(dw, dθ) =
e−w

w
dwH(dθ) (3.10)

4Sometimes ρσ(w) is simply written as ρ(w) by dropping the subscript σ for notation simplicity
without causing any confusion.
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Figure 3.2: Power-law phenomena in NGG. The first plot shows the #data versus
#clusters compared with DP, the second plot shows the size s of each cluster versus

total number of clusters with size s.

• Normalized inverse-Gaussian (N-IG) Processes:

ν(dw, dθ) =
1√
2π

e−
1
2 w

w
3
2

dwH(dθ) (3.11)

• Normalized Generalized Gamma Processes:

ν(dw, dθ) =
e−bw

w1+σ
dwH(dθ), b > 0, 0 ≤ σ < 1 (3.12)

• Extended Gamma Processes:

ν(dw, dθ) =
e−β(θ)w

w
dwH(dθ), β(·) is a function (3.13)

• σ-Stable Processes:

ν(dw, dθ) =
σ

Γ(1− σ)w1+σ
dwH(dθ), 0 ≤ σ < 1 (3.14)

Finally, the concept of latent relative mass is introduced here, which is particularly
useful in posterior computation for the NRM. The reason for this is that the definition
of a NRM naturally contains the divisor µ̃(Θ) = ∑∞

k=1 wk, and thus likelihoods of
the NRM should involve powers of µ̃(Θ). To facilitate the computation, a trick widely
used is to do data augmentation via the Gamma identity [James, 2005].

Definition 3.7 (Latent relative mass). Consider the case where N data are observed.
By introducing the auxiliary variable, called latent relative mass, UN = ΓN/µ̃(Θ)
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where ΓN ∼ Gamma(N, 1), then it follows that

1
µ̃(Θ)N p(ΓN)dΓN =

UN−1
N

Γ(N)
e−UN µ̃(Θ)dUN

Thus the N-th power of the normalizer can be replaced by an exponential term in
the jumps which factorizes, at the expense of introducing the new latent variable UN .
This treatment results in an exponential tilting of the NRM, making marginalization
over the corresponding Poisson process feasible via the Poisson process partition
calculus framework [James, 2005] described in Chapter 2 and will be seen more clear
in the following sections. The idea of this latent variable originates from [James,
2005] and is further explicitly studied in [James et al., 2006, 2009; Griffin and Walker,
2011; Favaro and Teh, 2013], etc.

3.3 Posterior of the NRM

This section develops posterior formulas for general normalized random measures
with Lévy measure ν(dw, dθ). Specifically, the NRM hierarchical model is described
as:

µ ∼ NRM(η, M, H) sample a NRM

xi|µ ∼ µ for i = 1, · · · , N

Now let θ1, · · · , θK be the K unique values among x1:N , with θk occurring nk times.
Let µ̃ represents the corresponding CRM of µ. Intuitively we have the following
conditional likelihoods:

µ̃|x1:N = µ̃∗ +
K

∑
k=1

wkδθk

p(x1:N |µ̃) =
∏K

k=1 µ̃(θk)
nk

µ̃(Θ)N ,

where µ̃∗ represents the remaining CRM without observations.

It can be seen that integrating the NRM from p(x1:N |µ̃) is difficult with a nor-
malizer, so a data augmentation is done here by introducing the latent relative mass
auxiliary variable UN defined in Definition 3.7, resulting in

p(x1:N , UN |µ̃) =
UN−1

N
Γ(N)

e−UN(µ̃∗(Θ)+∑K
k=1 wk)

K

∏
k=1

wnk
k .

Now the posterior is obtained by applying the Palm Formula in Theorem 2.11 and
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the Lévy-Khintchine Formula in Lemma 3.2 to get

p(x1:N , UN |η, M) = E [p(x1:N , UN |µ̃)]

= Eµ̃∗

∫R+ × · · ·R+︸ ︷︷ ︸
K

p(x1:N , UN |µ̃)N (dw) · · · N (dw)︸ ︷︷ ︸
K

 (3.15)

=
UN−1

N
Γ(N)

∫
R+

Eµ̃∗

e−UN µ̃∗(Θ∪θ1)
∫

R+ × · · ·R+︸ ︷︷ ︸
K−1

K

∏
k=2

e−UNwk wnk
k N (dw) · · · N (dw)︸ ︷︷ ︸

K−1


· · · · · ·wn1

1 e−UNw1dw1 (3.16)

=
UN−1

N
Γ(N)

Eµ̃∗

e−UN µ̃∗(Θ)
∫

R+ × · · ·R+︸ ︷︷ ︸
K−1

K

∏
k=2

e−UNwk wnk
k N (dw) · · · N (dw)︸ ︷︷ ︸

K−1


· · · · · ·

∫
R+

wn1
1 e−UNw1dw1 (3.17)

=
UN−1

N
Γ(N)

e−ψη(UN)
K

∏
k=1

κ(UN , nk)h(θk) , (3.18)

where ψη is the Laplace exponent defined in Definition 3.2, h() is the intensity of the
probability measure H, κ(u, m) is defined as

κ(u, m) =
∫ ∞

0
wme−uwρη(dw) . (3.19)

In details, the above equations is obtained by the following argument: (3.15) follows
by explicitly write out the expectation, which contains two parts: the first part is
the expectation over the CRM µ̃∗, the other part is the expectation over the observa-
tions; (3.16) follows by applying the Palm formula in Theorem 2.11 over the first atom
(w1, θ1); (3.17) follows by simply taking out the integration term out of the expec-
tation, which are independent each other; finally (3.18) follows by recursively apply
the Palm formula for the rest of the atoms.

Thus by applying the Poisson process partition calculus in Theorem 2.12, the poste-
rior of a NRM can be characterized by the following theorem:

Theorem 3.6 (Conditional posterior characterization of NRM [James et al., 2009]).
Given an NRM µ ∼ NRM(η, M, H) with Lévy measure ν(dw, dθ) and a set of samples
x1, · · · , xN from it with distinct values (θ1, · · · , θK) and counts (n1, · · · , nK), conditioned
on the latent relative mass UN , the posterior of µ̃ is composed of a CRM with Lévy measure

ν′(dw, dθ) = e−UNwν(dw, dθ) ,
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and K fixed point jumps distributed as

p(wk|x1:N , UN) ∝ wnk
k e−UNwk ρη(wk) .

3.4 Posteriors of the NGG

This section specializes posteriors for the NGG given observations {xi}’s based on
the general results in the previous section. Two versions of the posterior are de-
veloped, e.g., a fully marginalized version5 p ({xi}|σ, M) and an augmented version
p ({xi}, UN |σ, M) with the latent relative mass UN . The second version is done be-
cause, as shown, the first version requires computing a complex recursive function
thus is computationally more expensive. Throughout the thesis, the symbol (x|y)N
is used to denote the Pochhammer symbol:

(x|y)N
M
= x(x + y) · · · (x + (N − 1)y) .

When y = 1, it is simply written it as (x)N .

3.4.1 Marginal posterior

The marginal posterior of a NGG is obtained based on Theorem 3.6 above. James
et al. [2009] have developed posterior analysis for the NGG, Theorem 3.7 below sim-
plifies their results and specializes them to the NGG.

Theorem 3.7 (Posterior Analysis for the NGG). Consider the NGG(σ, M, H(·)). For
a data vector {xi} of length N there are K distinct values θ1, ..., θK with counts n1, ..., nK
respectively (where each nk > 0). The posterior marginal is given by

p ({xi}|σ, M) =
eMTN,K

σ,M

σN−K+1

K

∏
k=1

(1− σ)nk−1h(θk) . (3.20)

where

TN,K
σ,M =

σN−1

Γ(N)

∫ ∞

M

(
1−

(
M
t

)1/σ
)N−1

tK−1e−tdt (3.21)

is defined for N, K ∈ Z+ such that K ≤ N and M ∈ R+ so M > 0. Moreover, the predictive
posterior is given by:

p (xN+1 ∈ dx|{θi}, σ, M) = ω0H(dx) +
K

∑
k=1

ωkδθk(dθ)

5In an NGG, the hyperparameter η is represented as σ.
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where the weights sum to 1 (∑K
k=0 ωk = 1) are derived as

ω0 ∝ σ
TN+1,K+1

σ,M

TN+1,K
σ,M

ωk ∝ (nk − σ) (3.22)

Note, TN,K
σ,M is a strictly decreasing function of N and M, but an increasing function

of K and σ. Moreover, an alternative definition of TN,K
σ,M derived using the transfor-

mation t = M(1 + u)σ is

TN,K
σ,M =

σN MK

Γ(N)eM

∫
R+

uN−1

(1 + u)N−Kσ
eM−M(1+u)σ

du ,

and various scaled versions of this integral are presented in the literature. Intro-
ducing a Γ(b/σ, 1) prior on M and then marginalizing out M makes the term in
eM−M(1+u)σ

disappear since the integral over M can be carried inside the integral over
u. This parameterization is interesting because it highlights a connection between the
NGG and the Pitman-Yor process. Note the following result is a transparent conse-
quence of [Pitman and Yor, 1997, Proposition 21].

Corollary 3.8 (Relation between the NGG and Pitman-Yor process). Let a NGG µ be
µ ∼ NGG (σ, M, H(·)) and suppose M ∼ Γ(b/σ, 1) then it follows that

µ ∼ PYP(σ, b, H(·)) ,

where PYP(σ, b, H(·)) denotes a Poisson-Dirichlet/Pitman-Yor process [Pitman and Yor,
1997; Teh, 2006b,a; Buntine and Hutter, 2012] with discount parameter σ, concentration
parameter b and base distribution H.

For computation, the issue here will be computing the terms TN,K
σ,M . Therefore

we present some results for this. These use Γ(x, y), the upper incomplete Gamma
function, defined for y > 0 and all real x.

Lemma 3.9 (Evaluating TN,K
σ,M ). Have TN,K

σ,M defined as in Theorem 3.7. Then the following
formula hold:

T1,K
σ,M = Γ(K, M) , (3.23)

TN,K
σ,M ≤ σN−1

Γ(N)
T1,K

σ,M , (3.24)

TN,K
σ,M =

σN−1

Γ(N)

N−1

∑
n=0

(−1)n
(

N − 1
n

)
Γ
(

K− n
σ

, M
)

Mn/σ , (3.25)

TN−1,K−1
σ,M = TN,K

σ,M +

(
N − 1

σ
− (K− 1)

)
TN,K−1

σ,M ∀N ≥ 2 . (3.26)
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A variant of Equation (3.25) only applies for K ∈N+,

TN,K
σ,M =

σN−1

Γ(N)

N−1

∑
n=0

(−1)n
(

N − 1
n

)(
1− n

σ

)
K−1

Γ
(

1− n
σ

, M
)

Mn/σ . (3.27)

Other recursions involve factors of 1/σ and can be used when σ = 1/R for some R ∈
N+, R > 1. Note the function TN,K

σ,M is well defined for non-integral K. Then

TN,K
σ,M =

σ

N − 1

(
TN−1,K

σ,M −M1/σTN−1,K−1/σ
σ,M

)
∀N ≥ 2 , (3.28)

TN,K
σ,M = (K− 1)TN,K−1

σ,M + M1/σ TN−1,K−1−1/σ
σ,M ∀N ≥ 2 . (3.29)

Note the upper incomplete Gamma function becomes infinitesimal quickly for
large y and negative x because Γ(x, y) → yx−1e−y as y → ∞, and for positive y and
x ≤ 1, Γ(x, y) ≤ yx−1e−y. As y → 0 and x < 0, Γ(x, y) → −yx/x. Moreover, for
x < −1 a good approximation is given by Γ(x, y) ≈ yxe−y/(y− x + 1). This implies
the series summation of Equation (3.25) will be unstable for large N since to a first
approximation it is a binomial expansion of (1− 1)N . Experiments show this can
happen for N > 20, so the summation is not practically useful but good for checking
small values.

The recursion of Equation (3.26) recurses down on K. The inverted version, re-
cursing up with TN,K

σ,M on the left-hand side is unstable because it involves the sub-
traction of two terms, TN−1,K−1

σ,M and
(N−1

σ − (K− 1)
)

TN,K−1
σ,M . Thus errors magnify

and it is not practically useful for N > 20. However, the inverted version shows that
TN,K

σ,M is related to a generalized Stirling number of the second kind.
Computing TN,K

σ,M would go as follows. Fix an upper bound on K to be used,
denote in as Kmax. Values of TN,K

σ,M need to be initialized for K = Kmax&N ≥ Kmax

and for K < Kmax&N = K. This can be done using either numerical integration or a
saddle point approximation using Equation (3.21). The saddle point approximation
requires an initial maximization step, which can be done using Newton-Raphson
convergence, and typically has 6-decimal place accuracy for N > 50. Thereafter the
recursion of Equation (3.26) can be applied to recurse down on K.

Remark 3.10. The Poisson-Dirichlet Process and Dirichlet Process are well known for
their ease of use in a hierarchical context [Teh et al., 2006; Chen et al., 2011; Buntine
and Hutter, 2012]. The NGG has the same general form, which comes from the fact
that it belongs to the class of Gibbs-type priors whose conditional distribution has a
convenient form [Favaro et al., 2013a].

The major issue with this posterior theory is that one needs to precompute the
terms TN,K

σ,M . While the Poisson-Dirichlet Process has a similar style, it has a general-
ized Stirling number dependent only on the discount σ [Buntine and Hutter, 2012].
The difference is that for the Poisson-Dirichlet Process we can tabulate these terms
for a given discount parameter σ and still vary the concentration parameter (b above,
but corresponding to M) easily. For the NGG, any tables of TN,K

σ,M would need to
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be recomputed with every change in mass parameter M. This might represent a
significant computational burden.

3.4.2 Conditional posterior

To alleviate the computational issue of the above marginal posterior, a simplified
conditional posterior is available for the NGG by introducing the latent relative mass
auxiliary variable UN . James et al. [2009] has also developed conditional posterior
analysis for the NGG. Theorem 3.11 below simplifies their results and specializes
them to the NGG.

Theorem 3.11 (Conditional Posterior Analysis for the NGG). Consider the NGG(σ, M, H)
and the situation of Theorem 3.7. The conditional posterior marginal, conditioned on the aux-
iliary variable UN , is given by6

p ({xi}|UN , σ, M) =

(
Mσ (1 + UN)

σ)K

∑N
k=1 SN

k,σ

(
Mσ (1 + UN)

σ)k

K

∏
k=1

(1− σ)nk−1h(θk) . (3.30)

Moreover, the predictive posterior is given by:

p (xN+1 ∈ dx|{θi}, UN = u, σ, M) = ω0H(dx) +
K

∑
k=1

ωkδθk(dx)

where the weights sum to 1 (∑K
k=0 ωk = 1) are derived as

ω0 ∝ Mσ (1 + u)σ

ωk ∝ nk − σ . (3.31)

The posterior for UN is given by:

p (UN = u|{θ}, σ, M) =
σMK

TN,K
σ,M

uN−1

(1 + u)N−Kσ
e−M(1+u)σ

. (3.32)

A posterior distribution is also presented by James et al. as their major result of
Theorem 1 [James et al., 2009]. It is adapted here to the NGG.

Theorem 3.12. In the context of Theorem 3.11 the conditional posterior of the normalized
random measure µ̃ given data {xi} of length N and latent relative mass UN = u is given by

µ =
T

T + W+
µ′ +

W+

T + W+

K

∑
k=1

pkδθk

6Over the thesis, UN is sometimes written as u for notational simplicity.
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where

µ′ ∼ NGG
(

σ,
M

1 + u
, H
)

,

T ∼ fT(t) where Lévy measure of fT(t) =
Mσ

Γ(1− σ)
t−σ−1e−(1+u)t ,

W+ ∼ Γ(N − Kσ, 1 + u) ,

p ∼ DirichletK (n− σ) .

Here, µ′, W+ and p are jointly independent and T, W+ and p are jointly independent.

Note in particular the densities given for µ′ and T are not independent from
each other. While an explicit density is not given for T, its expected value is easily
computed via the Laplace transform as Mσ(1 + u)σ−1.

A joint form of the conditional posteriors presented in Theorem 3.11 can be de-
veloped, and can be derived from the general sampling form in Lemma 3.18. by
marginalizing out jumps wk and then taking the limit as L → 0. This matches the
conditionals of Theorem 3.11 so is seen to be correct.

Corollary 3.13 (Collapsed Sampling Posterior). In the context of Theorem 3.11, assume
there are K jumps with attached data (wk such that nk > 0). The resultant posterior is as
follows:

p ({xi}, UN = u | σ, M)

=
uN−1

(1 + u)N−Kσ
(Mσ)K eM−M(1+u)σ

K

∏
k=1

(1− σ)nk−1h(θk) . (3.33)

Moreover, the posterior for jumps wk with data count nk given {θi}, UN = u, K, N is

wk ∼ Ga(nk − σ, 1 + u) .

Remark 3.14. With the use of the latent relative mass UN , the NGG lends itself to
hierarchical reasoning without a need to compute the recursive series TN,K

σ,M . This can
be done with either the jumps integrated out, or the jumps retained.

3.5 Posterior Inference for NGG Mixtures

This section applies the posterior of the NGG for NGG mixture models. Specifically,
given observations xi’s, the NGG mixture is defined as:

µ|σ, M =
∞

∑
k=1

w̄kδθk ∼ NGG(σ, M, H(·))

θk|H ∼ H

si|µ ∼ Discrete(w̄1, w̄2, · · · )
xi|θsi ∼ F(·|θsi) (3.34)
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where w̄k = wk/ ∑∞
l=1 wl , and w1, w2, · · · are the jumps of the corresponding CRM

defined in (3.2), θk’s are the components of the mixture model drawn i.i.d. from a
base distribution H(·) with density denoted as h(·), si indexes which component xi
belongs to, and F(·|θk) is the cumulative distribution function to generate data on
component k, with the corresponding density function as f (·|θk)

7.
Given the posterior analysis for the NGG above, posterior inference for the NGG

mixture can be done via Markov chain Monte Carlo (MCMC). Before proceeding to
the detailed descriptions of the sampling algorithms for the NGG, some computa-
tional results related to the NGG such as the Laplace exponent in Theorem 3.15 below
are first proved. These formula can be used in the slice sampler developed below.

Theorem 3.15 (Key formulas for the NGG). Define for 0 < σ < 1, Γ(−σ)
M
= Γ(1−σ)

−σ . For
the NGG, some key formula used in the posterior computation are as follows:

ψσ(v) = M ((1 + v)σ − 1) (3.35)∫ ∞

L
ρσ(dw) = |Q(−σ, L)| (3.36)∫ ∞

L
e−vwρσ(dw) = (1 + v)σ|Q(−σ, L(1 + v))| (3.37)∫ L

0

(
1− e−vw) ρσ(w)dw = ((1 + v)σ − 1) + (1 + v)σ|Q(−σ, L(1 + v))|

− |Q(−σ, L)| (3.38)

where Q(x, y) = Γ(x, y)/Γ(x) is the regularized upper incomplete Gamma function. Some
mathematical libraries provide it for a negative first argument, or it can be evaluated using

Q(−σ, z) = Q(1− σ, z)− 1
Γ(1− σ)

z−σe−z, (3.39)

using an upper incomplete Gamma function defined only for positive arguments.

Proof. For (3.35), according to (3.6), we have

ψσ(v) = M
∫

R+
[1− exp {−w f }] ρη(dw)

=
Mσ

Γ(1− σ)

∫
R+

(
∞

∑
n=1

(−1)n−1 (vx)n

n!

)
x−σ−1e−xdx

=
Mσ

Γ(1− σ)

∞

∑
n=1

(−1)n−1 λn

n!
Γ(n− σ)

=
Mσ

Γ(1− σ)

∞

∑
n=1

(−1)n−1λn Γ(n− σ)

n!

=
M

Γ(1− σ)

(
∞

∑
n=1

(−1)n−1σΓ(n− σ)

n!
λn

)
7The same notation h(·) and f (·) will be used in the rest of the thesis if not otherwise stated.
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= M

(
∞

∑
n=1

σ(σ− 1) · · · (σ− n + 1)
n!

λn

)
(3.40)

= M [(1 + λ)σ − 1] ,

where the summation in (3.40) is the Taylor expansion of (1 + λ)σ − 1.
For (3.36), we have

|Q(−σ, L)| =
∣∣∣∣Γ(−σ, L)

Γ(−σ)

∣∣∣∣ =
∣∣∣∣∣Γ(−σ, L)

Γ(1−σ)
−σ

∣∣∣∣∣
=

σ

Γ(1− σ)

∫ ∞

L
w−σ−1e−wdw =

∫ ∞

L
ρσ(dw) .

(3.37) and (3.38) are easily obtained from (3.36) by using a change of variable as

w′ M= (1 + v)w .

For (3.39), we have

Γ (−σ, z) =
∫ ∞

z
w−σ−1e−wdw

=
−1
σ

w−σe−w|∞z −
∫ ∞

z

1
σ

w−σe−wdw

=
1
σ

(
z−σe−z − Γ (1− a, z)

)
.

Thus

Q(−σ, z) =
−1

σΓ(σ)
(
z−σe−z − Γ (1− σ, z)

)
= Q (1− σ, z)− 1

Γ(1− σ)
z−σe−z .

3.5.1 Marginal sampler

Two versions of the posterior are developed for the NGG mixture in this section, one
is based on the collapsed posterior extended from Theorem 3.7, called collapsed Gibbs
sampler; the other is based on the conditional posterior extended from Corollary 3.13,
called conditional Gibbs sampler.

3.5.1.1 Collapsed Gibbs sampler

Extending the posterior of an NGG to an NGG mixture is straightforward. Based on
Theorem 3.7, it is easy to see the posterior of the NGG mixture in Eq.(3.34) is:
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Corollary 3.16. The collapsed posterior for the NGG mixture defined in Eq.(3.34) is given
by:

p ({xi}|σ, M) =
eMTN,K

σ,M

σN−K+1

K

∏
k=1

(
(1− σ)nk−1

∫
∏

i:si=k
f (xi|θk)h(θk)dθk

)
. (3.41)

where si indexes which component xi belongs to, TN,K
σ,M is the same as in Theorem 3.7.

Sampling: Given the posterior (3.41), the only latent variables are si’s. Denote the
whole variables in the model as C, the conditional distribution for si can be read from
the posterior as:

p(si|C− si) ∝

TN,K
σ,M (nk − σ)

∫
∏j:sj=k f (xj|θk)h(θk)dθk∫

∏j:j 6=i,sj=k f (xj|θk)h(θk)dθk
, if k already exists

σTN,K+1
σ,M

∫
f (xi|θ)h(θ)dθ, if k is new

Unfortunately, sampling for other hyperparameters such as σ and M does not
seem easy in this representation since they are coupled in TN,K

σ,M , thus this representa-
tion is usually not used in real applications.

3.5.1.2 Conditional Gibbs sampler

This section presents a more tractable form for the NGG by extending the conditional
posterior for the NGG in Corollary 3.13 to that of NGG mixtures. The following
corollary states this:

Corollary 3.17. The conditional posterior for the NGG mixture defined in Eq.(3.34) is given
by:

p ({xi}, u|σ, M) =

uN−1

(1 + u)N−Kσ
(Mσ)K eM−M(1+u)σ

K

∏
k=1

(1− σ)nk−1

∫
∏

i:si=k
f (xi|θk)h(θk)dθk . (3.42)

The above posterior is more favorable than (3.41) in that variables are decoupled
and have simple conditional distributions. From the posterior we can easily get the
following conditional distributions for ({si}, u, M, σ) (also denote the whole variables
in the model as C):

Sampling si: the conditional distribution for si follows:

p(si|C− si) ∝

(nk − σ)

∫
∏j:sj=k f (xj|θk)h(θk)dθk∫

∏j:j 6=i,sj=k f (xj|θk)h(θk)dθk
, if k already exists

σM(1 + u)1−σ
∫

f (xi|θ)h(θ)dθ, if k is new
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Sampling u: the auxiliary variable u has posterior distribution as

p(u|C− u) ∝
uN−1e−M(1+u)σ

(1 + u)N−Kσ
,

which can be shown to be log-concave, thus can be sampled with the adaptive-
rejection sampler [Gilks and Wild, 1992] or the slice sampler [Neal, 2003].

Sampling M: the model performance is also sensitive to the mass parameter M. If
we introduce a Gamma(a, b) prior for it, then the posterior is also a Gamma:

p(M|C−M) ∼ Gamma (K + a, (1 + u)σ + b− 1) .

Sampling σ: by collecting related terms, the posterior for σ is

p(σ|C− σ) ∝
σKe−M(1+u)σ

(1 + u)−Kσ

K

∏
k=1

(1− σ)nk−1 ,

which can also be proven to be log-concave, thus can also be sampled with the
adaptive-rejection sampler or the slice sampler.

3.5.2 Slice sampling

A convenient method for posterior inference with MCMC is slice sampling, which
is particularly useful when the posterior does not have a close form. Slice sampling
an NRM has been discussed in several papers; this section follows the slice sampling
method in [Griffin and Walker, 2011], and briefly introduces the underlying ideas.

Given the observations X = {x1, · · · , xN}, let us introduce a slice latent variable
vi for each xi so that we only consider those components whose jump sizes wk’s are
larger than the corresponding vi’s. Moreover, only jumps with sizes greater than L
are considered, and this is maintained by setting L ≤ mini vi. Sampling of the NRM
can then be done by only considering jumps greater than L. In the NRM, the count of
such jumps K, is shown to have a Poisson distribution, K ∼ Poisson(M

∫ ∞
L ρη(dt)),

while each jump has density ρη(wk)∫ ∞
L ρη(s)dt

.

Furthermore, the auxiliary variable UN (latent relative mass) is introduced to de-
couple each individual jump wk and their infinite sum of the jumps ∑∞

l=1 wl appeared
in the denominators of w̄k’s. Based on [Griffin and Walker, 2011], the following pos-
terior Lemma can be derived, see appendix for the derivation.

Lemma 3.18. The posterior of the infinite mixture model (3.34) with the above auxiliary
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variables is proportional to

p(θ1:K, w1, · · · , wK, K, v, s, UN , X|L, η, M) ∝

UN−1
N exp

{
−UN

K

∑
k=1

wk

}
exp

{
−M

∫ L

0

(
1− e−UN t

)
ρη(t)dt

}

MK exp
{
−M

∫ ∞

L
ρη(t)dt

} K

∏
k=1

ρη(wk)h(θk)
N

∏
i=1

1(wsi > vi) f (xi|θsi), (3.43)

where 1(a) is a indicator function returning 1 if a is true and 0 otherwise, h(·) is the density
of H(·), L ≤ min{u}.

The integrals for the NGG needed to work with this lemma were given in The-
orem 3.15 above. Thus the integral term in Equation (3.43) can be turned into an
expression involving incomplete Gamma functions.

3.5.2.1 Sampling:

Similarly denote the whole parameters as C = {θ1:K, w1, · · · , wK, K, v, L, s, UN , M}.
Based on the posterior above, the sampling goes straightforwardly as

• Sampling s: From (3.43) we get

p(si = k|C\{si}) ∝ 1(wk > vi) f (xi|θk) (3.44)

• Sampling UN : Similarly

p(UN |C\{UN}) ∝ UN−1
N exp

{
−UN

K

∑
k=1

wk

}

exp
{
−M

∫ L

0
[1− exp {−UNt}] ρη(dt)

}
. (3.45)

Similar to [Griffin and Walker, 2011], the rejection sampler is used to sample
UN , with proposal distribution Gamma

(
n, ∑K

k=1 wk

)
.

• Sampling θ: The posterior of θk with prior density p(θk) is

p(θk|C\{θk}) ∝ p(θ) ∏
i|si=k

f (xi|θk). (3.46)

• Sampling K, {w1, · · · , wK}: Sampling for wk can be done separately for those
associated with data points (fixed points) and for those that are not. Based
on [James et al., 2009], when integrating out u in (3.43), the posterior of the
jump wk with data attached (nk > 0) is proportional to

wnk
k exp {−UNwk} ρη(wk), (3.47)
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While for those without data attached (nk = 0), based on [Griffin and Walker,
2011], conditional on UN , the number of these jumps follows a Poisson distri-
bution with mean

M
∫ ∞

L
exp{−UNt}ρη(dt),

while their lengths t have densities proportional to

exp{−UNt}ρη(dt)1(t > L).

Note that this strategy of sampling wk’s by first sampling the number of jumps
and then simulating the jump sizes is restricted to the case when the posterior
density of the jumps are relatively easy to evaluate. A much more flexible
method to simulate the jumps by thinning a Poisson process with well behaved
mean measure will be introduced in Chapter 7.

• Sampling v: v are uniformly distributed in the interval (0, wsi ] for each i. After
sampling the v, L is set to L = min{v}.

• Sampling M: The posterior of M with prior p(M) is

p(M|C\{M}) ∝ pM(M)MK exp
{
−M

[∫ ∞

L
ρη(dt) +

∫ L

0
[1− exp {−UNt}] ρη(dt)

]}
.

p(M) is usually taken to be Gamma distributed, in which case the posterior is
also Gamma, thus can be sampled conveniently.

3.6 Experiments

3.6.1 Marginal vs. slice samplers

This experiment compares the marginal and slice samplers for the NRM mixture.
First they are tested on the galaxy dataset, a standard dataset for testing Gaussian
mixture models [Griffin and Walker, 2011]. In this case the base distribution H in
(3.34) is taken as Gaussian Wishart distribution, which is a prior distribution for the
joint distribution of the mean and covariance in a Gaussian distribution [Teh, 2007;
Murphy, 2007]

Wishart: p(R) = 2−νd/2π−d(d−1)/4|S|ν/2
d

∏
i=1

Γ
(

ν + 1− i
2

)−1

|R|(ν−d−1)/2

exp
(
−1

2
Tr[RS]

)
Gaussian: p(µ|R) = (2π)−d/2|rR|1/2 exp

(
−1

2
Tr
[
rR
(
(µ−m)(µ−m)T

)])
p(µ, R) =

1
Z(d, r, ν, S)

|R|(ν−d)/2 exp
(
−1

2
Tr
[

R
(

r(µ−m)(µ−m)T + S
)])

,
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where Z(d, r, ν, S) = 2
(ν+1)d

2 πd(d+1)/4r−d/2|S|−nu/2 ∏d
i=1 Γ

(
ν+1−i

2

)
. When the dimen-

sion d = 1, this degenerates into the Gaussian Gamma prior [Teh, 2007]. Corre-
spondingly, the data generation distribution f (·) is Gaussian distribution:

f (xi|µ, R) = (2π)−nd/2|R|n/2 exp
(
−1

2
Tr
[

R (µ− xi) (µ− xi)
T
])

.

In the experiment, the hyperparameters are chosen as ν = 5, m = 0, r = 0.1, R = 1,
all the other parameters of the model are sampled during the inference. The marginal
sampler are implemented in MATLAB, the code for slice sampler are borrowed
from [Griffin and Walker, 2011]. The total number of MCMC iterations is set to
2,000 with 1,000 burn in iterations.

First, the NGG mixture is used for density estimation for the galaxy dataset, the
estimated posteriors are plotted in Figure 3.3. The DP mixture with both marginal
and slice samplers is also implemented for comparison. It can be seen from the figure
that the slice sampler seems to be able to estimate the overall shape of the data better,
but also overestimates the density in a relatively low density area (the first peak in
the figure).
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(a) NGG marginal sampler
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(b) DP marginal sampler
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(c) NGG slice sampler
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(d) DP slice sampler

Figure 3.3: Density estimation on galaxy dataset
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Table 3.1: Effective sample sizes over 1000 samples for the marginal and slice sam-
plers

min max mean median
Marginal 22.55±15.06 214.53±105.27 96.66±39.44 74.78±29.94

Slice 1.50±0.00 68.92±33.23 29.80±9.53 27.63±12.31

To further compare the marginal and slice samplers, effective sample sizes (ESS) are
calculated over 1000 samples. The statistics used for the evaluation are (σ, M, u) and
sum of the data likelihood. The minimum, maximum, mean and median of the ESS are
shown in Table 3.1. From the results it can be clearly seen that the marginal sampler
beats the slice sampler in this simple model8, obtaining much better mixing. This
coincides with the discover in [Favaro and Teh, 2013].

3.6.2 Clustering

Illustration This section demonstrates how to use the NGG mixture for clustering.
As a mixture model, each component of the model is often taken as a cluster. To illus-
trate, the NGG mixture is first run on the S-set dataset [Franti and Virmajoki, 2006],
which is a synthetic 2-d data with 5000 samples and 15 Gaussian clusters with differ-
ent degree of cluster overlapping. 1000 data point are collected after 5000 burnin for
ESS calculation. The hyperparameters are set as ν = 5, m = 0, r = 0.25, R = I where
I is a 2× 2 identity matrix. σ in NGGM was set to 0.5, though it can be sampled
during the inference. In the experiment NGGM model is compared with DPM. The
models are randomly initialized with 10 components and 1000 Gibbs iterations are
used. The learned clusters are plotted in Figure 3.4, from which we can see that the
two models performs similarly, and are able to recover the mixture components in
the data, though both seem to combine the two components (on top of the data) into
one.

Clustering performance Next the NGG mixture (NGGM) model is tested on ten
real datasets from the UCI repository [Bache and Lichman, 2013]. Table 3.2 lists
some of the statistics of these datasets. For computational ease, subsets of the three
large datasets, e.g., Letter, MNIST and Segmentation datasets, are used.

To measure the clustering performance, the normalized mutual information (NMI)
score, a standard measurement for evaluating clustering models [Vinh et al., 2010] is
used. Let N be the number of data points in the dataset, Ω = {ω1, · · · , ωK} denote
the true cluster assignment of the data, where ωk is the set of data points assigning to
the k-th cluster. C = {c1, · · · , cJ} denote the cluster structure produced by a model
and cj is the set of data points assigning to the j-th cluster. | · | is the cardinality

8However, this is not always the case, see more complex models for example in Chapter 6 and
Chapter 7.
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Figure 3.4: Clustering of a Gaussian mixture data with NGG mixture and DP mixture
models.

Table 3.2: Statistics of the ten UCI datasets.

Data set #instances Dim #clusters

Glass 214 10 7
half_circle 300 2 2

Iris 150 4 3
Letter 1000 16 10
MNIST 1000 784 10

Satimage 4435 36 6
Segmentation 1000 19 7

Vehical 846 18 4
Vowel 990 10 11
Wine 178 13 3

operator. The NMI is defined as

NMI(Ω, C) =
2 ∑k ∑j

|ωk∩cj|
N log N|ωk∩cj|

|ωk ||cj|

∑k
|ωk |

N log |ωk |
N + ∑j

|cj|
N log |cj|

N

The model hyperparameters are set as ν = d, m = 0, r = 0.1, R = eye(d) where
d is the dimension of the data. To test the impacts of the σ parameter to the model
performance, two version of the NGGM are instantiated, one is to sample σ during
inference, denoted as NGGM1, the other is to simply set σ as 0.1, denoted as NGGM2.
The models ares compared with the popular kmeans and nCut algorithms as well as
the DPM model. For all the models, the experiments are repeated for 5 times with
randomly initialization. The mean and standard deviations are reported in Table 3.3.
It can be seen from the table that due to the flexibility, NGGM is slightly better than
the more specific DPM in general; moreover, the one with σ sampled performs slight
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Table 3.3: Comparison for different methods

Data set kmeans nCut DPM NGGM1 NGGM2

Glass 0.37±0.04 0.22±0.00 0.45±0.01 0.43±0.04 0.45±0.01

half_circle 0.43±0.00 1.00±0.00 0.39±0.07 0.48±0.03 0.48±0.03

Iris 0.72±0.08 0.61±0.00 0.73±0.00 0.73±0.00 0.73±0.00

Letter 0.33±0.01 0.04±0.00 0.26±0.07 0.22±0.05 0.20±0.07

MNIST 0.50±0.01 0.38±0.00 0.54±0.02 0.57±0.02 0.56±0.01

Satimage 0.57±0.06 0.55±0.00 0.29±0.06 0.32±0.00 0.32±0.00

Segmentation 0.52±0.03 0.34±0.00 0.33±0.03 0.37±0.09 0.33±0.02

Vehical 0.10±0.00 0.14±0.00 0.01±0.00 0.01±0.00 0.01±0.00

Vowel 0.42±0.01 0.44±0.00 0.27±0.02 0.26±0.01 0.28±0.03

Wine 0.84±0.01 0.46±0.00 0.56±0.01 0.56±0.02 0.56±0.01

better then the one with fixed σ, which is reasonable. Interestingly, in some cases
both NGGM and DPM do not perform as well as the simplest kmeans method. The
reason is that in real data, the underlying data distribution is usually not Gaussian,
and NGGM usually generates much fragmented partition of the data than the true
partition.

3.7 Conclusion

This chapter introduces the normalized random measure, a nonparametric Bayesian
family of discrete random probability measures. It is built on the Poisson process,
thus its distributional properties as well as the posterior can be analyzed by the the-
ory of Poisson processes, or particularly via the Poisson process partition calculus.
A concrete example of the normalized random measure called normalized general-
ized Gamma process is detailed studied in this chapter. Its posterior inference via
marginal sampler and slice sampler are also developed. Note the slice sampler is
adapted from the one proposed by Griffin and Walker [2011], and this is not the only
slice sampler for normalized random measure mixtures. A more computationally ef-
ficient slice sampler can be developed using the Poisson process thinning technique
to be discussed in Chapter 7. Finally, comparison of these two samplers and an
application to clustering were presented, where the normalized random measure is
shown to be more flexible than the Dirichlet process in real applications.

Finally, we note that in the experiments above, the NRM does not show obvious
advantages compared with the DP. Indeed, the posterior structure of the NRM is
much more complicated than the DP. However, this does not necessarily mean that
NRM is not worth investigating because as will be seen in the rest of the thesis, differ-
ent kinds of dependency models can be constructed based on the NRM framework,
where posteriors of these dependency models are analytically tractable.
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3.8 Appendix: Proofs

Proof of Lemma 3.4. We have ν(dw, dθ/λ). Doing a change of variables w′ = w/λ and
some rearranging of the Lévy-Khintchine formula yields the following:

E
[
e−
∫

Θ(λ f (θ))(µ̃(dθ)/λ)
]

= e−
∫

R+×Θ

(
1−e−w′ ,(λ f (θ))

)
λν(dw′,dθ)

Since µ̃(dw)/λ normalizes to the same measure as µ̃(dθ), and saying something
holds for any f (θ) is the same as saying something holds for any λ f (θ) (when λ > 0),
the result follows.

Proof of Theorem 3.7. The definition for τn(u) comes from [Proposition 1][James et al.,
2009]. The posterior marginal of Equation (3.20) comes from [Proposition 3][James
et al., 2009] and is simplified using the change of variables t = M (1 + u)σ. For
the predictive posterior, the weights in Equation (3.22) are derived directly from the
posterior. The posterior proportionality for p(UN = u|X, σ, M) discards terms not
containing u.

Proof of Corollary 3.8. Marginalize out M from the posterior of Equation (3.20) us-
ing the alternative definition of TN,K

σ,M . It can be seen this yields the posterior of a
Poisson-Dirichlet distribution with discount parameter σ and concentration parame-
ter b. Since the posteriors are equivalent for all data, the distributions are equivalent
almost surely.

Proof of Lemma 3.9. Equation (3.24) holds by noticing TN,K
σ.M is decreasing in N and

then using the definition of the upper incomplete Gamma function. To prove Equa-

tion (3.25), expand the term
(

1−
(M

t

)1/σ
)N−1

using the binomial expansion and

absorbing the powers t−n/σ into tK−1 as an incomplete Gamma integral.
Now manipulate Equation (3.25). Expand Γ

(
K− n

σ , M
)

using the recursion for
the upper incomplete Gamma function, which can be applied for all first arguments
when M > 0.

=
N−1

∑
n=0

(
N − 1

n

)(
−M1/σ

)n ((
K− 1− n

σ

)
Γ
(

K− 1− n
σ

, M
)
+ MK−1− n

σ e−M
)

=
N−1

∑
n=0

(
N − 1

n

)(
−M1/σ

)n (
K− 1− n

σ

)
Γ
(

K− 1− n
σ

, M
)

+MK−1e−M
N−1

∑
n=0

(
N − 1

n

)
(−1)n

The second sum is a binomial expansion of (1 − 1)N−1 and therefore disappears.
Apply this step repeatedly. For K ∈ N+, this terminates after K − 1 steps to get
Equation (3.27).
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Equation (3.28) holds by expanding(
1−

(
M
t

)1/σ
)N−1

=

(
1−

(
M
t

)1/σ
)N−2

−
(

1−
(

M
t

)1/σ
)N−2 (

M
t

)1/σ

inside the integral definition of TN+1,K
σ,M and then recognizing the terms.

Equation (3.26) and Equation (3.29) hold by applying the integration by parts

formula on the terms A(t) =
(

1−
(M

t

)1/σ
)N−1

and B(t) = tK−1e−t. Rearranging the
resultant integrals and recognizing the terms yields

0 = M1/σTN−1,K−1−1/σ
σ,M + (K− 1)TN,K−1

σ,M − TN,K
σ,M .

This proves Equation (3.29). Equation (3.26) follows by then applying Equation (3.28).

Proof of Theorem 3.11. The posterior marginal of Equation (3.30) comes from [Propo-
sition 4][James et al., 2009]. Although the denominator is difficult to evaluate, and
it can be derived through a recursion, the easiest way is simply to normalize the
enumerator. Sum over

(
Mσ (1 + u)σ)K

∏K
k=1(1 − σ)nk−1 for all length K partitions

(n1, n2, ..., nK) yields
(

Mσ (1 + u)σ)K SN
K,σ and the result follows by again summing

over K. The predictive posterior, as before, follows directly from the posterior marginal.
The posterior proportionality for UN , p(UN = u|{θi}, σ, M), comes from [Proposi-
tion 4][James et al., 2009] after discarding terms not containing u. The normalizing
constant is obtained using the methods of Theorem 3.7.

Proof of Corollary 3.13. Equation (3.33) can be seen to hold true since conditioning it
on UN = u and {θi} yields respectively Equation (3.30) and Equation (3.32). The
posterior on wk comes from [Griffin and Walker, 2011].

This can also be proven from [Griffin and Walker, 2011] at the end of Section 3,
and includes the prior on KL, w1, ..., wK described in Section 4. The mixture model
component f (xi|θsi) has also been stripped and the slice sampling variables marginal-
ized out. One then takes the limit as L→ 0.

Proof of Lemma 3.18. First, for the infinite mixture model, we have infinite number of
components, thus given the observed data (x1, · · · , xN) and their allocation indica-
tors s, the model likelihood is

pµ(x, s|θ, W) =
N

∏
i=1

wsi

W+
f (xi|θsi),

where W+ = ∑∞
k=1 wk. Now introduce the slice auxiliary variables u for each data,

such that we only consider the components whose jumps are larger than a threshold
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ui for data xi, in this auxiliary space we have

pµ(x, u, s|θ, W) =
1

WN
+

N

∏
i=1

1(ui < wsi)g0(xi|θsi).

Now using the fact that

1
WN

+

=

∫ ∞
0 UN−1

N exp {−UNW+}dUN

Γ(N)
,

after introducing the auxiliary variable UN , we have

pµ(x, u, s, UN |θ, W) ∝ UN−1
N exp {−UNW+}

N

∏
i=1

1(ui < wsi) f (xi|θsi).

Further decomposing W+ as

W+ = W∗ +
K

∑
k=1

wk,

where K is the number of jumps which are large than a threshold L, W∗ = ∑∞
k=K+1 wk,

then we get

pµ(x, u, s, UN |θ, w1, · · · , wK, K)

∝ Un−1
N exp

{
−UN

K

∑
k=1

wk

}
E [exp {−UNW∗}]

N

∏
i=1

1(ui < wsi) f (xi|θsi). (3.48)

Now use the Lévy-Khintchine representation of a Lévy process (3.3) to evaluate
E [exp {−UNW∗}], we get

pµ(x, u, s, UN |θ, w1, · · · , wK, K) ∝ UN−1
N exp

{
−UN

K

∑
k=1

wk

}

exp
{
−M

∫ L

0
(1− exp {−UNt}) ρη(t)dt

} N

∏
i=1

1(ui < Jsi) f (xi|θsi). (3.49)

Now combining with the priors

p(w1, · · · , wK) =
K

∏
k=1

ρη(wk)∫ ∞
L ρη(t)dt

,

K ∼ Poisson(M
∫ ∞

L
ρη(dt)), θk ∼ H(θk),

the result follows.



Chapter 4

Hierarchial Normalized Random
Measures

4.1 Introduction

To a large extent the normalized random measure (NRM) described in the last chap-
ter allows more modeling flexibility than the Dirichlet process. For example, by
imposing the NRM as a nonparametric Bayesian prior for the mixing probability in
a mixture model, it allows power-law distributions to be modeled properly with ef-
ficient MCMC samplers. However, it is clear the NRM fits well in modeling a single
dataset, but is inadequate for multiple correlated datasets from different sources. In
such cases, a set of correlated NRMs should be used instead of only one. This brings
to the problem of building dependent normalized random measures.

In many machine learning tasks, modeling correlated datasets from different
sources is a common setting, e.g,, blog articles from different websites (e.g., Daily
Kos and Right Wing News), papers from different journals (e.g., JMLR, TPAMI and
JAIR), genetic data from different groups (e.g., Asian, African and European subpop-
ulations). We want to jointly model these datasets such that:

• they should have information shared between each other.

• they should have their own variations.

One typical solution for the above requirements is by hierarchical modeling where
nodes on top of the hierarchy represent the shared information, and those on the
bottom represent their own specific variations. For example, in a book, a typical
hierarchy is to treat the topic distribution1 for the whole book as the top node in the
hierarchical structure, the child nodes of the book as chapters, with their own topic
distribution, a variation of their parent’s topic distribution. This goes similarly for the
paragraphs within each chapters [Du, 2012]. Information sharing and variations here
means that different chapters or paragraphs tend to include the same topics but will
have their own uses of words or specific opinions. Figure 4.1 gives an hierarchical
structure for the structures of an introductory book on computer science.

1A topic in topic models [Blei et al., 2003] is simply a multinomial distribution over the vocabulary
words.
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Computer
Science

Computer
Vision

Machine
Learning

Software
Engineering

Topic
Models

Bayesian
nonparametrics

· · ·

· · ·

Figure 4.1: A hierarchical structure for an introductory book on computer science.

The popular tool in Bayesian nonparametrics for hierarchical modeling is the well
known hierarchical Dirichlet process (HDP) [Teh et al., 2006]. This chapter extends
the HDP by using the NRM inside the construction instead of DP to allow more
flexible distributional modeling. For completeness, the HDP will be introduced first
in the following sections.

4.2 Hierarchal Dirichlet Processes

The hierarchical Dirichlet process (HDP) proposed by Teh et al. [2006] is a popu-
lar tool for Bayesian nonparametric hierarchical modeling. This chapter starts from
the introduction of Dirichlet processes (DP). Here, instead of describing it from the
Poisson process point of view as for the NRM in Chapter 3, the original way of
introduction by Ferguson [1973] is adopted for simplicity and easy understanding.
Intuitively, a DP is an extension of the Dirichlet distribution to an infinite dimensional
space. The definition of the Dirichlet distribution is given as:

Definition 4.1 (The Dirichlet Distribution). The K-dimension Dirichlet distribution
with parameter α = (α1, · · · , αK), denoted as Dir(α), is the probabilistic distribution
on the (K− 1)-simplex, it has a probability density function with respect to Lebesgue
measure on the Euclidean space RK−1:

p(x1, · · · , xK; α1, · · · , αK) =
1

BetaK(α)

K

∏
i=1

xαi−1
i , (4.1)

for all xi > 0 and ∑i xi = 1. BetaK(α) is the K dimensional beta function that normal-
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izes the Dirichlet2, defined as:

BetaK(α) =
∏K

i=1 Γ(αi)

Γ(∑K
i=1 αi)

, (4.2)

where Γ(·) is the Gamma function.
Now the generalization of the Dirichlet distribution to DP can be clearly seen in

the following definition:

Definition 4.2 (The Dirichlet Process [Ferguson, 1973]). Let α(·) be a non-null finite
measure (nonnegative and finitely additive) on (Θ,B(Θ)). We say D is a Dirichlet
process on (Θ,B(Θ)) if for every finite or countably infinite measurable partition
(A1, · · · , Ak) of Θ (see Figure 4.2), the distribution of (D(A1), · · · , D(Ak)) is Dirichlet
distributed as Dir(α(A1), · · · , α(Ak)).

The Dirichlet process will be denoted as DP(α, H) where with a little abuse of no-
tation, α also represents the total mass α(Θ), and is called the concentration parameter,
H = α(·)

α(Θ)
is called the base distribution (or base probability measure).

Figure 4.2: Partition of the measurable space

The above definition guarantees the existence of the DP, which follows directly
from either Kolmogorov’s extension theorem [Sato, 1990] or de Finetti’s Theorem [Ac-
cardi, 2001]. In the following, two useful results of the DP are listed, proofs can be
found in [Ferguson, 1973].

Proposition 4.1 (Discreteness of the DP). Let D be a Dirichlet process on (Θ,B(Θ))
with parameter α, and let B ∈ B(Θ). If α(B) = 0, then D(B) = 0 with probability 1. If
α(B) > 0, then D(B) > 0 with probability 1. Furthermore, E(D(B)) = α(B)

α(Θ)
.

Remark 4.2. From Proposition 4.1, it can be seen that no matter whether the base
measure α is discrete or not, the DP is always discrete, i.e., D(x) = 0 for infinite
many single points x ∈ Θ. Thus a realization of the DP can be written as (exactly the
same form as the normalized random measure):

D =
∞

∑
k=1

wkδxk , (4.3)

2However, Beta(a, b) will be used to denote the Beta probability function with parameters a and b
in the thesis.
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where wk > 0 and ∑k wk = 1, {xk} are drawn i.i.d. from Θ.

Proposition 4.3. Let D be a Dirichlet process on (Θ,B(Θ)) with parameter α, and let
x1, · · · , xn ∈ Θ be a sample of size n from D. Then the conditional distribution of D given
x1, · · · , xn is again a Dirichlet process with an updated concentration parameter α+∑n

i=1 δxi .

4.2.1 Chinese restaurant processes

Because each draw from the DP is a discrete distribution, in a sample (x1, · · · , xn) of
length n, they could have duplicated values (also called ties), denoted as {θ1, · · · , θK}.
Now introduce an indicator variable si for each data xi such that xi = θsi , clearly for
a given sample (x1, · · · , xn), the indicator variables (s1, · · · , sn) define a partition
over integers {1, · · · , n} M= [n], e.g., the i’s with the same si value belong to the same
cluster. The distribution over the partition is known as the Chinese restaurant process
(CRP) [Pitman, 1995]. The CRP is so called because it adopts a Chinese restaurant
metaphor, where the data are customers in a Chinese restaurant, clusters correspond
to dishes. The distribution is equivalent to the seating arrangement induced by the
following customer seating process:

• The first customer comes into the restaurant, opens a new table, and orders a
dish θ1 from a global menu.

• Subsequent customers come into the restaurant, and choose a table to sit as
follows: for customer n,

– With probability proportional to mk to join table k, and share the dish with
the other customers on that table, where mk is the number of customers
sharing the dish θk on that table.

– With probability proportional to α to open a new table, and order a dish
from the global menu θ.

At the end, the customer indexes form a partition over integers [n]. It is easy
to show that the probability for a specific partition (m1, · · · , mK) has the following
form:

p({m1, · · · , mK}|α) =
Γ(α)αK

Γ(α + N)

K

∏
k=1

Γ(mk) . (4.4)

The above is known as the Chinese restaurant distribution, and is actually the marginal
distribution of the DP (with the random probability measure D marginalized out)
given data x1, · · · , xn, thus can be used to derive sampling algorithms for the DP.

4.2.2 Stick-breaking construction for the Dirichlet process

The DP also has a nice characterization as the stick-breaking construction. If we look
at the realization formula of a DP in (4.3), we see that there are infinitely many
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p1'

p2'

p3'

p4'

p5'

1. Draw θ1 from H

2. Draw p′1 from Beta(1, α)

3. w1 = p′1

4. Draw θ2 from H

5. Draw p′2 from Beta(1, α)

6. w2 = p′2(1− p′1)

7. · · ·

Figure 4.3: Stick-breaking construction for the Dirichlet process

sequences of positive weights {wk} with a summation of one. We can regard a real-
ization of these weights as stick lengths by breaking a unit length stick into infinite
intervals. The following theorem show how to break the stick to make it be a DP.

Theorem 4.4. Assume the distributions for the random variables (p′k)
∞
k=1 and (θk)

∞
k=1:

p′k|α0 ∼ Beta(1, α), θk|H ∼ H, (4.5)

where Beta(a, b) is the Beta distribution with parameters a and b. Now define (wk)
∞
k=1 as

wk = p′k
k−1

∏
l=1

(1− p′l). (4.6)

Then the random measure D = ∑∞
k=1 wkδθk is a Dirichlet process DP(α, H).

Proof. See Sethuraman [1994].

Figure 4.3 illustrates the stick-breaking construction for the Dirichlet process. The
outcome of the weights {wk} is the same as breaking a unit length stick, thus named
stick-breaking process. The detail of stick-breaking construction is described on the
right of Figure 4.3.

4.2.3 Hierarchal Dirichlet processes

The hierarchical Dirichlet process puts a set of DPs into a hierarchical structure for
correlation modeling as well as information sharing among different DPs [Teh et al.,
2006]. Specifically, the output distribution of a DP is subsequently used as the base
distribution for another DP, and so-forth. This creates a hierarchy of distribution-
s/probability vectors. This situation is depicted in the graphical model of Figure 4.4.
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Probability vector hierar-
chy: This depicts, for
instance, that vectors p1
to pK should be similar
to p0. So for the j2-th
node branching off node
j1, pj2 ∼ DP(αj1 , pj1).

p0

p2

p...

p1 pK

p... pj1

p...
pj2 p...

Figure 4.4: Probability vector hierarchy

In formula, these relationships are represented as3:

G0|α0, H ∼ DP(α0, H) draw a parent DP

Gj|α, G0 ∼ DP(α, G0), hierarchical construction for j = 1, · · · , J

The HDP is becoming more and more popular in modeling dependent proba-
bility measures since its proposal [Teh et al., 2006], and has found applications in
different fields in machine learning such as topic modeling [Teh et al., 2006], n-gram
language modeling [Teh, 2006a,b], image segmentation [Orbanz and Buhmann, 2007]
and annotation [Du et al., 2009], scene learning [Sudderth et al., 2005], data compres-
sion [Wood et al., 2009], and relational modeling [Xu et al., 2006], etc. Though simple
in construction, it does has some interesting interpretations. Below we briefly intro-
duce the Chinese restaurant franchise interpretation of the HDP and the corresponding
stick-breaking construction.

Chinese restaurant franchise The Chinese restaurant franchise (CRF) is an exten-
sion of the Chinese restaurant process to multiple restaurant scenario, where these
restaurants are connected in a hierarchical structure and share a global menu. In all
of these Chinese restaurants, they have an infinite number of tables, each of which
has infinite seating capacity. Each table serves a dish, and multiple tables can serve
the same dish. In the CRF, each restaurant connects to its parent restaurant and
child restaurants in a tree-like structure. A newly arrived customer in a restaurant
can choose to sit at an active table (i.e., a table which at least has one customer), or
choose a new table. If a new table is chosen (i.e. activated), this table will be sent
as a new customer to the corresponding parent restaurant to order a dish, which
means a table in any given restaurant reappears as a proxy customer [Mochihashi
and Sumita, 2008] in its parent restaurant. This procedure is illustrated in Figure 4.5.
The final seating arrangement of customers (including the proxy customers) in the
Chinese restaurant franchise constitutes a hierarchical Dirichlet process distribution.

3A two level hierarchy case is considered here, generalizing to multiple levels is straightforward
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1 3 2 1

1 2 2 · · ·

· · ·
L− 1

L

: proxy customer

: real customer

: table

: restaurant

: hierarchy
connection

3

1 2 2 · · ·1
L + 1

Figure 4.5: CRF representation of the HDP, where rectangles correspond to restau-
rants, circles correspond to tables, the numbers inside the tables represent dish in-

dexes, and L means “level” in the hierarchy.

Stick-breaking construction for the HDP The stick-breaking construction for the
set of DPs in a HDP is also interesting and useful for posterior inference. Teh et al.
[2006] prove the formula for the construction. Assume there is an L-level HDP, denote
the index of the parent of the current DP Gj as p(j), also let Gj has concentration
parameter αj. Then the stick-breaking construction for the whole set of DPs goes as:

• For the top level DP: G0 = ∑∞
k=1 w0kδθk :

w′0k ∼ Beta (1, α0)⇒ w0k = w′0k

k−1

∏
l=1

(
1− w′0l

)
.

• For the subsequent DP: Gj = ∑∞
k=1 wjkδθ∗k

:

w′jk ∼ Beta

(
αjwp(j)k, αj

(
1−

k

∑
l=1

wp(j)l

))
⇒ wjk = w′jk

k−1

∏
l=1

(
1− w′jl

)
.

where all the DPs share the same atoms {θk}, which are drawn i.i.d. from the base
distribution H of the top level DP G0.

Posterior inference for the HDP Approximated posterior inference for the HDP
can be done via several ways such as MCMC or variational inference. In MCMC,
there are mainly three sampling algorithms for the HDP based on the Chinese restau-
rant franchise and the stick-breaking representations, namely, sampling in the Chinese
restaurant franchise, sampling with an augmented representation and sampling by direct
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assignment. These are all presented in [Teh et al., 2006], and will be omitted here for
simplicity.

4.3 Hierarchal Normalized Random Measures

By applying the same idea as the hierarchical Dirichlet process, it is straightforward
to generalize the HDP to the hierarchical normalized random measure (HNRM).
Recall that a NRM is parameterized by some hyperparameters η (if any), a mass
parameter M, and a base distribution H, denoted as NRM(η, M, H). A realization of a
NRM is a discrete probability measure, denoted as

µ ∼ NRM(η, M, H) .

Now suppose we have a set of NRMs, say {NRM(η0, M0, H0), NRM(η1, M1, H1), · · · }.
To define a hierarchical structure on these NRMs, we can replace the base distribu-
tion Hi’s of NRM(ηi, Mi, Hi) with a realization of its parent NRMs, this construction
applies recursively down to other NRMs in a tree structure, and finally we get a set
of NRMs which correlate to each other via their base distributions. Specifically, a two
layer HNRM mixture is defined as

µ0 ∼ NRM(η0, M0, H0) a parent NRM

µj ∼ NRM(ηj, Mj, µ0) for each child NRM j = 1, · · · , J

ψji ∼ µj, xji ∼ F(·|ψji) generate observations xji for i = 1, · · · , Nj ,
(4.7)

where F(·|ψji) is the cumulative density function for generating observations xji, and
we denote the corresponding probability density function as f (·|ψji), which will be
used below.

4.3.1 A generalized Chinese restaurant franchise interpretation of the HNRM

A stick-breaking representation for the general class of HNRM does not seem to be
available, thought there exists some work on constructing stick-breaking processes
for some specific classes of single NRMs such as the normalized inverse Gaussian pro-
cess [Favaro et al., 2012] and the general Poisson-Kingman process [James, 2013]. Fortu-
nately, as a single NRM can be explained as a generalized Chinese restaurant process
conditioned on latent relative mass James et al. [2009], the HNRM can also be inter-
preted as a generalized Chinese restaurant franchise. Specifically, in addition to the
notion of customers, tables, dishes in traditional CRP, the latent relative mass variable
uj for each NRM (each restaurant) now represents the popularity variable for the cor-
responding restaurant, because the seating arrangement of the restaurant is related
to this variable. Specifically, the seating process goes as:

• The customer for restaurant µj comes into the restaurant:
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– if she is the first customer, she sits at an empty table, orders a dish θ from
the global menu.

– otherwise, she updates the popularity uj of restaurant µj using the follow-
ing posterior:

p(uj|others) ∝ u
nj·
j e−ψηj (uj)

K

∏
k=1

κ(uj, njk) ,

where njk denotes the number of customers in restaurant µj sharing dish
θk, ψηj(u) and κ(u, m) are defined in (3.6) and (3.19), respectively. She then
chooses the following options:

∗ with probability proportional to κ(uj,njk+1)
κ(uj,njk)

joins an exist table serving
dish θk;
∗ with probability κ(uj, 1) opens a new table and order a dish θ from

the global menu.

• Whenever a new table is opened in restaurant µj, it serves as a new customer
coming into µj’s parent restaurant µp(j), and the seating arrangement in this
restaurant follows exactly the same process as its child restaurant µj. This
process recurses up to the hierarchy until reaching the top level.

The above procedure summarizes the generalized Chinese restaurant franchise
interpretation of the HNRM. It can be understood by noting that given customers4

in each restaurant µj, the NRMs represented by these restaurants are independent.
As a result, we can use the results from the posterior of a single NRM described in
Chapter 3 to get the prediction rules for each restaurant, which correspond to the
seating rules described in the above generalized Chinese restaurant franchise.

4.3.2 A marginal sampler for the HNGG

As mentioned above, no closed form stick-breaking construction exists for the gen-
eral HNRM family, thus posterior inference does not seem to be available from the
stick-breaking point of view. However, the marginal sampler based on the above
generalized Chinese restaurant franchise interpretation can be derived. This section
describes a marginal sampler for a specific class of the HNRM–hierarchical normal-
ized generalized Gamma processes (HNGG). Samplers for the general HNRM follow
similar strategies as the HNGG and will be omitted. The auxiliary variable we need
to introduce is the latent relative mass defined Chapter 3 (corresponds to the popularity
variables defined above). This section considers the case of two layer HNGG as in
(4.7) with NRM replaced by NGG, multiple layer case can be generalized straightfor-
wardly.

Following the Chinese restaurant process metaphor, denote njk as the number of
customers eating dish θk in restaurant µj where θk’s are distinct values among all

4Note for the internal restaurants their customers are actually tables in their child restaurants.
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ψji’s in (4.7), tjk as the number of tables serving dish θk in restaurant µj, K as the
total number of distinct dishes currently served in all restaurants. The sampling
procedure then mimics the direct assignment sampler for the HDP [Teh et al., 2006].
After integrating out the random measures Gj’s (resulting in the generalized Chinese
restaurant franchise representation), the variables needed to be sampled are dish
index sji for each customer xji, the number of tables tjk in restaurant µj, the popularity
variable uj for restaurant µj and mass hyperparameters M0 and M for the NGGs in
the first and second levels, respectively. Denote the whole parameter set as C, the
sampling procedure then goes as:

• Sampling dish index sji for customer xji: this adopts a similar formula with
the HDP, this can be summarized with the following proposition, see appendix
in Section 4.7 for the proof.

Proposition 4.5. Define β as the prediction probability vector for µ0 conditioned on
other variables, e.g.,

β ∝ (t·1 − σ, · · · , t·K − σ, σM0(1 + U0)
σ) , (4.8)

such that β is a probability vector. The conditional posterior of sji satisfies

p(sji = k|C− sji) ∝


(

n/ji
jk + σ

(
M(1 + Uj)

σβk − 1
))

f \jl
k (xji) if k already exists

σM(1 + Uj)
σβk

∫
Θ f (xji|θ)h(θ)dθ if k = K + 1 is new ,

(4.9)
where /ij means the statistics after removing the (i, j) term, h is the density of H;

f \jl
k (xjl) =

∫
f (xjl |θk)∏j′ l′ 6=jl,sj′ l′=k,gj′ l′=r f (xj′ l′ |θk)h(θk)dθk∫

∏j′ l′ 6=jl,sj′ l′=k f (xj′ l′ |θk)h(θk)dθk
is the conditional density.

Note since sji’s change the statistics, the random vector β should be updated
in each iteration with µ0’s posterior prediction probabilities according to (4.8)
with the current statistics.

• Sampling restaurant popularity variable uj: conditioned on other variables,
sampling for uj is similar to a single NRM case. Based on results from Sec-
tion 3.5.1.2, the posterior of uj is:

p(uj|C− uj) ∝
u

nj·−1
j(

1 + uj
)nj·−tj·σ

e−M(1+uj)
σ

, (4.10)

This posterior is proved to be log-concave after a change of variable as Vj =
log(uj), thus can be efficiently sampled using the adaptive rejection sampler [Gilks
and Wild, 1992] or the slice sampler [Neal, 2003]. Similarly the posterior of u0



§4.4 Experiments 71

is given by:

p(u0|C− u0) ∝
ut··−1

0

(1 + u0)
t··−Kσ0

e−M0(1+u0)
σ0 ,

• Sampling #tables tjk in restaurant µt: this follows by simulating a generalized
Chinese restaurant process [Chen et al., 2012b] described in Section 4.3.1. Con-
ditioned on all other statistics, in restaurant µj, the probability of creating a new
table for dish θk is proportional to (njk − σ), while the probability of creating
a new table is proportional to σM(1 + uj)

σ. At the beginning, tjk is initialized
to 0, then the customers are added in one by one. If a new table is created, tjk
is increased by one. At the end of this generating process, tjk is equal to the
number of tables created.

• Sampling mass parameters M and M0: Using Gamma priors for M and M0,
the posterior are simply Gammas as:

M|C−M ∼ Gamma

(
∑

j
Kj + aM, ∑

j
(1 + Uj)

σ + bM − J

)
,

M0|C−M0 ∼ Gamma (K + a0, (1 + U0)
σ + b0 − 1) ,

where Kj denotes the number distinct dishes served in restaurant µj, (aM, bM)
and (a0, b0) are hyperparameters for the Gamma prior of M amd M0, respec-
tively.

Finally, conditioned on all other variables, sampling σ can be done similarly as
the NGG mixture case in Chapter 3, it is omitted here for simplicity. In practice, we
can simply choose a suitable value and fix it during inference.

4.4 Experiments

In this section, the use of HNGG in topic modeling [Blei et al., 2003], as well as the
efficiency of the sampling algorithms and comparison with some related models are
demonstrated

4.4.1 On a small dataset

First, a small dataset of 5 years’ abstracts of papers published in ICML (2007–2011)
is used. After simple removal of stop words, 764 documents are left with a total
of 715,127 words and a vocabulary of size 1,918. In all the experiments, 80% of
the documents are randomly chosen for training and 20% for testing. The number
of iterations used for burn in is set to 2,000, then another 500 iterations are used
to collect related statistics. Each experiment is repeated for 10 times with random
initializations, means and variances are reported.
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Comparisons The HNGG is compared with LDA [Blei et al., 2003] and HDP [Teh
et al., 2006], the standard topic model and the corresponding Bayesian nonparametric
extension. All the models are implemented in C/C++. In topic modeling, the base
distribution H is a symmetry Dirichlet distribution with parameter β, e.g., each draw
φk from H is a topic-word distribution distributed as

φk ∼ DirichletV(β) ,

where V is the vocabulary size. In the experiments, β is set to 0.1, all other param-
eters are sampled during inferences. Note the latent relative mass in HNGG can be
sampled using the slice sampler or the adaptive rejection sampler. The slice sampler
is used in this experiment, however, these two samplers will be compared in the next
experiment. In addition, the σ is chosen as 0.1 in this experiment, other values will
be studied later as well. For quantitative evaluation, the perplexity measure used in
topic models [Wallach et al., 2009] is adopted. Figure 4.6 plots the training and test
perplexities for different models, where for LDA, the number of topics varies from
10 to 100. From the figure we can see that with increasing number of topics, training
perplexity in LDA keeps dropping, and finally achieves a little bit lower than the
HDP and HNGG5; while for the test perplexity, HDP and HNGG are consistently
better than LDA, with HNGG slight outperforms HDP due to the flexibility in the
distributional modeling.
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Figure 4.6: Training and test perplexities for different models.

The posterior number of topics learned from HNGG and HDP are plotted in
Figure 4.7. It can be seen that with σ = 0.1, HNGG generates less number of topics,
indicating word distributions in HNGG tend to be more compact than those in HDP.

Adaptive rejection sampler VS. slice sampler Note due to the log-concave prop-
erty of the restaurant popularity variables uj’s, they can be sampled with either
slice or adaptive rejection samplers. In this experiment these two sampling schema
are compared. The two samplers are implemented based on codes from [Johnson]

5In practice training perplexity for different models is not a fair metric for comparison, usually test
perplexity is used instead to evaluate the generalization ability of the models.
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Figure 4.7: Posterior number of topics learned in HNGG and HDP.

and [Gilks], respectively. Training and test perplexities are compared with σ ranging
among (0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9). Figure 4.8 plots the compared
results for the two schema. From the figure we can find that these two sampling
schema are comparable in term of perplexity, but statistically the adaptive rejection
sampler seems slightly better.

0 0.010.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
200

400

600

800

σ

pe
rp

le
xi

ty

 

 

slice

adaptive rejection

(a) training

0 0.010.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
900

1000

1100

1200

σ

pe
rp

le
xi

ty

 

 

slice
adaptive rejection

(b) testing

Figure 4.8: Comparison with the slice sampler and adaptive rejection sampler.

To further test how these two sampling schema impact the model, the effective
sample size (ESS) among 1000 iterations are calculated. The mass parameters Mj, sum-
mation of uj, the total number of topics K, training and test likelihoods are chosen as
the statistics for ESS calculation. Figure 4.9 shows the minimum, maximum, mean
and median ESS for the two samplers. We can see from the figures that although
the two samplers perform quite similarly, again statistically the adaptive rejection
sampler seems to has higher ESS than the slice sampler.

4.4.2 On a larger dataset

Now the HNGG is applied to a larger dataset–a political blog dataset containing six
political blogs about the U.S. presidential election [Eisenstein et al., 2011]. The same
procedure is performed as in [Eisenstein et al., 2011] to pre-process this data. Finally,
the dataset is composed of 9461 documents with vocabulary size 13,644 and 2,051,708
words. The parameter setting is the same as in the small dataset in the last section.
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Figure 4.9: Effective sample sizes for the slice sampler and adaptive rejection sampler.

First, the training and test perplexities are compared using HNGG, HDP and
LDA. For HNGG, four settings of the σ parameter are tested, i.e., σ = (0.01, 0.1, 0.2,
0.3), respectively, while all other parameters are sampled during inference. Also, the
adaptive rejection sampler is used since it is shown to be better than the slice sampler
in the last section. For the LDA model, the number of topics varies among (10, 30,
50, 70, 100), 120). Each experiment is repeated for 5 times, means and variances of
the results are reported. Figure 4.10 plots the training and test perplexities for the
three models. We can see that HDP and HNGG are able to generate comparable per-
plexities to the best LDA model (with number of topics being 120), whereas HNGG
with parameter σ = (0.1, 0.2, 0.3) is comparable to the HDP (the HNGG is better than
the HDP in test perplexity with σ = 0.1), indicating more flexibility of the HNGG
than the HDP in term of power-law distribution modeling. Next, as an illustration,
Table 4.1 shows top 10 words from 10 randomly chosen topics learned by the HNGG.
We can see clearly that HNGG successfully recovers some interesting topics hidden
in the dataset. Finally, note that the inference algorithm for the HNGG is fairy fast.
In the experiments, it is observed comparable running time with the HDP model,
demonstrating the efficiency of the proposed sampling algorithm.

4.5 Topic-word distribution modeling

To show the flexibility of HNRM (specifically HNGG) over models like HDP, we
compare them in topic models where HNGG/HDP are used to model topic-word
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Figure 4.10: Comparison of LDA, HDP and HNGG on the CMU dataset
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Table 4.1: 10 topics learned from HNGG on CMU dataset

“taxes” “health “voting” “people “middle “climate” “financial
care” & family” east” change” crisis”

tax health Obama women Obama global financial
governm’t care mccain life Israel warming crisis
economic union percent family Jewish climate bailout
economy workers voters us Barack change governm’t
taxes insurance poll people policy gore market
spending auto among young American science wall
money labor democrats day Jews scientific street
billion industry polls men foreign ice fannie
pay unions points American middle earth treasury
jobs companies election children east scientists mortgage

distributions over all documents instead of topic distributions for each document.
The generative process can be described as:

• Draw a global topic-word distribution:

φ0 ∼ NGG(σ0, M0, H) ,

where H is a uniform distribution over vocabulary words.

• For each topic, draw its topic-word distribution:

φk ∼ NGG(σ, M, φ0), k = 1, 2, · · · , K .

• For each document d:

– draw its topic distribution: θd ∼ Dir(α).

– for each word index ` in document d:

∗ draw its topic indicator: zd` ∼ Dir(θd).
∗ draw the observed word: wd` ∼ Dir(φzd`).

The HDP version of the model is obtained by replacing HNGG with HDP in the
above generative process. As it is known that natural language exhibits Zipf’s law
which is in correspondence with the power-law property in NGG, we expect models
using the NGG to perform better than those using DP. For this experiment, we extract
two datasets from the Reuters RCV1 collection6 about disasters and entertainment, the
Reuters categories GDIS and GENT respectively. Sentences were parsed with the C&C
Parser7, then lemmatised and function words discarded. GDIS has a vocabulary of
size 39534 and total documents of 9097; while the GENT dataset has 4126 documents

6Reuters Corpus, Volume 1, English language, 1996-08-20 to 1997-08-19 (Release date 2000-11-03).
7http://svn.ask.it.usyd.edu.au/trac/candc
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and 43990 words in the vocabulary. The number of topics in the models are set
between {10, 20, 30, 50}, the Dirichlet prior for the topic distribution is set to 0.1,
while sampling all other parameters during inference. A burn in of 1000 iterations
is used in the experiment followed by 200 iterations to collect samples from the
posterior. Test perplexities are then calculated based on a 20% held-out data, and
are plotted in Figure 4.11. It can be seen from the figure that models using NGG are
consistently better than those using DP in term of test perplexity, demonstrating the
advantages of NGG over DP.
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Figure 4.11: Comparison of HDP and HNGG for topic-word distribution modeling
on GDIS and GENT datasets.

4.6 Conclusion

This chapter presents the first dependent normalized random measure to model hier-
archical dependency, thus called hierarchical normalized random measures (HNRM).
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The construction follows the same procedure with the hierarchical Dirichlet process
(HDP) [Teh et al., 2006]. Due to the complicated posterior structure, the HNRM
does not endow convenient properties as with the HDP, such as the stick-breaking
construction. However, by applying the auxiliary trick as in the normalized ran-
dom measure framework, posterior inference for the HNRM can still be done via
efficient marginal Gibbs sampler8. A generalized Chinese restaurant franchise inter-
pretation is also proposed to describe the posterior sampling for the HNRM. Typical
topic model experiments are tested on the HNRM, which is compared with the LDA
and HDP-LDA topic models. Experimental results show that HNRM together with
the HDP overcome the model selection difficulty in traditional Bayesian models, i.e.,
choosing the right number of topics, and obtain comparable results to the best LDA
model. Furthermore, experimental results also show an improvement in perplexity of
the HNRM over the HDP in topic distribution modeling, indicating the greater flexi-
bility of the HNRM. Note that the HNRM is reminiscent of the Coag-Frag duality of
a class of stable Poisson-Kingman mixtures James [2010, 2013] but with distinct pos-
terior inference techniques. However, it would be interesting to borrow ideas from
James [2010] to construct continuous time generalized Chinese restaurant processes,
like the fragmentation-coagulation process does Teh et al. [2011].

4.7 Appendix: Proofs

Proof of Proposition 4.5. To see how the above formula is obtained, note that for xji in
restaurant µj, we have

µ0 ∼ NGG(σ0, M0, H), µj ∼ NGG(σ, M, µ0) .

Furthermore, according to Corollary 3.12, conditioned on other statistics, the poste-
rior of µ0 is a NRM µ′0 expressed as:

µ′0 = µ0 +
K

∑
k=1

w0k

∑k′ w0k′
δθk = µ0 +

K

∑
k=1

βkδθk . (4.11)

The last equation satisfies because w0k’s (k ≤ K) represent the jump sizes of the atoms
with observations, thus are the posterior prediction probabilities of µ0. As a result,
according to Corollary 3.17, the predicted distributions can be written as

p(sji = k|C− sji) ∝


(

n/ji
jk − σ

)
µ′0(θk) if k already exists

σM(1 + Uj)
σµ′0(Θ/{θk′}K

k′=1) if k is new ,
(4.12)

Substituting (4.11) into the above predicted probabilities and simplifying results in
(4.9).

8Almost the same running time on average compared to HDP.



Chapter 5

Dynamic Topic Modeling with
Dependent Hierarchical
Normalized Random Measures

5.1 Introduction

The hierarchical normalized random measure (HNRM) introduced in Chapter 4 is a
flexible and powerful tool for hierarchical dependency modeling. However, real data
might not only exhibit hierarchical dependency; other kinds of dependencies such as
the Markovian dependency are also desired. This chapter presents a time dependent
hierarchical model by extending the HNRM with Markovian dependent structure to
describe time evolving phenomena in dynamic topic modeling.

The motivation for the proposed model is to describe topic evolution in topic
models – dynamic topic models. In dynamic topic models, we want both hierarchi-
cal and Markovian dependencies, where the former models documents in the same
time span, whereas the later models topic evolution over time: current topics depend
on topics from previous time and will influence future topics as well. This chapter
combines the ideas of HDP/HNRM with the Markovian dependency operations [Lin
et al., 2010], and proposes a Markovian dependency hierarchical normalized random
measures by manipulating the underlying Poisson processes and the corresponding
completely random measures [Kingman, 1967]. These operators in Markovian de-
pendency modeling are intuitive and allow flexibly control of topic correlations. Note
a related construction in the statistical literature is made by A. Lijoi and B. Nipoti
and I. Prunster [2013a], but it deals only with modeling two groups of data.

As hierarchical modeling via HNRM has been studied in Chapter 4, the Marko-
vian dependency modeling will be the focus of this chapter. As is shown in pre-
vious chapters, an NRM is constructed from the Poisson process, thus to construct
Markovian dependent NRMs, it suffices to construct Markovian dependent Poisson pro-
cesses. This is achieved by defining some dependent operations on the Poisson pro-
cess. Such a construction not only achieves more flexible modeling, but also allows
a dependency structure to be theoretically analyzed. In the following sections, the
dependency operations on Poisson processes, e.g., superposition, subsampling and point
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transition stated in Theorem 2.4, Corollary 2.8 and Corollary 2.9, are adapted to CRMs
and NRMs in Section 5.2. Properties when applying these dependency operations
to NRMs are then given in Section 5.3. The dynamic topic model based on these
operations is presented in Section 5.4 with experiments given in Section 5.5. Finally
proofs are given in the Appendix, Section 5.7.

5.2 Markovian Dependency Operations

This section introduces the dependency operations used in this chapter. These are
developed for CRMs and NRMs adapted from those in Poisson processes introduced
in Chapter 2.

5.2.1 Operations on CRMs

The dependency operations defined on Poisson processes in Chapter 2 can be natu-
rally generalized to the completely random measures given the construction of (3.2).
Formally, we have

Definition 5.1 (Superposition of CRMs). Given n independent CRMs µ̃1, · · · , µ̃n on
Θ, the superposition (⊕̃) of the CRMs is defined as:

µ̃1⊕̃µ̃2⊕̃ · · · ⊕̃µ̃n := µ1 + µ2 + · · ·+ µn .

Definition 5.2 (Subsampling of CRMs). Given a CRM µ̃ = ∑∞
k=1 wkδθk on Θ, and a

measurable function q : Θ → [0, 1]. If we independently draw z(θ) ∈ {0, 1} for each
θ ∈ Θ with p(z(θ) = 1) = q(θ), the subsampling of µ̃, is defined as

S̃q(µ̃) := ∑
k

z(θk)wkδθk , (5.1)

Definition 5.3 (Point transition of CRMs). Given a CRM µ̃ = ∑∞
k=1 wkδθk on Θ, the

point transition of µ̃, is to draw atoms θ′k from a transformed base measure to yield
a new random measure as

T̃(µ̃) :=
∞

∑
k=1

wkδθ′k
,

where θ′k ∼ T̃(θk) and T̃ : Θ 7→ Θ is a transition kernel.

5.2.2 Operations on NRMs

The operations on NRMs can be naturally generalized from those on CRMs by doing
a normalization step:

Definition 5.4 (Superposition of NRMs). Given n independent NRMs µ1, · · · , µn on
Θ, the superposition (⊕) of NRMs is defined as:

µ1 ⊕ µ2 ⊕ · · · ⊕ µn := c1µ1 + c2µ2 + · · ·+ cnµn .
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where the weights cm = µ̃m(Θ)
∑j µ̃j(Θ)

and µ̃m is the unnormalized random measures cor-
responding to µm.

Definition 5.5 (Subsampling of NRMs). Given a NRM µ = ∑∞
k=1 wkδθk on Θ, and a

measurable function q : Θ → [0, 1]. If we independently draw z(θ) ∈ {0, 1} for each
θ ∈ Θ with p(z(θ) = 1) = q(θ), the subsampling of µ, is defined as

Sq(µ) := ∑
k:z(θk)=1

wk

∑j z(θj)wj
δθk , (5.2)

Definition 5.6 (Point transition of NRMs). Given a NRM µ = ∑∞
k=1 wkδθk on Θ, the

point transition of µ, is to draw atoms θ′k from a transformed base measure to yield
a new NRM as

T(µ) :=
∞

∑
k=1

wkδθ′k
,

where θ′k ∼ T̃(θk) and T̃ : Θ 7→ Θ is a transition kernel. The definitions are
constructed so the following simple lemma holds.

Lemma 5.1. Superposition, subsampling or point transition of NRMs is equivalent to su-
perposition, subsampling or point transition of their underlying CRMs.

Thus one does not need to distinguish between whether these operations are on
CRMs or NRMs.

5.3 Dependencies and Properties of Operations

Based on the dependency operators defined above, this section presents a number of
results to do with these operations applied to the NRMs. First, dependencies such as
covariances are presented. Then some further properties are developed for when the
operations are used in a network.

5.3.1 Dependencies between NRMs via operations

Properties of the NRMs here are given in terms of the Laplace exponent ψ(v) de-
fined in (3.2) and its derivatives. In the Dirichlet process case, we have ψ(v) =
M log(1 + v), while in the normalized generalized Gamma process case, we have
ψa(v) = M ((1 + v)a − 1). Because the dependencies involve the total mass signifi-
cantly, a modified version of the Laplace exponent is used in all these results, defined
as ψ̃η(v) = 1

M ψη(v) with the mass parameter M removed.
Different from the Dirichlet process, the total masses M are no longer indepen-

dent from their normalized jumps in general normalized random measures. How-
ever, the correlations between different NRMs can still be derived. The following
Theorems summarize these results.
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Lemma 5.2 (Mean and Variance of an NRM). Given a normalized random measure µ on
Θ with the underlying Lévy measure ν(dw, dθ) = Mρη(dw)H(dθ), for ∀B ∈ B(Θ). The
mean of this NRM is given by

E[µ(B)] = H(B) . (5.3)

The variance of this NRM is given by

Var(µ(B)) = H(B)(H(B)− 1)M∫ ∞

0
vψ̃′′η (v) exp

{
−Mψ̃η(v)

}
dv . (5.4)

Remark 5.3. For DP, the corresponding variances are:

VarDP(µ(B)) =
H(B)(1− H(B))

M + 1
.

For NGG, it is

VarNGG(µ(B)) = H(B)(1− H(B))
1− σ

σ
eM M

1
σ |Γ(− 1

σ
, M)|.

For large M the upper incomplete Gamma function used here has the property that
eM M1+ 1

σ |Γ(− 1
σ , M)| → 1 and so we get for large M

VarNGG(µ(B))→ H(B)(1− H(B))
1− σ

Mσ
.

Theorem 5.4 (Dependency via superposition). Suppose µi, i = 1, · · · , n are n indepen-
dent normalized random measures on Θ with the underlying Lévy measures νi(dw, dθ) =
Miρη(dw)H(dθ), let µ = µ1⊕ · · ·⊕µn, B ∈ B(Θ), then the covariance between µk(k < n)
and µ is

Cov (µk(B), µ(B)) =

H(B)Mk

∫ ∞

0
γ(Mk, H(B), v) exp

{
−(∑

j 6=k
Mj)ψ̃η(v)

}
dv

+H(B)2

(
2Mk

∑j Mj
− 1

)
. (5.5)

where

γ(Mk, H(B), v) = (5.6)∫ v

0

(
H(B)Mkψ̃′η(v1)

2 − ψ̃′′η (v1)
)

exp
{
−Mkψ̃η(v1)

}
dv1

Theorem 5.5 (Dependency via subsampling). Let µ̃ be a completely random measure on
Θ with Lévy measure ν(dw, dθ) = Mρη(dw)H(dθ), µ = µ̃

µ̃(Θ)
. The covariance between µ
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and its subsampling version Sq(µ), denoted as µq, with sampling rate q(·) on B ∈ B(Θ) is

Cov (µq(B), µ(B)) =

H(B)Mq

∫ ∞

0
γ(Mq, H(B), v) exp

{
−(M−Mq)ψ̃η(v)

}
dv

+ H(B)2
(

2Mq −M
M

)
, (5.7)

where Mq := (qµ̃)(Θ) =
∫

Θ q(θ)µ̃(θ)dθ.

Theorem 5.6 (Dependency via point transition). Let µ̃ be a random measure on Θ with
Lévy measure ν(dw, dθ) = Mρη(dw)H(dθ), µ = µ̃

µ̃(Θ)
. Let B ∈ B(Θ), A = T (B) :=

{x : x ∼ T (y, ·), y ∈ B} be the set of points obtained after the point transition on B, thus
H(A) =

∫
B H(T (x))dx. Suppose A and B are disjoint (which is usually the case when

the transition operator T is appropriately defined), the covariance between µ and its point
transition version T(µ) on B ∈ B(Θ) is

Cov (µ(B), (Tµ)(B)) = H(A)H(B) (5.8)(
M2

∫ ∞

0

∫ v1

0
ψ̃′η(v2)

2 exp
{
−Mψ̃η(v2)

}
dv2dv1 − 1

)

5.3.2 Properties of the three dependency operations

To start with, the following two Lemmas about superposition and subsampling of
CRMs are proven. First, a straightforward extension of [Theorem 1 James et al., 2009]
leads to the following Lemma about the posterior of CRMs under superposition.

Lemma 5.7 (Posterior of CRMs under superposition). Let µ̃1, µ̃2, · · · , µ̃n be n indepen-
dent CRMs defined on space Θ, with Lévy measures νi(dw, dθ) = Miρi(dw)H(dθ) for
i = 1, · · · , n. Let

µ̃ = ⊕n
i=1µ̃i. (5.9)

Then given observed data X = (xi ∈ Θ)N
i=1 with distinct values {θk} from µ̃/µ̃(Θ), and a

latent relative mass u for µ̃′, the posterior of µ̃, denoted as µ̃′, is given by

µ̃′ = µ̃0 +
K

∑
k=1

wkδθk , (5.10)

where

1. µ̃0 is a CRM with Lévy measure

ν(dw, dθ) = e−uw

(
n

∑
i=1

νi(dw, dθ)

)
,

2. θk (k = 1, · · · , K) are the fixed points of discontinuity and wk’s are the corresponding
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jumps with densities proportional to

p(wk|·) ∝ wnk
k e−uwk

(
n

∑
i=1

νi(wk, Θ)

)
,

where nk is the number of data attached at jump wk.

3. µ̃0 and wk’s are independent.

Furthermore, the posterior of u is given by

p(u|others) ∝ uNe−∑i Mi
∫

R+ (1−exp(−uw))ρi(dw) ∏
k

∫
R+

wnk e−uwρr(k)(dw) ,

where r(k) indexes which µ̃i the atom θk comes from.

Second, the following formula of the Lévy measure under different dependency
operations can also be proved.

Lemma 5.8 (Lévy measure under dependency operations). Let µ̃ = ∑∞
k=1 wkδθk be a

CRM with Lévy measure ν(dw, dθ).

• Let Sq(µ̃) be its subsampling version with acceptance rate q(·), then Sq(µ̃) has the
Lévy measure of q(θ)ν(dw, dθ).

• Let T(µ̃) be its point transition version, where ν(dw, dθ) = Mρη(dw)H(dθ). Then
its Lévy measure is Mρη(dw)T(H)(dθ) where T(H) is the transformed base measure.

• Let µ̃1 ⊕ µ̃2 be the superposition, then its Lévy measure is ν1(dw, dθ) + ν2(dw, dθ).

Now based on the above lemmas, some properties about compositions of the
dependency operations are given, which follow simply.

Lemma 5.9 (Composition of dependency operators). Given CRMs µ̃, µ̃′ and µ̃′′, the
following hold:

• Two subsampling operations are commutative. So with acceptance rates q(·) and q′(·),
then Sq′(Sq(µ̃)) = Sq(Sq′(µ̃)). Both are equal to Sq′q(µ̃)).

• A constant subsampling operation commutes with a point transition operation. Thus
Sq(T(µ̃)) = T(Sq(µ̃)) where the acceptance rate q is independent of the data space.

• Subsampling and point transition operations distribute over superposition. Thus for
acceptance rate q(·) and point transition T(·),

Sq(µ̃⊕ µ̃′) = Sq(µ̃)⊕ Sq(µ̃′) , T(µ̃⊕ µ̃′) = T(µ̃)⊕ T(µ̃′) .

• Superposition is commutative and associative. Thus µ̃⊕ µ̃′ = µ̃′ ⊕ µ̃ and (µ̃⊕ µ̃′)⊕
µ̃′′ = µ̃⊕ (µ̃′ ⊕ µ̃′′).
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Thus when subsampling operations are all constant, a composition of subsam-
pling, point transition and superposition operations admits a normal form where all
the subsampling operations are applied first, then the transition operations and lastly
the superposition operations.

Lemma 5.10 (Normal form for compositions). Assume subsampling operations all have
a constant acceptance rate. A normal form for a composition of subsampling, point transition
and superposition operations is obtained by applying the following rules until no further can
apply.

Sq(Sq′(µ̃)) → Sqq′(µ̃)) ,

Sq(T(µ̃)) → T(Sq(µ̃)) ,

Sq(µ̃⊕ µ̃′) → Sq(µ̃)⊕ Sq(µ̃′) ,

T(µ̃⊕ µ̃′) → T(µ̃)⊕ T(µ̃′) .

The remaining top level set of superpositions are then flattened out by removing any prece-
dence ordering.

Finally, note that Lemmas 5.7, 5.8, 5.9 and 5.10 all apply to NRMs as well due to
Lemma 5.1, thus the specific results for the NRM will be omitted here.

5.4 A Dynamic Topic Model based on dependent NRMs

5.4.1 Motivation

As is shown before, dependency modeling with HDP or HNRM is appealing because
of its ability of flexible dependency modeling as well as the ease of implementations.
However, when modeling dynamic data, they do not fit well because the underlying
assumption of HDP and HNRM is the full exchangeability of the DPs/NRMs, this
violates the intuition that we might want the content of ICML literature depends on
previous years’ so order is important.

To overcome the full exchangeability limitation, several dependent Dirichlet pro-
cess models have been proposed, for example, the dynamic HDP [Ren et al., 2008],
the evolutionary HDP [Zhang et al., 2010], and the recurrent Chinese Restaurant
process [Ahmed and Xing, 2010]. Dirichlet processes are used partly because of their
simplicity and conjugacy which make the posterior inference easy [James et al., 2006].
These models are constructed by incorporating the previous DP’s into the base dis-
tribution of the current DP. Markovian dependent DPs have also been constructed
using the underlying Poisson processes [Lin et al., 2010]. However, recent research
has shown that many real datasets have the power-law property, e.g., in images [Sud-
derth and Jordan, 2008], in topic-word distributions [Teh, 2006a], in language models
[Goldwater et al., 2006; Johnson et al., 2007] and in document topic (label) distri-
butions [Rubin et al., 2011]. This makes the Dirichlet process an improper tool for
modeling these datasets.
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Although there also exists some dependent nonparametric models with power-
law phenomena, their dependencies are limited. For example, Bartlett et al. [2010]
proposed a dependent hierarchical Pitman-Yor process that only allows deletion of
atoms, while Sudderth and Jordan [2008] construct the dependent Pitman-Yor pro-
cess by only allowing dependencies between atoms.

In the following, using the dependency operations defined above, a time depen-
dent hierarchical model for dynamic topic modeling based on NRMs is constructed.
By this, the dependencies are flexibly controlled between atoms of the NRMs, result-
ing in more flexible dependency modeling.

5.4.2 Construction

The main interest of the model is to construct a dynamic topic model that inherits
partial exchangeability, meaning that the documents within each time frame are ex-
changeable, while between time frames they are not. To achieve this, it is crucial to
model the dependency of the topics between different time frames. In particular, a
topic can either inherit from the topics of earlier time frames with certain transfor-
mation, or be a completely new one which is "born" in the current time frame. The
above idea can be modeled by a series of hierarchical NRMs, one per time frame. Be-
tween the time frames, these hierarchical NRMs depend on each other through three
dependency operators – superposition, subsampling and point transition, which are de-
fined previously. The corresponding graphical model is shown in Figure 5.1(left) and
the generating process for the model is as follows:

• Generating independent NRMs µm for time frame m = 1, · · · , n:

µm|H, η0 ∼ NRM(η0, M0, H) (5.11)

where M0 is the mass parameter for µm and H is the base distribution, η0 is the
set of hyperparameters of the corresponding NRM, e.g., in NGG, η0 = σ.

• Generating dependent NRMs µ′m (from µm and µ′m−1), for time frame m > 1:

µ′m = T(Sq(µ′m−1))⊕ µm . (5.12)

where the three dependency operators superposition (⊕), subsampling (Sq(·))
with acceptance rate q, and point transition (T(·)) for NRMs have been defined
above.

• Generating hierarchical NRM mixtures (µmj, θmji, xmji) for time frame m =
1, · · · , n, document j = 1, · · · , Nm, word i = 1, · · · , Wmj:

µmj ∼ NRM(ηm, Mm, µ′m), (5.13)

θmji|µmj ∼ µmj, xmji|θmji ∼ F(·|θmji)

where Mm is the total mass for µmj, F(·|θmji) denotes the cumulative density to
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generate data xmji from atom θmji with the corresponding density function as
f (·), which is essentially the multinomial distribution in topic modeling.

5.4.3 Reformulation of the model

Note it is found that directly dealing with the above model is challenging, thus the
model is reformulated with the following theorem.

Theorem 5.11 (Equivalence Theorem). Assume the subsampling rates q(·) are indepen-
dent (constant)1 for each point of the corresponding Poisson process, the following dependent
random measures (5.14) and (5.15) are equivalent:

• Manipulate the normalized random measures:

µ′m ∼ T(Sq(µ′m−1))⊕ µm, for m > 1. (5.14)

• Manipulate the completely random measures:

µ̃′m ∼ T̃(S̃q(µ̃′m−1))⊕ µ̃m, for m > 1.

µ′m =
µ̃′m

µ̃′m(Θ)
, (5.15)

Furthermore, both resulting NRMs µ′m’s correspond to:

µ′m =
m

∑
j=1

(
qm−jµ̃j

)
(Θ)

∑m
j′=1

(
qm−j′ µ̃j′

)
(Θ)

Tm−j(µj), for m > 1

where qm−jµ̃ is the random measure with Lévy measure qm−j(θ)ν(dw, dθ), and ν(dw, dθ)
is the Lévy measure of µ̃. Tm−j(µ) denotes point transition on µ for (m− j) times .

Note that from the above theorem we can think of µ′m as a linear combination of
µj’s, however, it does not necessary to say that the Lévy measure of µ′m is a linear
combination of µj’s. Actually, their relationship is much more complicated due to the
subsampling operation, as can be seen in the next two chapters. On the other hand,
it provides us a reasonable approximation for posterior inference of such Markovian
dependent models, where we first instantiate the atoms in µj’s, and do the operations
on these atoms to construct µ′m. Such kind of approximation will be used in the
dynamic topic model defined above for efficient posterior inference.

Specifically, Theorem 5.11 allows us to first take superposition, subsampling, and
point transition on the completely random measures µ̃g’s and then do the normaliza-
tion. Therefore, by using the theorem, the dynamic topic model in Figure 5.1(left)
can be shown to be equivalent to the model in the right by expanding the recursive
formula in (5.15).

As a result, the generating process of the reformulated model is:

1This assumption is to deal with the case when considering point transition, meaning we can drop
this assumption if no point transition operation is considered.
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Figure 5.1: The time dependent topic model. The left plot corresponds to directly
manipulating on normalized random measures (5.14), the right one corresponds to
manipulating on unnormalized random measures (5.15). T: Point transition; Sq: Sub-

sampling with acceptance rate q; ⊕: Superposition. Here m = n− 1 in the figures.

• Generating independent CRM’s µ̃m for time frame m = 1, · · · , n, following
(3.2).

• Generating µ′m for time frame m > 1, following (5.15).

• Generating hierarchical NRM mixtures (µmj, θmji, xmji) following (5.13).

The reason for this reformulation is because the inference on the model in Fig-
ure 5.1(left) appears to be complicated. In general, the posterior of an NRM intro-
duce complex dependencies between jumps, thus sampling is difficult after taking
the three dependency operators.

On the other hand, the model in Figure 5.1(right) is more amenable to computa-
tion because the NRMs and the three operators are decoupled. It allows us to first
instantiate the dependent CRM’s, then apply dependency operators on the corre-
sponding atoms. As a result, the sampling procedure will be performed based on
the model in Figure 5.1(right).

5.4.4 Sampling

To introduce the sampling method, the familiar Chinese restaurant metaphor (e.g.
[Teh et al., 2006]) is used to explain key statistics. In this model customers for the
variable µmj correspond to words in a document, restaurants to documents, and
dishes to topics. In time frame m,

• xmji: the customer i in the jth restaurant.

• smji: the index of dish that xmji is eating.
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• nmjk: nmjk = ∑i δsmji=k , the number of customers in µmj eating dish k.

• tmjr: the table r in the jth restaurant.

• ψmjr: the dish that the table tmjr is serving.

• n′mk: n′mk = ∑j ∑r δψmjr=k, the number of customers2 in µ′m eating dish k.

• ñ′mk: ñ′mk = n′mk, the number of customers in µ̃′m eating dish k.

• ñmk: ñmk = ∑m′≥m ñ′m′k, the number of customers in µ̃m eating dish k.

The sampling is done by marginalizing out µmj’s. As it turns out, the remaining
random variables that require sampling are smji, n′mk, as well as

µ̃m = ∑
k

wmkδθk , µ̃′m = ∑
k

w′mkδθk

Note the tmjr and ψmjr are not sampled as the n′mk are directly sampled. Thus the
sampler deals with the following latent statistics and variables: smji, n′mk, wmk, w′mk
and some auxiliary variables are sampled to support these.

Sampling wmk. Given ñmk, the µ̃m’s are treated independently, thus the slice sampler
introduced in [Griffin and Walker, 2011] is used to sample these jumps 3, with the
posterior given in (3.43). Note that the mass parameters Mm’s are also sampled
conditioned on other variables, see Section 3.5.1.2 for the formula for a single NRM.
The resulting {wmk} are those jumps that exceed a threshold defined in the slice
sampler, thus the number of jumps is finite.

Sampling w′mk. w′mk is obtained by subsampling of {wm′k}m′≤m
4. By using a Bernoulli

variable zmk,

w′mk =

{
wm′k if zmk = 1

0 if zmk = 0.

The posterior p(zmk = 1|µ̃m, {ñ′mk}) is computed to decide whether to inherit this
jump to µ̃′m or not. The posterior p(zmk = 1|µ̃m, {ñ′mk}) is given by the following
corollary, please refer to the appendix for the proof.

Corollary 5.12 (Posterior acceptance rates in sampling w′mk). The posterior p(zmk =
1|µ̃m, {ñ′mk}) is computed as:

2The customers in µ′m corresponds to the tables in µmj. For convenient, we also regard a CRM as a
restaurant.

3Strictly speaking, an approximation is adopted here where we slice sample on the CRMs without
considering the impact of the subsampling using techniques from [Griffin and Walker, 2011]. However,
this results in slightly different posterior Lévy measure from µ̃m to the true one. Detailed analysis of
the true posterior Lévy measure with subsampling can be found in Chapter 7.

4Since all the atoms across {µ̃m′ } are unique, w′mk is inherited from only one of {wm′k}.



90 Dynamic Topic Modeling with Dependent Hierarchical Normalized Random Measures

• If ñ′mk > 0, then p(zmk = 1|µ̃m, {ñ′mk}) = 1.

• Otherwise,

p(zmk = 1|µ̃m, {ñ′mk}) =
qm−m′/Jm

qm−m′/Jm + (1− qm−m′)/J−k
m

, (5.16)

where

Jm =

(
∑

m′≤m
∑
k′

zm′k′wm′k′

)ñ′m·

J−k
m =

(
∑

m′≤m
∑

k′ 6=k
zm′k′wm′k′

)ñ′m·

ñ′m· = ∑
k′

ñ′mk′ .

In practice, the infinite sum Jm is hard to compute. There are two approximation
strategies here: one is to rely on a truncated version; the other is to simply use the
approximation of rescaling the jump sizes of the original CRM with a factor of q as:

w′mk = qm−m′wm′k, (5.17)

which are then used in the sampling. The intuition can be explained as follows:
when wk → 0 (which is usually the case for the infinite many small jumps), J−k

m → Jm

as well, thus the posterior (5.16) approaches the prior: p(zmk = 1) = qm−m′ . Now
using the prior, and integrating out zmk’s we get the rescaled formula (5.17). The
implementation of the model adopts this approximation due to its simplicity.

After the sampling of {w′mk}, they are further normalized, and the NRM µ′m is
obtained: µ′m = ∑k rmkδθk where rmk = w′mk/ ∑k′ w′mk′

Sampling smji, n′mk. This follows similar strategies as for the HNRM introduce in
Chapter 4. The sampling method goes as follows:

• Sampling smji: A similar strategy called the sampling by direct assignment al-
gorithm for the HDP [Teh et al., 2006] is used to sample smji, the conditional
posterior of smji is:

p(smji = k|·) ∝ (ωk + ω0M̃mrmk) f (xmji|θk)

where ω0, ωk and M̃m depend on the corresponding Lévy measure of µmj (see
[Theorem 2 James et al., 2009]). When µmj is a DP, then ωk ∝ nmjk, ω0 ∝ 1
and M̃m = α known as the concentration parameter. When µmj is a NGG,
ωk ∝ nmjk − σ, ω0 ∝ σ(1 + vmj)

σ and M̃m = Mm as in (4.9), where vmj is the
introduced auxiliary variables which can be sampled by an adaptive-rejection
sampler using the posterior given in [Proposition 1 James et al., 2009].



§5.5 Experiments 91

dataset vocab docs words epochs
ICML 2k 765 44k 2007–2011
JMLR 2.4k 818 60k 12 vols
TPAMI 3k 1108 91k 2006–2011
NIPS 14k 2483 3.28M 1987-2003
Person 60k 8616 1.55M 08/96–08/97
Twitter1 6k 3200 16k 14 months
Twitter2 6k 3200 31k 16 months
Twitter3 6k 3200 25k 29 months
BDT 8k 2649 234k 11/07–04/08

Table 5.1: Data statistics

• Sampling n′mk: Using the similar strategy as in [Teh et al., 2006], n′mk’s are
sampled by simulating the (generalized) Chinese Restaurant Process, following
the prediction rule (the probabilities of generating a new table or sitting on
existing tables) of µmk in [Proposition 2 James et al., 2009].

Dealing with point transition The point transition operator applies on θk’s, and
depends on the specific operator used. Here a simple transition of random perturba-
tion is used. Specifically, let θk be a Dirichlet distribution parameterized by the word
counts, say (m̃k1, m̃k2, · · · , m̃kV) where V is the vocabulary size. Before sampling for
time m, the counts {m̃kv} obtained from previous times are first randomly perturbed
by a Gaussian noise, e.g., m̃′kv ∼ N(m̃′kv; m̃kv, 1). The perturbed version {m̃′kv} is then
used as initialized counts to sample θk for the current time.

5.5 Experiments

5.5.1 Datasets

The time dependent dynamic topic model is tested on 9 datasets, where stop-words
and words appearing less than 5 times are removed. ICML, JMLR, TPAMI are
crawled from their websites and the abstracts are parsed. The preprocessed NIPS
dataset is from [Globerson et al., 2007]. The Person dataset is extracted from Reuters
RCV1 using the query “person” under Lucene. The Twitter datasets are updates from
three sports twitter accounts: ESPN_FirstTake (Twitter1), sportsguy33 (Twitter2)
and SportsNation (Twitter3) obtained with the TweetStream API5 to collect the last
3200 updates from each. The Daily Kos blogs (BDT) were pre-processed by Yano et al.
[2009]. Statistics for the data sets are given in Table 5.1.

Illustration: Figure 5.2 gives an example of topic evolution in the Twitter2 dataset.
We can clearly see that the three popular sports in the USA, i.e., basketball, football
and baseball, evolve reasonably with time. For example, MLB starts in April each

5http://pypi.python.org/pypi/tweetstream.

http://pypi.python.org/pypi/tweetstream
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Figure 5.2: Topic evolution on Twitter. Words in red have increased, and blue de-
creased.

year, showing a peak in baseball topic, and then slowly evolves with decreasing topic
proportions. Also, in August one football topic is born, indicating a new season
begins. Figure 5.3 gives an example of the word probability change in a single topic
for the JMLR.

5.5.2 Quantitative evaluations

Comparisons The model is first compared with two popular dynamic topic mod-
els where the author’s own code is available for use: (1) the dynamic topic model
by Blei and Lafferty [2006] and (2) the hierarchical Dirichlet process, where a three
level HDP is used, with the middle level DP’s representing the base topic distribution
for the documents in a particular time. For fair comparison, similar to [Blei and Laf-
ferty, 2006], the data in previous time are held out but their statistics are used to help
the training of the current time data, this is implemented in the HDP code by Teh
[2004]. Furthermore, the proposed model is tested without power-law, which is to
use a DP instead of an NGG. The model is tested on the 9 datasets, for each dataset
80% are used for training and 20% are held out for testing. The hyperparameters for
DHNGG is set to σ = 0.2 in this set of experiments with subsampling rate being 0.9,
which is found to work well in practice. The topic-word distributions are symmetric
Dirichlet with prior set to 0.3. Table 5.2 shows the test log-likelihoods for all these
methods, which are calculated by first removing the test words from the topics and
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Figure 5.3: Topic evolution on JMLR. Shows a late developing topic on software,
before during and after the start of MLOSS.org in 2008.

adding them back one by one and collecting the add-in probabilities as the test like-
lihood [Teh et al., 2006]. For all the methods 2000 burn in iterations are run, followed
by 200 iterations for collecting posterior samples. The results are averages over these
samples.

From Table 5.2 we see the proposed model DHNGG works best, with an improve-
ment of 1%-3% in test log-likelihoods over the HDP model. In contrast the time
dependent model iDTM of [Ahmed and Xing, 2010] only showed a 0.1% improve-
ment over HDP on NIPS, implying the superiority of DHNRM over iDTM.

Hyperparameter sensitivity In NGG, there is the hyperparameters σ controlling
the behavior of the power-law. This section studies the influences of this hyperpa-
rameter to the model. Specifically, σ is varied among (0.1, 0.2, 0.3, 0.5, 0.7, 0.9), and
the subsampling rate is fixed to 0.9 in this experiment. The models with these set-
tings are run on all these datasets, the training likelihoods are shown in Figure 5.4.
From these results σ = 0.2 is considered to be a good choice in practice.

Influence of the subsampling rate One of the distinct features of the model com-
pared to other time dependent topic models is that the dependency comes partially
from subsampling the previous time random measures, thus it is interesting to study
the impact of subsampling rates to this model. In this experiment, σ is fixed to 0.2,
and the subsampling rate q is varied among (0.1, 0.2, 0.3, 0.5, 0.7, 0.9, 1.0). The results
are shown in Figure 5.5. From Figure 5.5, it is interesting to see that on the academic
datasets, e.g., ICML,JMLR, the best results are achieved when q is approximately
equal to 1: these datasets have higher correlations. While for the Twitter datasets, the
best results are achieved when q is equal to 0.5 ∼ 0.7, indicating that people tend to
discuss more variable topics in these datasets.



94 Dynamic Topic Modeling with Dependent Hierarchical Normalized Random Measures

Table 5.2: Test log-likelihood on 9 datasets. DHNGG: dependent hierarchical normal-
ized generalized Gamma processes, DHDP: dependent hierarchical Dirichlet pro-
cesses, HDP: hierarchical Dirichlet processes, DTM: dynamic topic model (we set

K = {10, 30, 50, 70} and choose the best results).

Datasets ICML JMLR TPAMI NIPS Person
DHNGG -5.3123e+04 -7.3318e+04 -1.1841e+05 -4.1866e+06 -2.4718e+06
DHDP -5.3366e+04 -7.3661e+04 -1.2006e+05 -4.4055e+06 -2.4763e+06
HDP -5.4793e+04 -7.7442e+04 -1.2363e+05 -4.4122e+06 -2.6125e+06
DTM -6.2982e+04 -8.7226e+04 -1.4021e+05 -5.1590e+06 -2.9023e+06

Datasets Twitter1 Twitter2 Twitter3 BDT
DHNGG -1.0391e+05 -2.1777e+05 -1.5694e+05 -3.3909e+05
DHDP -1.0711e+05 -2.2090e+05 -1.5847e+05 -3.4048e+05
HDP -1.0752e+05 -2.1903e+05 -1.6016e+05 -3.4833e+05
DTM -1.2130e+05 -2.6264e+05 -1.9929e+05 -3.9316e+05
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Figure 5.4: Training log-likelihoods influenced by hyperparameter σ. From left to
right (top-down) are the results on ICML, JMLR, TPAMI, Person and BDT.

5.6 Conclusion

This chapter proposes dependent hierarchical normalized random measures. Specif-
ically, the three dependency operations for the Poisson process are extended to hi-
erarchical normalized random measures, and dependencies with these operators are
also analyzed in detail. The dependency model is then applied to dynamic topic
modeling. Experimental results on different kinds of datasets demonstrate the supe-
rior performance of the model over existing models such as DTM, HDP and iDTM.
One drawback, as mentioned above, lies on the accuracy of the posterior inference,
where several approximations have been made to design efficient sampling algo-
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Figure 5.5: Training log-likelihoods influenced by the subsampling rate q(·). The
x-axes represent q, the y-axes represent training log-likelihoods. From top-down, left
to right are the results on ICML, JMLR, TPAMI, Person, Twitter1, Twitter2, Twitter3

and BDT datasets, respectively.

rithm. How to design exact posterior inference for such kinds of Markovian and
hierarchical structure is interesting future work, which could probably be solved by
using the techniques to be introduced in Chapter 7.
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5.7 Proofs

Proof of Lemma 5.2. This uses a similar technique to that of Theorem 1 in [Griffin et al.,
2013]. Using the identity 1/b =

∫ ∞
0 e−v bdv we get

E [µ(B)] = E

[
µ̃(B)
µ̃(Θ)

]
=

∫ ∞

0
E [µ̃(B) exp {−vµ̃(B)}]E [exp {−vµ̃(Θ \ B)}]dv . (5.18)

According to the Lévy-Khintchine representation of µ̃ and definition (3.6), we
have

E [exp {−vµ̃(B)}] = exp
{
−P(B)Mψ̃η(v)

}
(5.19)

E [µ̃(B) exp {−vµ̃(B)}] = −E

[
d

dv
exp {−vµ̃(B)}

]
= H(B)Mψ̃′η(v) exp

{
−H(B)Mψ̃η(v)

}
(5.20)

E
[
µ̃(B)2 exp {−vµ̃(B)}

]
= E

[
d

dv2 exp {−vµ̃(B)}
]

=

(
H(B)2M2

(
ψ̃′η(v)

)2
− H(B)Mψ̃′′η (v)

)
exp

{
−H(B)Mψ̃η(v)

}
(5.21)

Substituting (5.19) and (5.20) into (5.18) and using the fact in (3.7), after simplify-
ing we have

E [µ(B)] = H(B).

Since Var (µ(B)) = E
[
µ(B)2]− (E [µ(B)])2, and the last term is equal to (H(B))2,

we now deal with the first term.

E
[
µ(B)2] = E

[
µ̃(B)2

µ̃(Θ)2

]
=

∫ ∞

0

∫ ∞

0
E
[
µ̃(B)2 × exp {−v1µ̃(Θ)− v2µ̃(Θ)}

]
dv1dv2 (5.22)

=
∫ ∞

0

∫ ∞

0
E
[
µ̃(B)2 exp {−(v1 + v2)µ̃(B)}

]
E [exp {−(v1 + v2)µ̃(Θ \ B)}]dv1dv2

Substituting (5.19)(5.21) into (5.22) we have

(5.22) =
∫ ∞

0

∫ ∞

0

[
H(B)2M2

(
ψ̃′η(v1 + v2)

)2
− H(B)Mψ̃′′η (v1 + v2)

]
exp

{
−Mψ̃η(v1 + v2)

}
dv1dv2 . (5.23)

Furthermore, let v = v1 + v2, B = Θ in (5.21), after integrating out v1, v2 in [0, ∞], we
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have ∫ ∞

0

∫ ∞

0
M2
(

ψ̃′η(v1 + v2)
)2

exp
{
−Mψ̃η(v1 + v2)

}
dv1dv2 (5.24)

=1 +
∫ ∞

0

∫ ∞

0
Mψ̃′′η (v1 + v2) exp

{
−Mψ̃η(v1 + v2)

}
dv1dv2

Substitute (5.24) into (5.23) and simplify we get

Var(µ(B)) =

H(B)(1− H(B))M
∫ ∞

0

∫ ∞

0
−ψ̃′′η (v1 + v2) exp

{
−Mψ̃η(v1 + v2)

}
dv1dv2 .(5.25)

Now use a change of variables, let v′1 = v1, v′2 = v1 + v2 and simplify we get the
result of (5.4).

Proof of Theorem 5.4. Let M̃k
M
= µ̃k(Θ), from the definition we have

Cov (µk(B), µ(B)) =
n

∑
i=1

Cov

(
M̃i

∑j M̃j
µi(B), µk(B)

)

= Cov

(
M̃k

∑j M̃j
µk(B), µk(B)

)
+ ∑

i 6=k
Cov

(
M̃i

∑j M̃j
µi(B), µk(B)

)
(5.26)

= E

 µ̃k(B)2(
∑j µ̃j(Θ)

)
µ̃k(Θ)

−E

[
µ̃k(B)

∑j µ̃j(Θ)

]
E

[
µ̃k(B)
µ̃k(Θ)

]

+ ∑
i 6=k

E

 µ̃i(B)µ̃k(B)(
∑j µ̃j(Θ)

)
µ̃k(Θ)

−E

[
µ̃i(B)

∑j µ̃j(Θ)

]
E

[
µ̃k(B)
µ̃k(Θ)

]
Note that for the Dirichlet process, the last n− 1 terms of (5.26) vanish because µi’s

are independent from their total mass M̃i’s, but this is not the case for general NRMs.
Now we calculate these term by term.

For the first term, we have

E

 µ̃k(B)2(
∑j µ̃j(Θ)

)
µ̃k(Θ)


=

∫ ∞

0

∫ ∞

0
E

[
µ̃k(B)2 exp

{
−v1(∑

j
µ̃j)(Θ)− v2µ̃k(Θ)

}]
dv1dv2

=
∫ ∞

0

∫ ∞

0
E
[
µ̃k(B)2 exp {−(v1 + v2)µ̃k(B)}

]
E [exp {−(v1 + v2)µ̃k(Θ \ B)}]

E

[
exp

{
−v1(∑

j 6=k
µ̃j(Θ))

}]
dv1dv2
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=
∫ ∞

0

∫ v2

0

(
H(B)2M2

k ψ̃′η(v1)
2 − H(B)Mkψ̃′′η (v1)

)
exp

{
−Mkψ̃η(v1)

}
exp

{
−(∑

j 6=k
Mj)ψ̃η(v2)

}
dv1dv2

= H(B)Mk

∫ ∞

0
γ(Mk, H(B), v) exp

{
−(∑

j 6=k
Mj)ψ̃η(v)

}
dv (5.27)

For the second term, we have

E

[
µ̃k(B)

∑j µ̃j(Θ)

]
E

[
µ̃k(B)
µ̃k(Θ)

]
= H(B)

∫ ∞

0
E

[
µ̃k(B) exp

{
−v ∑

j
µ̃j(Θ)

}]
dv

= H(B)2Mk

∫ ∞

0
ψ̃′η(v) exp

{
−(∑

j
Mj)ψ̃η(v)

}
dv

=
H(B)2Mk exp

{
−
(

∑j Mj

)
ψ̃η(0)

}
∑j Mj

=
H(B)2Mk

∑j Mj
(5.28)

For the third term, similarly

E

 µ̃i(B)µ̃k(B)(
∑j µ̃j(Θ)

)
µ̃k(Θ)


=

∫ ∞

0

∫ ∞

0
E

[
µ̃i(B)µ̃k(B) exp

{
−v1(∑

j
µ̃j)(Θ)− v2µ̃k(Θ)

}]
dv1dv2

=
∫ ∞

0

∫ ∞

0
E [µ̃k(B) exp {−(v1 + v2)µ̃k(B)}]E [exp {−(v1 + v2)µ̃k(Θ \ B)}]

E [µ̃i(B) exp {−v1µ̃i(B)}]E [exp {−v1µ̃i(Θ \ B)}]

E

exp

−v1( ∑
j 6={i,k}

µ̃j(Θ))


dv1dv2

=
∫ ∞

0

∫ ∞

0
H(B)Mkψ̃′η(v1 + v2) exp

{
−Mkψ̃η(v1 + v2)

}
H(B)Miψ̃

′
η(v1) exp

{
−Miψ̃η(v1)

}
exp

−( ∑
j 6={i,k}

Mj)ψ̃η(v1)

dv1dv2

= H(B)2Mi Mk

∫ ∞

0
ψ̃′η(v1) exp

{
−(∑

j 6=k
Mj)ψ̃η(v1)

}
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∫ v1

0
ψ̃′η(v2) exp

{
−Mkψ̃η(v2)

}
dv2dv1

= H(B)2Mi

(
1

∑j 6=k Mj
− 1

∑j Mj

)
exp

{
−(∑

j
Mj)ψ̃η(0)

}

= H(B)2Mi

(
1

∑j 6=k Mj
− 1

∑j Mj

)
(5.29)

The fourth term is similar to the second term, and is equal to

E

[
µ̃i(B)

∑j µ̃j(Θ)

]
E

[
µ̃k(B)
µ̃k(Θ)

]
=

H(B)2Mi exp
{
−
(

∑j Mj

)
ψ̃η(0)

}
∑j Mj

=
H(B)2Mi

∑j Mj
(5.30)

The result follows.

Proof of Theorem 5.5. By subsampling, we obtain two independent NRMs µq and µ
q
0,

corresponding to those points selected and those rejected by the independent Bernoulli
trials, respectively.

We denote the total mass of the corresponding unnormalized µq as Mq, and M0
q

for µ
q
0. From the definition of subsampling, we have

Mq := (qµ̃)(Θ) =
∫

Θ
q(x)µ̃(x)dx,

M0
q = M−Mq.

Furthermore, notice that the original NRM µ is the superposition of µq and µ
q
0.

Thus according to Theorem 5.4, the covariance between µ and µq is

H(B)Mq

∫ ∞

0
γ(Mq, H(B), v) exp

{
−(M−Mq)ψ̃η(v)

}
dv + H(B)2

(
2Mq −M

M

)
,

Proof of Theorem 5.6. Note that µ̃ and µ̃′ are not independent, thus they cannot be
separated when taking the expectation. Now let A and B are defined as in the
theorem, then:

E [µ(B) ((Tµ)(B))] = E

[
µ̃(B)
µ̃(Θ)

µ̃′(B)
µ̃′(Θ)

]
= E

[
µ̃(B)
µ̃(Θ)

µ̃(A)

µ̃(Θ)

]
=

∫ ∞

0

∫ ∞

0
E [µ̃(B)µ̃(A)× exp {−(v1 + v2)µ̃(Θ)}]dv1dv2

=
∫ ∞

0

∫ ∞

0
E [µ̃(B) exp {−(v1 + v2)µ̃(B)}]

E [µ̃(A) exp {−(v1 + v2)µ̃(A)}]
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E [exp {−(v1 + v2)µ̃(Θ/{A ∪ B})}]dv1dv2

=
∫ ∞

0

∫ ∞

0
H(B)Mψ̃′η(v1 + v2) exp

{
−H(B)Mψ̃η(v1 + v2)

}
H(A)Mψ̃′η(v1 + v2) exp

{
−H(A)Mψ̃η(v1 + v2)

}
H(Θ/{A ∪ B})Mψ̃′η(v1 + v2) exp

{
−H(Θ/{A ∪ B})Mψ̃η(v1 + v2)

}
dv1dv2

= H(A)H(B)M2
∫ ∞

0

∫ v1

0
ψ̃′η(v2)

2 exp
{
−Mψ̃η(v2)

}
dv2dv1

Then the covariance is:

Cov (µ(B), (Tµ)(B))

= E [µ(B) ((Tµ)(B))]−E [µ(B)]E [(Tµ)(B)]

= H(A)H(B)(
M2

∫ ∞

0

∫ v1

0
ψ̃′η(v2)

2 exp
{
−Mψ̃η(v2)

}
dv2dv1 − 1

)
(5.31)

Proof of Lemma 5.7. From the existing of Poisson processes, each Lévy measure νi(dw, dθ)
corresponds to a Poisson random measure Ni(dw, dθ) with

E [Ni(dt, dx)] = νi(dt, dx).

Also we have ∀i,

µ̃i(dθ) =
∫ ∞

0
wNi(dw, dθ).

Thus from (5.9) we have

µ̃(dθ) =
∫ ∞

0
w

(
n

∑
i=1

Ni(dw, dθ)

)
=
∫ ∞

0
wN(dw, dθ),

where N(·) = ∑n
i=1 Ni(·) is again a Poisson random measure. Thus the Lévy intensity

for µ̃(·) is

ν(dw, dθ) =
n

∑
i=1

νi(dw, dθ). (5.32)

Because Theorem 1 in [James et al., 2009] applies for any CRMs with Lévy measure
ν(dw, dθ), thus conclusion 2 and 3 in Lemma are proved.

Finally, by substituting the Lévy measure (5.32) into formula (3.18) in Chapter 3
and simplifying, we can get the posterior of u as shown in Lemma 5.7.

Proof of Lemma 5.8. The case for point transition and superposition are developed
similarly to the case for subsampling, so we only consider the later here.

The case for subsampling follows by merging the impact of the subsampling
operation with the sampling step in Lemma 3.1. Suppose the Lévy measure is in
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the form Mρ(dw|θ)H(dθ). The infinitesimal rate at data point θi when sampling the
jump is now q(θi)Mρ(dw|θ). Thus the Lévy measure for the subsampled measure
must be Mρ(dw|θ)q(θ)H(dθ).

This argument can also be seen from the detailed derivation below. First note that
Sq(µ̃) is equivalent to

Sq(µ̃) =
∫

R+×Θ
z(θ)sN(dw, dθ) , (5.33)

where z(θ) is a Bernoulli random variable with parameter q(θ). Let B ∈ Θ, we divide
B into n non-overlap patches and use Anm to denote the m-th patch of them. So we
have

EN(·),z

[
e−uSq(µ̃)(B)

]
n→∞
= EN(·),z

[
e−∑Anm∈B uz(Anm)snm N(Anm,snm)

]
= EN(·),z

[
∏

Anm∈B
e−uz(Anm)snm N(Anm,snm)

]
= ∏

Anm∈B
EN(·),z

[
e−uz(Anm)snm N(Anm,snm)

]
= e∑Anm∈B log{EN(·),z[e−uz(Anm)snm N(Anm ,snm)−1]+1}
(a)
= e∑Anm∈B EN(·),z[e−uz(Anm)snm N(Anm ,snm)−1]

(b)
= eq ∑Anm∈B EN(·)[e−usnm N(Anm ,snm)−1]

n→∞
= e−

∫
R+×B(1−e−us)(qν(dw,dθ))

(5.34)

Here (a) above follows because EN(·)

[(
e−uz(Anm)snm N(Anm,snm) − 1

)]
is infinitesimal

thus log(1 + x) x→0∼ x applies. (b) is obtained by integrating out z(Anm) with
Bernoulli distribution. Thus it can be seen from (5.34) that Sq(µ̃) has the Lévy mea-
sure of q(θ)ν(dw, dθ).

Proof of Theorem 5.11. We show that starting from (5.15) and (5.14), we can both end
up the random measures defined in (5.16).

First, for the operations in (5.15), adapting from Theorem 2.17 of [Çinlar, 2010], a
Poisson random measure with mean measure ν on the space R+ ×Θ has the form

N =
∞

∑
n=1

∑
i<Kn

δ(w,θ), (5.35)

where Kn is a Poisson distributed random variable with mean ν, and (w ∈ R+, θ ∈ Θ)
are points in the corresponding Poisson processes. Then a realization of N composes
of points in a Poisson process Π1, and the corresponding Poisson random measure
can be written as N1 = ∑(w,θ)∈Π1

δ(w,θ).
Now consider doing a subsampling Sq and a point transition T on Π1, by the
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definitions and (5.35) we get a new random measure

Ñ = T(Sq(N1)) = T(Sq(∑ δ(w,θ)))

(*)
= ∑ z(q(T(θ)))δ(w,T(θ))

(**)
= ∑ z(q(θ))δ(w,T(θ)), (5.36)

where z(q(·)) means a Bernoulli random variable with acceptance rate q(·), (∗) fol-
lows from definitions, (∗∗) follows from the assumption of constant subsampling
rate.

It is easy to show by induction that by subsampling and point transitioning i
times of the Poisson process Π1, we get a random measure as

Ñ′ = ∑ z(qi(θ))δ(w,Ti(θ)). (5.37)

By the definition, when superpositioning the this Poisson process Ti(Sq
i (Π1))

with another Poisson process Π2 with mean measure ν2, we get another random
measure as

N′′ = ∑
(w,θ)∈Π1

z(qi(θ))δ(w,Ti(θ)) + ∑
(w,θ)∈Π2

δ(w,T(θ)). (5.38)

This Poisson random measure is then used to construct a completely random
measure µ̃ using (3.2) as:

µ̃(A) =
∫

R+×Θ
wN′′(dw, dθ)

= ∑
(w,θ)∈Π1

z(qi(θ))sδ(w,Ti(θ)) + ∑
(w,θ)∈Π2

wδ(w,θ). (5.39)

By marginalize over r’s and normalizing this random measure, we get

µ(A) =
µ̃(A)

µ̃(Θ)

=
M′1

M1 + M′2

∑(w,θ)∈Π1∩A sδ(w,Ti(θ))

∑(w,θ)∈Π1∩Θ wδ(w,Ti(θ))

+
M′2

M′1 + M′2

∑(w,θ)∈Π2∩A wδ(w,Ti(θ))

∑(w,θ)∈Π2∩Θ wδ(w,Ti(θ))

=
M′1

M′1 + M′2
(Tiµ1)(A) +

M′2
M′1 + M′2

(Tiµ2)(A),

(5.40)

where by apply Lemma 5.8 we conclude that M′1 =
(
qiµ̃1

)
(Θ) is the total mass

of the random measure with Lévy measure qj(dθ)ν(dw, dθ) and M′2 = µ̃2(Θ). We
use the fact that (Tkµ̃i)(Θ) = µ̃i(Θ) in the derivation of (5.40), because the point
transition operation only moves the points (w, θ) of the Poisson process to other
locations (w, θ +dθ), thus does not affect the total mass of the corresponding random
measure.
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This means by superposition after subsampling, the mass of the normalized ran-
dom measure decays exponentially fast with respect to the distance i. Based on
Eq. (5.40), when taking i from 1 to n, and taking superposition for all these random
measure induced, the resulting normalized random measure is:

µ′n =
n

∑
i=1

(
qn−iµ̃i

)
(Θ)

∑n
j=1
(
qn−jµ̃j

)
(Θ)

Tn−i(µi). (5.41)

Next, for the operations in (5.14), from the definition we have

µ′2 = T
(
Sq (µ′1))⊕ µ2

=
(qµ̃1) (Θ)

(qµ̃1 + µ̃2) (Θ)
T (µ1) +

(µ̃1) (Θ)

(qµ̃1 + µ̃2) (Θ)
µ2 (5.42)

Now µ′2 has a total mass of (qµ̃1 + µ̃2)(Θ), by induction on i, we get the formula in
(5.16) for i = n.

This completes the proof.

Finally, to prove Corollary 5.12, we first prove the following lemma:

Lemma 5.13 (Posterior acceptance rates for subsampling). Let µ̃′ = ∑k wkθk be a
completely random measure on Θ, µ̃ = Sq(µ̃′) := ∑k zkwkδk be its subsampling version,
where zk’s are independent Bernoulli random variables with acceptance rate q. Further define
µ = µ̃

µ̃(Θ)
. Given n = ∑k nk observed data in µ, the posterior of zk is:

p(zk = 1|µ̃, n) =

{
1 if nk > 0,

q/J
q/J+(1−q)/J−k if nk = 0.

(5.43)

where J = (∑k′ zk′wk′)
n, J−k =

(
∑k′ 6=k zk′wk′

)n.

Proof. Given the current data configuration {nk, k = 1, 2, · · · }, for a particular k,

• If nk > 0, this means this jump wk must exist in µ, otherwise it is impossible to
have nk > 0, thus p(zk = 1|µ̃, n) = 1.

• Otherwise,since µ = ∑k:zk=1
wkδk

∑k′ zk′wk′
, we have the likelihood as:

∏
k′′ :nk′′>0

wnk′′
k′′

(∑k′ 6=k zk′wk′ + zk Jk)nk
=

∏k′′ :nk′′>0 wnk′′
k′′

(∑k′ 6=k zk′wk′ + zkwk)n .

Furthermore, we know that the prior for zk is p(zk = 1) = q, thus the posterior
is:

p(zk = 1|µ̃, n) ∝
q

(∑k′ 6=k zk′wk′ + wk)n .

p(zk = 0|µ̃, n) ∝
1− q

(∑k′ 6=k zk′wk′)n .
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After normalizing, we get the posterior for the case nk = 0 in (5.43).

Now the proof for Corollary 5.12 is an direct extension of the above lemma:

Proof of Corollary 5.12. Note that w′mk is obtained by subsampling of {wm′k, m′ ≤ m},
the number of data points in µ̃′m is denoted as ñ′m· = ∑k′ ñ′mk′ .

Following the same arguments as in the proof of Theorem 5.13, when ñ′mk > 0,
p(zmk = 1|µ̃m, ñ′m·) = 1. Otherwise, by subsampling, µ′m can be written as:

µ′m = ∑
m′≤m

∑
k′ :zm′k′=1

zm′k′wm′k′δθm′k′

∑m′′≤m ∑k′′ zm′′k′′wm′′k′′
.

Now following the same proof of Theorem 5.13, if we define

Jm =

(
∑

m′≤m
∑
k′

zm′k′wm′k′

)ñ′m·

, J−k
m =

(
∑

m′≤m
∑

k′ 6=k
zm′k′wm′k′

)ñ′m·

,

then we get the likelihood as

∏k′′ :ñ′mk′′>0 w′mk′′
nk′′

Jm
.

Furthermore, from subsampling, we know that the Bernoulli prior for zmk is qm−m′ ,
and the posterior can then be derived using the Bayes rule as in the proof of Theo-
rem 5.13.



Chapter 6

Mixed Normalized Random
Measures

6.1 Introduction

So far we have introduced dependent Bayesian nonparametric modeling by the hi-
erarchical normalized random measure in Chapter 4, and the Markovian dependent
hierarchical normalized random measures used for dynamic topic model in Chap-
ter 5. One problem with the above models is that their posterior structures have not
been fully explored due to their intrinsic complexities. This chapter proposes a sim-
ple family of dependent normalized random measures called mixed normalized random
measures (MNRM). The MNRM yields nice analytical posterior structures, allowing
efficient posterior inference algorithms to be developed. MNRM is the generaliza-
tion of a recently proposed spatial dependent Bayesian nonparametric model called
the spatial normalized Gamma process (SNGP) [Rao and Teh, 2009]. Note a subclass of
the MNRM called spatial normalized random measure (SNRM) can also be straightfor-
wardly generalized from the SNGP by replacing the Dirichlet process inside with the
normalized random measure. It will be shown that in general MNRM, the poste-
rior is simply a generalized Chinese restaurant process, thus posterior inference is as
easy as the DP mixture while more complex dependencies can be well captured in
MNRM.

The idea of the MNRM is to introduce dependencies on an augmented spatial
space, sayR, while constructing completely random measures on the original product
space, say R+ × Θ. That is, for each element r ∈ R (it is called a region), it is
associated with a CRM in R+ ×Θ. Consider a set of NRMs {µt} indexed by t ∈ T ,
where T can be an arbitrary Borel space, but without loss of generality it can be
simply considered as a time space, e.g., R. Now there are two ways to introduce
dependencies between {µt}’s:

• by making some of the µt’s share some elements in space R.

• by putting correlated weights between any region-time pair (r ∈ R, t ∈ T ).

In the first way, if only adjacent µt’s have shared regions, e.g., µt and µt+1 share
region r, it corresponds to the spatial normalized random measure; whereas in the
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second way, which includes the first way by defining the “weights” to be either 0
or 1, we arrive at the mixed normalized random measure. Figure 6.1 illustrates the
construction. Details of the construction and properties of the SNRM and MNRM
will be presented below. To begin with, the special class SNRM will be introduced
first.

6.2 Spatial Normalized Random Measures

The spatial normalized random measure (SNRM), as will be shown below, is a spe-
cial case of the MNRM. Specifically, it follows the construction of spatial normalized
Gamma process (SNGP) [Rao and Teh, 2009] by generalizing the normalized Gamma
process to normalized random measures. However, note that the sampling method
in [Rao and Teh, 2009] for the SNGP cannot be generalized to the general SNRM, thus
a new sampler for the whole SNRM family is developed. It will be shown in Sec-
tion 6.2.4 that the proposed sampler and the original SNGP sampler are equivalent.
For completeness, a brief review of the SNGP is given in the next section.

6.2.1 Spatial normalized Gamma processes

The spatial normalized Gamma process (SNGP) [Rao and Teh, 2009] constructs a
Bayesian nonparametric prior to model spatial dependency structures, e.g., topic de-
pendency over time. The construction is based on a global Gamma process µ̃ defined
on product space R+ ×Θ×R with Lévy measure

ν(dw, dθ, dr) = α(dθ, dr)w−1e−wdw ,

where α is the mass measure of the Gamma process. For each time t, a Gamma process
is constructed by integrating over the associated regions Rt:

µ̃t(dθ) =
∫

Rt

µ̃(dθ, dr) = µ̃(dθ, Rt) ,

where Rt is the set of regions associated to time t (see the regions on top of Fig-
ure 6.1(b)). Finally, each µ̃t is further normalized to get a set of dependent normal-
ized Gamma processes which endow the spatial dependency by sharing some of
their regions between adjacent NRMs:

µt =
µ̃t

µ̃t(Θ)
.

Note that when t lives on a dense Borel space, e.g., t ∈ R, µt’s constitute a continuous
time stochastic process, or measure-value stochastic process, thus the SNRM is quite
appearing from both theoretical and application sides. Furthermore, it is easy to
show that these µt’s are marginally Dirichlet process distributed [Rao and Teh, 2009]:
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Figure 6.1: Construction of mixed normalized random measures (MNRM) and a
special class called spatial normalized random measures (SNRM). The idea is to cor-
relate µt’s by sharing and/or weighting of the Poisson processes in separated regions.
MNRM takes both sharing and weighting while SNRM only consider sharing with

weights being either 0 (unlinked) or 1 (linked).
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Theorem 6.1. Based on the notation and construction as above, each µt is marginally a
Dirichlet process with corresponding Lévy measure νt(dw, dθ) = α(dθ, Rt)w−1e−wdw.

6.2.2 Spatial normalized random measures

The spatial normalized random measure is defined exactly the same as the SNGP, ex-
cept that it is generalized to the more general class of normalized random measures
instead of the pure Dirichlet process. This not only allows more flexible modeling,
e.g., model power-law distributions, but also facilitates a more general posterior in-
ference algorithm for the whole SNRM family to be developed.

In formulation, assume that a global completely random measure µ̃ is defined
on space R+ × Θ × R with Lévy measure ν(dw, dθ, dr),1 which is assumed to be
decomposed as

ν(dw, dθ, dr) = ν′(dw, dθ)Q(dr)

with Q being a Lebesgue measure on space R. Now T dependent normalized ran-
dom measures {µt} are constructed by assigning overlapping regions Rt ⊆ R for
consecutive µt’s, e.g., Rt

⋂
Rt+1 6= ∅, and define the normalized random measure µt

as:

µt =
µ̃(dw, dθ, Rt)

µ̃(R+, Θ, Rt)
. (6.1)

Now it is easy to show that

Corollary 6.2. Based on the above notation and construction for SNRM, µt is a normalized
random measure with Lévy measure νt(dw, dθ) = ν(dw, dθ, Rt).

Similar to the NGG, this again can be easily specified to the spacial normalized
generalized Gamma process (SNGG), which has Lévy measure of

ν(dw, dθ, dr) =
Mσ

Γ(1− σ)
w−1−σe−wdwQ(dr)dθ . (6.2)

Corollary 6.3. Suppose the global Poisson process has a mean measure of the form as (6.2),
following the construction of SNRM, µt is a normalized generalized Gamma process with
Lévy measure νt(dw, dθ) = MQ(Rt)w−1−σe−wdwdθ, where Q(·) is the same as above.

6.2.3 Posterior inference for spatial normalized generalized Gamma pro-
cesses

Posterior inference formula for the whole SNRM family can be done with a marginal
sampler by applying the Poisson process partition calculus framework introduced
in Chapter 2 to integrate out the underlying Poisson process. For simplicity, this
section only demonstrates the procedure on a specific class of the spatial normalized
random measure – the spatial normalized generalized Gamma process (SNGG). Note

1which is equivalent to a Poisson process with mean measure ν(dw, dθ, dr)
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similarly to the NRM, the slice sampler is also available, but will not be described
until the general case of mixed normalized random measures is covered since the
underlying ideas are basically the same.

First note that for a normalized generalized Gamma process with Lévy measure
given in (6.2), the corresponding Laplace exponent is given by

ψ(u) = MQ(R) ((u + 1)σ − 1) (6.3)

In the following Rr is used to denote a subspace of the region space R,2 Tr

to denote the set of time indexes connecting to region Rr. Kr is the number of
atoms associated with observations in region Rr, ntrk is the number of observations
in time t on atoms inherited from region Rr. The superscript in n\tltrk indicates the
previous count excluding the lth observation at time t. The observations are denoted
as X = (xtl)

T,Lt
t=1,l=1, each observation xtl is associated with the stl-th atom θgtlstl drawn

from region gtl . A “dot” is used for marginal sum, e.g., ntr· = ∑K
k=1 ntrk. F(x|θ)

denotes the cumulative density function where x is drawn from the corresponding
density function denoted as f (x|θ). Nt denotes the number of observations in time t.
Based on the notation, clearly the likelihood is given by3:

p(X|{µr}) =
∏T

t=1 ∏r∈Rt ∏Kr
k=1 wntrk

rk

∏T
t′=1

(
∑r′∈Rt′ ∑∞

k′=1 wr′k′
)Nt′

T

∏
t=1

Lt

∏
l=1

f (xtl |θgtlstl ) (6.4)

Following similar idea as the posterior inference for the NRM, auxiliary variables
{ut} are introduced using Gamma identity

∫
un−1 exp (−uZ)du = Γ(n)/Zn, thus

(6.4) is augmented as

p(X, u|{µr}) =
(

#R
∏
r=1

Kr

∏
k=1

wn·rk
rk exp

{
−
(

∑
t∈Tr

ut

)
wrk

})
(6.5)(

T

∏
t=1

uNt−1
t

Γ(Nt)

)
exp

{
−

#R
∑
r=1

∞

∑
k=Kr

(
∑

t∈Tr

ut

)
wrk

}(
T

∏
t=1

Lt

∏
l=1

f (xtl |θgtlstl )

)
.

Now, rewriting Qr = Q(Rr) for simplicity and integrating out the random weights
with the extended Palm formula in Theorem 2.14 (following similar steps as in (3.18)),
we get

p(X, u|σ, {Mr}) = E [p(X, u|{µr})] (6.6)

∝
(

σ

Γ(1− σ)

)∑r Kr
(

#R
∏
r=1

MKr
r QKr

r

)(
R

∏
r=1

Kr

∏
k=1

Γ(n·rk − σ)(
1 + ∑t∈Tr

ut
)n·rk−σ

)
2Sometimes r is also used to indicate a subspace of R for simplicity.
3For notation cleanness, µr is used to denote the NRM formed in region Rr, e.g., µ̃(dw, dθ, Rt) in

(6.1), while use a different subscript t to denote the dependent NRMs constructed, i.e., µt. This applies
in the rest of the thesis.
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(
T

∏
t=1

uNt−1
t

Γ(Nt)

)(
#R
∏
r=1

e−MrQr

(
(1+∑t∈Tr ut)

σ−1
))( T

∏
t=1

Lt

∏
l=1

f (xtl |θgtlstl )

)

Given this joint distribution, a Gibbs sampler for topic indicators {stl}, source
indicators {gtl}, mass parameters {Mr} and the latent relative mass parameters {ut}
can be easily derived. Denote the whole set of variables as C, the sampling then goes
as:

Sampling (stl , gtl):

p(stl = k, gtl = r|C− {stl , gtl}) ∝
(n/tl
·rk−σ)

1+∑t:r∈Rt ut
f \tlrk (xtl), if k already exists,

σ

(
∑r′∈Rt

Mr′Qr′(
1+∑t′∈Tr′

ut′
)1−σ

) ∫
Θ f (xtl |θ)h(θ)dθ, if k is new ,

where h is the density of H, f \tlrk (xtl) =

∫
f (xtl |θrk)∏t′ l′ 6=tl,st′ l′=k,gt′ l′=r f (xt′ l′ |θrk)h(θrk)dθrk∫

∏t′ l′ 6=tl,st′ l′=k,gt′ l′=r f (xt′ l′ |θrk)h(θrk)dθrk

is the conditional density 4.

Sampling Mr: The posterior of Mr simply follows a Gamma distribution as:

Mr|C−Mr ∼ Gamma

(
Kr + am, Qr

(
1 + ∑

t:r∈Rt

ut

)σ

+ bm −Qr

)
,

where am, bm are parameters of Gamma prior for Mr.

Sampling ut: The posterior distribution of ut is:

p(ut|C− ut) ∝
uNt−1

t exp
{
−∑r MrQr

(
1 + ∑t′ :r∈Rt′

ut′
)σ}

∏r

(
1 + ∑t′ :r∈Rt′

ut′
)∑k n·rk−σKr

,

which is log-concave if we use a change of variables: vt = log(ut).

Sampling σ: To resample σ, first instantiate the weights wrk associated with extant
clusters:

wrk ∼ Gamma

(
n·rk − σ, 1 + ∑

t:r∈Rt

ut

)
(6.7)

4This thesis assumes conjugacy between f and h so that the integration has a close form, though
the non-conjugate case can be dealt with techniques from for example [Neal, 2000] or [Favaro and Teh,
2013]



§6.2 Spatial Normalized Random Measures 111

Then, the conditional distribution of σ is given by:

p(σ|C− σ) ∝
(

a
Γ(1− σ)

)∑r Kr
(

I

∏
r=1

Kr

∏
k=1

wrk

)−σ (
∏

r
e−MrQr

(
(1+∑t:r∈Rt ut)

σ−1
))
(6.8)

It can be checked that now (6.8) is log-concave so that it can be sampled using
the adaptive rejection sampler [Gilks and Wild, 1992] or slice sampler [Neal,
2003].

6.2.4 Relation to the original sampler for spatial normalized Gamma pro-
cesses

The above marginal sampler is applicable to any homogeneous spatial normalized
random measures, and is different from the one proposed for the spatial normalized
Gamma process (SNGP) in [Rao and Teh, 2009]. This section develops a connection
between these two samplers by showing how the sampler used for the SNGG can be
transformed to the one used for the SNGP in [Rao and Teh, 2009].

For the SNGP, the Gamma process in region r has Lévy measure

νr(dw, dθ) = ν(dw, dθ,Rt) = MrQrw−1e−wdwH(θ)dθ .

After some algebra, the corresponding posterior (6.6) is equivalent to

p(X, u|{Mr}) (6.9)

=

(
#R
∏
r=1

MKr
r QKr

r

)(
T

∏
t=1

uNt−1
t

Γ(Nt)

)(
T

∏
t=1

Lt

∏
l=1

f (xtl |θgtlstl )

)
(

R

∏
r=1

∏Kr
k=1 Γ(n·rk)(

1 + ∑t∈Tr
ut
)n·r·+MrQr

)

Now introduce a set of auxiliary variables {gr} via the Gamma identity(
1 + ∑

t∈Tr

ut

)−(n·r·+MrQr)

=
1

Γ (n·r· + MrQr)

∫
R+

gn·r·+MrQr
r e−(1+∑t∈Tt ut)gr dgr ,

we have the augmented posterior

p(X, {ut}, {gr}|{Mr})

=

(
#R
∏
r=1

MKr
r QKr

r

)(
T

∏
t=1

uNt−1
t

Γ(Nt)

)(
T

∏
t=1

Lt

∏
l=1

f (xtl |θgtlstl )

)
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 #R
∏
r=1

(
∏Kr

k=1 Γ(n·rk)
)

gn·r·+MrQr
r e−(1+∑t∈Tt ut)gr

Γ (n·r· + MrQr)


Now {ut}’s can be integrated out as

p(X, {gr}|{Mr}) =
(

#R
∏
r=1

MKr
r QKr

r

) T

∏
t=1

(
∑

r∈Rt

gr

)−Nt
( T

∏
t=1

Lt

∏
l=1

f (xtl |θgtlstl )

)
 #R

∏
r=1

(
∏Kr

k=1 Γ(n·rk)
)

gn·r·+MrQr
r e−gr

Γ (n·r· + MrQr)


This is exactly the same posterior used to derive the sampler in [Rao and Teh,

2009] for the SNGP. The conditional probabilities as those given by [Rao and Teh,
2009] can be derived from this posterior, which are omitted here for simplicity.

Regarding the differences between the sampler in [Rao and Teh, 2009] (denoted
as P1) and the sampler for the SNRM (denoted as P2), it can be seen that the number
of auxiliary variables in P1 equals to the number of regions, while it equals to the
number of times in P2. According to the construction of SNGP, the number of regions
is usually larger than the number of times (#R = O((#T )2)), thus sampler P2 is
preferable because it contains less auxiliary variables so the sampling cost could be
cheaper. Furthermore, note that P1 is only applicable for the special case of SNGP,
while P2 is much more flexible and applicable for all classes of SNRMs.

6.3 Mixed Normalized Random Measures

This section extends the spatial normalized random measure to the mixed normalized
random measure (MNRM). MNRM generalizes SNRM in the way that instead of ex-
plicitly defining a spatial sharing structure between the dependent NRMs µt’s, e.g.,
Rt
⋂

Rt+1 6= ∅, it assumes that µt connects to all the regions but with different weights
qrt’s for different regions Rr.5 In this way, the correlation between the pair (µt, µt′)
is controlled by these weights. Specifically, let qrt be a nonnegative weight between
region Rr and time t.6 The MNRM µt is simply defined as follows:

Definition 6.1 (Mixed Normalized Random Measure (MNRM)). Let N be the Pois-
son random measure on R+ ×Θ×R. The MNRM is defined by the following con-
struction:

• For each region Rr, define a completely random measure:

µ̃r(dθ) =
∫

R+×R̃r

wN (dw, dθ, dr) .

5A weight of 0 means absent of the connection, thus it is a generation of the SNRM mechanism.
6In the experiments, independent Gamma priors are placed on the qrt’s, thus their values can be

inferred from the data.
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Figure 6.2: Construction of mixed normalized measure from R independent NRMs
µr, G̃rt represents qrtµ̃r(dθ) defined in (6.10).

• For each time t, construct a dependent completely random measure:

µ̃t(dθ) =
#R
∑
r=1

qrtµ̃r(dθ) . (6.10)

• Normalize the completely random measure:

µt(dθ) =
1
Zt

µ̃t(dθ) , where Zt = µ̃t(Θ) .

The construction is illustrated in Figure 6.2, where each µt is constructed by su-
perpositioning a set of intermediate random measures to achieve dependencies.

Note in particular µt can be rewritten as:

µt(dθ) =
∑#R

r=1 qrtµ̃r(dθ)

µ̃t(Θ)

=
#R
∑
r=1

qrtµ̃r(Θ)

µ̃t(Θ)

µ̃r(dθ)

µ̃r(Θ)
=

#R
∑
r=1

qrtµ̃r(Θ)

µ̃t(Θ)
µr(dθ)

Thus it can be easily seen that µt is a mixture of the individual region-specific
NRMs µr, with mixing weights given by qrtµ̃r(Θ)/µ̃t(Θ). We then have:

Theorem 6.4. Conditioned on the qrt’s, each random probability measure µt defined in Defi-
nition 6.1 is marginally distributed as a NRM with Lévy intensity 7 ∑R

r=1
1

qrt
νr(w/qrt, θ).

Proof. This result follows from the facts that 1) a scaled CRM is still a CRM, and 2) a
sum of independent CRMs is still a CRM. Specifically:

First, from the definition we have

µ̃t =
#R
∑
r=1

qrtµ̃r .

7Lévy intensity is defined as the density of the Lévy measure. With a little abuse of notation, the
Lévy measure ν is still used to denote its Lévy intensity but without the derivative operator “d”.
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Because each µ̃r’s is a CRM, we have for any collection of disjoint subsets (A1, · · · , An)
of Θ, the random variables µ̃r(An)’s are independent. Moreover, since the µ̃r’s are
independent, we have that {µ̃t(Ai)}n

i=1 are independent. Thus µ̃t is a completely
random measure. To work out its Lévy measure, by applying the Lévy-Khintchine
Formula in Lemma 3.2, we calculate the characteristic functional of each random
measure qrtµ̃r as:

ϕqrtµ̃r(u) = e−
∫

R+×Θ(1−eiuqrtw)νr(w,θ)dwdθ ,

= e−
∫

R+×Θ(1−eiuw)νr(w/qrt,θ)dw/qrtdθ ,

where the last step follows by using a change of variable w′ = qrtw. Because qrtµ̃r’s
are independent, we have that the characteristic functional of µ̃t is

ϕµ̃t(u) =
#R
∏
r=1

ϕqrtµ̃r(u)

= e−
∫

R+×Θ(1−eiuw)∑#R
r=1 νr(w/qrt,θ)dw/qrtdθ , (6.11)

Thus the Lévy intensity of µ̃t is thus ∑#R
r=1 νr(w/qrt, θ)/qrt.

6.3.1 Comparison with the SNGP

The spatial normalized Gamma process (SNGP) of [Rao and Teh, 2009] is a special
case of MNRM, with the weights fixed to be binary, i.e., qrt ∈ {0, 1}, with the actual
value determined a priori. Our MNRM is thus a generalization of the SNGP, from
a normalized gamma process to a general NRM, and from fixed and binary qrt’s to
arbitrary positive values that will be inferred along with the rest of the model. On
the other hand, the SNGP imposes a spatial structure to the qrt’s which may allow
better generalization.

6.3.2 Posterior Inference

In the following, again a specific NRM viz. the normalized generalized Gamma process
(NGG) is studied to demonstrate the posterior inference. Generalization to other
NRMs is straightforward. As is known, the NGG, which includes the DP as a special
case, is attractive in applications where one wishes to place less informative priors on
the number of clusters, power-law distributions on the cluster sizes etc.. Its flexibility
comes without a loss of computational tractability: the NGG is a so-called Gibbs-
type prior [Favaro et al., 2013a], whose partition probability function (the clustering
probability with the RPM integrated out) has a convenient closed form that general-
izes the Chinese restaurant process (CRP) (see Chapter 3 for review of the CRP). A
consequence of this is that marginal samplers as well as slice samplers are available
for MNGG, which will be derived in the following sections. In the following, the
same notation as in SNGG will be used.
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6.3.2.1 Posterior inference for mixed normalized generalized Gamma processes
with marginal sampler

For completeness, this section first gives the posterior of MNGGs, which is almost
the same as the SNGG8. Given observations X and weights qrt’s, denote µr as the
NRM in region Rr, the likelihood can be expressed as

p(X|{µr}, {qrt}) =
∏T

t=1 ∏I
r=1 ∏Kr

k=1 (qrtwrk)
ntrk

∏T
t′=1

(
∑I

r′=1 ∑∞
k′=1 qr′t′wr′k′

)Nt′

T

∏
t=1

Lt

∏
l=1

f (xtl |θgtlstl ) (6.12)

Now introduce auxiliary variables {ut} using Gamma identity, the joint becomes

p(X, u|{µr}, {qrt}) (6.13)

=

(
I

∏
r=1

T

∏
t=1

qnrt·
rt

)(
I

∏
r=1

Kr

∏
k=1

wn·rk
rk exp

{
−
(

T

∑
t=1

qrtut

)
wrk

})
(

T

∏
t=1

uNt−1
t

Γ(Nt)

)
exp

{
−

I

∑
r=1

∞

∑
k=1

(
T

∑
t=1

qrtut

)
wrk

}(
T

∏
t=1

Lt

∏
l=1

f (xtl |θgtlstl )

)

Using the factorized Lévy-measure of ν(dw, dθ, dr) = ν′(dw, dθ)Q(dr), it is easily
seen µr’s are normalized generalized Gamma processes with Lévy measures

νr(dw, dθ) =
∫

Rr

ν(dw, dθ, dr) =
σMrQr

Γ(1− σ)
w−1−σe−wdwH(θ)dθ .

Integrate out µr’s by applying the Poisson process partition calculus formula in The-
orem 2.12 we get:

p(X, u|σ, {Mr}, {qrt}) = E{µr} [p(X, u|{µr}, {qrt})] (6.14)

∝

(
T

∏
t=1

#R
∏
r=1

qnrt·
rt

)(
σ

Γ(1− σ)

)K·
(

#R
∏
r=1

(Qr Mr)
Kr

)(
#R
∏
r=1

Kr

∏
k=1

Γ(n·rk − σ)

(1 + ∑t qrtut)
n·rk−σ

)
(

T

∏
t=1

uNt−1
t

Γ(Nt)

)(
#R
∏
r=1

e−Qr Mr((1+∑t qrtut)
σ−1)

)(
T

∏
t=1

Lt

∏
l=1

f (xtl |θgtlstl )

)
.

Since Qr and Mr always appear together, we simply omit Qr and only use Mr to
represent Qr Mr in the above formula.

Now it is straightforward to derive the posterior sampler for MNRM. The vari-
ables needed to be sampled are C = {{stl}, {gtl}{Mr}, {ut}, {qrt}}, where the first
four sets of parameters are the same as those in the SNRM, whereas the last set is
called weighting parameters of the MNRM. Based on (6.14), these can be iteratively
sampled as follows:

8Thus reader familiar with the SNGG could skip the derivation.
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Sampling (stl , gtl): The posterior of (stl , gtl) is

p(stl = k, gtl = r|C− stl − gtl) (6.15)

∝


qrt(n

\tl
·rk−σ)

1+∑t′ qrt′ut′
f \tlrk (xtl), if k already exists,

σ

(
∑r′

qr′ t Mr′

(1+∑t′ qr′ t′ut′ )
1−σ

) ∫
Θ f (xtl |θ)h(θ)dθ, if k is new ,

where f \tlrk (xtl) is the same as in SNGG.

Sampling Mr: The posterior of Mr follows a Gamma distribution:

p(Mr|C−Mr) ∼ Gamma

(
Kr + am,

(
1 + ∑

t
qrtut

)σ

+ bm − 1

)
,

where am, bm are parameters of Gamma prior for Mr.

Sampling ut: The posterior distribution of ut is:

p(ut|C− ut) ∝
uNt−1

t exp
{
−∑r Mr (1 + ∑t′ qrt′ut′)

σ}
∏r (1 + ∑t′ qrt′ut′)

∑kr n·rk−σKr
,

which is log-concave if we use a change of variables: vt = log(ut).

Sampling qrt: qrt can be sampled by introducing appropriate priors. Here a Gamma
prior with parameter qa and qb is used, so the posterior of qrt has the following
form:

p(qrt|C− qrt) ∝
qntr·+qa−1

rt exp
{
−Mr (1 + ∑t′ qrt′ut′)

σ − qbqrt
}

(1 + ∑t′ qrt′ut′)
n·r·−σKr

,

which is also log-concave with a change of variables: Qrt = log(qrt).

Sampling σ: From (6.14), to sample σ, a set of jumps {wrk} are first instantiated:

wrk ∼ Gamma

(
n·rk − σ, 1 + ∑

t
qrtut

)
,

Based on these jumps, the posterior of σ is proportional to:

p(σ|C− σ) ∝
(

σ

Γ(1− σ)

)K·
(

#R
∏
r=1

Kr

∏
k=1

wrk

)−σ ( #R
∏
r=1

e−Mr(1+∑t qrtut)
σ

)
(6.16)

which is log-concave as well.
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6.3.2.2 Posterior inference for mixed normalized generalized Gamma processes
with slice sampler

As an alternative sampling algorithm, this section describes the slice sampler for the
MNRM. Similar to the case of single NRM, the idea behind the slice sampler is to
introduce auxiliary slice variables such that conditioned on these, the realization of
normalized random measures only have a finite set of jumps larger than a threshold.
This turns the inference from infinite parameter spaces to finite parameter spaces.

Starting from (6.13), a slice auxiliary variable vtl is introduced for each observa-
tion such that

vtl |{wk} ∼ Uniform(wgtlstl ) .

Now (6.13) can be augmented as

p(X, u, {vtl}, {stl}, {gtl}|{µr}, {qrt})

=

(
∏

t
∏

l
1
(
wgtlstl > vtl

)
qgtlstl f (xtl |θgtlstl )

)(
∏

t

uNt−1
t

Γ(Nt)

)
(

exp

{
−∑

t
∑

r
∑

k
qrtutwrk

})
(6.17)

The joint distribution of observations, related auxiliary variables and the corre-
sponding Poisson random measure {Nr}9 can be written as

p(X, u, {vtl}, {µr}, {stl}, {gtl}, {Nr}|{qrt})

=

(
∏

t
∏

l
1(wgtlstl > vtl)qgtlstl f (xtl |θgtlstl )

)(
∏

t

uNt−1
t

Γ(Nt)

)
(

exp

{
−∑

t
∑

r
∑

k
qrtutwrk

})
∏

r
P(Nr)

slice at Lr=

(
∏

t
∏

l
1(wgtlstl > vtl)qgtlstl f (xtl |θgtlstl )

)(
∏

t

uNt−1
t

Γ(Nt)

)

exp

{
−∑

t
∑

r
∑

k
qrtutwrk

}
︸ ︷︷ ︸

jumps larger than Lr

∏
r

p({(wr1, θr1)}, · · · , {(wrK′r , θrK′r)}) (K′r is # jumps larger than Lr)(6.18)

∏
r

exp
{
− σMr

Γ(1− σ)

∫ Lr

0

(
1− e−∑t qrtutx

)
ρ′(dx)

}
︸ ︷︷ ︸

jumps less than Lr

, (6.19)

9As mentioned in Chapter 2, usually stochastic processes including Poisson process do not endow
probability density functions, however, we use the notation P(N ) here to emphasis the joint distribution
with the Poisson random measure N . This applies in the rest of the thesis without further declaration.
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where ρ′(dx) = x−1−σe−x and (6.18) has the following form based on the fact that
{(wrk, θrk)} are points from a compound Poisson process, so the density is:

p((wr1, θr1), (wr2, θr2), · · · , (wrKr , θrKr))

= Poisson
(

Kr;
σMr

Γ(1− σ)

∫ ∞

Lr

ρ′(dx)
)

Kr!
Kr

∏
k=1

ρ′(wrk)∫ ∞
Lr

ρ′(dx)
,

where Poisson(k; A) means the density of the Poisson distribution with mean A
under value k.

Given the joint posterior, apart from the variables in the marginal sampler for
the MNRM, additional random variables we are interested in include the threshold
variables {vtl} as well as the jump sizes {wrk}. As before, the whole set is denoted
as C, then the sampling goes as:

Sample (stl , gtl): (stl , gtl) are jointly sampled as a block, it is easily seen the posterior
is:

p(stl = k, gtl = r|C− {stl , gtl}) ∝ 1(wrk > vtl)qrk f (xtl |θrk) . (6.20)

Sample vtl : vtl is uniformly distributed in interval (0, wgtlstl ], so

vtl |C− vtl ∼ Uniform(0, wgtlstl ) . (6.21)

Sample wrk: There are two kinds of wrk’s, one is with observations, the other is not,
because they are independent, they are sampled separately:

• Sample wrk’s with observations: It can be easily seen that these wrk’s
follow Gamma distributions as

wrk|C− wrk ∼ Gamma

(
∑

t
ntrk − σ, 1 + ∑

t
qrtut

)
,

• Sample wrk’s without observations: These wrk’s are Poisson points in a
Poisson process with intensity

ν(dw, dθ) = ρ(dw)H(dθ) = e−∑t qrtutwνr(dw, dθ) ,

where ν(dw, dθ) is the Lévy measure of µr. This is a generalization of the
result in [James et al., 2009]. In regard of sampling, the adaptive thinning
approach introduced in [Favaro and Teh, 2013] is used with a proposal
adaptive Poisson process mean measure as

γx(s) =
σMr

Γ(1− σ)
e−(1+∑t qrtut)sx−1−σ (6.22)

The idea of this method is to generate samples from the proposal Pois-
son process with mean measure γx(·), and reject some of the samples to
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make them be samples from the desired Poisson process. The details of
the simulation of the Poisson points will be delayed to Section 7.4.2 in
Chapter 7 because the slice sampler is not the most effective approach in
MNRM, but it seems to be the only choice for posterior sampling of the
new model–thinned normalized random measures in Chapter 7.

Sample Mr: Mr follows a Gamma distribution as

Mr|C−Mr ∼ Gamma
(

K′r + 1,
σ

Γ(1− σ)

∫ ∞

Lr

ρ′(dx) +
∫ Lr

0

(
1− e−∑t qrtutx

)
ρ′(dx)

)
,

where K′r is the number of jumps larger than the threshold Lr and the integrals
can be evaluated using numerical integration or via the incomplete Gamma
function in Theorem 3.15.

Sample ut: From (6.19), ut is sampled using rejection sampling by first sample
from the following proposal Gamma distribution

ut|C− ut ∼ Gamma

(
Nt, ∑

r
∑

k
qrtwrk

)
,

then a rejection step is done by evaluating it on the posterior (6.19).

Sample qrt: qrt can also be rejection sampled by using the following proposal
Gamma distribution:

p(qrt|C− qrt) ∝∼ Gamma

(
ntr· + aq, ∑

k
utwrk + bq

)
,

where aq, bq are the hyperparameters of the Gamma prior.

Sample σ: Based on (6.19), the posterior of σ is proportional to:

p(σ|C− σ) ∝
(

σ

Γ(1− σ)

)∑r K′r
(

∏
r

∏
k

wrk

)−σ

exp
{
− σMr

Γ(1− σ)

(∫ ∞

Lr

ρ′(dx) +
∫ Lr

0

(
1− e−∑t qrtutx

)
ρ′(dx)

)}
.

Thought log-concaveness is not guaranteed, it still can be sampled using the
slice sampler of [Neal, 2003].

6.4 Experiments

6.4.1 Illustration

This section illustrates how MNRM works via a Gaussian mixture example with
MNRM as the prior. A 2D Gaussian mixture dataset consisting of 4 Gaussian com-
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ponents is first generated. The first three Gaussians have means around (2, 0)T and
covariance 0.3× I, where I is the 2-dimensional identity matrix; while the last Gaus-
sian has mean around (4, 0)T and covariance 0.6× I. So this dataset can be thought
of as generated from 2 regions, where the first consists of the first three Gaussians,
and the last consisting of the last Gaussian component. Then 3 groups of data points
are generated (each groups corresponds to one time t), each consisting of 70 data
points. To generate data points for time t, a region r is first chosen with probability
proportional to 1

|r−t|+1 , then a Gaussian component in the region is randomly chosen
for drawing the data.

After generating the data, the MNGG mixture model with σ = 0.1 and base
distribution as Gaussian-Wishart distribution (see Chapter 3) is tested on this data.
The hyperparameters for the Gaussian-Wishart are chosen as (r = 0.25, ν = 5, m =
(0, 0)T, S = eye(2)). The q is set to the one used in the data generation above during
inference and other variables are sampled. The result of the MNGG is shown in
Figure 6.3(a), where it is clear that MNRM successfully recovers the Gaussians in
the 2 regions. The Dirichlet process Gaussian mixture model (DPGMM) [Rasmussen,
2000] is also tested and compared on this dataset, the result is shown in Figure 6.3(b).
We can see that compared with MNGG, DPGMM seems having difficulty in correctly
finding the large variance Gaussian component.

6.4.2 Two constructions for topic modeling

In the following, the ideas of modeling text documents organized in time are applied
to the MNRM framework. Four specified models will be studied in this section (de-
fined below): 1) mixed normalized generalized Gamma process (MNGG), 2) hierarchical
mixed normalized generalized Gamma process (HMNGG), 3) hierarchical mixed normal-
ized Gamma process (HMNGP) and 4) hierarchical spatial normalized generalized Gamma
process (HSNGG).

The first model is based on the mixed construction, with each document assigned
to its own ‘time’, so there is no hierarchical sharing for the documents at the same
time. This on the one hand, disregards statistical information that might be shared
across documents from the same true time period, on the other hand, it affords more
flexibility, since each document can have its own set of qrt parameters. Specifically,
let G be the Dirichlet distribution, F the multinomial distribution, and t span all
documents in the corpus, the generative process is as follows:

(µt) ∼ MNGG(σ0, M0, G, {qrt}), for each doc t (6.23)

θt
i ∼ µt, xt

i |θt
i ∼ F(·|θt

i ), for each word i , (6.24)

where MNGG(σ0, M0, G, {qrt}) denotes the dependent NGG constructed via MNGG
with index parameter σ, mass parameter M0, base distribution G and the set of
weights/subsampling rates {qrt}.

The remaining models specify the organization of documents into time-periods
by adding another layer to the hierarchy. In particular, the MNRM constructions are
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Figure 6.3: A demo on MNGG mixture, compared with DPGMM. MNGG correctly
recovers the two regions in the data generating process.

used to produce an RPM µt for each time-period t; each document in time period t
then has a distribution over topics drawn from an NGG with base-measure µt:

(µt)|σ0, M0, G, {qrt} ∼ MNGG(σ0, M0, G, {qrt})
{µti}|µt ∼ NGG(σ, M, µt)

θt
ij ∼ µti, xt

ij|θt
ij ∼ F(·|θt

ij) , (6.25)

HMNGP is the same as HMNGG but with the NGG replaced with a Gamma pro-
cess (GP). HSNGG denotes the spatial normalized generalized Gamma process [Rao
and Teh, 2009], a special case of HMNGG with qrt ∈ {0, 1}. The models are also
compared with the popular hierarchical Dirichlet process (HDP), as well as the hier-
archical normalized generalized Gamma process (HNGG) proposed in Chapter 4. All
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the algorithms are implemented in C/C++; the slice sampler needs careful memory
management, requiring tricks such as memory pre-allocation and pooling to manage
the computational requirements.

6.4.3 Synthetic data

In the first experiment, a dataset with 3000 observations are generated from a hierar-
chical Pitman-Yor topic model [Du et al., 2010] 10. The vocabulary size is set to 100.
The generative process is described as follows

G0 ∼ PY(α0, d0, G), Gt ∼ PY(αt, dt, G0) t = 1, 2, 3

θtj ∼ Gt, xtj ∼ F(·|θtj) j = 1, · · · , 3000

The base measure G over topic distributions is a 100-dimensional symmetric Dirich-
let with parameter 0.1, while F(·|θ) is the 100-dimensional discrete distribution. The
concentration parameters αi, i = 0, · · · , 3 are set to 1, 3, 4 and 5 respectively, while
all discount parameters di are set to 0.5. Following the generative process described
above, we then split the data at each time into 30 documents of 100 words each, and
model the resulting corpus using the HMNGG described in (6.25). The Pitman-Yor
process (which is not an NRM) exhibits a power-law behavior, and the purpose of this
experiment is to demonstrate the flexibility of the NGG over the DP. Accordingly, the
performance of HMNGG on this dataset against its dependent DP equivalence–the
HMNGP (obtained by replacing the generalized Gamma process with the Gamma
process in the constructions) are compared. In the experiments, the number of re-
gions is set equal to the number of times, and all the model parameters are sampled
during inference (placing Gamma(0.1, 0.1) priors on all scalars in R+).

Figure 6.4 plots the predictive likelihood on a 20% held-out dataset as well as
the effective sample sizes of the models. It can be seen that HMNGG outperforms
its non-power-law variants HMNGP in terms of predictive likelihoods. The inferred
parameter σ is around 0.2 (a value of 0 recovers the Gamma process).

6.4.4 Topic modelling

Datasets Next, four real-world document datasets are used for topic modeling, viz.
ICML, TPAMI, Person and NIPS. The first 2 corpora consist of abstracts obtained
from the ICML and PAMI websites; ICML contains 765 documents from 2007-2011
with a total of about 44K words, and a vocabulary size of about 2K; TPAMI has
1108 documents from 2006-2011, with total of 91K words and vocabulary size of 3K.
The Person dataset is extracted from Reuters RCV1 using the query person under
Lucene [Otis et al., 2009], and contained 8616 documents, 1.55M words and a vocab-
ulary size of 60K. It spans the period 08/96 to 08/97. The NIPS corpus consists of
proceedings over the years 1987 to 2003 [Globerson et al., 2007]. It is not postpro-
cessed, and has 2483 documents, 3.28M words and vocabulary size 14K. The statistics

10An HDP-LDA topic model [Teh et al., 2006] by replacing the DPs with PYPs.
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Figure 6.4: HMNGG VS. HMNGP.

dataset vocab docs words epochs
ICML 2k 765 44k 2007–2011
TPAMI 3k 1108 91k 2006–2011
Person 60k 8616 1.55M 08/96–08/97
NIPS 14kk 2483 3.28M 1987–2003

Table 6.1: Data statistics

are listed in Table 6.1.

Parameter setting and evaluation In modeling these datasets, for MNGG (where
the years associated with each document are disregarded), the number of regions was
set to be 20; in the other models these were set equal to the number of years. The
Dirichlet base distribution was symmetric with parameter 0.3, and as in the previous
section, weak Gamma and Beta priors were placed appropriately on all nonnegative
scalars.

To evaluate the models, perplexity scores are computed on a held-out test dataset.
In all cases, 20% of the original data sets is held-out, following the standard dictio-
nary hold-out method (50% of the held-out documents is used to estimate topic
probabilities) [Rosen-Zvi et al., 2004]. Test perplexity is calculated over 10 repeated
runs with random initialization, mean values and standard deviations are reported.
In each run 2000 cycles are used as burn-in, followed by 1000 cycles to collect samples
for perplexity calculation. To avoid complications resulting from the different repre-
sentations used by the marginal and slice sampler, perplexities are calculated after
first transforming the representation of the slice sampler to those of the marginal
sampler. In other words, given the state of the slice sampler, the induced partition
structures are determined and used to calculate prediction probabilities (calling the
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Table 6.2: Train perplexities and test perplexities for different models on ICML,
TPAMI, Person and NIPS datasets.

Datasets ICML TPAMI
Models train test train test

HDP 580± 6 1017± 8 671± 6 1221± 6
HNGG 575± 5 1057± 8 671± 6 1262± 11
MNGG 569± 6 1056± 9 644± 6 1272± 12
HSNGG 550± 5 1007± 8 643± 3 1237± 22
HMNGG 535± 6 1001± 10 608± 4 1199± 10
HMNGP 561± 10 995± 14 634± 10 1208± 8
Datasets Person NIPS
Models train test train test

HDP 4541± 33 5962± 43 1813± 27 1956± 18
HNGG 4565± 60 5999± 54 1713± 13 1878± 11
MNGG 4560± 63 6013± 66 1612± 3 1920± 5
HSNGG 4324± 77 5733± 66 1406± 5 1679± 8
HMNGG 4083± 36 5488± 44 1366± 8 1618± 5
HMNGP 4118± 45 5519± 41 1370± 3 1634± 4

same piece of code).

Quantitative comparison for different models Both training and test perplexities
for the models specified above are calculated, which are shown in Table 6.2.

It is seen that HMNGG performs best, achieving significant lower perplexities
than the others. Interestingly, HMNGP (without the power-law property) does not
perform much worse than HMNGG, indicating topic distributions in topic models
might not follow an obvious power-law behavior. This coincides with the sampled
value of the index parameter σ (around 0.01). Thus it is not surprising that HDP
is comparable to HNGG: slightly better in small datasets, but a bit worse in large
datasets. Moreover, the simple MNGG does much worse than HMNGG, emphasizing
the importance of statistical information shared across documents in the same year.

Topic evolution Figure 6.5 is a posterior sample, showing the evolution of 12 ran-
domly selected topics on the NIPS dataset for HMNGG. The proportion of words
assigned to the topic k in region r at each time t (i.e. ntrk

ntr·
) are calculated, as well as the

predictive probabilities for each topic at each time. The latter is defined for MNGG

to be proportional to qrt(n
\tl
·rk−σ)

1+∑t′ qrt′ut′
(see equation 6.15).

Marginal vs slice sampler Next the performance of the marginal and slice samplers
for MNGG and HMNGG are compared. Table 6.3 shows the average effective sample
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Figure 6.5: Topic evolution on NIPS dataset for 12 randomly chosen topics learned by
HMNGG. The two curves correspond to word proportions within each topic (blue)

and prediction probabilities (red) for each time.

sizes and running times over 5 repeated runs for the two samplers. It is seen that
in MNGG, the marginal sampler generally obtains larger ESS values than the slice
sampler; while it is opposite for HMNGG. Regarding the running time, the marginal
sampler is more efficient in small datasets (i.e., ICML and TPAMI), while they are
comparable in the other datasets. The reason for this is that in small datasets, a
large amount of the running time in the slice sampler was used in sampling the extra
atoms (which is unnecessary in the marginal sampler), while in large datasets, the
time for sampling word allocations starts to become significant.

6.5 Conclusion

This chapter proposes a more theoretically tractable dependent normalized random
measure by operating directly on the underlying Poisson process. In the construction
the Poisson process is defined on an augmented spatial space where each element in
the spatial space is associated with a Poisson process. Key to the construction is to
weight and superposition these Poisson process to get mixed normalized random
measures (MNRM). Simple in the construction, MNRM maintains nice distributional
properties as well as tractable posterior structure as a generalized Chinese restaurant
process, thus posterior inference is easy. Meanwhile, the MNRM seems to be more
flexible in dependency modeling by comparing with the HNRM because MNRM is
not only designed for hierarchical modeling, but also is able to model other depen-
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Table 6.3: Comparison of effective sample sizes and run times for marginal and slice
sampler (subscript s). Subscript 2 in the datasets means the 2-time datasets. over 5
repeated runs. a/b/c | t in the table means the average ESS among all the chosen
statistics is a, the median is b, the minimum is c, and the running time for the 1000

cycles is t.

ICML TPAMI
Models ESS | Time ESS | Time
MNGG 243.3/202.5/4.4|234s 252.4/231.9/3.7| 285s
MNGGs 201.2/122.0/26.9|760s 205.1/131.9/23.5|813s
HMNGG 99.1/70.3/2.6|91s 171.5/80.4/5.1|176s
HMNGGs 150.7/117.7/4.6|97s 194.3/180.9/6.5|227s

Person NIPS
Models ESS | Time ESS | Time
MNGG 402.5/401.4/1.5|1.5h 314.8/376.1/1.5|3.3h
MNGGs 321.5/291.8/11.3|2.9h 228.4/110.6/2.2|2.2h
HMNGG 213.0/246.5/1.9|3.3h 282.1/198.2/4.3|9.4h
HMNGGs 293.3/358.6/2.0|3.5h 346.1/467.2/1.7|10.4h

dencies such as the Markovian dependency, e.g., the dependent operator used in the
dynamic topic model in Chapter 5 can be replaced by the MNRM. One potential
drawback is the dense representation of the dependent NRMs, which might not be
favorable in real applications. This will be addressed in the next chapter.



Chapter 7

Thinned Normalized Random
Measures

7.1 Introduction

The mixed normalized random measure proposed in the last chapter induces de-
pendencies via sharing and weighting the entire points of the corresponding Poisson
process. Though flexible in modeling and tractable in posterior computation, the
MNRM induces a restriction in the construction: all the points in the same region
will or will not be inherited to an NRM at time t. This property makes the resulting
dependent NRMs in a dense representation, e.g., the NRMs have a lot of atoms with
small weights that might not be interesting to the problem. For example, in topic
models, each document is represented by a topic distribution. The total number of
topics might be large in the corpus, however, each document often contains just sev-
eral topics, say 3 topics. In this case, we want the topic distribution vector for the
document to be sparse, obviously using the MNRM to do the modeling is not a good
choice. Another example is in the modeling of friendship in a social network, where
the distribution of connections between a person and their friends is assumed to be
modeled with an NRM. Again, in this case we do not want the person to connect to
all the people in the network, thus dependent normalized random measures with a
selection mechanism for the elements are desirable.

This chapter introduces another class of dependent normalized random measures
called thinned normalized random measures (TNRM). It is constructed by independently
thinning individual atoms of the Poisson process. The merits of TNRM over the
MNRM include:

• by controlling individual atoms in the NRMs, it achieves a more flexible mod-
eling of the dependency structure; and

• each resulting dependent NRM is sparsely represented, which is preferable for
many applications.

Similarly to the MNRM, the construction of TNRM also results in some nice
distributional properties. However, the flexibility of this construction is paid for with
a more complicated posterior structure than the MNRM, which will be shown in this
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thinning thinning

normalization normalization

Figure 7.1: Construction of thinned normalized measures. The two NRMs in the
bottom are dependent because they share some of the original atoms of the Poisson

process from the top.

chapter. Fortunately, with advances of the MCMC, posterior inference can still be
performed efficiently via a slice sampler.

7.2 Thinned Normalized Random Measures

As can be seen in a MNRM, a set of weights control the contribution of the indepen-
dent CRMs to the dependent NRMs at any time, thus forming a ‘softening’ of the
spatial normalized Gamma process [Rao and Teh, 2009] (where each of the CRMs
is either present or absent). The thinned normalized random measure (TNRM) pro-
posed in this chapter, however, is a different generalization in that rather than in-
cluding or excluding entire CRMs, it chooses whether or not individual atoms in
each of the CRMs are present in the NRM at a given time. This can be done by an
operator called thinning or subsampling. More precisely, to each region-time pair (r, t)
we associate a parameter qrt taking values in [0, 1].1 qrt is the subsampling rate of
the atoms in region r for time t, with each atom of region r independently assigned
to time t with probability qrt (otherwise it is thinned). We call the resulting NRMs
thinned normalized random measures (TNRM). Figure 7.1 illustrates the construction of

1Note that this qrt is different from that in MNRM.
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two dependent NRMs by thinning a common Poisson process.
Formally, TNRMs can be constructed as follows:

Definition 7.1 (Thinned Normalized Random Measure). Let a Poisson process on
spaceW⊗Θ⊗R with Lévy measure ν(dw, dθ, da). The thinned normalized random
measure (TNRM) is defined by the following construction:

• For each region Rr, define a completely random measure:

µ̃r(dθ) =
∫

R+×Rr

wN (dw, dθ, da) .

• For each region-time pair (r, t), generate a countably infinite sequence of Bernoulli
random variables:

zrtk ∼ Bernoulli(qrt) .

• For each time t, construct a dependent completely random measure by thinning
µ̃r’s:

µ̃t(dθ) =
#R
∑
r=1

∞

∑
k=1

zrtkwrkδθrk .

• Normalize the completely random measure:

µt(dθ) =
1
Zt

µ̃t(dθ) , where Zt = µ̃t(Θ) . (7.1)

Clearly the µt’s can be shown to be marginally NRMs:

Theorem 7.1. Conditioned on the set of qrt’s, each random probability measure µt de-
fined in (7.1) is marginally distributed as a normalized random measure with Lévy measure
∑r qrtνr(dw, dθ).

Proof. The intuition behind this result is that independently thinning the atoms of a
CRM maintains the property of complete randomness. Thus, µ̂t is a CRM, and µt,
which is obtained by normalizing it is an NRM.

One approach for the proof is to follow the proof of Lemma 5.8 in Chapter 5.
Here a simplified proof is given using the characteristic function of a CRM (3.4).

Denote B = {0, 1}#R×T, from the definition of µ̃t, the underlying point process
can be considered as a Mark-Poisson process in the product space R+ ×Θ×R×B,
where each atom (w, θ) in region Rr is associated with a Bernoulli variable z with
parameter qrt. From the marking theorem of a Poisson process (Theorem 2.6), we
conclude that µ̃t’s are again CRMs.

To derive the Lévy measures, denote dz as the infinitesimal of a Bernoulli ran-
dom variable z, using the Lévy-Khintchine formula for a CRM as in Lemma 3.2, the
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corresponding characteristic functional can be calculated as

E
[
e
∫

Θ iuµ̃t(dθ)
]
= exp

{
−
∫

R+×Θ×R×B

(
1− eiuw

)
ν(dw, dθ, da)dz

}
= exp

{
−
∫

R+×Θ×R

(
1− eiuw

)
qratν(dw, dθ, da)

}
(7.2)

= exp

{
−
∫

R+×Θ

(
1− eiuw

)( #R
∑
r=1

qrtνr(dw, dθ)

)}
, (7.3)

where (7.2) follows by integrating out the Bernoulli random variable z with param-
eter qrat, (7.3) follows by integrating out the region space. According to the unique-
ness property of the characteristic functional, µt’s are marginally normalized random
measure with Lévy measures ∑#R

r=1 qrtνr(dw, dθ).

7.2.1 Comparision with related work

The idea of thinning atoms is similar to [Lin et al., 2010] for DPs and to [Chen et al.,
2012b] for NGGs, but these were restricted to random probability measures with
chain-structured dependency. In addition, posterior samplers developed in these
prior works were approximate. The TNRM is also a generalization of a very recent
work [Lin and Fisher, 2012]. This model is restricted to dependent DPs, and again,
the proposed sampler has an incorrect equilibrium distribution (more details in Sec-
tion 7.3). The TNRM is also related to a recently proposed model in [Foti et al.,
2013], the main differences are: 1) they focus on different thinning constructions of
dependent CRMs; the focus of TNRMs is on normalized random measures, where
the normalization provides additional challenges. 2) Their posterior inference is ap-
proximated based on truncated representations of the CRMs (which are restricted
only to Beta and Gamma CRMs), while TNRMs’ is exact. Finally, the TNRM can be
viewed as an alternative to the IBP compound Dirichlet Process [Williamson et al.,
2010]. These are finite dimensional probability measures constructed by selecting a
finite subset of an infinite collection of atoms (via the Indian buffet process (IBP)).
TNRM makes this to be infinite, allowing it to be used as a convenient building block
in deeper hierarchical models. By treating the atoms present at each time as features,
the TNRM can be contrasted with the Indian buffet process [Griffiths and Ghahra-
mani, 2011]: in addition to allowing an infinite number of possible features, TNRM
allows the number of active features to display phenomena like power-law behavior;
this is not possible in the IBP [Teh and Gorur, 2009; Broderick et al., 2012].

7.2.2 Interpretation as mixture of NRMs

The complication of the TNRM comes from the introduction of the latent selecting
Bernoulli random variables ztrk’s. Incorrect posterior samplers are easily derived
without carefully inspecting its posterior structure. This happens in [Lin et al., 2010]
and [Lin and Fisher, 2012], detailed analysis can be found in [Chen et al., 2013b].
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To reveal the posterior structure of a TNRM, a mixture of NRMs interpretation
is first presented in this section, e.g., it shows that µt is a mixture of NRMs that
are formed by transforming the original µ̃r’s. To show this, associate the kth atom
in a region r ∈ R with a binary vector br(k) of length T. Index the atoms in the
common Poisson process by k, so br

t (k) = 1 means atom k is inherited by the NRM
µt of time t (i.e. ztrk = 1). Accordingly, we can split each region Rr into 2T smaller
subregions, each associated with atoms with a particular configuration2 of br. That
is, each configuration of br corresponds to a new sub-region, and there is totally
2T configurations for each region Rr. It is easy to see that with subregion br =
br

1 · · · br
t of region r, it associates a new CRM G̃rb with Lévy measure ∏T

t=1 qbt
rt(1−

qrt)1−bt νr(dw, dθ), so it is easy to see that

µ̂t(dθ) = ∑
r∈R

∑
(b s.t. bt=1)

G̃rb(dθ) (7.4)

µt(dθ) =
µ̂t(dθ)

µ̂t(Θ)
(7.5)

Thus, the NRM at any time t can be expressed as a mixture of a number of NRMs
defined as

Grb(dθ) = G̃rb(dθ)/G̃rb(Θ) .

This number is exponential in the number of times T. The interpretation of a single
thinned NRM is illustrated in Figure 7.2. We can also see from this interpretation that
TNRMs can be seen as fixed-weight (binary) MNRMs but with many more regions
(which is 2T). The number of components also grows linearly with the number of
regions #R; we will see that this flexibility improves the performance of the model
without too great an increase in complexity.

                                             

                                            2T
        

                                           …… 

 

 

    µ                               µ  

G   
1G   2G   

2TG

  Equal Thinning 

Superposition 

Figure 7.2: Interpretation of TNRM as a mixture of 2T NRMs. The thinned version µ
of the NRM G is equivalent to a mixture of 2T NRMs Gi’s, where each Gi represents

the NRM corresponding to one configuration of the b defined in the text.

2Each configuration is an assignment of the vector br, thus there are totally 2T configurations.
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7.3 Conditional Posterior of TNRM

One difficult problem with the TNRM is its conditional posterior distribution, i.e.,
given observations from all µt’s, what is the posterior Lévy measure of µ̃r for the
regions? One might argue that because µt is constructed by superpositioning thinned
versions of the independent CRMs µ̃r, the posterior Lévy measure would also be the
thinned Lévy measures of µ̃r’s, i.e., ν∗r = (∑t qrt) νr. Unfortunately, this is not true. It
actually ends up with a fairly complex Lévy measure that is beyond computational
tractability, making the marginalization difficult and impractical. In the following
theorem, as in the normalized random measure case, we need to condition on the
latent relative mass auxiliary variable µt for each t, then we have

Theorem 7.2. Given observations associated with atoms W = {(w1, θ1), · · · , (wK, θK)} in
region Rr, and auxiliary variables ut (the latent relative mass) for each t ∈ T , the remaining
atoms in the Poisson process in region Rr are independent of W, and are distributed as a
CRM with Lévy measure3

ν′r(dw, dθ) = ∏
t

(
1− qrt + qrte−utw

)
νr(dw, dθ) .

Proof. The independence of the atoms with and without observations directly follows
from the property of the completely random measures [James et al., 2009]. It remains
to proof the Lévy measure of the random measure formed by the random atoms of
the corresponding Poisson process.

The way to prove the posterior Lévy measure is again to apply Theorem 2.12
of the Poisson process partition calculus, where the idea is to formulate the joint
distribution of the Poisson random measure and the observations into an exponential
tilted Poisson random measure. Note it suffices to consider one region case because
the CRMs between regions are independent. For notational simplicity we omit the
subscript r in all the statistics related to r, e.g., ntrw is simplified as ntw.

Now denote the base random measure as µ̃, then construct a set of dependent
NRMs µt’s by thinning µ̃ with different rates qj. Given observations for µt’s, it follows
that the joint distribution for {µt} and observations with statistics {ntw} is

p({ntw}, {µt}) = ∏
t

∏k w
ntwk
k

(∑k′ ztk′wk′)
Nt

P(N |ν) .

Now we introduce an auxiliary variable ut for each t via Gamma identity, and the
joint becomes

p({ntw}, {µt}, {ut}) = ∏
t

∏k:ntwk>0 w
ntwk
k

Γ(Nt)
∏

k
e−∑t ztkutwk P(N |ν) .

3The auxiliary variables ut’s also have the corresponding posteriors, but are fairly complex. They
can be obtained by inspecting the posterior (7.20) in the following sections with an accurate approxi-
mation given in Section 7.4.4.
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Now integrate out all the ztk’s in the exponential terms we have:

E{ztk}

[
∏

k
e−∑j zjikujwk

]
= ∏

k
∏

j

(
1− qj + qje−ujwk

)
= exp

(
−∑

k
∑

j
− log

(
1 + qj

(
e−ujwk − 1

)))

Let f = −∑k ∑j log
(
1 + qj

(
e−ujwk − 1

))
, g(N ) = 1 in Theorem 2.12, then by apply-

ing the theorem, we conclude that the Poisson process has posterior mean measure
of

e− f (w)ν(dw, dθ) = ∏
j

(
1− qj + qje−ujw

)
ν(dw, dθ) ,

which is the conditional Lévy measure of µ̃ by the relationship between a Poisson
process and the CRM constructed from it.

Remark 7.3. Theorem 7.2 indicates that conditioned on observations, the remaining
weights are distributed as a CRM from a different family than the original one. The
marginal samplers in [Lin et al., 2010; Lin and Fisher, 2012] implicitly assume these
are the same, and are incorrect. Please refer to [Chen et al., 2013b] for more details.

By looking at the posterior intensity of the Poisson process in region Rr in Theo-
rem 7.2, we see that marginalization over this Poisson random measure is impractical
for posterior inference. For example, the following theorem shows the complicated
marginal posterior of the TNRM under a specific class of the normalized random
measure – the normalized generalized Gamma process, denoted as TNGG.

Theorem 7.4. Given observations X for all times, introduce a set of auxiliary variables {ut},
the marginal posterior for the TNGG is given by

p(X, u, {stl}, {gtl}|σ, {Mr}, {zrtk}k:n·rk>0, {qrt}) (7.6)

=

(
σ

Γ(1− σ)

)∑r Kr
(

∏
r

MKr
r

)(
∏

t

uNt−1
t

Γ(Nt)

)
(

∏
r

∏
k:n·rk>0

Γ(n·rk − σ)

(1 + ∑t zrtkut)
n·rk−σ

)(
∏

t
∏

l
f (xtl |θgtlstl )

)
(7.7)

∏
r

exp

−Mr

 ∑
z′rt∈{0,1}

for t=1···T

((
∏

t′
q

z′rt′
rt′ (1− qrt′)

1−z′rt′

)(
(1 + ∑

t′
z′rt′ut′)

σ − 1

))
 ,

where in the last line ∑
z′rt∈{0,1}

for t=1···T

=
1
∑

z′r1=0

1
∑

z′r2=0
· · ·

1
∑

z′rT=0
.
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Proof. Let Grt = ∑k
ztrkwrk

∑k′ ztrk′wrk′
δθrk , from the property of Poisson process we see that

Grt is a CRM in the augmented space R+ ×Θ× {0, 1}. Given the observed data, the
likelihood is given by

p(X, {stl}, {gtl}|{Grt})

=
∏T

t=1 ∏I
r=1 ∏Kr

k=1 wntrk
rk

∏T
t′=1 (∑r′ ∑k′ zr′t′k′wr′k′)

Nt′

T

∏
t=1

Lt

∏
l=1

f (xtl|θgtl stl
) , (7.8)

where zrtk ∼ Bernoulli(qrt), 0 ≤ qrt ≤ 1.

Now introducing auxiliary variables u via the Gamma identity, we have

p(X, u, {stl}, {gtl}|{Grt})

=

(
T

∏
t=1

I

∏
r=1

Kr

∏
k=1

wntrk
rk

)(
T

∏
t=1

Lt

∏
l=1

f (xtl |θgtlstl )

)(
∏

t

uNt−1
t

Γ(Nt)

)
(

exp

{
−∑

t
∑

r
∑

k
zrtkutwrk

})
(7.9)

Denote Υ = {0, 1} ⊗ · · · ⊗ {0, 1}︸ ︷︷ ︸
T

, dRr = dzr1 · · ·dzrT, since {Grt}’s are CRMs, now

integrate out {Gr}’s with Lévy-Khintchine formula in Lemma 3.2 as well as the Pois-
son process partition calculus formula in Theorem 2.12 we have

p(X, u, {stl}, {gtl}|σ, {Mr}) = E{Grt} [p(X, u, {stl}, {gtl}|{Grt})]

=

(
σ

Γ(1− σ)

)∑r Kr
(

∏
r

MKr
r

)(
∏

t

uNt−1
t

Γ(Nt)

)
(

∏
r

∏
k:n·rk>0

Γ(n·rk − σ)(
1 + ∑t z′rtkut

)n·rk−σ

)(
T

∏
t=1

Lt

∏
l=1

f (xtl |θgtlstl )

)

∏
r

exp
{
− σMr

Γ(1− σ)

∫
Υ

∫
Θ

∫
R+

(
1− e−∑t zrtxutx

) e−x

x1+σ
dxdθdRr

}
(7.10)

Taylor
=

expansion

(
σ

Γ(1− σ)

)∑r Kr
(

∏
r

MKr
r

)(
∏

t

uNt−1
t

Γ(Nt)

)
(

∏
r

∏
k:n·rk>0

Γ(n·rk − σ)(
1 + ∑t z′rtkut

)n·rk−σ

)(
T

∏
t=1

Lt

∏
l=1

f (xtl |θgtlstl )

)

∏
r

exp

{
− σMr

Γ(1− σ)

∫
Υ

∫
Θ

∫
R+

∞

∑
n=1

(−1)n−1 (∑t zrtxut)
n xn

n!
e−x

x1+σ
dxdθdRr

}
Integrate out

=
all zrtx

(
σ

Γ(1− σ)

)∑r Kr
(

∏
r

MKr
r

)(
∏

t

uNt−1
t

Γ(Nt)

)
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(
∏

r
∏

k:n·rk>0

Γ(n·rk − σ)(
1 + ∑t z′rtkut

)n·rk−σ

)(
T

∏
t=1

Lt

∏
l=1

f (xtl |θgtlstl )

)

∏
r

exp

−
σMr

Γ(1− σ)

 ∑
z′rt∈{0,1}

for t=1···T

∞

∑
n=1

(−1)n−1

(
∑t′ z′rt′ut′

)n

n!

(
∏

t′
q

z′rt′
rt′ (1− qrt′)

1−z′rt′

∫
R+

xn−σ−1e−xdx

)]}

=

(
σ

Γ(1− σ)

)∑r Kr
(

∏
r

MKr
r

)(
∏

t

uNt−1
t

Γ(Nt)

)
(

∏
r

∏
k:n·tk>0

Γ(n·rk − σ)(
1 + ∑t z′rtkut

)n·rk−σ

)(
T

∏
t=1

Lt

∏
l=1

f (xtl |θgtlstl )

)
(7.11)

∏
r

exp

−Mr

 ∑
z′rt∈{0,1}

for t=1···T

((
∏

t′
q

z′rt′
rt′ (1− qrt′)

1−z′rt′

)(
(1 + ∑

t′
z′rt′ut′)

σ − 1

))


where zrtx in (7.10) means a Bernoulli random variable drawn at atom x with pa-
rameter qrt. The last equation follows by applying the following result

∞

∑
n=1

(−1)n−1 λn

n!
Γ(n− σ)

=
∞

∑
n=1

(−1)n−1λn Γ(n− σ)

n!

=
1
σ

(
∞

∑
n=1

(−1)n−1σΓ(n− σ)

n!
λn

)

=
Γ(1− σ)

σ

(
∞

∑
n=1

σ(σ− 1) · · · (σ− n + 1)
n!

λn

)
(7.12)

=
Γ(1− σ)

σ
[(1 + λ)σ − 1] ,

where the summation in (7.12) is the Taylor expansion of (1 + λ)σ − 1.

�

7.4 Posterior Inference

Without loss of generality, this section shows how to do posterior inference on a
specific class of the TNRM – thinned normalized generalize Gamma process (TNGG),
with both marginal sampler and slice sampler.
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7.4.1 Marginal posterior for thinned normalized generalized Gamma pro-
cesses

This section proposes a marginal sampler for TNGG based on the marginal poste-
rior (7.6). To achieve full marginalization and sample the topic allocation variables
(stl , gtl), the Bernoulli random variables zrtk’s for the fixed jumps in (7.7) need to be
further integrated out. So the terms in the first parenthesis of (7.7) is first augmented
by instantiating a set of jump size variables wrk’s distributed as

wrk ∼ Gamma

(
n·rk − σ, 1 + ∑

t
zrtkut

)
. (7.13)

Further denote u = (u1, · · · , uT), and b as a length T binary vector, and denote

∑
b

=
1

∑
b1=0

1

∑
b2=0
· · ·

1

∑
bT=0

,

then the first parenthesis in (7.7) can be rewritten as

∏
r

∏
k:n·rk>0

wn·rk−σ
rk e−wrk ∏

t
e−zrtkutwrk

integrate out zrtk−−−−−−−−−−−→∏
r

∏
k:n·rk>0

wn·rk−σ
rk e−wrk ∏

t

(
1− qrt + qrte−utwrk

)
= ∏

r
∏

k:n·rk>0
wn·rk−σ

rk ∑
b

(
∏

t
qbt

rt(1− qrt)
bt

)
e−(1+<u,b>)wrk

integrate out wrk−−−−−−−−−−−→∏
r

∏
k:n·rk>0

∑
b

(
∏

t
qbt

rt(1− qrt)
bt

)
Γ(n·rk − σ)

(1+ < u, b >)n·rk−σ ,

where < ·, · > denotes the inner produce. Based on this, the sampling goes as

Sample (stl , gtl): for the current time t, the corresponding bt value is equal to 1, thus
the conditional probability for (stl , gtl) is proportional to

p(stl = k, gtl = r|C− stl − gtl)

∝


qrt(n

\tl
·rk − σ)

(
∑b:bt=1

∏t′ 6=t q
bt′
rt′ (1−qrt)

1−bt′

1+<u,b>

)
f \tlrk (xtl), if k already exists,

σ

(
∑r′ qr′t Mr′ ∑b:bt=1

∏t′ 6=t q
bt′
r′ t′ (1−qr′ t′ )

1−bt′

(1+<u,b>)1−σ

) ∫
Θ f (xtl |θ)h(θ)dθ, if k is new.
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When T = 2 this simplifies to:

∝

qrt(n
\tl
·rk − σ)

(
1−qrt̃
1+ut̃

+ qrt̃
1+u1+u2

)
f \tlrk (xtl), if k already exists,

σ
(

∑r′ qr′t Mr′
(

1−qr′ t̃
(1+ut̃)

1−σ +
qr′ t̃

(1+u1+u2)
1−σ

)) ∫
Θ f (xtl |θ)h(θ)dθ, if k is new

where t̃ = 1 when t = 2; and t̃ = 2 when t = 1; and similar to previous chapter

f \tlrk (xtl) =

∫
f (xtl |θrk)∏t′ l′ 6=tl,st′ l′=k,gt′ l′=r f (xt′ l′ |θrk)h(θrk)dθrk∫

∏t′ l′ 6=tl,st′ l′=k,gt′ l′=r f (xt′ l′ |θrk)h(θrk)dθrk

is the conditional density.

Sample Mr: Mr has a Gamma distributed posterior as

Mr|C−Mr ∼

Gamma

(
Kr + am, ∑

b

(
∏

t
qbt

rt(1− qrt)
1−bt

)
((1+ < u, b >)σ − 1) + bm

)
,

where (am, bm) are parameters of the Gamma prior for Mr.

To sample ({ut}, {qrt}, σ), the fixed jumps wrk are first instantiated as in (7.13), then
the latent Bernoulli variables zrtk for (k : n·rk > 0) can be sampled using the following
rule

p(zrtk = 1|C− zrtk) =

1, if ntrk > 0 ,
qrte−utwrk

1−qrt+qrte−utwrk
, if ntrk = 0 .

Sampling for other parameters can also be read from the posterior:

Sample ut: the posterior of ut has the following form:

p(ut|C− ut) ∝ uNt−1
t e−(∑r ∑k:n·rk>0 zrtkwrk)ut e

−∑r Mr ∑b

(
∏t′ q

bt′
rt′ (1−qrt′ )

1−bt′
)
(1+<u,b>)σ)

,
(7.14)

this is log-concave after using a change of variable vt = log(ut). Another possi-
ble way for the sampling is to note that the posterior of ut above is bounded by
the first two terms, which is a Gamma distribution. Thus we can first sample ut

from a Gamma distribution: ut ∼ Gamma
(

Nt, ∑r ∑k:n·rk>0 zrtkwrk
)
, then use a

rejection step evaluated on the true posterior (7.14), though the acceptance rate
would probably be low.



138 Thinned Normalized Random Measures

Sample qrt: the posterior of qrt follows:

p(qrt|C− qrt) ∝ q
∑k:n·tk>0 1(zrtk=1)+aq−1
rt (1− qrt)

∑k:n·tk>0 1(zrtk=0)+bq−1 (7.15)

e
−Mr ∑b

(
∏t′ q

bt′
rt′ (1−qrt′ )

1−bt′
)
((1+<u,b>)σ−1)

, (7.16)

where (aq, bq) are parameters of the Beta prior for qrt’s. This is again log-
concave, and can be sampled using the slice sampler. Also, similar to sampling
ut, we can also first sample qrt from a

Beta

(
∑

k:n·tk>0
1(zrtk = 1) + aq, ∑

k:n·tk>0
1(zrtk = 0) + bq

)

proposal distribution and do a rejection step based on the true posterior (7.15).

Sample σ: From (7.6), σ has the following posterior:

p(σ|C− σ) ∝
(

σ

Γ(1− σ)

)K·
(

∏
r

∏
k:n·rk>0

wrk

)σ

∏
r

e−Mr ∑b

(
∏t qbt

rt (1−qrt)1−bt
)
(1+<u,b>)σ),

this is log-concave as well and can be sampled with the slice sampler.

We can see from the above marginal sampler for TNGG that it is computationally
infeasible even for a moderately large time T. The reason being that the marginal
posterior contains a 2T summation term, thus computation complexity grows expo-
nentially with the number of times. Alternatively, based on the recent development
of sampling for normalized random measures [Griffin and Walker, 2011; Favaro and
Teh, 2013], a slice sampler for TNGG is developed in the next section which greatly
reduces the computational cost.

7.4.2 Posterior inference for the TNGG via slice sampling

This section describes a slice sampler for the thinned normalized generalized Gamma
process (TNGG). The idea behind the slice sampler has been described in Chapter 6,
which basically is to stochastically truncate the infinite atoms in the model to finite
ones so that the model is computationally manageable. Note the derivation here is
similar in part to the MNRM, but different in that there are extra Bernoulli random
variables zrtk’s to be handled.

Specifically, as in last chapter, let’s first introduce a slice auxiliary variable vtl for
each observation such that

vtl ∼ Uniform(wgtlstl ) .

Based on (7.9), now the joint likelihood of observations and related auxiliary variables
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becomes

p(X, u, {vtl}, {stl}, {gtl}|{µr}, {zrtk}, {qrt})

=

(
∏

t
∏

l
1
(
wgtlstl > vtl

)
f (xtl |θgtlstl )

)(
∏

t

uNt−1
t

Γ(Nt)

)
(

exp

{
−∑

t
∑

r
∑

k
zrtkutwrk

})
(7.17)

Denote ρ′(dx) = x−1−σe−x. In the slice sampler we want to instantiate the jumps
larger than a threshold, say Lr, for region R̃r. As a result, the joint distribution of
the observations, related auxiliary variables and the Poisson random measure {Nr}
becomes

p(X, u, {vtl}, {µr}, {stl}, {gtl}|{zrtk}, {qrt})

=

(
∏

t
∏

l
1(wgtlstl > vtl) f (xtl |θgtlstl )

)(
∏

t

uNt−1
t

Γ(Nt)

)
(

exp

{
−∑

t
∑

r
∑

k
zrtkutwrk

})
∏

r
P(Nr)

slice at Lr=

(
∏

t
∏

l
1(wgtlstl > vtl) f (xtl |θgtlstl )

)(
∏

t

uNt−1
t

Γ(Nt)

)

exp

{
−∑

t
∑

r
∑

k
zrtkutwrk

}
︸ ︷︷ ︸

jumps larger than Lr

∏
r

p({(wr1, θr1)}, · · · , {(wrK′r , θrK′r)}) (K′r is # jumps larger than Lr)

∏
r

exp

{
− σMr

Γ(1− σ)

∫ Lr

0

(
1−∏

t

(
1− qrt + qrte−utx

))
ρ′(dx)

}
︸ ︷︷ ︸

jumps less than Lr , according to Theorem 7.2

(7.18)

small Lr=

(
∏

t
∏

l
1(wgtlstl > vtl) f (xtl |θgtlstl )

)(
∏

t

uNt−1
t

Γ(Nt)

)

exp

{
−∑

t
∑

r
∑

k
zrtkutwrk

}
︸ ︷︷ ︸

jumps larger than Lr

∏
r

(
σMr

Γ(1− σ)

)K′r
exp

{
− σMr

Γ(1− σ)

∫ ∞

Lr

ρ′(dx)
}

∏
k

w−1−σ
rk e−wrk︸ ︷︷ ︸

p({(w1k ,θ1k)},{(w2k ,θ2k)},··· ,{(wIk ,θIk)})

(7.19)
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∏
r

exp

{
− σMr

Γ(1− σ)

∫ Lr

0

(
(∑

j
qrtut)x + O((utx)2)

)
ρ′(dx)

}
︸ ︷︷ ︸

jumps less than Lr

(7.20)

≈
(

∏
t

∏
l

1(wgtlstl > vtl) f (xtl |θgtlstl )

)(
∏

t

uNt−1
t

Γ(Nt)

)
exp

{
−∑

t
∑

r
∑

k
zrtkutwrk

}
︸ ︷︷ ︸

jumps larger than Lr

∏
r

(
σMr

Γ(1− σ)

)K′r
exp

{
− σMr

Γ(1− σ)

∫ ∞

Lr

ρ′(dx)
}

∏
k

w−1−σ
rk e−wrk︸ ︷︷ ︸

p({(w1k ,θ1k)},{(w2k ,θ2k)},··· ,{(wIk ,θIk)})

exp

{
−∑

r
(∑

t
qrtut)Mr

σL1−σ
r

(1− σ)Γ(1− σ)

}
︸ ︷︷ ︸

jumps less than Lr

, (7.21)

where (7.19) is the joint density of a finite jumps from the Poisson process, since it
is a compound Poisson process, so the density is:

p((wr1, θr1), (wr2, θr2), · · · , (wrKr , θrKr))

= Poisson
(

Kr;
σMr

Γ(1− σ)

∫ ∞

Lr

ρ′(dx)
)

Kr!
Kr

∏
k=1

ρ′(wrk)∫ ∞
Lr

ρ′(dx)
,

where we assume the Lévy measure is decomposed as ν(dw, dθ) = ρ(dw)H(dθ),
Poisson(k; A) means the density of the Poisson distribution with mean A under value
k.

Further integrate out all the {zrtk}’s, we have

p(X, u, {vtl}, {wrk}, {stl}, {gtl}|σ, {Mr})

≈
(

T

∏
t=1

Lt

∏
l=1

1(wgtlstl > vtl) f (xtl |θgtlstl )

)(
∏

t

uNt−1
t

Γ(Nt)

)
(

∏
t

∏
r

∏
k:ntrk=0

(
1− qrt + qrte−utwrk

)
∏

k:ntrk>0

e−utwrk

)
︸ ︷︷ ︸

jumps larger than Lr

∏
r

(
σMr

Γ(1− σ)

)K′r
exp

{
− σMr

Γ(1− σ)

∫ ∞

Lr

ρ′(dx)
}

∏
k

w−1−σ
rk e−wrk︸ ︷︷ ︸

p({(w1k ,θ1k)},{(w2k ,θ2k)},··· ,{(wIk ,θIk)})

exp

{
−∑

r
(∑

t
qrtut)Mr

σL1−σ
r

(1− σ)Γ(1− σ)

}
︸ ︷︷ ︸

jumps less than Lr

(7.22)



§7.4 Posterior Inference 141

7.4.3 Bound analysis

Note that in the above derivation, to make the inference feasible, a linear approxi-
mation for an exponential function in (7.18) is used to make it become (7.21). For
the interest of theoretical analysis, this section derives the upper bound and lower
bound of the true posterior, which are shown in (7.24) and (7.25) respectively, allow-
ing the integration to be worked out. Actually, the only approximation used is by
replacing the term e−utw with its linear upper bound and lower bound as in (7.23).
This approximation is quite accurate given ut � 1/Lr, and this is easily satisfied by
choosing an appropriate threshold Lr in the sampling 4.

To derive the lower bound and upper bound of the true posterior (7.18), first
define the following notation:

tr
min = arg min

t:qrt 6=0
{qrt(1− e−utLr)},

tr
max = arg max

t
{qrtut}.

Also denote the last term in (7.18) as Q̃r(Lr), i.e.,

Q̃r(Lr) = exp

{
− σMr

Γ(1− σ)

∫ Lr

0

(
1−∏

t

(
1− qrt + qrte−utx

))
ρ′(dx)

}
.

Use the following inequality:

1− utx ≤ e−utx ≤ 1− 1− e−ut L

L
x, ∀L ≥ x. (7.23)

the upper bound for Q̃r(Lr) is given as:

Q̃r(Lr) ≤

exp

{
−
∫ Lr

0

σMr

Γ(1− σ)

(
1−∏

t

(
1− qrt(1− e−utLr)

Lr
x
))(

x−σ−1 − x−σ
)

dx

}

≤ exp

−
∫ Lr

0

σMr

Γ(1− σ)

1−

1−
qrtr

min
(1− e−utrmin

Lr)

Lr
x

T
(x−σ−1 − x−σ

)
dx


≤ exp

−
∫ Lr

0

σMr

Γ(1− σ)

(
2− qrtr

min
(1− e−utrmin

Lr)
)T/2

qrtr
min
(1− e−utrmin

Lr)

Lr

T/2

xT/2
(

x−σ−1 − x−σ
)

dx
}

4It is chose as Lr = min
{

0.001/ maxt{ut}, min(t,l):gtl=r{vtl}
}

in the experiments.
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= exp

− σMr

Γ(1− σ)

qrtr
min
(1− e−utrmin

Lr)

Lr

T/2 (
2− qrtr

min
(1− e−utrmin

Lr)
)T/2

(
2

T − 2σ
− 2Lr

T − 2σ + 2

)
L

T
2−σ
r

}
. (7.24)

Similarly, the lower bound is given as:

Q̃r(Lr) ≥

exp

{
−
∫ Lr

0

σMr

Γ(1− σ)

(
1−∏

t
(1− qrtutx)

)(
x−σ−1 − 1− e−Lr

Lr
x−σ

)
dx

}

≥ exp
{
−
∫ Lr

0

σMr

Γ(1− σ)

(
1−

(
1− qrtr

max utr
max x

)T
)(

x−σ−1 − 1− e−Lr

Lr
x−σ

)
dx
}

≥ exp
{
−
∫ Lr

0

σMr

Γ(1− σ)
2T/2 (qrtr

max utr
max

)T/2 xT/2
(

x−σ−1 − 1− e−Lr

Lr
x−σ

)
dx
}

= exp
{
− σMr

Γ(1− σ)

(
qrtr

max utt
max

)T/2 2T/2
(

2
T − 2σ

− 2(1− e−Lr)

T − 2σ + 2

)
L

T
2−σ
r

}
. (7.25)

7.4.4 Sampling

Now the sampling is straightforward by inspecting the posterior (7.21). First note the
variables needed to be sampled include the jumps {wrk}’s (with or without obser-
vations), the Bernoulli variables {zrtk}’s, mass parameters {Mr}’s, atom assignment
{stl}’s, source assignment {gtl}’s and auxiliary variables ut’s as well as the index
parameter σ. The whole set is denoted as C, then the sampling goes as follows:

Sample (stl , gtl): (stl , gtl) are jointly sampled as a block, it is easily seen the posterior
is:

p(stl = k, gtl = r|C− {stl , gtl}) ∝ 1(wrk > vtl)1(zrtk = 1) f (xtl |θgtlstl ) . (7.26)

Sample vtl : vtl is uniformly distributed in interval (0, wgtlstl ], so

vtl |C− vtl ∼ Uniform(0, wgtlstl ) . (7.27)

Sample wrk: There are two kinds of wrk’s, one is with observations, the other is not,
because they are independent, they are sampled separately:

• Sample wrk’s with observations: It can easily be seen that these wrk’s
follow Gamma distributions as

wrk|C− wrk ∼ Gamma

(
∑

t
ntrk − σ, 1 + ∑

t
zrtkut

)
,
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• Sample wrk’s without observations: We already know that these wrk’s
are Poisson points in a Poisson process, and from Theorem 7.2 we know
the mean measure of the Poisson process is

ν(dw, dθ) = ρ(dw)H(dθ) = ∏
t
(1− qrt + qrte−utw)νr(dw, dθ) ,

where νr(dw, dθ) = ρ(dw)H(dθ) is the Lévy measure of µr in region Rr.
So now sampling wrk’s means instantiating a Poisson process with the
above intensity, since such Poisson process has infinite points but we only
need those points with wrk larger than the threshold Lr, this is finite and
the instantiation can be done. An efficient way to do this is to use the
adaptive thinning approach in [Favaro and Teh, 2013], as it does not re-
quire any numerical integrations but only the evaluation of the mean mea-
sure ρ(dw). The idea behind this approach is to sample the points from
a nice Poisson process with intensity pointwise larger than the intensity
needed to be sampled. In another word, we need define a Poisson process
with mean measure γx(s) that adaptively bounds ρ, i.e.:

γx(x) = ρ(x)
γx(s) ≥ ρ(s) ∀s > x
γx(s) ≥ γx′(s) ∀x′ ≥ x

Furthermore, it is expected both γx(s) and the inversion are analytically
tractable with

∫ ∞
x γx(s′)ds′ < ∞ to facilitate the computation. Then the

samples from the Poisson process with mean measure ρ(dw) can be ob-
tained by adaptively thinning some of the instantiated points in the Pois-
son process with mean measure γx(s). For TNGG, the following adaptive
mean measure is found to be a good one:

γx(s) =
σMr

Γ(1− σ) ∏
t

(
1− qrt + qrte−utx

)
e−sx−1−σ (7.28)

Clearly it satisfies
γx(s) ≥ ρ(s), x ≤ s,

γx(s) ≥ γx′(s), x′ ≥ x ,

Furthermore, we have:

Wx(s) :=
∫ s

x
γx(s′)ds′ =

∫ s

x

σMr

Γ(1− σ) ∏
x

(
1− qrt + qrte−utx

)
e−s′x−1−σds′

=
Mr

Γ(1− σ) ∏
t

(
1− qrt + qrte−utx

)
x−1−σ

(
e−x − e−s) (7.29)
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So

W−1
x (y) = x− log

(
1− Γ(1− σ)x1+σex

σMr ∏t
(
1− qrt + qrte−ujx

)y

)
.

Finally, the sampling for these wik’s goes as in Algorithm 1:

Algorithm 1 Simulate inhomogeneous Poisson process with mean measure ρ(ds) on
[L, ∞]

1: N := 0, x := L;
2: repeat
3: let e be a draw from an Exponential random variable with parameter 1;
4: if e > Wx(∞) then
5: terminate;
6: else
7: set x′ := W−1

x (e);
8: end if
9: with probability ρ(x′)/γx(x′) accept sample, and set N := N + δx′ ;

10: set x := x′ and continue to next iteration;
11: until termination
12: return N as a draw from the Poisson random measure with mean ρ on [L, ∞].

Sample zrtk: For those wrk’s with observations from time t, clearly the posterior is

p(zrtk = 1|C− zrtk) = 1 .

For those without observation, according to (7.8), given all the wrk’s, the poste-
rior of the Bernoulli random variable zrtk is

p(zrtk = 1|C− zrtk) =
qrte−utwrk

1− qrt + qrte−utwrk
.

Sample Mr, ut, qrt and σ: The simplest procedure to sample Mr, ut and qrt is to use
an approximated Gibbs sampler based on the accurate approximated posterior
(7.21) and (7.22):

• Sample Mr: Mr has a Gamma distribution as

Mr|C−Mr ∼ Gamma

(
K′r + 1,

σ

Γ(1− σ)

∫ ∞

Lr

ρ′(dx) +
σL1−σ

r
(1− σ)Γ(1− σ) ∑

t
qrtut

)
,

where K′r is the number of jumps larger than the threshold Lr, and the
integral can be evaluated using numerical evaluation or the incomplete
Gamma function described in Theorem 3.15.
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• Sample ut: ut also has a Gamma distribution as

ut|C− ut ∼ Gamma

(
Nt, ∑

r
∑

k
zrtkwrk +

σ

(1− σ)Γ(1− σ) ∑
r

qrt MrL1−σ
r

)
.

• Sample qrt: the posterior of qrt is proportional to:

p(qrt|C− qrt) ∝ ∏
k:ntrk=0

(
1− qrt + qrte−utwrk

)
e−

σMrutL
1−σ
r

(1−σ)Γ(1−σ)
qrt , (7.30)

which is log-concave. Now if we start from the construction, and further
employ a Beta prior with parameter aq and bq for each qrt, then it can be
easily seen that given zrtk, the approximated conditional posterior of qrt is

qrt|C− qrt ∼ Beta

(
∑

k
1(zrtk = 1) + aq, ∑

k
1(zrtk = 0) + bq

)
.

• Sample σ: based on (7.21), the posterior of σ is proportional to:

p(σ|C− σ) ∝
(

σ

Γ(1− σ)

)∑r K′r
exp

{
− σMr

Γ(1− σ)

∫ ∞

Lr

ρ′(dx)
}(

∏
r

∏
k

wrk

)−σ

exp

{
−∑

r
(∑

t
qrtut)Mr

σL1−σ
r

(1− σ)Γ(1− σ)

}
,

which can be sampled using the slice sampler Neal [2003].

Sample Mr, ut, qrt using pseudo-marginal Metropolis-Hastings: Note the above sam-
pler for Mr, ut and qrt is not exact because it is based on an approximated pos-
terior. A possible way for exact sampling is by a Metropolis-Hastings schema.
However, note that the integral in (7.20) is hard to evaluate, making the general
MH sampler infeasible. A strategy to overcome this is to use the pseudo-marginal
Metropolis-Hastings (PMMH) method [Andrieu and Roberts, 2009]. The idea be-
hind PMMH is to use an unbiased estimation of the likelihood which is easy to
evaluate instead of the original likelihood.

Formally, assume we have a system with two sets of random variables M and
J, in which J is closely related to M 5, i.e.,

p(M, J) = p(M)p(J|M) .

To sample M, we use the proposal distribution

Q(M∗, J∗|M, J) = Q(M∗|M)p(J∗|M∗) ,

5In our case J corresponds to the random points {wrk} in the Poisson process, and M corresponds
to Mr, ut or qrt.
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the acceptance rate is:

A = min
(

1,
p(M∗, J∗, X)Q(M, J|M∗, J∗)
p(M, J, X)Q(M∗, J∗|M, J)

)
= min

(
1,

p(M∗, J∗, X)Q(M|M∗)p(J|M)

p(M, J, X)Q(M∗|M)p(J∗|M∗)

)
= min

(
1,

p(M∗)Q(M|M∗)p(X|M∗, J∗)
p(M)Q(M∗|M)p(X|M, J)

)
(7.31)

Here p(X|M, J) is an approximation to the original likelihood. To make the
PMMH correct, p(X|M, J) is required to be unbiased estimation of the true
likelihood p∗(X|M, J), that is

E[p(X|M, J)] = cp∗(X|M, J),

where c is a constant.

To sample Mr, ut and qrt, we can use the approximation (7.21), which is un-
biased with respective to the random points wrk’s, and also according to the
bound analysis in Section 7.4.3, the approximated likelihood is accurate if Lr is
small enough. Note that to sample with the PMMH, we need to evaluate the
approximated likelihood p(X|{ut}, {Mr}, {qrt}, {wrk}) on the proposed M∗r , u∗t
and q∗rt, which usually has heavy computationally cost given a large number of
simulated atoms, thus this method is not a good choice in term of computa-
tional cost. This procedure goes as in Algorithm 2.

Algorithm 2 PMMH sampling for Mr and ut

1: repeat
2: Assume the current state as Mr, ut, qrt, use this state to simulate the jumps

larger than Lr from a Poisson process, following Algorithm 1.
3: Sample the Bernoulli variables zrtk’s
4: Use these jumps and zrtk’s to evaluate the approximated likelihood (7.21).
5: Propose a move

M∗r ∼ QM(M∗r |Mr),

ut ∼ Qu(u∗t |ut) , and

qrt ∼ Qq(q∗rt|qrt) .

6: Use this state to simulate the jumps larger than Lr from a Poisson process with
Algorithm 1.

7: Use these jumps to evaluate the approximated likelihood (7.21).
8: Do the accept-reject step using (7.31).
9: until converged
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Specifically, we usually use Gamma priors for Mr, ut and Beta prior for qrt, e.g.:

p(Mr) ∼ Gamma(aM, bM) =
baM

M
Γ(aM)

MaM−1
r e−bM Mr ,

p(ut) ∼ Gamma(au, bu) =
bau

u

Γ(au)
uau−1

t e−buut ,

p(qrt) ∼ Beta(aq, bq) =
Γ(aq + bq)

Γ(aq)Γ(bq)
qaq−1

rt (1− qrt)
bq−1 .

Also we would choose a random walk proposal in the log spaces of Mr, ut and
qrt, i.e.,

Q(log(M∗r )| log(Mr)) =
1√

2πσM
exp

{
(log(M∗r )− log(Mr))2

2σ2
M

}

Q(log(u∗t )| log(ut)) =
1√

2πσu
exp

{
(log(u∗t )− log(ut))2

2σ2
u

}
.

Q(log(q∗rt)| log(qrt)) =
1√

2πσq
exp

{
(log(q∗rt)− log(qrt))2

2σ2
q

}
.

Now the acceptance rates are easily seen to be

Am =

(
M∗r
Mr

)aM

e−bM(M∗r−Mr)
p(X|M∗r , {Mj}j 6=r, {ut}, {qrt}, {J∗})

p(X|{Mr}, {ut}, {qrt}, {J}) ,

Au =

(
u∗t
ut

)au

e−bu(u∗t−ut)
p(X|u∗t , {ui}i 6=t, {Mr}, {qrt}, {J∗})

p(X|{ut}, {Mr}, {qrt}, {J}) ,

Aq =

(
q∗rt
qrt

)aq
(

1− q∗rt
1− qrt

)bq−1 p(X|{q∗rt}, {ut}, {Mr}, {J∗})
p(X|{qrt}, {ut}, {Mr}, {J}) ,

where p(X|{Mr}, {ut}, {J}) is the evaluation of (7.21) with the current set of
parameters {{Mr}, {ut}, {qrt}, {wrk}}.

The above description completes the sampling procedure for the TNGG.

7.5 Experiments

Similar to MNRM in Chapter 6, two settings are designed in the experiments to test
the TNGG, a specific class of TNRM: 1) thinned normalized generalized Gamma process
(TNGG), 2) hierarchical thinned normalized generalized Gamma process (HTNGG). The
first is simply the thinned construction without hierarchy. Letting G be the base
distribution, e.g., Dirichlet distribution in topic modeling while Normal-Wishart in
Gaussian mixtures, F the likelihood, e.g., multinomial distribution in topic modeling
and Gaussian distribution in Gaussian mixtures, and there are t-time observations in
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the corpus, the generative process for TNGG is as follows:

(µt) ∼ TNGG(σ0, M0, G, {qrt}) (7.32)

θt
i ∼ µt, xt

i |θt
i ∼ F(·|θt

i ) , (7.33)

where TNGG(σ0, M0, G, {qrt}) denotes the dependent NGG constructed via TNGG
with index parameter σ, mass parameter M0, base distribution G and the set of
subsampling rates {qrt}.

The second model HTNGG is constructed similarly as HMNGG in Chapter 6,
where the TNRM construction is used to produce a random probability measure
(RPM) µt for each time-period t; then data in each time period t are generated from
an NGG mixture with base-measure µt:

(µt)|σ0, M0, G, {qrt} ∼ TNGG(σ0, M0, G, {qrt})
{µti}|µt ∼ NGG(σ, M, µt)

θt
ij ∼ µti, xt

ij|θt
ij ∼ F(·|θt

ij) , (7.34)

7.5.1 Illustration

First, a demonstration on a thinned Gaussian mixture dataset is given to illustrate the
power of TNGG defined above. In this experiment, a mixture of Gaussians dataset is
generated with 10 components, each component has a covariance matrix 0.5× I and
a mean listed in the Table, where I is the identity matrix. Then a 3-epoch dataset
is generated from these Gaussian mixtures. Assume 2 regions are used in this ex-
periment. To generate the dataset, in each epoch t, a uniform random variable is
assigned for each (t, r) pair, indicating the probability of choosing a Gaussian com-
ponent from region r to epoch t. If region r is chosen, one data point is drawn from
the corresponding Gaussian component with an added Gaussian noise of covariance
0.5× I, where I is the identity matrix. This repeats for 70 times to generate 70 points
for each epoch, resulting in a 3-epoch dataset, with a total of 210 data points. It
is clear that the data in each epoch is a thinned version of the original mixture of
Gaussian data, thus fits well with the TNGG setting.

Now TNGG with σ = 0.1 is then run on this dataset. The hyperparameters
for the Normal-Inverse Wishart (please refer to definition in Section 3.6) are set to
r = 0.1, ν = 5, m = [0, 0]T, S = 0.1× I. The number of iterations is set to 200. The
result is shown in Figure 7.3, where we see that TNGG successfully recovers the
Gaussian components and places it in the 2 regions. More detailed comparison of
the true mean and estimated mean is shown in Table 7.1 where it is shown that most
of the Gaussian components have been successfully recovered.

7.5.2 On multinomial likelihood synthetic data

This section tests the modeling power of HTNGG on the same synthetic data as for
HMNGG in Chapter 6. As a reminder, the data is generated from a hierarchical
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Figure 7.3: TNGG on three mixture of Gaussian synthetic dataset. The top row
corresponds to the estimated Gaussian components in the 2 regions, the bottom row

corresponds to the 3-epoch dataset.

Pitman-Yor process which contains 3000 data points from 3 groups. In HTNGG, a
Beta(0.5, 0.5) prior is put on the subsampling rate parameters qrt’s. Other parame-
ters and settings are exactly the same as for HMNGG. HTNGG is compared with its
non-power-law version– the hierarchical thinned normalized Gamma process (HT-
NGP), as well as the HMNGG in Chapter 6. Figure 7.4 plots the testing likelihoods
along with the number of iterations for all the models. It can be seen that both HM-
NGG and HTNGG outperform their non-power-law variants HMNGP and HTNGP
in terms of predictive likelihoods. Furthermore, HTNGG gets higher likelihoods than
HMNGG in this case; this follows from the added flexibility afforded by allowing the
thinning of individual atoms6.

7.5.3 Topic modelling

This section applies the TNGG and HTNGG to topic modeling. For comparison, the
same datasets in the experiments of MNRM in Chapter 6 are used, which contains
the ICML, TPAMI, Person and NIPS datasets. The parameter setting is also the
same as MNRM, where the number of regions is set to be 20 for TNGG, and to the
number of years for the HTNGG. The Dirichlet base distribution G is symmetric with
concentration parameter of 0.3, Gamma(0.1, 0.1) prior is placed on all unspecified
scalar random variables (e.g., the mass parameter {Mj}).

6We will see that this might not be always true in large real datasets in the following due to the
complex posterior structure of the TNRM.
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Table 7.1: 10 true and estimated Gaussian means for the dataset. The data from C_6
and C_7 seem to mix together due to the noise added, thus they are estimated to be

generated only from one component.

C_1 C_2 C_3 C_4 C_5 C_6 C_7 C_8 C_9 C_10

true -1.08 3.06 8.21 6.08 12.82 17.36 15.93 12.42 24.51 23.39
-2.00 -0.03 3.25 3.94 12.06 12.97 12.82 12.98 19.27 21.49

estimated -1.12 2.90 7.87 6.01 12.43 16.59 12.43 24.58 23.29
-2.16 -0.15 3.21 3.92 12.43 12.79 12.43 19.74 21.28
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Figure 7.4: HMNGG VS. HMNGP.

In the experiments, 20% of the original data sets is held-out, following the stan-
dard dictionary hold-out method (50% of the held-out documents is used to estimate
topic probabilities) [Rosen-Zvi et al., 2004]. All the experiments are repeated 10 times
with random initializations, mean values and standard deviations of the results are
reported. In each run, 2000 cycles are used as burn-in, followed by 1000 cycles to
collect samples for the perplexity calculation.

Quantitative comparison for different models Both training and test perplexities
are calculated for all the models, including those used in Chapter 6 for comparison.
The results are shown in Table 7.2.

In addition to the findings in Chapter 6, it is found that while HTNGG is more
flexible than HMNGG, its performances are sightly worse when the datasets becomes
large; this is more obvious when comparing TNGG with MNGG. Part of the reason
for this is the complex posterior structure for the thinned models, so that the samplers
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Table 7.2: Train perplexities and test perplexities for different models on ICML,
TPAMI, Person and NIPS datasets.

Datasets ICML TPAMI
Models train test train test

HDP 580± 6 1017± 8 671± 6 1221± 6
HNGG 575± 5 1057± 8 671± 6 1262± 11
TNGG 681± 23 1071± 6 701± 38 1327± 3
MNGG 569± 6 1056± 9 644± 6 1272± 12
HSNGG 550± 5 1007± 8 643± 3 1237± 22
HTNGG 572± 7 945± 7 642± 4 1174± 9
HMNGG 535± 6 1001± 10 608± 4 1199± 10
HMNGP 561± 10 995± 14 634± 10 1208± 8
Datasets Person NIPS
Models train test train test

HDP 4541± 33 5962± 43 1813± 27 1956± 18
HNGG 4565± 60 5999± 54 1713± 13 1878± 11
TNGG 5815± 122 7981± 36 2990± 57 3231± 2
MNGG 4560± 63 6013± 66 1612± 3 1920± 5
HSNGG 4324± 77 5733± 66 1406± 5 1679± 8
HTNGG 4196± 29 5527± 47 1377± 5 1635± 3
HMNGG 4083± 36 5488± 44 1366± 8 1618± 5
HMNGP 4118± 45 5519± 41 1370± 3 1634± 4

might often be stuck in local optima, resulting in much worse perplexities.

Topic evolution Figure 7.5 is a posterior sample, showing the evolution of 12 ran-
domly selected topics on the NIPS dataset for HTNGG. The figure shows the pro-
portion of words assigned to the topic k in region r at each time t (i.e. ntrk

ntr·
), and the

predictive probabilities for each topic at each time, which is defined to be propor-
tional to qrtwrk (see equation 7.26) by integrating out vtl and zrtk. Comparison with
the HMNGG in Figure 6.5, we see (as we expect) HMNGG generating smoother topic
proportions over time (topics in HTNGG can die and then be reborn later because of
the thinning mechanism).

Marginal vs slice sampler Next the performance of the marginal and slice samplers
are compared for TNGG and HTNGG. The marginal sampler for TNGG could not
handle datasets with more than even 2 times. Instead, we have to divide each dataset
into two times (the first and the second halves, call the resulting datasets as 2-time
datasets), and treat these as the only covariates available. It is emphasized that this
is done only for a comparison with the slice sampler, which can handle more com-
plex datasets. Table 7.3 shows the average effective sample sizes and running times
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Figure 7.5: Topic evolution on NIPS dataset for 12 randomly chosen topics learned
by HTNGG. The two curves give word proportions within each topic (blue) and
prediction probabilities (red) for each time. The X axis represents the years from 1988
to 2004 and the Y axis represents the topic proportion and predictive probabilities.

over 5 repeated runs for the two samplers on the original datasets and the 2-time
datasets. On the original datasets, the running time of the marginal sampler is more
efficient in small datasets (i.e., ICML and TPAMI), while they are comparable in the
other datasets. The reason has been analyzed in Chapter 6. In the 2-time datasets,
it is observed that the slice sampler obtains larger ESS values than its marginal sam-
pler in HTNGG, with comparable running times. We repeat that for HTNGG, the
slice sampler is applicable for any number of times, while the marginal sampler is
computationally infeasible even for a moderately large number of times.

7.6 Conclusion

This chapter proposes the thinned normalized random measure (TNRM) to address the
issue of dense representation of the mixed normalized random measure in the last
chapter. The construction involves thinning independent Poisson processes from
different region before combining and normalizing them. As for the MNRM, two
different MCMC algorithms for posterior inference are developed, a marginal sam-
pler and an approximate slice sampler. However, it seems only the slice sampler is
applicable in real applications because of the complexity of the marginal posterior
structure. In the experiments of topic modeling, HTNRM shows significantly su-
perior performance compared to related dependent nonparametric models such as
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Table 7.3: Comparison of effective sample sizes and run times for marginal and slice
sampler (subscript s). Subscript 2 in the datasets means the 2-time datasets. over 5
repeated runs. a/b/c | t in the table means the average ESS among all the chosen
statistics is a, the median is b, the minimum is c, and the running time for the 1000

cycles is t.

ICML TPAMI
Models ESS | Time ESS | Time
TNGGs 115.2/90.0/4.5|555s 135.7/113.0/11.1|592s

HTNGGs 82.8/80.1/4.7|126s 92.5/105.1/5.4|312s
Person NIPS

Models ESS | Time ESS | Time
TNGGs 300.6/231.3/3.2|3.3h 223.8/107.7/1.1|1.4h

HTNGGs 184.9/226.3/6.1|4.1h 225.4/210.2/3.4|11.9h
ICML2 TPAMI2

HTNGG 50.3/46.9/3.0|71s 55.3/58.4/4.3|95s
HTNGGs 94.9/90.9/4.0|76s 116.0/107.8/3.4|106s

Person2 NIPS2

HTNGG 144.8/170.6/4.2|1.3h 119.1/130.0/2.8|2.3h
HTNGGs 153.2/113.5/2.7|1.1h 176.1/151.0/3.3|1.9h

HDP and SNGP. Interesting future work includes applying the TNRM not just for
time-series in topic modeling but also to allow sparsity of probabilities, for instance
[Williamson et al., 2010].
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Chapter 8

Generalized Dependent Random
Probability Measures

8.1 Introduction

In the previous chapters, several methods have been introduced to construct depen-
dent random probability measures (DRPM) including the hierarchical normalized
random measure, mixed normalized random measure and thinned normalized ran-
dom measure. One question raised so far is: is there any way to construct more
general DRPMs that are not restricted to the normalized random measure family.
The answer is of course positive. This chapter discusses two ways to construct gen-
eral dependent random probability measures (denoted as {µt}) beyond this class:

1. Generalize the construction of MNRM and TNRM in Chapter 6 and Chapter 7
by transforming the individual atoms (wk, θk)’s in the Poisson process with
appropriate transformation functions, e.g., via the following hierarchical con-
struction:

µ̃0 = ∑
k

wkδθk , a base CRM

µt ∝ ∑
k

ft(wk)δTt(θk), a set of DRPMs

where (wk, θk)’s are atoms from the base Poisson process/CRM, ft : R+ → R+,
Tt : Θ → Θ are measurable functions such that µt’s are legal random proba-
bility measures. Following this idea, Section 8.2 below specifics the forms for
theses transformations via a hierarchical construction, which essentially com-
bines MNRM and TNRM to form more general dependent random probability
measures. Note the DRPMs following this construction usually do not embody
marginal posteriors, thus inference is limited to slice samplers.

2. Follow the idea of Poisson-Kingman processes [Pitman, 2003] by first explicitly
mixing the conditional law of the Poisson process with a prior for the total mass
∑k wk to form a new RPM, then constructing dependent RPMs following ideas
in, for example SNRMs, MNRMs and TNRMs. This forms another generalized

155
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class of DRPMs, we call it dependent Poisson-Kingman process (DPKP). This class
is attractive in that it not only generalizes the NRM to more general RPMs
for constructing dependent Poisson-Kingman process, which are beyond the NRM
class, but also allows marginal posterior inference algorithms to be developed
easily. More detailed construction will be presented in Section 8.3.

In the rest of this chapter, these two classes of DRPMs will be defined, and the
corresponding posterior structures and their posterior inference algorithms will also
be discussed.

8.2 Thinned-Mixed Normalized Random Measures

This section defines a generalized dependent random probability measure called the
thinned-mixed normalized random measure (TMNRM). The idea of the TMNRM is to
define the transformations ft above as the combination of the MNRM and TNRM
such that it enjoys the flexibility that the atoms of the Poisson process are not only
thinned but also weighted. Apart from making the resulting µt’s sparse by thinning,
TMNRM further imposes more variations between different µt’s by weighting their
individual atoms. Note the samples θk’s are drawn i.i.d. from space Θ and indepen-
dent of wk’s, thus the transformations Tt’s are not discussed here for simplicity, i.e.,
simply set them to be the identity transformation.

Specifically, in TMNRM, assume we have #R independent Poisson processes,
each is for one region and forms a NRM denoted as µr. Then the dependent random
probability measures µt’s can be constructed by the following hierarchical construc-
tion:

µ̃r = ∑
k

wrkδθrk , r = 1, 2, · · · , #R

q0rk ∼ Gamma(a0q, b0q), r = 1, 2, · · · , #R, k = 1, 2, · · ·
q1rk ∼ Gamma(a1q, b1q), r = 1, 2, · · · , #R, k = 1, 2, · · ·
brk ∼ Beta(ab, bb), r = 1, 2, · · · , #R, k = 1, 2, · · ·

gtrk ∼ Gamma(q0rk, q1rk), t = 1, 2, · · · , T, r = 1, 2, · · · , #R, k = 1, 2, · · ·
ztrk ∼ Bernoulli(brk), t = 1, 2, · · · , T, r = 1, 2, · · · , #R, k = 1, 2, · · ·

µt = ∑
r

∑
k

gtrkztrkwrk

∑r′ ∑k′ gtr′k′ztr′k′wr′k′
δθrk t = 1, 2, · · · , T

Note the last equation in the above construction combines MNRM and TNRM by
associating each atom with a weighting variable gtrk and a Bernoulli thinning variable
ztrk. Also note that by building this hierarchy, the random variables in µt generally
cannot be integrated out analytically, thus the property that µt’s are marginally dis-
tributed as NRMs is no longer preserved. Although this does not comply the nice
theoretical property of the MNRM and TNRM, it obtains a more flexible way of
controlling the dependency in the model.
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8.2.1 Posterior simulation

Assume in each region, µ̃′rs are with Lévy measure νr(dw, dθ) defined on space R+ ×
Θ. In posterior inference, obviously the NRMs µr’s could not be integrated out
because of the coupling of µr’s and other random variables such as gtrk’s and ztrk’s.
As a result, similar to the TNRM, we need to resort to the slice sampler. Obviously,
the variables {q0rk}, {q1rk}, {brk}, {gtrk}, {ztrk} have closed form updates given data
from their lower level in the hierarchy, i.e., conditioned on gtrk’s, q1rk has the following
conditional posterior:

p(q1rk|{gtrk}) ∼ Gamma

(
a1q, b1a + ∑

t
gtrk

)
.

Updated formulas for the other variables follow similarly and will be omitted here.
The only difficult task left is to simulate the Poisson points from the underlying

Poisson processes. Following the steps in TNRM, for a specific slice level L, there are
two kinds of atoms – those with and without observations:

• for the atoms with observations, we can sequentially re-sample (q0rk, q1rk, brk,
gtrk, ztrk) and wrk’s conditioned on other variables, which have analytical for-
mulations thus are easy.

• for those wrk’s without observations, we know that they come from a new
completely random measure with a new Lévy measure, say ν′(dw, dθ). Similar
to the TNRM case, these atoms can be sampled by adaptively thinning a unit-
rate Poisson process.

To derive the conditional Lévy measure of the CRM, the Poisson process partition
calculus framework needs to be used. Following similar steps as in TNRM and after
simplification, the conditional Lévy measure is given by

ν′(dw, dθ) =

(
∏

t

∫ 1

0

∫
R+

∫
R+

(
b
(

q1

q1 + utw

)−q0

+ 1− b

)
dbdq0dq1

)
ν(dw, dθ)

The integrations in conditional Lévy measure above deter the adaptive thinning
approach [Favaro and Teh, 2013] from working because the Lévy measure is hard
to be evaluated. To overcome this difficulty, according to the Marking Theorem 2.6 of
the Poisson process, we can simply augment the Poisson process from space R+ ×Θ

to space R+ ×Θ×R+ ×R+ × [0, 1], where the last three spaces correspond to the
spaces where the Gamma random variables q0rk, q1rk and the Beta random variable
brk live on. So now the conditional Lévy measure on this augmented space is simply

ν̃(dw, dθ, dq0rk, dq1rk, dbrk)

= ∏
t

(
brk

(
q1rk

q1rk + utw

)−q0rk

+ 1− brk

)
ν(dw, dθ)G0(dq0rk)G1(dq1rk)B(dbrk) ,
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where G0(·) is the cumulative function of a Gamma distribution with parameters
(a0q, b0q), G1(·) is the cumulative function of a Gamma distribution with parame-
ters (a1q, b1q), B(·) is the cumulative function of a Beta distribution with parameters
(ab, bb).

Now the adaptive thinning approach to simulate the Poisson process is applica-
ble. Following the thinning procedure of TNRM, obviously we have the adaptively
upper bound ν̃′(dw, dθ, dq0rk, dq1rk, dbrk)

1 of ν̃(dw, dθ, dq0rk, dq1rk, dbrk), then we do
the thinning as follows:

• Sample q0rk, q1rk, brk from the corresponding Gamma and Betta distributions
respectively as follows

q0rk ∼ Gamma(a0q, b0q)

q1rk ∼ Gamma(a1q, b1q)

brk ∼ Beta(ab, bb)

• Use the sampled values q0rk, q1rk, brk to evaluate formulas related to ν̃′(· · · ) and
ν̃(· · · ), and do the thinning as in TNRM.

8.3 Dependent Poisson-Kingman Processes2

This section describes the second way to construct more general DRPMs by first
extending the NRM to a more general class of RPM called Poisson-Kingman pro-
cess (PKP), then building dependent RPMs based on the corresponding PKPs. As
a result, the dependent random probability measures constructed also are not NRM
distributed. In the following, how to construct the general Poisson-Kingman process
from the NRM will be first introduced.

8.3.1 Poisson-Kingman processes

Generally speaking, Poisson-Kingman processes are generalizations of normalized
random measures by tilting the total masses with some appropriate functions [Pit-
man, 2003]. Formally, let ν(dw, dθ) be a measure on the space W ×Θ. Denote Pν(·)
as the law of a Poisson random measure N (dw, dθ) on this space with mean mea-
sure ν(), and denote Eν[·] as the expectation over the Poisson random measure ν. Let
f : R+ → [0, 1] be a probability distribution on R+. The idea of Poisson-Kingman
process is to define a "tilted" point process by tilting the total mass Z = ∑k wk by the
function/distribution f such that the new law of the Poisson random measure now
becomes [Pitman, 2003]

Pf ,ν(dN ) =
∫

R+
Pv(dN |Z = t) f (Z)dZ =

1
K

∫
R+

Pv(dN ) f (Z)dZ , (8.1)

1We can use the same upper bound on ν(dw, dθ) as in the TNGG case.
2This section is based on personal communication with Vinayak Rao and Yee Whye Teh.
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where K is the normalization factor to ensure (8.1) to be a valid probability distribu-
tion, and the subscripts ( f , ν) means the distribution law depends on f and ν.

Usually f could take many specific forms. For a conjugate class of the NRM,
please refer to [Lau, 2013]. Here to facilitate calculations, a general class is to define
f via an augmented form as [Favaro et al., 2013b]:

f (Z) ∝ L̃(τ)e−τZ , (8.2)

where τ is an auxiliary nonnegative random variable, L̃ : R+ → R is a measurable
function on R. Now the tilted law PL̃,ν becomes:

PL̃,ν(dN ) =

∫
R+ L̃(τ)e−τZdτ

ζL
Pν(dN ) , (8.3)

where ζ L̃ = Eν[
∫

R+ L̃(τ)e−τZdτ] is the normalization constant, L̃(τ) can be any mea-
surable functions such that ζ L̃ is finite. It is easy to see the joint density of τ and N
becomes:

pτ,N (dτ, dN ) =
1
ζ L̃

L̃(τ)e−τZdτPv(dN ) (8.4)

It can also be seen that the marginal density of τ is

P(τ) ∝ L̃(τ)φ(τt), where (8.5)

φ(τZ) = Eν[exp(−τZ)] = exp
(
−
∫
W×Θ

(1− e−τw)ν(dw, d)
)

(8.6)

Clearly, from the gamma identity, the marginal density of N corresponds to PL̃,ν.
The following result is from [Rao, 2013], which corresponds to the conditional mean
measure of the Poisson process:

Theorem 8.1. Conditioned on τ, N is a Poisson process with mean measure

exp(−τw)ν(dw, dθ) .

Proof. The proof follows the technique of James [2002]. Denote by P(dN |τ) the
conditional law of N . We have:

P(dN |τ) = 1
K

exp(−τZ)P(dN )

where K is the normalization constant. Denote M as the space of bounded finite
measures, then since Z =

∫
W×Θ wN (dw, dθ), based on Cambell’s theorem 2.10 we

have

K =
∫
M

exp(−τZ)P(dN )
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= exp
(
−
∫
W×Θ

(1− e−τw)ν(dw, dθ)

)
For some nonnegative function g(θ, w), we calculate the characteristic functional of g
with respect to the law P(dN |τ):

φτ(g) =
∫
M

exp
(
−
∫
W×Θ

g(θ, w)N (dw, dθ)

)
P(dN |τ)

=
∫
M

exp
(
−
∫
W×Θ

(g(θ, w) + τh(w))N (dw, dθ)

)
1
K

P(dN )

=
1
K

exp
(
−
∫
W×Θ

(1− e−(g(θ,w)+τh(w)))ν(dw, dθ)

)
= exp

(
−
∫
W×Θ

(1− e−(g(θ,w))) exp(−τh(w))ν(dw, dθ)

)
(8.7)

Clearly from (8.7) and according to the unity of the characteristic functional, we
conclude that P(dN |τ) is the law of a Poisson process with mean measure as

ν̃(dw, dθ) = exp(−τh(w))ν(dw, dθ) .

Theorem 8.1 allows us to sample from a general Poisson-Kingman process as
follows:

• First sample τ based on (8.4).

• Conditioned on τ, sample a Poisson process N from Pν(dN |τ).

• Construct a completely random from this Poisson process and normalize it.

Thus, we call the random measure tilted by f in (8.2) the tilted-PK(ν) process, and
its normalized version the normalized tilted-PK(ν) process. It can be shown that the
familiar two-parameter Poisson-Dirichlet process (Pitman-Yor process) is a specific
class of the tilted-PK(ν) process.

Pitman-Yor processes When ν corresponds to the Lévy measure of the σ-stable sub-
ordinator, e.g., ν(dw, dθ) ∝ w−1−σdwH(dθ) where 0 < σ < 1, H a probability mea-
sure on Θ, and L̃(τ) takes the form

L̃(τ) = τb−1 ,

where b can take values to ensure ζ L̃ defined above is finite, then it is called a polyno-
mially tilted Poisson process, which corresponds to the Pitman-Yor process [Pitman,
2003].
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8.3.2 Dependent Poisson-Kingman processes

Given the definition of the generalized Poisson-Kingman process in the last section,
it is straightforward to construct dependent Poisson-Kingman processes (DPKP) by
simply applying the ideas of, for example the spatial normalized random measure, mixed
normalized random measure or thinned normalized random measure. In the following
a specific class called spatial Pitman-Yor process (SPYP) is introduced, which com-
bines the idea of spatial normalized random measures and Poisson-Kingman pro-
cess. Other dependency models can be constructed similarly thus the details will be
omitted.

To define the SPYP, it is assumed that there is a Poisson process defined on the
augmented product space R+ × Θ × R. Each time corresponds to a RPM, which
is associated with several regions on the region space R. To define a Pitman-Yor
process from this Poisson process, an auxiliary variable τ is introduced as above.
Now conditioned on τ and after applying Theorem 8.1, we get the conditional Lévy
measure of the CRM constructed from the Poisson process to be (note the conditional
Lévy measure of the PYP is a polynomially tilting stable subordinator):

exp(−τw)ν(dw, dθ, dr) M= w−1−σe−τwdwQ(dr)H(dθ) ,

where Q and H are measures on space R and Θ, respectively. Now we can introduce
spacial structures into the Poisson process as in the case of SNRM, e.g., each element
r ∈ R corresponds to one region and is associated with a Poisson process. For more
flexible modeling, we further allow each region to have its own τ parameter, written
as τr. By integrating over the region Rr, we get the conditional Lévy measure in
region Rr as

νr(dw, dθ) =
σQr

Γ(1− σ)
w−1−ae−τrwdwH(dθ) ,

where Qr = Q(Rr). Denote the completely random measure with Lévy measure
νr(dw, dθ) in region Rr as G∗r , then the joint distribution of (X, u, {G∗r }, {τr}) can
then be written as

p(X, u, {G∗r }, {τr}}) ∝ p({τr})p(X, u, |{G∗r }, {τr}}) .

The above representation of the joint distribution is useful in deriving the poste-
rior of the SPYP model. Using the same notation as in Chapter 6, employing priors
p({τr}) for {τr} and integrating out all G∗r ’s with the Poisson process partition cal-
culus (Theorem 2.12), the posterior is given by

p(X, u, {τr}|σ, {br}) = E [p({τr})p({G∗r }|{τr})p(X, u|{µr}, {τr})]

∝
(

σ

Γ(1− σ)

)∑r Kr

∏
r

σ

Γ
(

br
σ

)τbr−1
i p(τr)QKr

r

( I

∏
r=1

Kr

∏
k=1

Γ(n·rk − σ)(
1 + ∑t:R̃r∈Rt

ut
)n·rk−σ

)
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(
∏

t

uNt−1
t
Nt!

)(
∏

r
e−MrQr

(
(τr+∑t:R̃r∈Rt

ut)
σ−τr

))( T

∏
t=1

Lt

∏
l=1

f (xtl |θgtlstl )

)
(8.8)

Now the posterior inference can be done by iteratively sampling the related ran-
dom variables based on the posterior (again denote the whole set of random variables
as C):

Sampling (stl , gtl), ut and σ: These are similar to the spatial normalized generalized
Gamma process described in Section 6.2.3 of Chapter 6.

Sampling τr: τr has posterior proportional to

p(τr|C− τr) ∝ τbr−1
r e−MrQr((τr+∑t:R̃r∈Rt

µt)σ−τσ
r )p(τr) .

Employing a Gamma prior for τr and using a change of variable γr = τσ
r , then

it can be shown that p(τr|C− τr) is log-concave.

Sample br: br is the concentration parameter in the two-parameter Poisson-Dirichlet
process. The conditional distribution for br, with prior p(br) is

p(br|C− br) ∝
τbr−1

r

Γ
(

br
σ

) p(br) .

If we use a Gamma prior for br, then p(br|C − br) is log-concave thus can be
easily sampled

We can see that the sampling procedure for the SPYP follows similarly as the
SNRM except for some extra random variables, thus the code for SNGG can be easily
adapted to the SPYP model.

8.4 Conclusion

Based on previous chapters, this chapter discusses possible generalizations of de-
pendent normalized random measures. This chapter considers two possible ways:
1) via proper transformations on the atoms of the Poisson process before using it to
construct dependent normalized random measures. The transformations is usually
defined via hierarchical constructions, for example, the thinned-mixed normalized
random measure defined in Section 8.2. 2) via dependency operators on a larger
family of random probability measures called the Poisson-Kingman process. This
class is attractive partially because it includes some familiar Bayesian nonparamet-
ric priors such as the well known Pitman-Yor process [Pitman, 2003]. Furthermore,
posterior inference can be derived easily with this construction. Though feasible for
posterior inference, the generalized dependent random probability measures have
not been empirically tested because of the lack of motivation in real applications for
now, leaving an interesting direction for future work.



Chapter 9

Conclusion and Future Work

9.1 Conclusion

Bayesian nonparametrics, as an extension of finite dimensional Bayesian models, has
gained increasing attention in modern machine learning due to its flexibility in adapt-
ing model complexity with data sizes. Among those Bayesian nonparametric priors,
the random probability measure, a generalization of the Dirichlet process, plays an
important role in modeling probability vectors, e.g., topic distribution vectors and
topic-word distribution vectors in topic modeling, friendship distribution vectors in
social network modeling, etc.

As is known, the Dirichlet process [Ferguson, 1973] is restricted in modeling be-
cause it is incapable of dealing with long tailed distributions (power-law distribu-
tions). In this thesis, a generalized random probability family called normalized
random measure (NRM), is introduced based on the theory of Poisson processes.
The NRM is first introduced by Regazzini et al. [2003] from the statistical com-
munity; this thesis constitutes the first systematic study on the NRM by extending
the concept and reformulating it to deal with machine learning problems. Then
several dependent Bayesian nonparametric models are built based on the NRM to
deal with different dependency structures. These includes the hierarchical normal-
ized random measures (HNRM) for hierarchical modeling, dependent hierarchical
normalized random measures (DHNRM) for hierarchical and Markovian modeling,
mixed normalized random measures (MNRM) for general dependency modeling,
and thinned normalized random measures (TNRM) for general and sparsity model-
ing. Finally some generalized dependent random probability measures including the
mixed-thinned normalized random measures and the dependent Poisson-Kingman
process.

Although there has been some related work by using the normalized random
measure for dependency modeling from the statistical community, e.g., the time de-
pendent stick-breaking process [Griffin and Steel, 2009], the Ornstein-Uhlenbeck-
like time varying stochastic process [Griffin, 2011], the nested Dirichlet process [Ro-
driguez et al., 2008], some other simple dependent NRM models such as [Griffin
et al., 2013; A. Lijoi and B. Nipoti and I. Prunster, 2013a,b; F. Leisen and A. Lijoi and
D. Spano’, 2013], their foci were on the analysis of their dependency structures, and
their posterior structures and inference are usually complicated. Instead, the models
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proposed in the thesis focus more on the computational side but still have very nice
distributional properties. The major contributions of these models are described in
more details below.

The hierarchical normalized random measure, mimicking the construction of the
hierarchical Dirichlet process [Teh et al., 2006], augments the modeling ability to deal
with long tailed distributions. A related model that exhibits similar function is the
hierarchical Pitman-Yor process [Teh, 2006b,c; Du et al., 2010; Sato and Nakagawa,
2010; Chen et al., 2011, 2014a]. The Pitman-Yor process is closely related to the nor-
malized random measure via, for example [Pitman and Yor, 1997] or Corollary 3.8,
and it is an instance of the general Poisson-Kingman process as discussed in Chap-
ter 8, thus we expect the modeling ability of these two models to be similar, though
the hierarchical Pitman-Yor process seems to have some more attractive distributional
properties such as the closed form stick-break construction. To sum up, the chapter
introduces an efficient MCMC sampling algorithm for the general HNRM, which is
shown to be comparable to the HDP in running time while obtains more modeling
flexibilities.

The dependent hierarchical normalized random measure proposed in Chapter 5
makes a first attempt to extend the HNRM with Markovian dependent operators for
dynamic topic modeling, which are adapted from [Lin et al., 2010]. These operators
allow topics to die, to be born and to vary at any time, which well fits the dynamic
topic model scenario. Furthermore, by employing tools from Poisson process theory,
the dependencies can be quantitatively worked out. The model extends the depen-
dent Dirichlet process of Lin et al. [2010] by generalizing it to general NRMs, thus
obtaining more flexible models. Similar to [Lin et al., 2010], one deficiency of the
model is that the posterior inference relies on some approximations for efficiency.
However, the approximations do not seem to impair the model performance too
much, and is acceptable in practice. How to design an efficient and exact algorithm
is an interesting future work.

The thesis then continues contributing by proposing a more theoretically clean
dependency model called the mixed normalized random measure. The construction
of the MNRM is fairy simple by first weighting the Poisson process in disjoint regions
and then doing a superposition. This generalizes existing work on spatial normalized
Gamma process [Rao and Teh, 2009] and a simple dependent NRM model [Griffin
et al., 2013]. Though simple in construction, it endows the ability of flexible depen-
dency modeling, e.g., empirically it is better than the HNRM. Furthermore, it has
nice distributional properties. For example, marginally each of the dependent NRMs
can be shown to belong to the same class of the NRM, e.g., marginally Dirichlet pro-
cess distributed. Note also that the posterior inference algorithm for the model can
be easily adapted to all the models within the NRM family, which is different from
existing work. Furthermore, the construction of the MNRM can be easily adapted to
do hierarchical model as well as the Markovian dependency modeling.

To introduce sparsity in the model, the thinned normalized random measure is
proposed in Chapter 7. Rather than weighting the whole Poisson process as in the
MNRM, TNRM chooses individual atoms independently. The price for this flexibility,
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of course, is that the resulting posterior structure is complicated. This hinders the
development of an efficient marginal sampler. Thanks to recent advances in the
MCMC theory, an efficient slice sampler can be developed for the TNRM. The slice
sampler developed for the TNRM overcomes the problem of complicated coupling
of random variables by simulating the underlying Poisson processes. Conditioned
on these Poisson processes, the sampling becomes much easier and can deal with
relative large datasets as well. Note that existing work on the “thinning” idea include
[Foti et al., 2013; Lin et al., 2010; Lin and Fisher, 2012]. However, [Foti et al., 2013]
is only restricted in the Dirichlet process case and posterior inference relies on a
truncated approximation of the DP; while [Lin et al., 2010; Lin and Fisher, 2012] fail
to recognize the true posterior structure of the thinning modeling thus have incorrect
samplers. The TNRM constitutes the first work on correctly dealing with the thinning
operation on the NRM family.

Finally, more general dependent random probability measures (DRPM) are dis-
cussed in Chapter 8. This chapter introduces two ways of constructing more general
DRPMs: by transforming individual atoms of the Poisson process and by introduc-
ing dependencies on a more general class of random probability measures called
Poisson-Kingman processes. The ideas of inference for the models are also discussed
but experiments are omitted because of the lack of enough motivations in real ap-
plications. However, we believe these more general DRPMs will have great potential
implications in the future.

9.2 Future Work

There are several possible avenues for future work:

More applications for the DNRM framework Though the theory for the depen-
dent normalized random measures has been well developed in the thesis, appli-
cations are still limited in literature. Except for the topic modeling and Gaussian
mixture applications discussed in the thesis, other applications we are aware of in-
clude the cosmic microwave background radiation modeling and motorcycle crash
simulation study [Foti and Williamson, 2012], and stock exchange analysis [Griffin,
2011]. More applications are expected within the DNRM framework, for example,
the Bayesian sparsity modeling for regression [Griffin and Brown, 2013] with the
TNRM.

Alternatives for other nonparametric Bayesian priors Given the flexible construc-
tion of DNRM from Poisson processes (or completely random measures), it is inter-
esting to further study the relationships between the DNRM and other nonparamet-
ric Bayesian priors. An interesting Bayesian nonparametric prior in recent machine
learning is the the prior for exchangeable random graph built on the theory of ex-
changeable random arrays [Hoover, 1979; Aldous, 1981; Orbanz and Roy, 2014]. A
concrete example is the Gaussian process random function network model of [Lloyd
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et al., 2012]. A recent progress by extending the completely random measure frame-
work for this task is done by Caron and Fox [2014]. It will be interesting to further
extend the techniques developed in this thesis for such dependency modeling. Some
other nonparametric Bayesian priors related to the completely random measure in-
clude the prior for ranked data [Caron and Teh, 2012] and the prior for bipartite
graphs [Caron, 2012], which extends the Indian buffet process by allowing power-
law distributional property in the number of features for dishes for each customer.
A different treatment with similar goal appears in [Williamson et al., 2013] by re-
stricting the domain of distributions. Note that the techniques used in the thesis,
e.g., the thinning operator, can also be adapted to the completely random measure to
construct alternatives for the IBP, which is an interesting future work.

Large scale DNRM learning A recent innovation in machine learning is large scale
Bayesian inference, which has received increasing attention due to high demand in
real applications. Some representative models include the large scale distributed
learning for the latent Dirichlet allocation topic model [Smola and Narayanamurthy,
2010] and some supervised topic models such as the max-margin topic model [Zhu
et al., 2013] and the Logistic-Normal topic model [Chen et al., 2013c]. Moreover,
some recently developed large scaled distributed systems such as [Ho et al., 2013; Li
et al., 2013] further popularize this topic for future research.

Apart from distributed methods, large scale learning can also be done via stochas-
tic variational methods [Hoffman et al., 2013] or its Gibbs sampling alternative via
stochastic gradient Langevin dynamics [Welling and Teh, 2011]. These methods make
learning scalable by considering a subset of the dataset each time for parameter up-
dating. Recent progress on improving the stochastic gradient Langevin dynamics is
to consider its natural gradient instead of the raw gradient [Patterson and Teh, 2013].

One challenge of the above methods is that they are currently only be able to deal
with finite Bayesian models, so extending them to Bayesian nonparametric models
such as the dependent normalized random measure is an important and interesting
future work.
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