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Abstract—Cyberbullying can have a deep and long lasting 
impact on its victims, who are often adolescents. Accurately 
detecting cyberbullying helps prevent it. However, the noise and 
errors in social media posts and messages make detecting 
cyberbullying very challenging. In this paper, we propose a novel 
pronunciation based convolutional neural network (PCNN) to 
address this challenge. Upon observing that the pronunciation of 
misspelled words in informal online conversations is often 
unchanged, we used the phoneme codes of the text as the features 
for a convolutional neural network. This procedure corrects 
spelling errors that did not alter the pronunciation, thereby 
alleviating the problem of noise and bullying data sparsity. To 
overcome class imbalance, a common problem in cyberbullying 
datasets, we implement three techniques that include threshold-
moving, cost function adjusting, and a hybrid solution in our 
model. We evaluate the performance of our models using two 
cyberbullying datasets collected from Twitter and 
Formspring.me. The results of our experiment show that PCNN 
can achieve improved recall and precision compared to baseline 
convolutional neural networks. 

I. INTRODUCTION 
The rise of social media has significantly influenced our 

lives. However, this puts adolescents at risk to becoming 
victims of online misconduct, especially cyberbullying. 
Cyberbullying refers to an aggressive, intentional act 
conducted by either a group or an individual in cyberspace 
using information and communication technologies (e.g. e-
mail, mobile phone, and social networks) repeatedly or over 
time against victims who cannot easily defend themselves [1]. 
According to a 2015 report from the Cyberbullying Research 
Center, about one-third of the high school students from 
random samples have experienced cyberbullying [2]. 

Unlike in traditional bullying, techniques and forms used 
by cyberbullies change rapidly and is more harmful and harder 
to detect [3]. For example, it is easy to anonymously spread 
rumors about people online, and there is a low risk of being 
caught. Thus, it is necessary to detect cyberbullying in order to 
protect adolescents.  

Unlike video and image based methods, text based 
cyberbullying is the most common form used by perpetrators. 
Moreover, other forms are usually combined with bullying text. 
Thus, we focus on detecting textual cyberbullying in this study. 

Textual cyberbullying detection methods can be divided into 
two categories: keywords based and artificial intelligence (AI) 
based [4].  

The simplest way is the keyword method, which uses 
keywords to search for sensitive content within a text. 
Although the idea is straightforward, this  method can still 
obtain a high precision score by using informative query terms 
and leveraging the internet searching [5, 6]. However, 
keywords themselves are far from representative of all 
cyberbullying content. Thus, keywords based approaches have 
difficulty achieving high recall, a more important metric than 
precision and accuracy for cyberbullying detection. This is 
because it is better to detect more cyberbullying posts, even if 
there are false positives, than to have a high precision but only 
find a fraction of the cyberbullying posts [7]. In addition, 
accuracy is not a useful metric in this context because the 
classifier can easily achieve a relatively high accuracy of 93% 
by predicting all the samples as negatives (non-bullying) but 
have zero recall.  

The AI method is more complex. The three core 
components of AI, representation, inference, and learning, 
create three corresponding research directions for 
cyberbullying detection methods [4]. To be specific, most 
methods are based on supervised machine learning classifiers 
[7-20]. Our cyberbullying detection methods also belong to the 
machine learning based approach. 

TABLE I.  EXAMPLES OF NOISY DATA 

Examples Noise Type 

“! w@nN@ l!qqhH+ y0 d!(K 0N f!r3 N d3nN sM0k3 !t 
w!+ m@ v@q!n@” Symbols  

“wHy yUhH w0N+ fU(K m3 !N d@ @$$ h0l3 ???” Symbols  

“lol yew on sum otha shxt nd not even dressed in all 
black” Intended typos 

“im sur3 sh3 d0nt want y0u” Numbers 

“iloveyourpenis” Concatenation  

a. The examples are from Formspring.me website. 

The characteristics of posts and messages with bullying 
content make the detection of cyberbullying very challenging. 
First, as shown in Tab. I, these texts have many words with 
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incorrect spellings and symbol. However, we observed that 
those misspelled words are often informative. In addition, 
many sentences made up of symbols contain bullying. 

Second, the distribution of the classes within the data is 
imbalanced and the proportion of bullying content varies from 
different websites. For example, approximately 17% of the 
messages in the samples from Formspring.me, a question and 
answer based social network, contain bullying content [7]. The 
ratio dropped to approximately 5% after we parsed the 
messages into individual sentences on our analysis of the same 
data.  

The motivation of our work is the need for a practical, 
robust, and universal cyberbullying detection classifier with 
high performance. In this study, we propose to use the 
pronunciation of words within the texts as the features for a 
convolutional neural network (CNN), a classifier that has 
shown high performance on natural language processing, e.g. 
sentiment analysis [21]. The pronunciation conversion corrects 
spelling errors that did not change the original pronunciation of 
the word by mapping each word to phonetic code, which also 
reduces the size of the feature space. Our new pronunciation 
based convolutional neural network (PCNN) can alleviate the 
noise in social media text and improve classification 
performance. In order to overcome the class imbalance 
problem, we adopted three techniques: threshold-moving (TM) 
and cost function adjusting (CFA), and a hybrid solution (TM 
CFA) [22]. We tested our model on the Twitter dataset used in 
[18] and the Formspring dataset used in [7] to have a clear 
comparison between our approach and other works. 

II. RELATED WORKS 
Kontostathis et al. [6] analyzed cyberbullying corpuses 

using the bag-of-words model to find the most common used 
terms by cyberbullies and used them to create queries capable 
of reaching a precision of 91.25% on average. Lempa et al. [5] 
developed an Android application, embedded with two 
methods, to implement the cyberbullying detection. One 
method is built on a brute force search algorithm search for 
sensitive words and phrases within the text. The other method 
extracts words and phrases as seed words and detects 
cyberbullying online with keyword categorization and 
relevance matching. The top precision of both methods reaches 
89% and 91%, respectively [5]. 

Regarding classifier design, researchers have tested various 
classifiers, including Naïve Bayes, C4.5 decision tree, Random 
forests, and SVM with different kernels on corpuses collected 
from popular social networks, such as Twitter and YouTube [7, 
11]. Reynolds et al. [7] found that both the C4.5 decision tree 
and 3-nearest neighbor classifiers can reach a recall of 78.5% 
on the text-based dataset collected from Formspring.me, a 
question and answer based social network. Bullying posts 
(positives) were duplicated 10 times to compensate for the 
imbalance within the data. However, this oversampling method 
is unreliable since it exaggerates the occurrence rate of the 
positive samples [7]. On the Twitter dataset, Xu et al. [11] 
showed that SVM with a linear kernel using unigrams and 
bigrams as features can achieve a recall of 79% and a precision 

of 76%. Other works are focused on ensemble methods such as 
cooperative and hybrid classifiers [12, 15, 19]. Dadvar et al. 
[12, 15] introduced two approaches to combine machine 
learning methods and expert systems. The different 
combinations depend on which classifier’s output is used as the 
input of the other. An accuracy metric called the area under the 
curve (AUC) was used to evaluate their approach. The hybrid 
system made up of expert system and Naïve Bayes classifier, 
achieving their highest AUC score of 0.76. Mangaonkar et al. 
[19] evaluated 15 cooperative classifier combinations, 
including heterogeneous, homogeneous, and selective 
cooperation with different parallelisms. These ensemble 
classifiers are extremely complex and tuning the 
hyperparameters is difficult. 

For feature selection, various textual content based features, 
such as the basic bag-of-words and advanced sentiment 
prediction, were used as the input to classifiers [14, 17, 18]. 
Kasture took advantage of a psychometric feature analysis tool 
called Linguistic Inquiry and Word Count (LIWC) used it as a 
feature extractor. These features were used to train a variety of 
classifiers and the best performance reached 96.3% recall and 
98.4% precision on Random Forests using 10-fold cross 
validation on the Twitter dataset [18]. To detect the 
cyberbullying and cyberstalking in emails and messages, 
Ghasem et al. [17] selected the 500 most informative words as 
the feature vector and achieved an F1 score of approximately 
95% on SVM and a neural network classifier. Nahar et al. [14] 
introduced a weighted TFIDF feature extractor and used 
LIBSVM with a linear kernel to detect cyberbullying content in 
three social networks: Kongregate, Slashdot, and Myspace. The 
experiment results show that their feature design significantly 
improved the performance of the baseline LIBSVM. For 
example, the recall jumped from 25% to 98% on the Myspace 
dataset. However, oversampling was used to handle the 
imbalance problem, which is not a useful method in real-world 
implementations [14]. 

To further improve performance, many researchers 
implemented context-based features such as user profile 
information and online duration [8-10, 12, 13, 16, 20]. Dadvar 
et al. [9, 10, 12, 13] investigated incorporating user information 
as features to improve the performance. They established a 
comprehensive, context-based feature set covering age, 
behavior, cross-platform information, and activity history. 
These features were first tested by SVM and then used to build 
a hybrid detection approach including an expert system as 
mentioned above. Patterns of social network structures 
involving user behavior were used to detect and analyze 
cyberbullying [8, 16, 20]. Features like the number of friends, 
relation centrality, and bullying propagation were investigated 
and used to aid the detection. Their research results show that 
human relationships and action dynamics within social network 
structures can be taken into account to improve the results of 
cyberbullying detection and prediction. However, this type of 
context information is usually unavailable due to privacy 
protections. Thus, an effective and robust cyberbullying 
detection method should be able to perform well without this 
information. 
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Fig. 1. The architecture of PCNN 

III. METHOD DESCRIPTION 

A. Data Collection 
Due to the relatively limited amount of research in 

cyberbullying detection, there are no well-established 
benchmark datasets to test various approaches. The datasets 
used in previous publications differ significantly in size, 
source, and format. We decided to use the two datasets used in 
[18] and [7] for the following reasons.  

The Twitter dataset was used since Twitter is a popular 
platform and the dataset has been recently created and analyzed 
[18]. However, the dataset contains only 1313 messages, and 
the bullying content proportion, approximately 38.8%, is 
significantly higher than it would be under realistic conditions. 

Another dataset, collected from the social network 
Formspring.me and used in [7], was chosen to give an 
additional evaluation our approach. 13,000 messages were 
collected and then labeled by a web service called Amazon 
Mechanical Turk, where three workers each voted on whether 
or not a document contains bullying content. Thus, every 
message has a corresponding number of votes from the 
workers. Approximately 6.6% of the messages were labeled as 
bullying posts by at least two workers. We parsed the messages 
from the original dataset into sentences and relabeled the 
messages containing at least one vote. This resulted in 23,243 
sentences in which 1,623, or approximately 7%, are labeled as 
bullying messages. 

B. Data Preprocessing and Word-to-Pronunciation 
Conversion 
The Twitter dataset had already been preprocessed by 

removing usernames, hashtags, and hyperlinks from the Tweets 
[18]. The Tweets were then converted into plain text by 
replacing accented characters and removing non-alphanumeric 
tokens, excluding the apostrophe. After preprocessing, the 
maximum length of any Tweet was 33 words, and only 
approximately 15% of the words of the dataset cannot be found 
in a dictionary.  

We performed similar preprocessing on the Formspring 
dataset. Specifically, we removed irrelevant words like 
hyperlinks, user indicators (“Q:” and “A:”) and non-
alphanumeric tokens. Then, a term-compression operation was 
performed to ensure that there are no more than 2 consecutive 
occurrences of any character in a word. For example, “coolll,” 
“bitchhh,” and “guesss” become “cooll,” “bitchh,” and 
“guess”. This simple technique helps the pronunciation 
conversion procedure to group misspelled words with the same 
meaning and pronunciation together with the corrected word. 

After preprocessing the datasets, we created the phonetic 
representation of each word using eSpeak, an open source 
speech synthesizer software [23]. This conversion was based 
on pronunciation rules and a dictionary lookup list, both of 
which can be manually modified to better suit the purpose and 
research context. 

The phoneme strings can be encoded using ASCII code or 
the International Phonetic Alphabet (IPA), which uses 
characters from the Latin alphabet. Here, we used ASCII code 
to remain consistent with the original plain text. Some 
examples of the conversion are on Tab. II. 

TABLE II.  EXAMPLES OF THE WORD-TO-PRONUNCIATION CONVERSION 

Word and phrases Phonetic code Effect on the data 

“fuck, fuc, fuk” f'Vk Positive 

“fuckk” f'Vkk Neutral 

“shitt, shit” S'It Positive 

“suck, suk, suc” s'Vk Positive 

“dik, dic, dick” d'Ik Positive 

“guesss, guess” g'Es Positive 

“bitchh, bitch, bich” b'ItS Positive 

“cool, cooll” k'u:l Positive 

“cum, come” k'Vm Negative 

b. The examples are from Twitter and Formspring datasets. 
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The word-to-pronunciation conversion can map some 
misspelled words to the pronunciation of the corrected word. 
We observed that, especially in bullying posts, perpetrators 
tended to use slang or intentionally misspell words when 
insulting others. For example, five out of six words in the 
phrase “did u now tht ur ugli” are typos. However, the 
pronunciation of these misspelled insults usually remains 
unchanged. This means that the word-to-pronunciation 
conversion can generate the same phonetic code for “ugli” and 
“ugly,” effectively “correcting” the misspelled word.  

On the other hand, this conversion can create noise by 
mapping a bad word such as “cum” and a normal word such as 
“come” to the same phonetic representation. However, we 
believe the benefits of this procedure outweigh the costs since 
correctly maps words much more often than it creates noise. 
Furthermore, surrounding context words could be used to 
distinguish words like “cum” and “come.” 

After preprocessing the data and applying the word-to-
pronunciation conversion, the phonetic representation of each 
word was converted to a randomly initialized 300-dimensional 
vector. Then, a zero vector with the same dimension was used 
to pad each the sentences so that they are all the same length. 
Finally, each sentence was projected to a matrix with the same 
size.  

C. CNN and PCNN 
Convolutional neural networks (CNN), originally created 

for image processing, have performed very well in natural 
language processing (NLP), especially in sentiment analysis 
and question classification [21, 24, 25]. Inspired by their 
powerful feature representation capability, flexible structure, 
and high efficiency for training using a GPU, we adopted CNN 
as the baseline classifier. To have a clear performance 
comparison between PCNN and the baseline CNN, we used the 
same model architecture in [21]. As shown in the PCNN 
architecture diagram, only one layer of convolution and max-
pooling was used with three different filter sizes. The sizes of 
the three convolutional filters were chosen to be 1, 2, and 3, 
slightly differing from the filters in [21]. The filter sizes were 
chosen based on how many consecutive words were necessary 
to detect bullying content. The convolutional operation on m 
consecutive words is given in (1). 

 hi = f (wcxi:i+m + bc) (1) 

Here, xi:i+m, hi, wc, bc, and f are the embedding matrix of m 
words, the feature value generated by the operation, the weight 
and bias of the corresponding convolutional filter, and the 
activation function, respectively. We used the linear rectifier 
unit as the activation function. 

A max-pooling operation was applied to all the features 
from one convolutional filter. Then, the features were 
concatenated into h, a feature vector with dimensions equal to 
the number of filters applied. A softmax layer with dropout 
was applied to the output of the pooling layer to predict the 
class probability, P, as follows: 

 P (Y=i | X, ) = softmaxi (wsh + bs) (2) 

Here X, h, Y, ws, bs, i, and  are the input embedding 
matrix, feature vector from the convolutional and pooling 
layer, class prediction, weights of the penultimate layer, 
corresponding bias, class number, and parameter set, 
respectively. 

We used two separate CNN to establish a baseline. Three 
hundred dimensional word-embedding based on Google’s 
word-to-vector was used to create the feature set for the first 
baseline CNN, which we named CNN Pre-trained. Randomly 
generated vectors were used to create the feature set for the 
second baseline CNN, which we named CNN Random. For 
PCNN, the phoneme codes were randomly initialized into 
vectors for the feature set. All the embedding for CNN and 
PCNN was updated during the training process based on the 
stochastic gradient descent [26]. 

Our method and the structure of PCNN are shown in Fig. 1. 

D. Techniques for Handling Class Imbalance 
Unlike the movie reviews used in sentiment analysis, the 

class distribution is imbalanced for most cyberbullying related 
datasets. For example, only about 6.6% messages in 
Formspring dataset were labeled as bullying by two voters. The 
class imbalance within the dataset creates two problems. 

 First, the small percentage of positive samples makes it 
difficult to detect them, especially when the dataset is small. 
Furthermore, the lack of sufficient samples for unique instances 
of bullying makes it nearly impossible for classifiers to 
recognize them.  

Second, the most commonly used cost functions of CNN, 
the one we used being the negative log likelihood (NLL), were 
designed to only improve the accuracy rather than recall or 
precision. Consequently, CNN models have a bias towards the 
dominating class. 

There are three methods for dealing with the class 
imbalance problem: oversampling or undersampling the 
dataset, modifying the classifier to be cost sensitive, and 
training on only one class [22, 27]. However, the sampling 
technique will change the proportion of the classes, causing the 
data to no longer represent realistic conditions, and the one 
class classification method is only useful for detecting 
anomalies and outliers in the dataset.  

Since these two methods are not useful for most datasets, 
we chose to modify the classifier to be cost sensitive. There are 
three ways to implement this: threshold-moving, cost function 
adjusting, and a hybrid solution. Threshold-moving replaces 
Bayes estimation with maximum likelihood estimation in order 
to compensate for the great difference between the prior 
probabilities of the two classes. The prediction using this 
method is calculated by dividing the prediction of the classes 
by their prior probabilities, P(Y=i). It is implemented as 
follows: 

 Ypredict = argmaxi (P(Y = i | X, ) / P(Y = i)) (3) 

Re-normalization could be added, but it does not affect the 
prediction result.  
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Cost function adjusting aims to modify the cost function of 
for the stochastic gradient descent training so that each element 
of the minority class can cause more parameter optimization 
than each element of the majority class does to compensate for 
the class imbalance. The new cost function is given as follows: 

 
cost = -(1 / Kn) n

i=1(log (P(Y=i | X, )) / P(Y = i))
 

(4) 

P (Y=i | X, ) is the predicted probability of class i when the 
input embedding matrix is X and the model parameter set is . 
P(Y=i) is the prior probability of class i, n is the size of the 
mini-batch, and K is the number of classes. 

IV. EXPERIMENT RESULT 
We used recall, precision, F1 score and accuracy as metrics 

to evaluate the performance of our models. All of these metrics 
are based on the number of true positives (TP), false positives 
(FP), true negatives (TN), and false negatives (FN). The 
formulas for calculating the metrics are as follows: 

 Recall = TP / (TP + FN) (5) 
 Precision = TP / (TP + FP) (6) 
 F1 = 2 * Recall * Precision / (Recall + Precision) (7) 

We used 5-fold cross-validation for the Formspring dataset. 
However, we used ten-fold cross-validation on the Twitter data 
in order to remain consistent with [18]. Two baseline CNN 
classifiers and PCNN were tested and compared with the other 
classifiers used in [18]. The code was written in Python and the 
neural network components were based on the Theano package 
and Kim’s work [21, 28]. 

A. Comparison of Classification Performance 
Tab. III shows the results of our methods on the Twitter 

dataset compared to previous work based on LIWC features in 
[18]. It shows that PCNN outperforms all models on all metrics 
in the original paper and is slightly better than CNN with 
randomly generated word embedding. In addition, PCNN and 
CNN Random performed better than CNN with pre-trained 
Google word vectors. This may be because the corpus used for 
pre-training was not specific to cyberbullying detection.  

TABLE III.  COMPARISON OF METHODS USED ON THE TWITTER DATASET 

Model Precision Recall Accuracy F1 score 

Random forests 0.984 0.963 - 0.973 

SVM 0.986 0.912 - 0.948 
Multilayer 
Perceptron 0.951 0.939 - 0.945 

J 48 Decision Tree 0.947 0.941 - 0.944 

CNN Pre-trained 0.973 0.937 0.974 0.955 

CNN Random 0.994 0.962 0.988 0.978 

PCNN  0.991 0.970 0.989 0.980 

c. Results are average of 10-fold cross validation 

d. The accuracy of first four classifiers from [18] is not given. 

 

TABLE IV.  COMPARISON OF METHODS USED ON THE FORMSPRING DATA 

Model Precision Recall Accuracy F1 score 

CNN Pre-trained 0.728 0.364 0.964 0.485 

CNN Random 0.728 0.429 0.966 0.540 

PCNN  0.740 0.453 0.968 0.562 

Results are average of 5-fold cross-validation 

Tab. IV summarizes results of the three approaches 
evaluated on the Formspring dataset. PCNN outperformed the 
two baseline CNN models in all metrics, demonstrating the 
benefit of using the word to pronunciation conversion. Despite 
the excellent results on the Twitter dataset, the overall 
classification performance on the Formspring data was much 
lower. This may be due to the severe noise and class imbalance 
in the Formspring dataset. For example, approximately 55% of 
the words in the Formspring dataset vocabulary cannot be 
found in the dictionary while only 15% of the words in the 
Twitter dataset are misspelled. 

B. Comparison of Techniques for Handling Class Imbalance 
Tab. V shows the results of the three CNN models on the 

Twitter dataset using the different class imbalance handling 
techniques: threshold-moving, cost function adjusting, and a 
hybrid solution. These techniques slightly improved recall, and 
the combination of TM and CFA performed the best out of the 
three. Furthermore, TM CFA PCNN can improve the overall 
performance and outperforms the two baseline CNN models. 
However, the improvement is insignificant since the degree of 
class imbalance in the Twitter dataset is low and the recall is 
already very high. Thus, these techniques need to be evaluated 
on a noisier and more imbalanced dataset.  

Tab. VI gives the corresponding results on the Formspring 
dataset. It shows that all three techniques enhanced the recall at 
the cost of precision and even accuracy. Among them, CFA 
improved the overall classification performance the most, 
increasing recall and F1 score without hurting accuracy. 
Moreover, PCNN obtained the highest recall and F1 score than 
others when using cost function adjusting.  

TABLE V.  HANDLING CLASS IMBALANCE ON THE TWITTER DATASET 

Technique Model Precision Recall Accuracy F1 score 

TM 

CNN Pre-
trained 0.910 0.943 0.956 0.926 

CNN 
Random 0.984 0.961 0.985 0.972 

PCNN  0.989 0.972 0.989 0.980 

CFA 

CNN Pre-
trained 0.954 0.946 0.971 0.950 

CNN 
Random 0.992 0.960 0.986 0.976 

CFA 
PCNN 0.991 0.972 0.990 0.981 

TM CFA 

CNN Pre-
trained 0.919 0.949 0.960 0.934 

CNN 
Random 0.986 0.965 0.986 0.975 

PCNN 0.991 0.975 0.990 0.983 
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TABLE VI.  HANDLING CLASS IMBALANCE ON THE FORMSPRING 
DATASET 

Technique Model Precision Recall Accuracy F1 score 

TM 

CNN Pre-
trained 0.328 0.602 0.923 0.425 

CNN 
Random 0.280 0.694 0.894 0.399 

PCNN 0.305 0.717 0.902 0.428 

CFA 

CNN Pre-
trained 0.440 0.529 0.947 0.480 

CNN 
Random 0.562 0.558 0.960 0.560 

PCNN 0.540 0.606 0.958 0.571 

TM CFA 

CNN Pre-
trained 0.168 0.733 0.818 0.273 

CNN 
Random 0.203 0.778 0.846 0.322 

PCNN 0.254 0.787 0.881 0.384 

The results on both datasets show that cost function 
adjusting is an effective technique to handle datasets with class 
imbalance. In addition, the word-to-pronunciation conversion 
contributes to the increase the recall without other loss. 

V. CONCLUSION AND FUTURE WORK 
We have proposed a novel pronunciation based 

convolutional neural network for detecting cyberbullying. We 
have compared our approach with two baseline CNN models 
and other classifiers using two datasets, each with different 
degrees of noise and class imbalance. Our approach showed 
high performance on the given datasets. Furthermore, three 
techniques for overcoming class imbalance have been 
implemented and evaluated. The results show that the PCNN 
with cost function adjusting is a very effective solution. 

In the future, we plan to enhance the effectiveness of the 
word-pronunciation conversion and connect pronunciation 
features with the CNN model more tightly. 
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