
CrescendoNet: A New Deep Convolutional Neural
Network with Ensemble Behavior

Xiang Zhang, Nishant Vishwamitra, Hongxin Hu, Feng Luo
School of Computing
Clemson University

xzhang7@clemson.edu

Abstract—We introduce a new deep convolutional neural net-
work, CrescendoNet, by stacking simple building blocks without
residual connections. Each Crescendo block contains indepen-
dent convolution paths with increased depths. The numbers of
convolution layers and parameters are only increased linearly
in Crescendo blocks. In experiments, CrescendoNet with only
15 layers outperforms almost all networks without residual
connections on benchmark datasets, CIFAR10, CIFAR100, and
SVHN. Given sufficient amount of data as in SVHN dataset,
CrescendoNet with 15 layers and 4.1M parameters can match
the performance of DenseNet-BC with 250 layers and 15.3M
parameters. CrescendoNet provides a new way to construct
high performance deep convolutional neural networks with sim-
ple network architecture. Moreover, by investigating a various
combination of subnetworks in CrescendoNet, we note that
the high performance of CrescendoNet may come from its
implicit ensemble behavior, which gives CrescendoNet an anytime
classification property. Furthermore, the independence between
paths in CrescendoNet allows us to introduce a new path-wise
training procedure, which can reduce the memory needed for
training.

Index Terms—convolutional neural networks, ensemble, deep
learning

I. INTRODUCTION

Deep convolutional neural networks (CNNs) have signifi-
cantly improved the performance of image classification [1]–
[3]. However, training a CNN also becomes increasingly dif-
ficult with the network deepening. One of important research
efforts to overcome this difficulty is to develop new neural net-
work architectures [4], [5]. Recently, the residual network [2]
and its variant [6] have used residual connections among layers
to train very deep CNN. The residual connections promote
the feature reuse, help the gradient flow, and reduce the need
for massive parameters. The ResNet [2] and DenseNet [6]
achieved state-of-the-art accuracy on benchmark datasets. Al-
ternatively, FractalNet [5] expanded the convolutional layers
in a fractal form to generate deep CNNs. Without residual
connections [2] and manually deep supervision [7], FractalNet
achieved high performance on image classification based on
network structural design only.

Many studies tried to understand reasons behind the repre-
sentation view of deep CNNs. Veit et al. [8] showed that resid-
ual network could be seen as an ensemble of relatively shallow
effective paths. However, Greff et al. [9] argued that ensembles
of shallow networks cannot explain the experimental results
of lesioning, layer dropout, and layer reshuffling on ResNet.

They proposed that residual connections have led to unrolled
iterative estimation in ResNet. Meanwhile, Larsson et al. [5]
speculated that the high performance of FractalNet was due to
the unrolled iterative estimation of features of the longest path
using features of shorter paths. Although unrolled iterative
estimation model can explain many experimental results, it
is unclear how it helps improve the classification performance
of ResNet and FractalNet. On the other hand, the ensemble
model can explain the performance improvement easily.

In this work, we propose CrescendoNet, a new deep con-
volutional neural network with ensemble behavior. Same as
other deep CNNs, CrescendoNet uses stacking simple building
blocks, called Crescendo blocks (Figure 1). Each Crescendo
block comprises a set of independent feed-forward paths with
increased numbers of convolution and batch-norm layers [10].
We only use the identical size, 3×3, for all convolutional filters
in the entire network. Despite its simplicity, CrescendoNet
shows competitive performance on benchmark CIFAR10, CI-
FAR100, and SVHN datasets.

CrescendoNet does not include residual connections. The
high performance of CrescendoNet also comes entirely from
its network structural design. Unlike the FractalNet, in which
the numbers of convolutional layers and associated parameters
increase exponentially, the numbers of convolutional layers
and parameters in Crescendo blocks increase linearly.

CrescendoNet shows clear ensemble behavior (Section
III-D). In CrescendoNet, although the longer paths have better
performances than shorter paths, the combination of paths with
different length have even better performance. A set of paths
outperform its subsets, which is different from FractalNet, in
which the longest path alone achieves the similar performance
as the entire network does, far better than other paths do.
The implicit ensemble behavior enables CrescendoNet to have
an anytime classification property, which means the classifier
can always perform an acceptable prediction given limited
time budget. For example, an instance of CrescendoNet can
achieve 95.19% prediction accuracy with CIFAR10 while a
subset of its branches can reach 91.31% accuracy using only
one-fourth of computational cost. Thus, CrescendoNet has
potential application for real-time and safety-critical inference
problems, like perception for self-driving vehicles.

Furthermore, the independence between paths in Crescen-
doNet allows us to introduce a new path-wise training pro-
cedure, in which paths in each building block are trained



Fig. 1. CrescendoNet architecture used in experiments, where scale = 4 and interval = 1.

independently and sequentially. The path-wise process can
reduce the memory needed for training. Specifically, we can
reduce the amortized memory used for computing gradients
and for storing gradients to about one fourth when using
momentum algorithms.

We summarize our contribution as follows:
• We propose the Crescendo block with linearly increased

numbers of convolutional and batch-norm layers. The
CrescendoNet generated by stacking Crescendo blocks
further shows that the high performance of deep CNNs
can be achieved without explicit residual learning.

• Through our analysis and experiments, we discovered an
emergent behavior which is significantly different from
which of FractalNet. The entire CrescendoNet outper-
forms any subset of it can provide an insight of improving
the model performance by increasing the number of paths
by a pattern. We also demonstrated the anytime classifica-
tion property of CrescendoNet. The classifier can achieve
good prediction accuracy and improve smoothly as the
time budget increases.

• We introduce a path-wise training approach for Crescen-
doNet, which can lower the memory requirements with-
out significant loss of accuracy given sufficient data.

II. CRESCENDONET

A. Architecture Design
Crescendo Block The Crescendo block is built by two lay-

ers, the convolution layer with the activation function and the
following batch normalization layer [10]. The convolutional
layers have the identical size, 3 × 3. The Conv-Activation-
BatchNorm unit f1, defined in the Eq.1 is the base branch

of the Crescendo block. We use ReLU [11] as the activation
function to avoid the problem of vanishing gradients.

f1(z) = batchnorm(activation(conv(z))) (1)

The variable z denotes the input feature maps. We use two
hyper-parameters, the scale S and the interval I to define the
structure of the Crescendo block HS . The interval I specifies
the depth difference between every two adjacent branches
and the scale S sets the number of branches per block.
The structure of the nth branch is defined by the following
equation:

fn(z) = fnI1 (z) (2)

where the superscript nI is the number of recursion time of
the function f1. The structure of Crescendo block HS can be
obtained below:

HS(z) = f1(z)⊕ f2(z)⊕ ...fS(z) (3)

where ⊕ denotes an element-wise averaging operation. Note
that the feature maps from each path are averaged element-
wise, leaving the width of the channel unchanged. A
Crescendo block with S = 4 and I = 1 is shown in Figure 1.

The structure of Crescendo block is designed for exploiting
more feature expressiveness. The different depths of parallel
paths lead to various receptive fields and therefore generate
features in different abstract levels. Also, such an incremental
and parallel form explicitly supports the ensemble effects,
which shows excellent characteristics for efficient training and
anytime classification. We will explain and demonstrate this
in the following sections.



CrescendoNet Architecture The main body of Crescen-
doNet is composed of stacked Crescendo blocks with max-
pooling layers between adjacent blocks (Figure 1). Following
the main body, like most deep CNNs, we use two fully
connected layers and a soft-max layer as the classifier. In all
experiments, the two fully connected layers have 384 hidden
units and 192 hidden units respectively. The overall structure
of CrescendoNet is simple, and we only need to tune the
Crescendo block to modify the entire network.

B. Path-wise training

To reduce the memory consumption during training
CrescendoNet, we propose a path-wise training procedure,
leveraging the independent multi-path structure of our model.
We denote stacked Conv-Activation-BatchNorm layers in one
Crescendo block as one path. We train each path individually,
from the shortest to the longest repetitively. When we are
training one path, we freeze the parameters of other paths. In
other words, these frozen layers only provide learned features
to support the training. Figure 2 illustrates the procedure of
path-wise training within a CrescendoNet block containing
four paths. The path-wise training method has two advantages.
First, it significantly reduces the memory requirements for
convolutional layers, which constitutes the primary memory
cost for training CNNs. For example, the upper bound of the
memory required for computation and storage of gradients
using momentum stochastic gradient descent algorithms can
be reduced to about 40% for a Crescendo block with four
paths where interval = 1. Second, path-wise training works
well with various optimizers and regularizations. Even dropout
and drop-path apply to the model during the training process.

C. Regularization

Dropout [12] and drop-connect [13], which randomly set a
selected subset of activations or weights to zero respectively,
are effective regularization techniques for deep neural net-
works. Their variant, drop-path [5], shows further performance
improvement by dropping paths when training FractalNet.

We use both dropout and drop-path for regularizing the
Crescendo block. We drop the branches in each block with
a predefined probability. For example, given drop-path rate,
p = 0.3, the expectation of the number of dropped branches
is 1.2 for a Crescendo block with four branches. For the fully
connected layers, we use L2 norm of their weights as an
additional term to the loss.

III. EXPERIMENTS

A. Datasets

We evaluate our models with three benchmark datasets:
CIFAR10, CIFAR100 [14], and Street View House Numbers
(SVHN) [15]. CIFAR10 and CIFAR100 each have 50,000
training images and 10,000 test images, belonging to 10 and
100 classes respectively. All the images are in an RGB format
with the size of 32× 32-pixel. SVHN are color images, with
the same size of 32×32-pixel, containing 604,388 and 26,032
images for training and testing respectively. Note that these

digits are cropped from a series of numbers. Thus, there may
be more than one digit in an image, but only the one in the
center is used as the label. For data augmentation, we use a
widely adopted scheme [2], [4], [5], [16]–[19]. We first pad
images with 4 zero pixels on each side, then crop padded
images to 32 × 32-pixel randomly and horizontally flipping
with a 50% probability. We preprocess each image in all three
datasets by subtracting off the mean and dividing the variance
of the pixels.

B. Training

We use Mini-batch gradient descent to train all our mod-
els. We implement our models using TensorFlow distributed
computation framework [20] and ran them on NVidia P100
GPU. We also optimize our models by adaptive momentum
estimation (Adam) optimization [21] and Nesterov Momentum
optimization [22] respectively. For Adam optimization, we
set the learning rate hyper-parameter to 0.001 and let Adam
adaptively tune the learning rate during the training. We
choose the momentum decay hyper-parameter β1 = 0.9 and
β2 = 0.999. And we set the smoothing term ε = 10−8. This
configuration is the default setting for the AdamOptimizer
class in TensorFlow. For Nesterov Momentum optimization,
we set the hyper-parameter momentum = 0.9. We decay the
learning rate from 0.1 to 0.01 after 512 epochs for CIFAR
and from 0.05 to 0.005, then to 0.0005, after 42 epochs and
63 epochs respectively for SVHN. We use truncated normal
distribution for parameter initialization. The standard deviation
of hyper-parameters is 0.05 for convolutional weights and 0.04
for fully connected layer weights. For all datasets, we use the
batch size of 128 on each training replica. For the whole net
training, we run 700 epochs on CIFAR and 70 epochs on
SVHN. For the path-wise training, we run 1400 epochs on
CIFAR and 100 epochs on SVHN.

Using a CrescendoNet model with three blocks each con-
tains four branches as illustrated in Figure 1, we investigate the
following preliminary aspects: the model performance under
different block widths, the ensemble effect, and the path-wise
training performance. We study the Crescendo block with three
different width configurations: using an equal width globally,
an equal width within the block, and increasing width. All the
three configurations have the same fully connected layers. For
the first one, we set the number of feature maps to 128 for
all the convolutional layers. For the second, the numbers of
feature maps are (128, 256, 512) for convolutional layers in
each block. For the last, we gradually increase the feature
maps for each branch in three blocks to (128, 256, 512)
correspondingly. For example, the number of feature maps for
the second and fourth branches in the second block is (192,
256) and (160, 192, 224, 256). The following equation defines
the exact number of maps for each layer:

nmaps = ninmaps + ilayer
noutmaps − ninmaps

nlayers
(4)

where nmaps denotes the number of feature maps for a layer,
ninmaps and noutmaps are number of input and output maps



Fig. 2. Path-wise training procedure.

respectively, nlayers is the number of layers in the block, and
ilayer is the index of the layer in the branch, starting from
one.

To inspect the ensemble behavior of CrescendoNet, we com-
pare the performance of models with and without drop-path
technique and subnets composed of different combinations of
branches in each block. For the simplicity, we denote the
branch combination as a set P containing the index of the
branch. For example, P = {1, 3} means the blocks in the
subnet only contains the first and third branches. The same
notation is used in Table II and Figure 3.

C. Results of the whole net

Table I gives a comparison among CrescendoNet and
other representative models on CIFAR and SVHN benchmark
datasets. For five datasets, CrescendoNet with only 15 layers
outperforms almost all networks without residual connections,
plus original ResNet and ResNet with Stochastic Depth. For
CIFAR10 and CIFAR100 without data augmentation, Crescen-
doNet also performs better than all the given models except
DenseNet with bottleneck layers and compression (DenseNet-
BC) with 250 layers. However, CrescendoNet’s error rate
1.76% matches the 1.74% error rate of given DenseNet-BC, on
SVHN dataset which has rich data for each class. Comparing
with FractalNet, another outstanding model without residual
connection, CrescendoNet has a more straightforward struc-
ture, fewer parameters, but higher accuracies.

The lower rows in Table I compare the performance of our
model given different configuration. In three different widths,
the performance simultaneously grows with the number of
feature maps. In other words, there is no over-fitting when
we increase the capacity of CrescendoNet in an appropriate
scope. Thus, CrescendoNet demonstrates a potential to further
improve its performance by scaling up. Also, the drop-path
technique shows its benefits to our models on all the datasets,
just as it does to FractalNet.

Another impressive result from Table I is the performance
comparison between Adam and Nesterov Momentum op-
timization methods. Comparing with Nesterov Momentum
method, Adam performs similarly on CIFAR10 and SVHN,
but worse on CIFAR100. Note that there are roughly 60000,
5000, and 500 training images for each class in SVHN,
CIFAR10, and CIFAR100 respectively. Thus, Adam may be a
better option for training CrescendoNet when the training data
is abundant, due to the convenience of its adaptive learning rate
scheduling.

The last row of Table I gives the result of path-wise training.
Training the model with less memory requirement can be
achieved at the cost of some performance degradation. How-
ever, Path-wise trained CrescendoNet still outperform many of
networks without residual connections on given datasets.

D. Results of Subnets

Table II provides a performance comparison among dif-
ferent path combinations of CrescendoNet, trained by Adam
optimization, with block-wise width (128, 256, 512). The re-
sults show the ensemble behavior of our model. Specifically,
the more paths contained in the network, the better the
performance. And the whole net outperforms any single path
network with a large margin. For example, the entire net and
the net based on the longest path show the inference error rate
of 6.90% and 10.69% respectively, for CIFAR10 without data
augmentation. This implicit ensemble behavior differentiates
CrescendoNet from FractalNet, which shows a student-teacher
effect. Specifically, the longest path in FractalNet can achieve a
similar or even lower error rate compared to the whole net. To
investigate the dynamic behavior of subnets, we test the error
rate changes of subnets during the training. We use Adam to
train the CrescendoNet with the structure shown in Figure 1
on CIFAR10 for 450 epochs. Figure 3 illustrates the behavior
of different path combinations during the training. It shows
that the inference accuracy of the whole net grows simultane-
ously with all the subnets, which demonstrates the ensemble



TABLE I
WHOLE NET CLASSIFICATION ERROR (%) WITH CIFAR10/CIFAR100/SVHN.

Method Depth Params C10 C10+ C100 C100+ SVHN
Network in Network - - 10.41 8.81 35.68 - 2.35
All-CNN - - 9.08 7.25 - 33.71 -
Deeply Supervised Net - - 9.69 7.97 - 34.57 1.92
Highway Network - - - 7.72 - 32.39 -
FractalNet (dropout+drop-path) 21 38.6M 7.33 4.60 28.20 23.73 1.87
ResNet 110 1.7M 13.63 6.41 44.74 27.22 2.01
Stochastic Depth 110 1.7M 11.66 5.23 37.80 24.58 1.75
Wide ResNet 16 11.0M - 4.81 - 22.07 -

28 36.5M - 4.17 - 20.50 -
with Dropout 16 2.7M - - - - 1.64

ResNet (pre-activation) 164 1.7M - 5.46 - 24.33 -
1001 10.2M - 4.62 - 22.71 -

DenseNet (k = 12) 40 1.0M 7.00 5.24 27.55 24.42 1.79
DenseNet-BC (k = 24) 250 15.3M 5.19 3.62 19.64 17.60 1.74
CrescendoNet Nesterov

(128, 128, 128) 15 4.1M 7.26 5.53 29.83 25.09 1.90
(128, 256, 512)-W 15 18.3M 7.08 5.20 27.48 23.57 1.90
(128, 256, 512) 15 27.7M 6.81 5.03 26.39 22.97 1.78

without drop-path 15 27.7M 8.80 6.42 29.14 23.94 2.04
CrescendoNet Adam

(128, 128, 128) 15 4.1M 7.26 5.20 33.04 25.76 1.73
(128, 256, 512) 15 27.7M 6.90 4.81 30.00 24.67 1.76

without drop-path 15 27.7M 9.20 6.90 33.50 26.35 1.79
path-wise training 15 27.7M 8.93 6.90 34.88 29.95 1.95

a We highlight the top three accuracies in each column with the bold font. The three numbers in the parentheses denote the number of output feature maps
of each block. The plus sign (+) denotes the data augmentation. The sign (-W) means that the feature maps of layers in each branch increase as explained in
the model configuration section. The compared models include: Network in Network [18], ALL-CNN [19], Deeply Supervised Net [7], Highway
Network [18], FractalNet [5], ResNet [2], ResNet with Stochastic Depth [17], Wide ResNet [23], and DenseNet [4].

TABLE II
SUBNET CLASSIFICATION ERROR (%) WITH CIFAR10/CIFAR100/SVHN.

Branches Depth C10 C10+ C100 C100+ SVHN
{1,2,3,4} 15 6.90 4.81 30.00 24.67 1.76
{2,3,4} 15 6.91 4.93 29.90 24.92 1.87
{1,2,4} 15 7.61 5.59 32.25 26.65 1.94
{1,2,3} 12 7.94 6.00 31.86 27.18 2.02
{3,4} 15 7.54 5.31 31.61 26.29 1.97
{2,4} 15 7.73 5.56 32.60 27.09 2.01
{2,3} 12 8.03 5.85 32.08 28.24 2.04
{1,4} 15 8.66 6.38 35.81 29.74 2.05
{1,2} 9 10.58 8.69 37.03 34.08 2.75
{4} 15 10.69 7.96 38.66 33.71 2.53
{3} 12 11.31 8.27 38.26 34.70 2.43
{2} 9 12.13 10.14 40.32 37.05 2.78
{1} 6 28.60 30.31 70.51 73.41 8.74

a The numbers in the curly brackets denote the branches used in each block.

effect. Second, for any single path network, the performance
grows with the depth. Like FractalNet, CrescendoNet also
shows this behavior of the anytime classifier. However, the
depth of paths in CrescendoNet increases linearly instead
of exponentially, which enables a more smooth relationship
between the time budget and the performance. Figure 4 uses
an instance of CresendoNet (128, 256, 512) to show the
number of parameters, the computational cost (FLOPS), and
the accuracy of different subnets. On average, the accuracy
increases simultaneously and smoothly with more cost. With
the anytime classification property, we could use the small
subnetworks to give a rough but quick inference, then use

Fig. 3. Error rates of subnets with different branch combinations when
training with CIFAR10.

larger subnetworks to achieve better accuracy. The anytime
classifier is useful for time-critical applications, like perception
tasks for self-driving vehicles. Figure 4 shows two slight
accuracy drops after increasing the cost, e.g., from the path
set {1, 2, 4} to {2, 4} and from the path set {1, 2, 3} to {2,
3}. The possible reason is that the subnet, i.e., path {1} is
under-trained and the same condition happens to other paths
in the training process.



Fig. 4. The relation between the accuracy and resource budget when testing
with CIFAR10.

IV. RELATED WORK

Conventional deep CNNs, such as AlexNet [1] and VGG-
19 [24], directly stacked the convolutional layers. However, the
vanishing gradient problem makes it difficult to train and tune
very deep CNN of conventional structures. Recently, stacking
small convolutional blocks has become an important method
to build deep CNNs. Introducing new building blocks becomes
the key to improve the performance of deep CNN. Lin et
al. [16] first introduced the NetworkInNetwork module which
is a micro neural network using a multiple layer perceptron
(MLP) for local modeling. Then, they piled the micro neural
networks into a deep macro neural network.

Szegedy et al. [3] introduced a new building block called
Inception, based on which they built GoogLeNet. Each In-
ception block has four branches of shallow CNNs, building
by convolutional kernels with size 1 × 1, 3 × 3, 5 × 5, and
max-pooling with kernel size 3 × 3. Such a multiple-branch
scheme is used to extract diversified features while reducing
the need for tuning the convolutional sizes. The main body
of GoogLeNet has nine Inception blocks stacked each other.
Stacking multiple-branch blocks can create an exponential
combination of feed-forward paths. Such a structure combined
with the dropout technique can show an implicit ensemble
effect [8], [25]. GoogLeNet was further improved with new
blocks to more powerful models, such as Xception [26] and
Inception-v4 [27]. To improve the scalability of GoogLeNet,
Szegedy et al. [27] used convolution factorization and label-
smoothing regularization in Inception-v4. In addition, Chol-
let [26] explicitly defined a depth-wise separable convolution
module replacing Inception module.

Recently, Larsson et al. [5] introduced FractalNet built
by stacked Fractal blocks, which are the combination of
identical convolutional layers in a fractal expansion fashion.
FractalNet showed that it is possible to train very deep neural
network through the network architecture design. FractalNet

also achieved deep supervision and student-teacher learning by
the fractal architecture. However, the fractal expansion form
increases the number of convolution layers and associated
parameters exponentially. For example, the original FractalNet
model with 21 layers has 38.6 million parameters, while
a ResNet of depth 1001 with similar accuracy has only
10.2 million parameters [4]. Thus, the exponential expansion
reduced the scalability of FractalNet.

Another successful idea in network architecture design is the
use of skip-connections [2], [4], [23], [28], [29]. ResNet [2]
used the identity mapping to short-connect stacked convo-
lutional layers, which allows the data to pass from a layer
to its subsequent layers. With the identity mapping, it is
possible to train a 1000-layer convolutional neural network.
Huang et al. [4] recently proposed DenseNet with extremely
residual connections. They connected each layer in the Dense
block to every subsequent layer. DenseNet achieved the best
performance on benchmark datasets so far. On the other hand,
Highway networks [30] used skip-connections to adaptively
infuse the input and output of traditional stacked neural
network layers. Highway networks have helped to achieve high
performance in language modeling and translation. Zagoruyko
et al. [31] proposed DiracNets which implicitly use skip-
connections to train very deep neural networks. The idea is to
use Dirac weight parameterization when training the model.
Due to the generality of Dirac weight parameterization, it can
apply to many neural network architectures.

It is worth mentioning that the baseline CrescendoNet
architecture (Figure 1), looks similar to one instance of Deeply
fused nets (DFN) [32]. However, CrescendoNet and DFN
are different in terms of the design pattern. DFN manually
designs a few standalone feed-forward networks of different
layers and then fuses the segments from different networks to
build a single net. Note that DFN uses one fully connected
layer for each branch, the base model has seven individual
fully connected layers. In contrast, CrescendoNet generates
the whole architecture by the expansion rule, and its base
model has only two sequent fully connected layers before the
soft-max layer. Also, for CIFAR10 and CIFAR100 datasets
with widely-used data augmentation scheme, CrescendoNet
with 15 layers outperforms DFN with 50 layers by a large
margin, which further demonstrates the difference between two
models.

V. DISCUSSION AND CONCLUSION

CNN has shown excellent performance on image recogni-
tion tasks. However, it is still challenging to tune, modify,
and design a CNN. We propose CrescendoNet, which has
a simple convolutional neural network architecture without
residual connections [2]. Crescendo block uses convolutional
layers with same size 3 × 3 and joins feature maps from
each branch by the averaging operation. The number of
convolutional layers grows linearly in CrescendoNet while
exponentially in FractalNet [5]. This leads to a significant
reduction of computational complexity.



Even with much fewer layers and a more straightforward
structure, CrescendoNet matches the performance of the orig-
inal and most of the variants of ResNet on CIFAR10 and
CIFAR100 classification tasks. Like FractalNet [5], we use
dropout and drop-path as regularization mechanisms, which
can train CrescendoNet to be an anytime classifier, namely,
CrescendoNet can perform inference with any combination
of the branches according to the latency requirements. Our
experiments also demonstrated that CrescendoNet synergized
well with Adam optimization, especially when the training
data is sufficient. In other words, we can avoid scheduling
the learning rate which is usually performed empirically for
training existing CNN architectures.

CrescendoNet shows a different behavior from FractalNet in
experiments with CIFAR10/100 and SVHN. In FractalNet [5],
the longest path alone achieves the similar performance as
the entire network, far better than other paths, which shows
the student-teacher effect. The whole FractalNet except the
longest path acts as a scaffold for the training and becomes
dispensable later. On the other hand, CrescendoNet shows
that the entire network significantly outperforms any set of
it. This fact sheds light on exploring the mechanism which
can improve the performance of deep CNNs by increasing
the number of paths. Also, the implicit ensemble behavior
of CrescendoNet enables its anytime classification property,
which is useful for real-time and safety-critical classification
tasks. Our future works may focus on extending the model
to more complicated computer vision tasks, including object
detection and segmentation.

ACKNOWLEDGEMENT

This work is supported in part by the U. S. National Institute
of Food and Agriculture (NIFA) under grant 2017-70016-
26051 and the U.S. National Science Foundation (NSF) under
grants: CNS-1537924 and ABI-1759856.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[3] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1–9.

[4] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, “Densely
connected convolutional networks,” arXiv preprint arXiv:1608.06993,
2016.

[5] G. Larsson, M. Maire, and G. Shakhnarovich, “Fractalnet: Ultra-deep
neural networks without residuals,” in ICLR, 2017.

[6] G. Huang, D. Chen, T. Li, F. Wu, L. V. D. Maaten, and K. Weinberger,
“Multi-Scale Dense Convolutional Networks for Efficient Prediction,”
arXiv Prepr. arXiv1703.09844, 2017.

[7] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu, “Deeply-Supervised
Nets,” in Deep. Nets, 2014, pp. 1–10.

[8] A. Veit, M. J. Wilber, and S. Belongie, “Residual networks behave
like ensembles of relatively shallow networks,” in Advances in Neural
Information Processing Systems, 2016, pp. 550–558.

[9] K. Greff, R. K. Srivastava, and J. Schmidhuber, “Highway and residual
networks learn unrolled iterative estimation,” in ICLR, 2017.

[10] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in International
Conference on Machine Learning, 2015, pp. 448–456.

[11] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltz-
mann machines,” in Proceedings of the 27th international conference on
machine learning (ICML-10), 2010, pp. 807–814.

[12] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov, “Improving neural networks by preventing co-adaptation
of feature detectors,” arXiv preprint arXiv:1207.0580, 2012.

[13] L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus, “Regularization
of neural networks using dropconnect,” in Proceedings of the 30th
international conference on machine learning (ICML-13), 2013, pp.
1058–1066.

[14] A. Krizhevsky, V. Nair, and G. Hinton, “The cifar-10 dataset,” online:
http://www. cs. toronto. edu/kriz/cifar. html, 2014.

[15] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learning,”
in NIPS workshop on deep learning and unsupervised feature learning,
vol. 2011, no. 2, 2011, p. 5.

[16] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint
arXiv:1312.4400, 2013.

[17] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger, “Deep
networks with stochastic depth,” in European Conference on Computer
Vision. Springer, 2016, pp. 646–661.

[18] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Highway networks,”
arXiv preprint arXiv:1505.00387, 2015.

[19] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller,
“Striving for simplicity: The all convolutional net,” arXiv preprint
arXiv:1412.6806, 2014.

[20] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale
machine learning on heterogeneous distributed systems,” arXiv preprint
arXiv:1603.04467, 2016.

[21] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[22] Y. Nesterov, “A method of solving a convex programming problem with
convergence rate o (1/k2),” in Soviet Mathematics Doklady, vol. 27,
no. 2, 1983, pp. 372–376.

[23] S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv
preprint arXiv:1605.07146, 2016.

[24] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[25] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural networks
from overfitting.” Journal of machine learning research, vol. 15, no. 1,
pp. 1929–1958, 2014.

[26] F. Chollet, “Xception: Deep learning with depthwise separable convo-
lutions,” arXiv preprint arXiv:1610.02357, 2016.

[27] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 2818–2826.

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual
networks,” in European Conference on Computer Vision. Springer,
2016, pp. 630–645.

[29] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated
residual transformations for deep neural networks,” arXiv preprint
arXiv:1611.05431, 2016.

[30] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Training very deep
networks,” in Advances in neural information processing systems, 2015,
pp. 2377–2385.

[31] S. Zagoruyko and N. Komodakis, “Diracnets: training very deep neural
networks without skip-connections,” arXiv preprint arXiv:1706.00388,
2017.

[32] J. Wang, Z. Wei, T. Zhang, and W. Zeng, “Deeply-fused nets,” arXiv
preprint arXiv:1605.07716, 2016.


