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ABSTRACT
Mobile operating systems, such as Apple’s iOS and Google’s
Android, have supported a ballooning market of feature-rich
mobile applications. However, helping users understand se-
curity risks of mobile applications is still an ongoing chal-
lenge. While recent work has developed various techniques
to reveal suspicious behaviors of mobile applications, there
exists little work to answer the following question: are those
behaviors necessarily inappropriate? In this paper, we seek
an approach to cope with such a challenge and present a
continuous and automated risk assessment framework called
RiskMon that uses machine-learned ranking to assess risks
incurred by users’ mobile applications, especially Android
applications. RiskMon combines users’ coarse expectations
and runtime behaviors of trusted applications to generate
a risk assessment baseline that captures appropriate behav-
iors of applications. With the baseline, RiskMon assigns
a risk score on every access attempt on sensitive informa-
tion and ranks applications by their cumulative risk scores.
We also discuss a proof-of-concept implementation of Risk-
Mon as an extension of the Android mobile platform and
provide both system evaluation and usability study of our
methodology.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement techniques;
D.4.6 [Operating Systems]: Security and Protection—Ac-
cess controls, Information flow controls
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1. INTRODUCTION
Mobile operating systems, such as Android and iOS, have

tremendously supported an application market over the last
few years. Google Play announced 48 billion app down-
loads in May 2013 [27]. Almost at the same time, Apple’s
AppStore reached 50 billion downloads [31]. Such a new
paradigm drives developers to produce feature-rich applica-
tions that seamlessly cater towards users’ growing needs of
processing their personal information such as contacts, loca-
tions and other credentials on their mobile devices. Unfortu-
nately, the large installed base has also attracted attention
of unscrupulous developers who are interested in users’ sen-
sitive information for a variety of purposes. For example,
spyware tracks users’ locations and reports to remote con-
trollers, and adware collects users’ identities for enforcing an
aggressive directed marketing.

To defend against such rogue applications, Android assists
users to review them at install time. Primarily, Android
relies on permissions to help users understand the security
and privacy risks of applications. In Android, an application
must request permissions to be allowed to access sensitive
resources. In other words, it is mandatory for Android ap-
plications to present its expected behaviors to users. Even
though permissions outline the resources that an application
attempts to access, they do not provide fine-grained infor-
mation about how and when such resources will be used.
Suppose a user installs an application and allows it to ac-
cess her location information. It is hard for her to deter-
mine whether the application accesses her locations on her
demand or periodically without asking for her explicit con-
sent. Therefore, it is imperative to continuously monitor the
installed applications so that a user could be informed when
rogue applications abuse her sensitive information. Previous
work has proposed real-time monitoring to reveal potential
misbehaviors of third-party applications [14, 22, 30, 38, 39].
Specifically, TaintDroid [14] and Aurasium [38] inspect an
application’s behaviors at variable and syscall level, respec-
tively. While these techniques partially provide valuable in-
sights into a user’s installed applications, it is still critical to
answer the following challenge: are the behaviors in mobile
applications necessarily inappropriate?

To answer this question, it is an end-user’s responsibility
to conduct risk assessment and make decisions based on her
disposition and perception. Risk assessment is not a trivial
task since it requires the user to digest diverse contextual
and technical information. In addition, the user needs to
apprehend expected behaviors of applications under different
contexts prior to addressing her risk assessment baseline.



However, it is impractical for the normal users to distill
such a baseline. Instead, it is essential to develop an au-
tomated approach to continuously monitor applications and
effectively alert users upon security and privacy violations.
In this paper, we propose an automated and continu-

ous risk assessment framework for mobile platforms, called
RiskMon. RiskMon requires a user’s coarse expectations
for different types of applications while user intervention is
not required for the subsequent risk assessment. The user
needs to provide her selection of trusted applications from
the installed applications on her device and her ranking of
permission groups in terms of their relevancy to the cor-
responding application. Then, RiskMon builds the user’s
risk assessment baseline for different application categories
by leveraging API traces of her selected applications. Risk-
Mon continuously monitors the installed applications’ be-
haviors, including their interactions with other applications
and system services. The risk of each interaction is measured
by how much it deviates from the risk assessment baseline.
For a better risk perception, RiskMon ranks installed ap-
plications based on the risk assessment results in a real-time
manner. Intuitively, the user can deem an application as
safe if it is less risky than any of her trusted applications.
As RiskMon interposes and assesses API calls before an

application gets the results, we foresee the possibility of in-
tegrating RiskMon into an automated permission granting
process as discussed in [18] and [32]. Furthermore, while
we implement RiskMon on the Android platform, Risk-
Mon is equally applicable to other platforms (e.g. Apple
iOS and Microsoft Windows Phone) in assisting security ex-
perts to discover high-risk applications. Tools like Risk-
Mon would practically help raise awareness of security and
privacy problems and lower the sophistication required for
concerned users to better understand the risks of third-party
mobile applications.
This paper makes the following contributions:

• We propose a methodology for establishing a risk as-
sessment baseline from a user’s trusted applications
and her coarse expectations. Our approach lowers the
required sophistication to conduct effective risk assess-
ment for end-users;

• We propose a machine-learned ranking based frame-
work that continuously monitors the runtime behav-
iors of mobile applications, automatically measures their
risks, and intuitively presents the risks;

• We implement a proof-of-concept prototype of Risk-
Mon and demonstrate how it can be seamlessly de-
ployed in Android; and

• We evaluateRiskMon with comprehensive experiments,
case studies, and crowd-sourced user surveys. Our
experimental results demonstrate the feasibility and
practicality of RiskMon.

The remainder of this paper proceeds as follows. Section 2
provides the motivation and problem description of this pa-
per. Section 3 provides a high-level overview of the Risk-
Mon framework and system design by illustrating each stage
of automated risk assessment. Section 4 presents prototype
implementation and evaluation of our framework. Section 5
discusses the limitations of our approach. Section 6 describes
related work. Section 7 concludes the paper.

2. MOTIVATION AND BACKGROUND
TECHNOLOGIES

Users are concerned about security and privacy issues on
mobile devices. However, in most cases they are not aware
of the issues unless highlighted. Although Apple’s manda-
tory application review process [1] and Google Bouncer [25]
strive to mitigate misbehaving applications, users are still
responsible for defending themselves.

2.1 Use Cases and Threat Model
A continuous and automated risk assessment framework

enhances a number of use cases in the current mobile appli-
cation ecosystems. In general, such a framework improves
user experience of security features and promotes under-
standing about risks of mobile applications. This enables
more users to discover misbehaving applications and possi-
bly write negative reviews, thereby alerting and protecting
other users. In addition, it complements static and dynamic
analysis in ensuring appropriateness justifications by secu-
rity analysts. This could be applied in both official and al-
ternative application markets as a pre-screening mechanism
to select suspicious applications for further analysis. Alter-
natively, a developer can evaluate her applications against
those of her competitors and improve security practices if
necessary. For the purposes of this paper we consider the
generic scenario where a user assesses her installed applica-
tions.

Applications, as long as they are not on users’ devices, do
not incur any substantial risk. Once an application is in-
stalled, it starts interacting with the operating system and
other applications. While the application accesses sensitive
resources, it gradually builds a big picture of the system
as well as the user. Each access, such as calling an API,
returns a tiny fraction of the picture and incurs a small
amount of risk. Once the picture is finished, it may contain
a user’s personal identities (e.g. contacts), device identities
(e.g. manufacturer) and context identities (e.g. locations,
WiFi SSIDs). Since risk assessment at the pre-installation
stage does not address such threats on users’ devices, we aim
to provide continuous risk assessment for normal users.

2.2 Risk Assessment of Mobile Applications
Recent work has proposed mechanisms to extract risk sig-

nals from meta information on application markets such as
permissions [16, 28, 33, 36], ratings [9, 10], and application
descriptions [26]. Their limitation is that such information
is fuzzy and fails to provide fine-grained information about
how and when sensitive resources are used. For example, an
application may stay in the background and keep probing
a user’s locations and surroundings. Moreover, a malicious
application with split personalities [5] can evade screening
mechanisms of application markets. We argue that users
deserve the rights to understand what is happening on their
own devices. Thus, continuously revealing runtime behav-
iors plays a vital role as a necessary defense line against
rogue applications.

Previous research concerning applications’ runtime behav-
iors specifies a set of risk assessment heuristics tailored to
their specific problems. For example, TaintDroid [14] con-
siders a case in which sensitive data is transmitted over
the network. DroidRanger [40] and RiskRanker [20] assume
that dynamically loaded code is a potential sign of malware.
While these techniques provide valuable insights about run-



time behaviors of mobile applications, they do not justify
the appropriateness of the revealed behaviors. We argue
that runtime behaviors are not the only factor to determine
appropriateness. Another important factor is the contex-
tual properties. For example, a location-based application
has good reason to upload a user’s locations for discovering
nearby restaurants. In contrast, it does not make sense for a
video player to use the locations. Also, a user’s expectations
are another critical factor. Even though an application is al-
lowed to use a user’s sensitive information, the user should
have the capability to specify preferences for determining ac-
cesses to her own sensitive information. However, we cannot
assume that all users are able to digest contextual informa-
tion and system-level expectations, which is necessary for
establishing a risk assessment baseline that captures appro-
priate behaviors. The absence of such a baseline renders
current risk assessment process ineffective. Therefore, it is
imperative to automate risk assessment for seamlessly help-
ing users accommodate their preferences without requiring
additional intervention.

2.3 Android Platform
Android is a computing platform for mobile devices. It

implements a security architecture that adopts a sandbox
and a permission framework. While system services and in-
stalled applications are isolated and confined in their respec-
tive sandboxes, they can interact and collaborate via APIs.
Each permission protects a set of APIs that access some
sensitive resources. A user can approve permission requests
of an application at install time so that the application is
allowed to use the corresponding APIs.
Permission groups: Permission group is a logical group-

ing of related permissions. For example, SOCIAL_INFO in-
cludes permissions that access a user’s contacts and call logs.
Given Android API level 18, Android provides 31 permission
groups to cover 134 permissions. Most permission groups are
self-descriptive, such as LOCATION and CAMERA. Android also
provides a short description for each permission group to
elaborate its corresponding resources.
API and direction of control flow: A typical An-

droid application’s execution is orchestrated by API calls
and callbacks with opposite directions of control flows. An
API call initiates a synchronous control flow so that the
caller application gets results immediately after the API re-
turns. API callbacks are designed for asynchronous control
flows which enable a system service to notify an applica-
tion when an event occurs or a result is ready. Both API
calls and callbacks are frequently used in accessing sensi-
tive resources, such as getting a contact entry and receiving
location updates.
Binder IPC framework: While APIs enable appli-

cations to interact with each other and system services in
their respective process sandboxes, they are implemented
based on an underlying inter-process communication frame-
work called Binder. Binder includes a kernel driver and a
userspace library. It serializes data objects as parcels for
sender process, and de-serialize parcels for recipient process.
Binder also manages IPC transactions in which parcels are
processed and delivered. Binder identifies a transaction with
the UIDs and PIDs of sender and recipient processes as well
as a command code that specifies the action to be performed
in the receipt process.

3. RISKMON: OVERVIEW AND SYSTEM
DESIGN

In this section, we describe our risk assessment framework
that lowers the required intervention and sophistication in
risk assessment of mobile applications.

IT risk assessment guidelines, such as NIST SP 800-30 [35]
and CERT OCTAVE [2], illustrate general methodologies
that enable organizations to understand, assess and address
their information risks. For example, OCTAVE covers the
following critical tasks [3]:

1. Identify critical information assets and their security
requirements;

2. Consider the activities that can expose the identified
assets to threats due to organizational and/or techno-
logical vulnerabilities;

3. Define risk evaluation criteria that captures operational
context and organization’s tolerance; and

4. Create practice-based protection strategies and risk
mitigation plans.

While these guidelines deal with the infrastructure and
organizational risks by security experts, our framework at-
tempts to adapt and automate the sophisticated risk assess-
ment tasks for general users. Several existing state-of-the-
art frameworks attempt to automatically extract a universal
risk assessment baseline by mining the meta information of
a large number of mobile applications (e.g. Peng et al. [28]).
Compared with their approaches, RiskMon adheres to gen-
eral risk assessment methodologies and considers user’s secu-
rity requirements and operational contexts as indispensable
inputs. This design choice enables our framework to accu-
rately capture user’s expected appropriate behaviors rather
than average practices of developers.

An underlying assumption of RiskMon is that a user’s
trusted applications could define her expected appropriate
behaviors. Recent empirical analysis showed that applica-
tions of similar categories normally request a similar set of
permissions [6], implying similar core functionalities. Hence,
each of the user’s trusted applications can be used as a refer-
ence point of appropriate behaviors for applications of sim-
ilar categories. For example, Netflix application is under
“Entertainment”category, and Pandora’s Internet Radio ap-
plication is under “Music & Audio” category. Even though
they are not in the same category, each application similarly
uses one of core functionalities such as the streaming service
of personalized media contents from remote servers. If a
user trusts Netflix application, it implicitly affirms that Pan-
dora application may also incur commensurate risks caused
by Netflix application. Thus, using Netflix application as a
reference point, the deviation or “distance” of runtime be-
haviors between Netflix and Pandora applications indicates
Pandora’s additional inherent risks.

We now summarize the design goals for a continuous and
automated risk assessment framework:

Continuous and fine-grained behavior monitoring: Ap-
plications access sensitive resources by calling APIs to com-
municate with each other and system services. To ensure
continuous monitoring on API calls, RiskMon interposes
Binder IPC on a user’s device. The risks incurred by API
calls are determined by the caller, the callee, and the data.
To capture such information, RiskMon opts for a fine-grained
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Figure 1: RiskMon Architecture for Android

scheme to capture various intelligences about applications.
This provides a well-founded base for measuring the “dis-
tance”between two API calls in the space of runtime behav-
iors.
Simplified security requirement communication: It is a

challenging task for users to specify security requirements
for security tools. To tackle this problem, RiskMon adopts
a simple heuristic that allows users to communicate security
requirements through their coarse expectations. Although
this reduces the burden on the user, we cannot entirely elim-
inate it. We note that acquiring a user’s expectations is nec-
essary since each user has diverse preferences on the same
application. For instance, all users of Facebook application
may have disparate expectations for controlling their loca-
tion and camera utilities.
Intuitive risk representation: The way in which risk is

presented significantly influences a user’s perception and de-
cision upon risky applications. A counterexample would be
standalone risk scores, such as a risk indicator saying “Face-
book incurs 90 units of risk” without proper explanation.
As Peng et al. noted in [28], “it is more effective to present
comparative risk information”. Inspired by their approach,
RiskMon presents a ranking of applications so that a user
can compare the potential loss of using an application with
other applications. In addition, the user can view the risk
composition of an application for supporting evidences.
Iterative risk management: Risk assessment is an on-

going iterative process. As applications get upgraded and
bring more functionalities, they introduce new risks that
should be measured. To this end, the risk assessment base-
line should evolve to continuously monitor installed applica-
tions and update the risk assessment baseline periodically.
Moreover, users need to provide their feedbacks to RiskMon
by adding or revising their security requirements.

We now present our risk assessment framework. Figure 1
depicts the RiskMon architecture for Android. Our frame-
work consists of three components: an application intelli-
gence aggregator, a baseline learner, and a risk meter.
The application intelligence aggregator compiles a dataset

from API traces collected on a user’s device and meta infor-

mation crawled from application markets. API traces cover
an application’s interactions with other parts of the system
via API calls and callbacks. To complement API traces with
contextual information, RiskMon uses meta information on
application markets such as ratings, number of downloads
and category which provide a quantitative representation of
applications’ reputation and intended core functionalities.
The baseline learner combines a user’s coarse expectations
and aggregated intelligences of her trusted applications to
generate a training set. Afterwards, the baseline learner ap-
plies a machine-learned ranking algorithm to learn a risk as-
sessment baseline. Then the risk meter measures how much
an application’s behaviors deviate from the baseline. Using
the deviation to provide risk information, risk meter ranks
a user’s installed applications by their cumulative risks and
presents the ranking to the user in an intuitive way. The re-
mainder of this section describes each component in detail.

3.1 Application Intelligence Aggregator
This component aggregates intelligences about a user’s in-

stalled applications, including their runtime behaviors and
contextual information. As RiskMon monitors runtime be-
haviors by interposing Binder IPC, we propose a set of fea-
tures for API traces tailored to the peculiarity of Binder.
Also, we seek contextual information from application mar-
kets and propose corresponding features to represent and
characterize them. The proposed features build a space
of application intelligences and enables subsequent baseline
generation and risk measurement. Unless explicitly speci-
fied, all features are normalized to [0,1] so that each of them
contributes proportionally.

3.1.1 Features for API Traces
Android applications frequently use APIs to interact with

system services. Considering that using most APIs does not
require any permission, we assume that resources protected
by at least one permission are a user’s assets.

We are interested in runtime behaviors, i.e. Binder trans-
actions, that are used by APIs to reach the assets. How-
ever, APIs do not carry information about Binder transac-
tions. To bridge this gap, we adopt existing work [4, 17]
to provide mappings from permissions to APIs. Meanwhile,
we analyzed the interface definitions of Android system ser-
vices and core libraries to generate a mapping from APIs
to Binder transactions. As a result, we extracted 1,003
permission-protected APIs, of which each corresponds to a
type of Binder transactions. Each type of Binder transac-
tion is identified by the corresponding system service, direc-
tion of control flow, and a command code unique to the ser-
vice. For example, an API named requestLocationUpdate

is identified as Binder IPC transaction (LocationManager,

callback, 1).
We attempt to represent a Binder transaction with its in-

ternal properties and contents. For a specific Binder transac-
tion between an application and a system service, we are in-
terested in its type so as to identify the corresponding asset.
Also we need to know the direction of control flow for deter-
mining who initiates the transaction. As users trust the sys-
tem services more than applications, RiskMon should dif-
ferentiate Binder transactions initiated by applications and
system services. Thus, internal properties are represented
with the following features:



• Type of Binder transaction: 1,003 boolean fea-
tures as a bit array, where one bit is set to 1 for the
corresponding transaction type and others are 0; and

• Direction of control flow: another boolean fea-
ture: 0 for transactions initiated from applications
(API calls), 1 for transactions initiated from system
services (API callbacks).

Note that we use 1,003 boolean features to represent the type
of Binder transactions instead of using one integer value.
This is because Binder transactions are independent from
each other, and the Binder command codes are simply nom-
inal values. By using the array of 1,003 boolean values, the
distances between any two Binder transaction types are set
to the same value, which is important for our learning algo-
rithm (Section 3.2.3).
In terms of contents, parcels in Binder transactions are

unstructured and highly optimized, and it is hard to restore
the original data objects without implementation details of
the sender and recipient. Therefore, we use length as one
representative feature of parcel. A motivating example is
accesses on contacts. From the length of a parcel we can infer
whether an application is reading a single entry or dumping
the entire contacts database. Thus, we propose the following
two features for parcels:

• Length of received parcel: length of the parcel re-
ceived by an application in bytes; and

• Length of sent parcel: length of the parcel sent by
an application in bytes.

3.1.2 Features for Meta Information
Although meta information on application markets cannot

describe applications’ runtime behaviors, it is still viable to
use such information as contextual properties that capture
users’ and developers’ opinions and complement runtime be-
havior information.
In terms of representing the opinions of users, we use the

following features in correspondence with their counterparts
of meta information on application markets:

• Number of installs: a range of total number of in-
stalls since the first release1. We use logarithmic value
of the lower bound, i.e., log(1+lower bound of #in-
stalls) ;

• Number of reviews: a number of reviews written
by unique users. We use the logarithmic value, i.e.
log(1+#reviews); and

• Rating score: a number indicating the user-rated
quality of the application ranged from 1.0 to 5.0.

These three features capture an application’s popularity
and reputation. The first two features are similar to num-
ber of views and comments in online social networks. Re-
cent studies [37] demonstrated that online social networks
and crowd-sourcing systems expose a long-tailed distribu-
tion. Therefore, we assume they follow the same distribution
and use the logarithmic values.
We emphasize that we do not attempt to extract risk sig-

nals from these features. Instead, we adopt these features

1Number of installs is specified with exponentially increasing
ranges: 1+, 5+, . . . , 1K+, 5K+, . . . , 1M+, 5M+.

Figure 2: SOM Representation of 13 Categories

to capture the underlying patterns of a user’s trusted appli-
cations as specified by the user and apply the patterns for
the subsequent risk assessment.

Next, we propose a feature to capture the developer’s
opinion:

• Category: a tuple of two numerical values normalized
to [-0.5, 0.5].

Google Play uses an application’s category to describe its
core functionalities (e.g. “Communication”). As of this writ-
ing, Google Play provides 27 category types. We choose Self-
Organizing Map (SOM) to give a 2-dimension representation
of categories. Barrera et al. [6] demonstrated that SOM
can produce a 2-dimensional, discretized representation of
permissions requested by different categories of Android ap-
plications. Categories in which applications request similar
permissions are clustered together. Therefore we use the x
and y coordinates in the map to represent categories. Fig-
ure 2 depicts the coordinates of 13 categories as an example.
It is clear to see that some categories bear underlying sim-
ilarities, such as “Entertainment”, “Media and Video” and
“Music and Audio” in the center of the figure2.

Clearly an unscrupulous developer can claim an irrelevant
category to disguise an application’s intended core function-
alities. However, a user can easily notice the inconsistencies
and remove such applications. In addition, falsifying an ap-
plication’s meta information violates the terms of applica-
tion market’s developer policies and may lead to immediate
takedown.

Finally, based on the scheme defined by these features,
the application intelligence aggregator generates a dataset
consisted of feature vectors extracted from API traces and
meta information of each installed application.

3.2 Baseline Learner
The baseline learner is the core module of RiskMon. It

takes two types of inputs, which are a user’s expectations
and feature vectors extracted by the application intelligence
aggregator. Then the baseline learner generates a risk as-
sessment baseline which is represented as a predictive model.

3.2.1 Acquiring Security Requirements
It is challenging for most users to express their security

requirements accurately. We aim to find an approach that

2For more details on SOM, please refer to [6].



could be mostly acceptable by users. Krosnick and Alwin’s
dual path model [24] demonstrated that a satisficing user
would rely on salient cues to make a decision. Based on this
model we develop a simple heuristic:

For a specific application, accesses on resources
that are more irrelevant of a user’s expected core
functionalities incur more risks.

This heuristic captures a user’s expectations as security
requirements by risk aversion, which implies the reluctance
of a user to use a functionality with an unknown marginal
utility [29]. For example, a user may consider that, mi-
crophone is necessary to a VoIP application such as Skype.
But location seems not because she does not understand the
underlying correlation between disclosing her location and
making a phone call. Thus, microphone is more relevant and
less risky than location in her perception.
Base on this, the risk learner asks a user to specify a

relevancy level for each permission group requested by her
trusted applications. We choose permission groups to repre-
sent resources because it is much easier for general users to
learn 20+ permission groups than 140+ permissions. And
recent usability studies demonstrated the ineffectiveness of
permissions due to limited comprehension [12,19]. Although
users tend to overestimate the scope and risk of permis-
sion groups, they are more intuitive and reduce warning fa-
tigue [19].
The process for users to communicate their security re-

quirements with RiskMon is similar to a short question-
naire. Each permission group requested by a user’s trusted
applications corresponds to a five-point Likert item. The
user specifies the level of relevancy on a symmetric bipo-
lar scale, namely relevant, probably relevant, neutral, prob-
ably irrelevant or irrelevant. Figure 3 shows an example
of relevancy of permission groups for Facebook and Skype.
Permission groups are represented by self-descriptive icons,
which are identical to those shown in Android Settings. CAM-
ERA preceding LOCATION for Facebook is possibly due to the
user’s preference to photo sharing compared to check-ins.
Note that the relevancy levels specified by users are sub-

jective. With that said, users’ biased perception of applica-
tions and resources may affect their specified relevancy lev-
els. From our user study, a user told us that PHONE_CALLS is
relevant to Google Maps because he tapped a phone num-
ber shown in Google Map and then the dialer appeared. Al-
though the dialer rather than Google Map has the capability
to make phone calls, the baseline learner considers it as the
security requirements for inter-application communication.
We next formalize the problem of acquiring security re-

quirements. PG = {pg1, pg2, · · · , pgm} is a set of permis-
sion groups available in a mobile operating system. A =
{a1, a2, · · · , an} is a set of a user’s installed applications.
TA is a set of a user’s trusted and installed applications and
TA ⊆ A. RequestedPG : A→ 2PG is a function that maps
an application to its requested permission groups. A user’s
security requirement Req is a mapping Req : TA×PG→ R.
R = {1, 2, 3, 4, 5} is a set of relevancy levels, where a larger
value indicates higher relevancy and less risk and vice versa.

3.2.2 Compiling Training Set
Next we describe how the baseline learner compiles a train-

ing set from the aggregated application intelligences and
user-specified relevancy levels. For brevity, we apply the

Relevant Irrelevant

High riskLow risk Neutral

ContactsCamera Phone Calls

Location Microphone Network

Facebook

Skype

1 2 3 4 5

Figure 3: An Example of Specifying Relevancy for
Permission Groups

relevancy levels onto the feature vectors generated by the
application intelligence aggregator to generate a set of vec-
tors annotated with relevancy levels.

To bridge the gap between permission groups and feature
vectors, we extract mappings of permission groups and per-
missions from the source code of Android. Meanwhile, ex-
isting work has provided mappings between permissions and
APIs [4,17]. Therefore, we can assign the relevancy level on
feature vectors because each vector represents an API call
or callback.

We formalize the problem of compiling a training set as
follows. Algorithm 1 illustrates the process to compile the
training set T .

• X is a space of features as defined by the scheme dis-
cussed in Section 3.1, X = {�x1, �x2, · · · , �xl}, X ∈ R

i,
where i denotes the number of features;

• DS = {Da1, Da2, · · · , Dam} is a collection of sets of
feature vectors, where Daj ⊆ X and Daj corresponds
to an application aj ;

• Apd : A×PG→ DS is a function that maps an appli-
cation and one of its requested permission groups to a
set of feature vectors; and

• T = {(�x1, r1), (�x2, r2), · · · , (�xn, rn)} is a training set
consisted of annotated vectors, rk ∈ R, �xk ∈ X.

Algorithm 1: Compiling Training Set

Data: DS, TA, Req
Result: T
T ← ∅;
for a ∈ TA do

pg ← RequestedPG(a);
r ← Req(a, pg);
D ← Apd(a, pg);
for �x ∈ D do

add (�x, r) to T;
end

end
return T

3.2.3 Generating Risk Assessment Baseline
Ranking Support Vector Machine (RSVM) [21, 23] is a

pair-wise ranking method. Generally it utilizes a regular



Support Vector Machine (SVM) solver to classify the order
of pairs of objects. Next we explain how we apply RSVM to
learn a risk assessment baseline.
We assume that a set of ranking functions f ∈ F exists

and satisfies the following:

�xi ≺ �xj ⇐⇒ f(�xi) < f(�xj), (1)

where ≺ denotes a preferential relationship of risks.
In the simplest form of RSVM, we assume that f is a

linear function:

f�w(�x) = 〈�w, �x〉, (2)

where �w is a weight vector, and 〈·, ·〉 denotes inner product.
Combing (1) and (2), we have the following:

�xi ≺ �xj ⇐⇒ 〈�w, �xi − �xj〉 < 0, (3)

Note that �xi−�xj is a new vector that expresses the relation
�xi ≺ �xj between �xi and �xj . Given the training set T , we
create a new training set T ′ by assigning either a positive
label z = +1 or a negative label z = −1 to each pair (�xi, �xj).

(�xi, �xj) : zi,j =

{
+1 if ri > rj
−1 if ri < rj

∀(�xi, ri), (�xj , rj) ∈ T

(4)

In order to select a ranking function f that fits the training
set T ′, we construct the SVM model to solve the following
quadratic optimization problem:

minimize
�w

1

2
�w · �w + C

∑
ξi,j

subject to ∀(�xi, �xj) ∈ T ′ : zi,j〈�w, �xi − �xj〉 ≥ 1− ξi,j

∀i∀j : ξi,j > 0

(5)

Denoting �w∗ as the weight vector generated by solving (5),
we define the risk scoring function f�w∗ , for assigning risk
scores to the feature vectors in the application intelligence
dataset:

f�w∗ = 〈�w∗, �x〉 (6)

For any �x ∈ X, the risk scoring function measures its
projection onto �w∗, or the distance to a hyperplane whose
normal vector is �w∗. Thus, the hyperplane is indeed the risk
assessment baseline.

3.3 Risk Meter
Risk meter measures the risks incurred by each installed

application including those are trusted by the user. Note
that (6) gives a signed distance. We use the absolute value
to represent the deviation and risk. The risks incurred by
an application ai are the cumulative risks of its runtime
behaviors: ∑

�x∈Dai

|f�w∗(�x)| (7)

Another goal of the risk meter is to provide supporting
evidences to end-users. To this end, it presents the measured
risks at three levels of granularities.
Application: In the simplest form, the risk meter presents

a ranking of installed applications by their risks as a bar
chart. The X axis indicates the applications and the Y axis
indicates the risks. A user can trust an application if it is

less risky than her trusted ones. In contrast, an application
that is significantly risky can also draw a user’s attention.
Note that the risk meter does not provide any technical ex-
planation at this level.

Permission group: The ranking of applications may
seem unconvincing sometimes for users. In such a case,
the risk meter can provide risk composition by permission
groups which is represented as a pie chart. The pie chart in-
tuitively reveals the proportion of the risks incurred by the
core functionalities of an application. As users have basic
knowledge of permission groups when they specify security
requirements, they should be able to interpret the risk com-
position correctly.

API calls and callbacks: The evidences presented
at this level are intended for experienced security analysts
who are familiar with the security mechanisms under the
hood of Android. This is the raw data generated by the risk
scoring function. An analyst can inspect values of features
to reconstruct the semantic view of runtime behaviors.

Moreover, RiskMon allows a user to establish and re-
vise her security requirements iteratively. RiskMon may
generate biased or unconvincing evidences as a user may
not have clear and accurate security requirements at the
very beginning of using RiskMon. Thus, a user can provide
her feedback by adjusting her security requirements and/or
adding more trusted applications. RiskMon also periodi-
cally updates the security assessment baseline for observed
new runtime behaviors. All of these enable RiskMon to
approximate an optimum risk assessment baseline to help
users make better decisions.

4. IMPLEMENTATION AND EVALUATION
In this section we first discuss a proof-of-concept imple-

mentation of RiskMon. Then, we present the results of our
online user study followed by two case studies. We conclude
our evaluation with the usability and performance of our
system.

4.1 Implementation and Experimental Setup
We implemented a proof-of-concept prototype of Risk-

Mon on the Android mobile platform. In terms of contin-
uous monitoring, we implemented a reference monitor for
Binder IPC by placing hooks inside the Binder userspace
library. The hooks tap into Binder transactions and log
the parcels with zlog3 which is a high-performance logging
library. In addition, we implemented automated risk assess-
ment based on SVMLight4 and its built-in Gaussian radial
basis function kernel.

We designed and conducted a user study to evaluate the
practicality and usability of RiskMon. We hand-picked 10
applications (Table 2) that were mostly downloaded from
Google Play in their respective categories. We assumed that
all the participants trust them. Then we used participants’
security requirements for the 10 applications and their appli-
cation intelligences to generate the baselines. We also ran-
domly selected 4 target applications from the Top Charts of
Google Play to calculate their risks based on the generated
baselines, including: a) CNN App for Android Phones (ab-
breviated as CNN); b) MXPlayer; c) Pandora Internet Radio
(abbreviated as Pandora); and d) Walmart. For both trusted

3https://github.com/HardySimpson/zlog
4http://svmlight.joachims.org/



Table 1: Demographics of the Participants

Category # of users

Gender
Male 29 (87.9%)
Female 4 (12.1%)

Age
18-24 15 (45.5%)
25-34 16 (48.5%)
35-54 2 (6.1%)

Education

Graduated high school or equivalent 3 (9.1%)
Some college, no degree 6 (18.2%)

Associate degree 1 (3.0%)
Bachelor’s degree 11 (33.3%)

Post-graduate degree 12 (36.4%)

Table 2: Applications Assumed to be Trusted by the
Participants in the User Study

Application Category
AmazonMobile Shopping
BejeweledBlitz Game
ChaseMobile Finance
Dictionary.com Books & Reference
Dropbox Productivity
Google+ Social
GooglePlayMovies&TV Media & Video
Hangouts(replacesTalk) Communication
MoviesbyFlixster Entertainment
Yelp Travel & Local

(10) and target (4) applications, we collected their one-day
runtime behaviors on a Samsung Galaxy Nexus phone. In
addition, we developed a web-based system that acquires
a participant’s security requirements, feeds them to Risk-
Mon and presents the results calculated by RiskMon to
the participant. A participant was first presented with a
tutorial page that explains how to specify relevancy levels
as her security requirements. Then she was required to set
relevance levels for each permission group requested by each
trusted application after reading the application’s descrip-
tions on Google Play. Afterwards, RiskMon generated a
risk assessment baseline for the participant based on her in-
puts and runtime behaviors of the 10 trusted applications.
Then RiskMon applied the baseline on each of the 14 ap-
plications, and displayed a bar chart that illustrates a rank-
ing of 14 applications by their measured cumulative risks.
Finally, an exit survey was presented to collect the partici-
pant’s perceived usability of RiskMon. Our study protocol
was reviewed by our institution’s IRB. And we recruited
participants through university mailing lists and Amazon
MTurk. 33 users participated in the study and Table 1 lists
the demographics of them.

4.2 Empirical Results

4.2.1 Security Requirements
From our user study shown in Table 2, we highlight the

results of Chase Mobile and Dropbox because they both re-
quest some ambiguous permission groups that are hard to
justify for users. Figure 4 demonstrates the average rel-
evancy levels set by the participants for each permission
group requested by Chase Mobile and Dropbox. The error
bars indicate the standard deviation.

(a) Chase Mobile

(b) Dropbox

Figure 4: Average Relevancy Levels Specified by the
Participants for Chase Mobile and Dropbox

Chase Mobile is a banking application with functionali-
ties like depositing a check by taking a picture and locat-
ing nearest branches. Apparently NETWORK is more relevant
than others as participants agree that Chase Mobile needs
to access the Internet. Even though Chase Mobile uses LO-
CATION to find nearby bank branches and CAMERA to deposit
checks, both LOCATION and CAMERA have lower relevancy lev-
els than NETWORK. We believe it is because some participants
do not have the experiences of using such functionalities,
but the averages are still higher than neutral. We can also
observe that SOCIAL_INFO falls below“neutral”, showing par-
ticipants’ concerns of why Chase Mobile uses such informa-
tion.

Dropbox is an online file storage and synchronization ser-
vice. From its results, we identified an interesting permis-
sion group, APP_INFO, whose description in Android’s offi-
cial document is: group of permissions that are related to
the other applications installed on the system. This au-
thoritative description does not provide any cue of nega-
tive impacts, which leads to user confusion as we can see
that APP_INFO has the largest standard deviation. STORAGE,
SYNC_SETTINGS and ACCOUNTS are all above “probably rele-
vant” possibly due to their self-descriptive names that are
semantically close to Dropbox’s core functionalities.

Moreover, we noticed that the participants tend to set
higher relevancy levels for self-descriptive permission groups,
while they tend to be conservative for other permission groups.
We note that this does not affect RiskMon in acquiring a
user’s security requirements, because RiskMon captures the
precedence of one permission group over another. Thus, the
least relevant permission group (e.g. SOCIAL_INFO of Chase
Mobile) always gets the highest risk scores for both trusted
and distrusted applications.



4.2.2 Application Risk Ranking
Figure 5 illustrates the ranking of 14 applications by their

average cumulative risk scores as measured by 33 risk as-
sessment baselines generated for the participants. We can
see that MXPlayer (2.55) and Walmart (12.72) fall within
the trusted applications, while CNN (54.15) and Pandora
(69.22) are ranked with highest risk scores.
Note that both Pandora and CNN are renowned appli-

cations developed by well-trained developers. Seemingly,
they should use sensitive information appropriately. Hence,
we verified them by manually dissecting their API traces.
We found that they both stayed in the background and at-
tempted to keep connected to remote servers. To this end,
they kept polling ConnectivityManager for a fine-grained
state of the current network connection. This is an unex-
pected practice for both privacy and performance perspec-
tives and the official Android documents suggest developers
register CONNECTIVITY_CHANGE broadcasts5 to get connectiv-
ity updates accordingly instead of polling. On the contrary,
Hangouts incurred almost imperceptible amount of risks, al-
though it has similar requirements for connectivity. There-
fore, RiskMon showed that even popular applications might
use sensitive information in a way that incurs potential risks
for users.

4.3 Case Studies
In this section we evaluate the effectiveness of our ap-

proach. Note that there is no ground truth of user’s expected
appropriate behaviors. Thus, we opt for two case studies on
two applications, SogouInput and PPS.TV. We specified the
relevancy levels for 10 trusted applications and generated a
risk assessment baseline. Then, we verified their identified
risk composition with manual analysis.
SogouInput is an input method based on the pinyin method

of romanization, and PPS.TV is a video streaming appli-
cation similar to its counterparts such as Hulu and Net-
flix. Both of them are feature-rich, free and have accu-
mulated over 5,000,000 installs on Google Play. We note
that PPS.TV and SogouInput request 22 and 29 permis-
sions, respectively. The numbers of requested permissions
make them suspicious over-privileged or privacy-infringing
applications.
The measured cumulative risk scores are 179.0 for So-

gouInput and 366.9 for PPS.TV. Table 3 demonstrates the
risk composition of SogouInput and PPS.TV by their re-
quested permission groups. First, the unusually large por-
tion of PHONE_CALLS indicates significant use of capabilities
related to making phone calls and reading unique identifiers.
We verified the corresponding API traces and revealed that
it attempted to read a user’s subscriber ID and device ID.
Second and more notably, SOCIAL_INFO contributed 4.02% of
the total risks incurred by SogouInput. We verified the cor-
responding API traces and found that SogouInput accessed
content://com.android.contacts and received a parcel of
384 bytes. Usually an Android application queries the con-
tact application and receives only the entries a user picks,
which is several bytes long. On the contrary, SogouInput at-
tempted to dump the whole contacts data repository. Sim-
ilar to SogouInput, PPS.TV utilized permissions related to
PHONE_CALL. In addition to reading a user’s device ID and

5http://developer.android.com/training/
monitoring-device-state/connectivity-monitoring.
html

Table 3: Risk Composition by Permission Groups of
Applications in Case Studies

Application Permission Group Risk Score

SogouInput

LOCATION 5.6 (3.13%)
NETWORK 104.4 (58.29%)
PHONE CALLS 61.8 (34.56%)
SOCIAL INFO 7.2 (4.02%)
Total: 179.0 (100%)

PPS.TV

LOCATION 26.0 (7.09%)
NETWORK 108.3 (29.52%)
PHONE CALLS 232.6 (63.40%)
Total: 366.9 (100%)

Table 4: Usability Evaluation Results

Metric Average Lower bound on 95%
confidence interval

Likeability 0.811 0.797
Simplicity 0.674 0.645
Risk perception 0.758 0.751

subscriber ID, it also registered a callback to receive events
of call states. We note that this allows PPS.TV to read the
number of incoming calls.

The results leave much room for imagination: how come
an input method and a video streaming application need ca-
pabilities related to PHONE_CALLS, LOCATION and SOCIAL_INFO?
Possibly users get personalized services by disclosing these
information. However it comes with a price of privacy. Risk-
Mon highlights the risks so that users can weigh the benefit
and relevant cost by themselves.

4.4 System Usability
The criteria for usability were split into three areas: like-

ability, simplicity and risk perception. Likeability is a mea-
sure of a user’s basic opinion towards automated risk as-
sessment. This identifies whether users would like to accept
the proposed mechanism. Simplicity is a measure of how
intuitive the concepts and procedures are, which is useful in
evaluating the burden placed on users. Risk perception is a
measure of a user’s perceived awareness of risks through risk
assessment, which evaluates how users interpret the risks as
presented by RiskMon.

After using RiskMon, an exit survey was presented to col-
lect users’ perceived usability of RiskMon. In the survey
we asked users questions on likeability (e.g. “indicate how
much you like using your trusted apps to set a baseline”),
simplicity (e.g. “do you agree that RiskMon requires less
mental efforts in risk assessment”), and risk perception (e.g.
“do you feel the increased awareness of the risks of your
installed applications”). Questions were measured with a
five-point Likert scale. A higher score indicates a positive
opinion or agreement, while a lower score indicates a nega-
tive one or disagreement. Then scores were adjusted to [0,1]
for numerical analysis.

We analyzed a 95% confidence interval for users’ answers.
Specifically we are interested in determining the average
user’s minimum positive opinions. Hence, we looked at the
lower bound of the confidence interval. Table 4 shows that
an average user asserts 79.7% positively on likeability, 64.5%
on simplicity and 75.1% on risk perception. The results show
usability of RiskMon with the above-average feedback.



Figure 5: Average Cumulative Risk Scores Measured by the Participants’ Risk Assessment Baselines

Table 5: Microbenchmark Results
Benchmark Average (s) Standard

Deviation (s)
Feature extraction 8.27 0.07
Baseline generation (10 apps) 289.56 235.88
Risk measurement (per app) 0.55 0.17

4.5 System Overhead
To understand the performance overhead of RiskMon,

we performed several microbenchmarks. The experiments
were performed on a Samsung Galaxy Nexus phone with
a 1.2GHz dual-core ARM CPU. The phone runs Android
v4.2.2 and RiskMon built on the same version. Table 5
shows the average results.
Feature extraction: The application intelligence aggre-

gator extracted feature vectors from the raw API traces of
33,368,458 IPC transactions generated by 14 applications in
one day. We measured the CPU-time used by parsing the
API traces and generating the feature vectors. The aver-
age time is 8.27 seconds, which is acceptable on a resource-
constrained mobile device.
Baseline generation: We ran baseline generation based

on the input acquired in the online user study. The process-
ing time varies for different participants, while the average
time is approximately 289.56 seconds due to the computa-
tion complexity of the radial basis function kernel of SVM-
Light.
Risk measurement: Applying the risk assessment base-

line is much faster than baseline generation. We measured
the time taken to apply a risk assessment baseline on 14 ap-
plications. The average time per application is 0.55 seconds,
which is imperceptible and demonstrates the feasibility of
repeated risk assessment.
Finally, we anecdotally observed that it took 5-10 min-

utes for the participants to set relevancy levels for 10 appli-
cations. This usability overhead is acceptable compared to
the lifetime of a risk assessment baseline.

5. DISCUSSION
To capture actual risks incurred by applications used by a

user, RiskMon fundamentally requires running them on the
user’s device. We note that 48.5% of the respondents in our
user study claimed that they often test drive applications
on their devices. RiskMon itself does not detect or pre-
vent sensitive data from leaving users’ devices. We would

recommend users use on-device isolation mechanisms (e.g.
Samsung KNOX6) or data shadowing (e.g. [22]). However,
it is far from perfect for running untrusted applications on
trusted operating systems.

RiskMon requires users to specify security requirements
through permission groups. While most of the frequently
requested permission groups are self-descriptive (e.g. LOCA-
TION and CAMERA), some are ambiguous (e.g. APP_INFO) and
contain low-level APIs only known to developers. Although
we identify permission groups as an appropriate trade-off
between granularity and usability, we admit that permission
groups are still a partial artifact in representing sensitive re-
sources for users. Note that we choose permission groups
only to demonstrate the feasibility of our approach of se-
curity requirement communication. As our future work, we
plan to develop a systematic and intuitive taxonomy of sen-
sitive resources on mobile devices to facilitate more effective
requirement communication. Moreover, generating a risk
assessment baseline is a compute-intensive task that does
not quite fit resource-constrained mobile devices. Thus, we
plan to offload such a task to trusted third-parties or users’
public or private clouds in the future.

Regarding our current implementation of RiskMon, it
does not address: (1) interactions between third-party ap-
plications; and (2) interactions that do not utilize Binder.
This indeed illustrates potential attack vectors that can by-
pass RiskMon. Unauthorized accesses on resources of third-
party applications [11] might be possible because such re-
sources are not protected by system permissions. Also, two
or more malicious applications can collude via local sockets
or covert channels and evade the Binder-centric reference
monitor in RiskMon. For our future work, we will extend
our framework to maximize the coverage of attack vectors
in our approach.

6. RELATED WORK
Analysis of meta information: Meta information

available on application markets provides general descrip-
tions of applications. Recent work has proposed techniques
to distill risk signals from them. Kirin [16] provides a conser-
vative certification technique that enforces policies to miti-
gate applications with risky permission combinations at in-
stall time. Sarma et al. [33] propose to analyze permissions
alongside with application categories in two large application

6http://www.samsung.com/global/business/mobile/
solution/security/samsung-knox#con02



datasets. Peng et al. [28] use probabilistic generative models
to generate risk scoring schemes that assign comparative risk
scores on applications based on their requested permissions.
In addition to analysis on permissions, Chia et al. [10] and
Chen et al. [9] performed large-scale studies on application
popularity, user ratings and external community ratings. In
particular, Pandita et al. proposed WHYPER [26] which
automatically infers an application’s necessary permissions
from its description in natural languages. However, meta in-
formation does not accurately describe the actual behaviors
of applications. RiskMon uses meta information to provide
contextual information so as to complement the analysis on
the runtime behaviors for risk assessment.
Static and dynamic analysis: Analysis on execution

semantics of applications, such as static analysis of code and
dynamic analysis of runtime behaviors, can reveal how ap-
plications use sensitive information. Stowaway [17] extracts
API calls from a compiled Android application and reveals
its least privilege set of permissions. Enck et al. [15] devel-
oped a decompiler to uncover usage of phone identifiers and
locations. Pegasus [8] checks temporal properties of API
calls and detects API calls made without explicit user con-
sent. TaintDroid [14] uses dynamic information flow track-
ing to detect sensitive data leaking to the network. Regard-
ing malware analysis, DroidRanger [40] and RiskRanker [20]
are systematic and comprehensive approaches that combine
both static and dynamic analysis to detect dangerous behav-
iors. DroidScope [39] reconstructs semantic views to collect
detailed execution traces of applications. These work focuses
on fundamental challenges for assessing actual risks incurred
by applications. However, they do not provide a baseline to
capture the appropriate behaviors under diverse contexts of
different applications. Thus, their approaches are more in-
tended for security analysts rather than end users.
Mandatory access control frameworks: RiskMon

includes a lightweight reference monitor for Binder IPC.
While it monitors IPC transactions for risk assessment, sev-
eral frameworks mediate IPC channels as part of their ap-
proaches to support enhanced mandatory access control (MAC).
SEAndroid [34] brings SELinux kernel-level MAC to An-
droid. It adds new hooks in the Binder device driver to
address Binder IPC. Quire [13] provides IPC provenance by
propagating verifiable signatures along IPC chains so as to
mitigate confused deputy attacks. Aurasium [38] uses libc
interposition to efficiently monitor IPC transactions without
modifying the Android platform. FlaskDroid [7] provides
flexible MAC on multiple layers, which is tailored the pecu-
liarity of the Android system. Along these lines, RiskMon
captures Binder transactions with a fine-grained scheme to
facilitate risk assessment on applications’ runtime behaviors.

7. CONCLUSION
In this paper, we have presented RiskMon that continu-

ously and automatically measures risks incurred by a user’s
installed applications. RiskMon has leveraged machine-
learned ranking to generate a risk assessment baseline from
a user’s coarse expectations and runtime behaviors of her
trusted applications. Also we have described a proof-of-
concept implementation of RiskMon, along with the ex-
tensive evaluation results of our approach.
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