
Cyberbullying Detection with a Pronunciation
Based Convolutional Neural Network

Xiang Zhang1, Jonathan Tong1, *, Nishant Vishwamitra1, Elizabeth Whittaker3,

Joseph P. Mazer2, Robin Kowalski3, Hongxin Hu1, Feng Luo1

1School of Computing, 2Department of Communication Study, 3Department of Psychology
Clemson University

luofeng@clemson.edu
Jamie Macbeth

School of Engineering
Fairfield University

Edward Dillon
Dept. of Computer and Information Sciences and Eng.

University of Florida

Abstract—Cyberbullying can have a deep and long lasting
impact on its victims, who are often adolescents. Accurately
detecting cyberbullying helps prevent it. However, the noise and
errors in social media posts and messages make detecting
cyberbullying very challenging. In this paper, we propose a novel
pronunciation based convolutional neural network (PCNN) to
address this challenge. Upon observing that the pronunciation of
misspelled words in informal online conversations is often
unchanged, we used the phoneme codes of the text as the features
for a convolutional neural network. This procedure corrects
spelling errors that did not alter the pronunciation, thereby
alleviating the problem of noise and bullying data sparsity. To
overcome class imbalance, a common problem in cyberbullying
datasets, we implement three techniques that include threshold-
moving, cost function adjusting, and a hybrid solution in our
model. We evaluate the performance of our models using two
cyberbullying datasets collected from Twitter and
Formspring.me. The results of our experiment show that PCNN
can achieve improved recall and precision compared to baseline
convolutional neural networks.

I. INTRODUCTION
The rise of social media has significantly influenced our

lives. However, this puts adolescents at risk to becoming
victims of online misconduct, especially cyberbullying.
Cyberbullying refers to an aggressive, intentional act
conducted by either a group or an individual in cyberspace
using information and communication technologies (e.g. e-
mail, mobile phone, and social networks) repeatedly or over
time against victims who cannot easily defend themselves [1].
According to a 2015 report from the Cyberbullying Research
Center, about one-third of the high school students from
random samples have experienced cyberbullying [2].

Unlike in traditional bullying, techniques and forms used
by cyberbullies change rapidly and is more harmful and harder
to detect [3]. For example, it is easy to anonymously spread
rumors about people online, and there is a low risk of being
caught. Thus, it is necessary to detect cyberbullying in order to
protect adolescents.

Unlike video and image based methods, text based
cyberbullying is the most common form used by perpetrators.
Moreover, other forms are usually combined with bullying text.
Thus, we focus on detecting textual cyberbullying in this study.

Textual cyberbullying detection methods can be divided into
two categories: keywords based and artificial intelligence (AI)
based [4].

The simplest way is the keyword method, which uses
keywords to search for sensitive content within a text.
Although the idea is straightforward, this method can still
obtain a high precision score by using informative query terms
and leveraging the internet searching [5, 6]. However,
keywords themselves are far from representative of all
cyberbullying content. Thus, keywords based approaches have
difficulty achieving high recall, a more important metric than
precision and accuracy for cyberbullying detection. This is
because it is better to detect more cyberbullying posts, even if
there are false positives, than to have a high precision but only
find a fraction of the cyberbullying posts [7]. In addition,
accuracy is not a useful metric in this context because the
classifier can easily achieve a relatively high accuracy of 93%
by predicting all the samples as negatives (non-bullying) but
have zero recall.

The AI method is more complex. The three core
components of AI, representation, inference, and learning,
create three corresponding research directions for
cyberbullying detection methods [4]. To be specific, most
methods are based on supervised machine learning classifiers
[7-20]. Our cyberbullying detection methods also belong to the
machine learning based approach.

TABLE I. EXAMPLES OF NOISY DATA

Examples Noise Type

“! w@nN@ l!qqhH+ y0 d!(K 0N f!r3 N d3nN sM0k3 !t
w!+ m@ v@q!n@” Symbols

“wHy yUhH w0N+ fU(K m3 !N d@ @$$ h0l3 ???” Symbols

“lol yew on sum otha shxt nd not even dressed in all
black” Intended typos

“im sur3 sh3 d0nt want y0u” Numbers

“iloveyourpenis” Concatenation

a. The examples are from Formspring.me website.

The characteristics of posts and messages with bullying
content make the detection of cyberbullying very challenging.
First, as shown in Tab. I, these texts have many words with

*Intern from D.W. Daniel High School, Central, SC USA

2016 15th IEEE International Conference on Machine Learning and Applications

978-1-5090-6167-9/16 $31.00 © 2016 IEEE

DOI 10.1109/ICMLA.2016.71

740

incorrect spellings and symbol. However, we observed that
those misspelled words are often informative. In addition,
many sentences made up of symbols contain bullying.

Second, the distribution of the classes within the data is
imbalanced and the proportion of bullying content varies from
different websites. For example, approximately 17% of the
messages in the samples from Formspring.me, a question and
answer based social network, contain bullying content [7]. The
ratio dropped to approximately 5% after we parsed the
messages into individual sentences on our analysis of the same
data.

The motivation of our work is the need for a practical,
robust, and universal cyberbullying detection classifier with
high performance. In this study, we propose to use the
pronunciation of words within the texts as the features for a
convolutional neural network (CNN), a classifier that has
shown high performance on natural language processing, e.g.
sentiment analysis [21]. The pronunciation conversion corrects
spelling errors that did not change the original pronunciation of
the word by mapping each word to phonetic code, which also
reduces the size of the feature space. Our new pronunciation
based convolutional neural network (PCNN) can alleviate the
noise in social media text and improve classification
performance. In order to overcome the class imbalance
problem, we adopted three techniques: threshold-moving (TM)
and cost function adjusting (CFA), and a hybrid solution (TM
CFA) [22]. We tested our model on the Twitter dataset used in
[18] and the Formspring dataset used in [7] to have a clear
comparison between our approach and other works.

II. RELATED WORKS
Kontostathis et al. [6] analyzed cyberbullying corpuses

using the bag-of-words model to find the most common used
terms by cyberbullies and used them to create queries capable
of reaching a precision of 91.25% on average. Lempa et al. [5]
developed an Android application, embedded with two
methods, to implement the cyberbullying detection. One
method is built on a brute force search algorithm search for
sensitive words and phrases within the text. The other method
extracts words and phrases as seed words and detects
cyberbullying online with keyword categorization and
relevance matching. The top precision of both methods reaches
89% and 91%, respectively [5].

Regarding classifier design, researchers have tested various
classifiers, including Naïve Bayes, C4.5 decision tree, Random
forests, and SVM with different kernels on corpuses collected
from popular social networks, such as Twitter and YouTube [7,
11]. Reynolds et al. [7] found that both the C4.5 decision tree
and 3-nearest neighbor classifiers can reach a recall of 78.5%
on the text-based dataset collected from Formspring.me, a
question and answer based social network. Bullying posts
(positives) were duplicated 10 times to compensate for the
imbalance within the data. However, this oversampling method
is unreliable since it exaggerates the occurrence rate of the
positive samples [7]. On the Twitter dataset, Xu et al. [11]
showed that SVM with a linear kernel using unigrams and
bigrams as features can achieve a recall of 79% and a precision

of 76%. Other works are focused on ensemble methods such as
cooperative and hybrid classifiers [12, 15, 19]. Dadvar et al.
[12, 15] introduced two approaches to combine machine
learning methods and expert systems. The different
combinations depend on which classifier’s output is used as the
input of the other. An accuracy metric called the area under the
curve (AUC) was used to evaluate their approach. The hybrid
system made up of expert system and Naïve Bayes classifier,
achieving their highest AUC score of 0.76. Mangaonkar et al.
[19] evaluated 15 cooperative classifier combinations,
including heterogeneous, homogeneous, and selective
cooperation with different parallelisms. These ensemble
classifiers are extremely complex and tuning the
hyperparameters is difficult.

For feature selection, various textual content based features,
such as the basic bag-of-words and advanced sentiment
prediction, were used as the input to classifiers [14, 17, 18].
Kasture took advantage of a psychometric feature analysis tool
called Linguistic Inquiry and Word Count (LIWC) used it as a
feature extractor. These features were used to train a variety of
classifiers and the best performance reached 96.3% recall and
98.4% precision on Random Forests using 10-fold cross
validation on the Twitter dataset [18]. To detect the
cyberbullying and cyberstalking in emails and messages,
Ghasem et al. [17] selected the 500 most informative words as
the feature vector and achieved an F1 score of approximately
95% on SVM and a neural network classifier. Nahar et al. [14]
introduced a weighted TFIDF feature extractor and used
LIBSVM with a linear kernel to detect cyberbullying content in
three social networks: Kongregate, Slashdot, and Myspace. The
experiment results show that their feature design significantly
improved the performance of the baseline LIBSVM. For
example, the recall jumped from 25% to 98% on the Myspace
dataset. However, oversampling was used to handle the
imbalance problem, which is not a useful method in real-world
implementations [14].

To further improve performance, many researchers
implemented context-based features such as user profile
information and online duration [8-10, 12, 13, 16, 20]. Dadvar
et al. [9, 10, 12, 13] investigated incorporating user information
as features to improve the performance. They established a
comprehensive, context-based feature set covering age,
behavior, cross-platform information, and activity history.
These features were first tested by SVM and then used to build
a hybrid detection approach including an expert system as
mentioned above. Patterns of social network structures
involving user behavior were used to detect and analyze
cyberbullying [8, 16, 20]. Features like the number of friends,
relation centrality, and bullying propagation were investigated
and used to aid the detection. Their research results show that
human relationships and action dynamics within social network
structures can be taken into account to improve the results of
cyberbullying detection and prediction. However, this type of
context information is usually unavailable due to privacy
protections. Thus, an effective and robust cyberbullying
detection method should be able to perform well without this
information.

741

Fig. 1. The architecture of PCNN

III. METHOD DESCRIPTION

A. Data Collection
Due to the relatively limited amount of research in

cyberbullying detection, there are no well-established
benchmark datasets to test various approaches. The datasets
used in previous publications differ significantly in size,
source, and format. We decided to use the two datasets used in
[18] and [7] for the following reasons.

The Twitter dataset was used since Twitter is a popular
platform and the dataset has been recently created and analyzed
[18]. However, the dataset contains only 1313 messages, and
the bullying content proportion, approximately 38.8%, is
significantly higher than it would be under realistic conditions.

Another dataset, collected from the social network
Formspring.me and used in [7], was chosen to give an
additional evaluation our approach. 13,000 messages were
collected and then labeled by a web service called Amazon
Mechanical Turk, where three workers each voted on whether
or not a document contains bullying content. Thus, every
message has a corresponding number of votes from the
workers. Approximately 6.6% of the messages were labeled as
bullying posts by at least two workers. We parsed the messages
from the original dataset into sentences and relabeled the
messages containing at least one vote. This resulted in 23,243
sentences in which 1,623, or approximately 7%, are labeled as
bullying messages.

B. Data Preprocessing and Word-to-Pronunciation
Conversion
The Twitter dataset had already been preprocessed by

removing usernames, hashtags, and hyperlinks from the Tweets
[18]. The Tweets were then converted into plain text by
replacing accented characters and removing non-alphanumeric
tokens, excluding the apostrophe. After preprocessing, the
maximum length of any Tweet was 33 words, and only
approximately 15% of the words of the dataset cannot be found
in a dictionary.

We performed similar preprocessing on the Formspring
dataset. Specifically, we removed irrelevant words like
hyperlinks, user indicators (“Q:” and “A:”) and non-
alphanumeric tokens. Then, a term-compression operation was
performed to ensure that there are no more than 2 consecutive
occurrences of any character in a word. For example, “coolll,”
“bitchhh,” and “guesss” become “cooll,” “bitchh,” and
“guess”. This simple technique helps the pronunciation
conversion procedure to group misspelled words with the same
meaning and pronunciation together with the corrected word.

After preprocessing the datasets, we created the phonetic
representation of each word using eSpeak, an open source
speech synthesizer software [23]. This conversion was based
on pronunciation rules and a dictionary lookup list, both of
which can be manually modified to better suit the purpose and
research context.

The phoneme strings can be encoded using ASCII code or
the International Phonetic Alphabet (IPA), which uses
characters from the Latin alphabet. Here, we used ASCII code
to remain consistent with the original plain text. Some
examples of the conversion are on Tab. II.

TABLE II. EXAMPLES OF THE WORD-TO-PRONUNCIATION CONVERSION

Word and phrases Phonetic code Effect on the data

“fuck, fuc, fuk” f'Vk Positive

“fuckk” f'Vkk Neutral

“shitt, shit” S'It Positive

“suck, suk, suc” s'Vk Positive

“dik, dic, dick” d'Ik Positive

“guesss, guess” g'Es Positive

“bitchh, bitch, bich” b'ItS Positive

“cool, cooll” k'u:l Positive

“cum, come” k'Vm Negative

b. The examples are from Twitter and Formspring datasets.

742

The word-to-pronunciation conversion can map some
misspelled words to the pronunciation of the corrected word.
We observed that, especially in bullying posts, perpetrators
tended to use slang or intentionally misspell words when
insulting others. For example, five out of six words in the
phrase “did u now tht ur ugli” are typos. However, the
pronunciation of these misspelled insults usually remains
unchanged. This means that the word-to-pronunciation
conversion can generate the same phonetic code for “ugli” and
“ugly,” effectively “correcting” the misspelled word.

On the other hand, this conversion can create noise by
mapping a bad word such as “cum” and a normal word such as
“come” to the same phonetic representation. However, we
believe the benefits of this procedure outweigh the costs since
correctly maps words much more often than it creates noise.
Furthermore, surrounding context words could be used to
distinguish words like “cum” and “come.”

After preprocessing the data and applying the word-to-
pronunciation conversion, the phonetic representation of each
word was converted to a randomly initialized 300-dimensional
vector. Then, a zero vector with the same dimension was used
to pad each the sentences so that they are all the same length.
Finally, each sentence was projected to a matrix with the same
size.

C. CNN and PCNN
Convolutional neural networks (CNN), originally created

for image processing, have performed very well in natural
language processing (NLP), especially in sentiment analysis
and question classification [21, 24, 25]. Inspired by their
powerful feature representation capability, flexible structure,
and high efficiency for training using a GPU, we adopted CNN
as the baseline classifier. To have a clear performance
comparison between PCNN and the baseline CNN, we used the
same model architecture in [21]. As shown in the PCNN
architecture diagram, only one layer of convolution and max-
pooling was used with three different filter sizes. The sizes of
the three convolutional filters were chosen to be 1, 2, and 3,
slightly differing from the filters in [21]. The filter sizes were
chosen based on how many consecutive words were necessary
to detect bullying content. The convolutional operation on m
consecutive words is given in (1).

 hi = f (wcxi:i+m + bc) (1)

Here, xi:i+m, hi, wc, bc, and f are the embedding matrix of m
words, the feature value generated by the operation, the weight
and bias of the corresponding convolutional filter, and the
activation function, respectively. We used the linear rectifier
unit as the activation function.

A max-pooling operation was applied to all the features
from one convolutional filter. Then, the features were
concatenated into h, a feature vector with dimensions equal to
the number of filters applied. A softmax layer with dropout
was applied to the output of the pooling layer to predict the
class probability, P, as follows:

 P (Y=i | X,) = softmaxi (wsh + bs) (2)

Here X, h, Y, ws, bs, i, and are the input embedding
matrix, feature vector from the convolutional and pooling
layer, class prediction, weights of the penultimate layer,
corresponding bias, class number, and parameter set,
respectively.

We used two separate CNN to establish a baseline. Three
hundred dimensional word-embedding based on Google’s
word-to-vector was used to create the feature set for the first
baseline CNN, which we named CNN Pre-trained. Randomly
generated vectors were used to create the feature set for the
second baseline CNN, which we named CNN Random. For
PCNN, the phoneme codes were randomly initialized into
vectors for the feature set. All the embedding for CNN and
PCNN was updated during the training process based on the
stochastic gradient descent [26].

Our method and the structure of PCNN are shown in Fig. 1.

D. Techniques for Handling Class Imbalance
Unlike the movie reviews used in sentiment analysis, the

class distribution is imbalanced for most cyberbullying related
datasets. For example, only about 6.6% messages in
Formspring dataset were labeled as bullying by two voters. The
class imbalance within the dataset creates two problems.

 First, the small percentage of positive samples makes it
difficult to detect them, especially when the dataset is small.
Furthermore, the lack of sufficient samples for unique instances
of bullying makes it nearly impossible for classifiers to
recognize them.

Second, the most commonly used cost functions of CNN,
the one we used being the negative log likelihood (NLL), were
designed to only improve the accuracy rather than recall or
precision. Consequently, CNN models have a bias towards the
dominating class.

There are three methods for dealing with the class
imbalance problem: oversampling or undersampling the
dataset, modifying the classifier to be cost sensitive, and
training on only one class [22, 27]. However, the sampling
technique will change the proportion of the classes, causing the
data to no longer represent realistic conditions, and the one
class classification method is only useful for detecting
anomalies and outliers in the dataset.

Since these two methods are not useful for most datasets,
we chose to modify the classifier to be cost sensitive. There are
three ways to implement this: threshold-moving, cost function
adjusting, and a hybrid solution. Threshold-moving replaces
Bayes estimation with maximum likelihood estimation in order
to compensate for the great difference between the prior
probabilities of the two classes. The prediction using this
method is calculated by dividing the prediction of the classes
by their prior probabilities, P(Y=i). It is implemented as
follows:

 Ypredict = argmaxi (P(Y = i | X,) / P(Y = i)) (3)

Re-normalization could be added, but it does not affect the
prediction result.

743

Cost function adjusting aims to modify the cost function of
for the stochastic gradient descent training so that each element
of the minority class can cause more parameter optimization
than each element of the majority class does to compensate for
the class imbalance. The new cost function is given as follows:

cost = -(1 / Kn) n

i=1(log (P(Y=i | X,)) / P(Y = i))

(4)

P (Y=i | X,) is the predicted probability of class i when the
input embedding matrix is X and the model parameter set is .
P(Y=i) is the prior probability of class i, n is the size of the
mini-batch, and K is the number of classes.

IV. EXPERIMENT RESULT
We used recall, precision, F1 score and accuracy as metrics

to evaluate the performance of our models. All of these metrics
are based on the number of true positives (TP), false positives
(FP), true negatives (TN), and false negatives (FN). The
formulas for calculating the metrics are as follows:

 Recall = TP / (TP + FN) (5)
 Precision = TP / (TP + FP) (6)
 F1 = 2 * Recall * Precision / (Recall + Precision) (7)

We used 5-fold cross-validation for the Formspring dataset.
However, we used ten-fold cross-validation on the Twitter data
in order to remain consistent with [18]. Two baseline CNN
classifiers and PCNN were tested and compared with the other
classifiers used in [18]. The code was written in Python and the
neural network components were based on the Theano package
and Kim’s work [21, 28].

A. Comparison of Classification Performance
Tab. III shows the results of our methods on the Twitter

dataset compared to previous work based on LIWC features in
[18]. It shows that PCNN outperforms all models on all metrics
in the original paper and is slightly better than CNN with
randomly generated word embedding. In addition, PCNN and
CNN Random performed better than CNN with pre-trained
Google word vectors. This may be because the corpus used for
pre-training was not specific to cyberbullying detection.

TABLE III. COMPARISON OF METHODS USED ON THE TWITTER DATASET

Model Precision Recall Accuracy F1 score

Random forests 0.984 0.963 - 0.973

SVM 0.986 0.912 - 0.948
Multilayer
Perceptron 0.951 0.939 - 0.945

J 48 Decision Tree 0.947 0.941 - 0.944

CNN Pre-trained 0.973 0.937 0.974 0.955

CNN Random 0.994 0.962 0.988 0.978

PCNN 0.991 0.970 0.989 0.980

c. Results are average of 10-fold cross validation

d. The accuracy of first four classifiers from [18] is not given.

TABLE IV. COMPARISON OF METHODS USED ON THE FORMSPRING DATA

Model Precision Recall Accuracy F1 score

CNN Pre-trained 0.728 0.364 0.964 0.485

CNN Random 0.728 0.429 0.966 0.540

PCNN 0.740 0.453 0.968 0.562

Results are average of 5-fold cross-validation

Tab. IV summarizes results of the three approaches
evaluated on the Formspring dataset. PCNN outperformed the
two baseline CNN models in all metrics, demonstrating the
benefit of using the word to pronunciation conversion. Despite
the excellent results on the Twitter dataset, the overall
classification performance on the Formspring data was much
lower. This may be due to the severe noise and class imbalance
in the Formspring dataset. For example, approximately 55% of
the words in the Formspring dataset vocabulary cannot be
found in the dictionary while only 15% of the words in the
Twitter dataset are misspelled.

B. Comparison of Techniques for Handling Class Imbalance
Tab. V shows the results of the three CNN models on the

Twitter dataset using the different class imbalance handling
techniques: threshold-moving, cost function adjusting, and a
hybrid solution. These techniques slightly improved recall, and
the combination of TM and CFA performed the best out of the
three. Furthermore, TM CFA PCNN can improve the overall
performance and outperforms the two baseline CNN models.
However, the improvement is insignificant since the degree of
class imbalance in the Twitter dataset is low and the recall is
already very high. Thus, these techniques need to be evaluated
on a noisier and more imbalanced dataset.

Tab. VI gives the corresponding results on the Formspring
dataset. It shows that all three techniques enhanced the recall at
the cost of precision and even accuracy. Among them, CFA
improved the overall classification performance the most,
increasing recall and F1 score without hurting accuracy.
Moreover, PCNN obtained the highest recall and F1 score than
others when using cost function adjusting.

TABLE V. HANDLING CLASS IMBALANCE ON THE TWITTER DATASET

Technique Model Precision Recall Accuracy F1 score

TM

CNN Pre-
trained 0.910 0.943 0.956 0.926

CNN
Random 0.984 0.961 0.985 0.972

PCNN 0.989 0.972 0.989 0.980

CFA

CNN Pre-
trained 0.954 0.946 0.971 0.950

CNN
Random 0.992 0.960 0.986 0.976

CFA
PCNN 0.991 0.972 0.990 0.981

TM CFA

CNN Pre-
trained 0.919 0.949 0.960 0.934

CNN
Random 0.986 0.965 0.986 0.975

PCNN 0.991 0.975 0.990 0.983

744

TABLE VI. HANDLING CLASS IMBALANCE ON THE FORMSPRING
DATASET

Technique Model Precision Recall Accuracy F1 score

TM

CNN Pre-
trained 0.328 0.602 0.923 0.425

CNN
Random 0.280 0.694 0.894 0.399

PCNN 0.305 0.717 0.902 0.428

CFA

CNN Pre-
trained 0.440 0.529 0.947 0.480

CNN
Random 0.562 0.558 0.960 0.560

PCNN 0.540 0.606 0.958 0.571

TM CFA

CNN Pre-
trained 0.168 0.733 0.818 0.273

CNN
Random 0.203 0.778 0.846 0.322

PCNN 0.254 0.787 0.881 0.384

The results on both datasets show that cost function
adjusting is an effective technique to handle datasets with class
imbalance. In addition, the word-to-pronunciation conversion
contributes to the increase the recall without other loss.

V. CONCLUSION AND FUTURE WORK
We have proposed a novel pronunciation based

convolutional neural network for detecting cyberbullying. We
have compared our approach with two baseline CNN models
and other classifiers using two datasets, each with different
degrees of noise and class imbalance. Our approach showed
high performance on the given datasets. Furthermore, three
techniques for overcoming class imbalance have been
implemented and evaluated. The results show that the PCNN
with cost function adjusting is a very effective solution.

In the future, we plan to enhance the effectiveness of the
word-pronunciation conversion and connect pronunciation
features with the CNN model more tightly.

ACKNOWLEDGMENT
This work was partially supported by grants from National

Science Foundation (NSF-CNS-1537924 and NSF-IIS-
1527421).

REFERENCES
[1] D. L. Espelage and S. M. Swearer, "Research on school bullying and

victimization: What have we learned and where do we go from here?,"
School psychology review, vol. 32, pp. 365-384, 2003.

[2] J. W. Patchin. (2015). 2015 Cyberbullying Data. Available:
http://cyberbullying.org/2015-data

[3] J. W. Patchin and S. Hinduja, "Measuring cyberbullying: Implications
for research," Aggression and Violent Behavior, vol. 23, pp. 69-74,
2015.

[4] K. Dinakar, R. Reichart, and H. Lieberman, "Modeling the detection of
Textual Cyberbullying," The Social Mobile Web, vol. 11, p. 02, 2011.

[5] P. Lempa, M. Ptaszynski, and F. Masui, "Cyberbullying Blocker
Application for Android," presented at the 7th Language & Technology
Conference (LTC'15), Poznan, Poland, 2015.

[6] A. Kontostathis, K. Reynolds, A. Garron, and L. Edwards, "Detecting
cyberbullying: query terms and techniques," in Proceedings of the 5th
annual acm web science conference, 2013, pp. 195-204.

[7] K. Reynolds, A. Kontostathis, and L. Edwards, "Using machine learning
to detect cyberbullying," in Machine Learning and Applications and
Workshops (ICMLA), 2011 10th International Conference on, 2011, pp.
241-244.

[8] M. Honjo, T. Hasegawa, T. Hasegawa, K. Mishima, T. Suda, and T.
Yoshida, "A framework to identify relationships among students in
school bullying using digital communication media," in Privacy,
Security, Risk and Trust (PASSAT) and 2011 IEEE Third Inernational
Conference on Social Computing (SocialCom), 2011 IEEE Third
International Conference on, 2011, pp. 1474-1479.

[9] M. Dadvar and F. de Jong, "Cyberbullying detection: a step toward a
safer Internet yard," in Proceedings of the 21st International Conference
on World Wide Web, 2012, pp. 121-126.

[10] M. Dadvar and F. Jong, "Improved Cyberbullying Detection Through
Personal Profiles," presented at the International Conference on
Cyberbullying, 2012.

[11] J.-M. Xu, K.-S. Jun, X. Zhu, and A. Bellmore, "Learning from bullying
traces in social media," in Proceedings of the 2012 conference of the
North American chapter of the association for computational linguistics:
Human language technologies, 2012, pp. 656-666.

[12] M. Dadvar, D. Trieschnigg, and F. Jong, "Expert knowledge for
automatic detection of bullies in social networks," presented at the
Proceedings of the 25th Benelux Conference on Artificial Intelligence,
Delft, the Netherlands, 2013.

[13] M. Dadvar, D. Trieschnigg, R. Ordelman, and F. de Jong, "Improving
cyberbullying detection with user context," in European Conference on
Information Retrieval, 2013, pp. 693-696.

[14] V. Nahar, X. Li, and C. Pang, "An effective approach for cyberbullying
detection," Communications in Information Science and Management
Engineering, vol. 3, p. 238, 2013.

[15] M. Dadvar, D. Trieschnigg, and F. de Jong, "Experts and machines
against bullies: A hybrid approach to detect cyberbullies," in Canadian
Conference on Artificial Intelligence, 2014, pp. 275-281.

[16] Q. Huang, V. K. Singh, and P. K. Atrey, "Cyber bullying detection using
social and textual analysis," in Proceedings of the 3rd International
Workshop on Socially-Aware Multimedia, 2014, pp. 3-6.

[17] Z. Ghasem, I. Frommholz, and C. Maple, "Machine learning solutions
for controlling cyberbullying and cyberstalking," J Inf Secur Res, vol. 6,
pp. 55-64, 2015.

[18] A. S. Kasture, "A predictive model to detect online cyberbullying,"
Auckland University of Technology, 2015.

[19] A. Mangaonkar, A. Hayrapetian, and R. Raje, "Collaborative detection
of cyberbullying behavior in Twitter data," in 2015 IEEE International
Conference on Electro/Information Technology (EIT), 2015, pp. 611-
616.

[20] A. Squicciarini, S. Rajtmajer, Y. Liu, and C. Griffin, "Identification and
characterization of cyberbullying dynamics in an online social network,"
in Proceedings of the 2015 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining 2015, 2015, pp. 280-
285.

[21] Y. Kim, "Convolutional neural networks for sentence classification,"
arXiv preprint arXiv:1408.5882, 2014.

[22] A. Dalyac, M. Shanahan, and J. Kelly, "Tackling class imbalance with
deep convolutional neural networks," Dept. Comput. Sci., Imperial
College London, London, UK, Tech. Rep, 2014.

[23] eSpeak. Available: http://espeak.sourceforge.net/
[24] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based

learning applied to document recognition," Proceedings of the IEEE,
vol. 86, pp. 2278-2324, 1998.

[25] W.-t. Yih, X. He, and C. Meek, "Semantic Parsing for Single-Relation
Question Answering," in ACL (2), 2014, pp. 643-648.

[26] M. D. Zeiler, "ADADELTA: an adaptive learning rate method," arXiv
preprint arXiv:1212.5701, 2012.

[27] D. Masko and P. Hensman, "The impact of imbalanced training data for
convolutional neural networks," School of Computer Science and
Communication, KTH ROYAL INSTITUTE OF TECHNOLOGY,
STOCKHOLM, SWEDEN, 2015.

[28] T. T. D. Team, R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller, D.
Bahdanau, et al., "Theano: A Python framework for fast computation of
mathematical expressions," arXiv preprint arXiv:1605.02688, 2016.

745

