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Abstract—As the prevailing technique of Software-Defined
Networking (SDN), OpenFlow introduces significant programma-
bility, granularity and flexibility for many network applications
to effectively manage and process network flows. However,
OpenFlow only provides a simple ‘“match-action” paradigm
and lacks the function of stateful forwarding for SDN data
plane, which limits it to support advanced network applications.
Heavily relying on SDN controllers for all state maintenance
incurs both scalability and performance issues. In this paper, we
propose a novel Stateful Data Plane Architecture (SDPA) for SDN
data plane. A co-processing unit, Forwarding Processor (FP), is
designed for SDN switches to manage state information through
new instructions and state tables. We design and implement an
extended OpenFlow protocol to implement the communication
between the controller and FP. To demonstrate the practicality
and feasibility of our approach, we implement both software and
hardware prototypes of SDPA switches, and develop a sample
network function chain with stateful firewall, DNS reflection
attack defense and NAT applications in one SDPA-based switch.
Experimental results show that the SDPA architecture can
effectively improve the forwarding efficiency with manageable
processing overhead for those applications that need stateful
forwarding in SDN-based networks.

I. INTRODUCTION

Software Defined Networking (SDN) is an emerging net-
work architecture that provides unprecedented programma-
bility, automation, and network control by decoupling the
control plane and the data plane. In SDN architecture, net-
work intelligence and state are logically centralized, and the
underlying network infrastructure is abstracted for network
applications. As a representative technique of SDN, Open-
Flow [19] introduces a “match-action” paradigm for the SDN
data plane where programmers could specify a flow through a
header matching rule along with processing actions applied to
matched packets. OpenFlow switches remain simple and are
only in charge of forwarding packets according to flow tables
issued by the controller, while all the intelligence is placed at
the controller side.

In traditional networks, network functions, such as fire-
walls, WAN optimizers, and load-balancers, are generally
implemented by on-path or off-path proprietary appliances or
middleboxes. However, middleboxes usually lack a general
programming interface, and their versatility and flexibility are
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also poor [23], [24]. One primary goal of SDN is to enable
a network controller to run various network applications and
manage the entire network directly by configuring packet-
handling mechanisms in underlying devices. Although the
programmability of OpenFlow significantly helps manage and
process network flows and is effective for many applications
on top of the controller, the OpenFlow’s simple ‘“match-
action” abstraction also brings great challenges in building
key network services, such as stateful firewalls, which require
advanced packet handling. First, OpenFlow focuses solely on
L2/L3 network transport. Its data plane only provides limited
support for stateful packet processing and is unable to monitor
flow states without the involvement of the controller [26].
OpenFlow may impliedly support partial stateful forwarding
in the data plane through instructions, but it still lacks the
capability to actively maintain state information in the data
plane. Even though the recent OpenFlow switch specification
introduces OpenFlow pipeline, which contains multiple flow
tables, in the data plane, the lack of state-relevant tables and
primitives preserves the incapability of supporting advanced
stateful network applications. On the other hand, heavily
relying on the controller to maintain all packet states could
give rise to both scalability and performance issues due to
associated processing delay and the control channel bottle-
neck between the controller and switches [17], [27]. Second,
OpenFlow targets fixed-function switches that recognize a pre-
determined set of header fields and processes packets using a
small set of predefined actions. The header fields and actions
cannot be extended flexibly to meet diverse application require-
ments. The limited expressivity of OpenFlow compromises the
programmability and capability of the SDN data plane [§],
[10].

To address the above-mentioned challenges and require-
ments, we introduce an innovative Stateful Data Plane Ab-
straction (SDPA) to enable stateful processing in SDN data
plane. In contrast to the simple “match-action” paradigm of
OpenFlow, we propose a new “match-state-action” paradigm
for SDN data plane. In this paradigm, state information can be
maintained in SDN data plane without the heavy involvement
of SDN controllers. we propose a generic hardware switch
design, which is based on a Stateful Data Plane Abstraction
(SDPA) paradigm. A variety of complicated network functions,
such as stateful firewall and DNS reflection attack defense,
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can be implemented in this hardware platform. The rules in
data plane devices can be efficiently enforced by specially
optimized data structure and hardware, which can especially
support hardware network function chains.

The paper makes the following contributions:

e  We propose a novel stateful data plane architecture,
SDPA, which supports a new “match-state-action”
paradigm in the SDN data plane. This architecture has
the generality to support various network applications

that need to process state information in the data plane.

We design and implement an extended OpenFlow
protocol to support SDPA. Through this protocol,
the SDN controller can communicate with the state
processing module FP in switches to manipulate the
state information in the data plane.

We implement both software and hardware prototypes
of SDPA switches, and develop a sample network
function chain composed of stateful firewall, DNS
reflection attack defense and NAT applications in an
SDPA-based switch.

We evaluate our approach with extensive experiments.
Experimental results show that the SDPA architec-
ture can tremendously reduce the forwarding latency
with manageable processing overhead for dealing with
stateful forwarding in SDN-based networks.

The rest of this paper is organized as follows. We overview
the concept of state and the SDPA paradigm in II. The detailed
design of SDPA is articulated in Section III. We present the
implementation of SDPA switch in Section IV followed by
the evaluations in Section V. We summarize related work in
Section VI. We conclude this paper along with our future work
in Section VIIL.

II. PROBLEM STATEMENT AND SDPA PARADIGM

A. Problem Statement

The term “state” in networking is defined as historical
information that needs to be stored as input of processing of
future packets in the same flow. In this section, we elaborate
what state exactly is through two network functions such as
stateful firewall and load balancing. A stateful firewall is a type
of firewall that keeps track of the state of network connections
and determines packet handling according to associated state
information [22]. The states of TCP connections and UDP
pseudo connections are maintained in the state table, where
a state table entry is created when a connection is established.
Then, when a packet comes in, the firewall matches the
packet to the state table information to determine whether
it is a part of a legitimate communication session. If the
packet matches a current table entry and obeys state transition
policy of TCP/UDP protocol, it is allowed to pass through the
firewall. Some other network functions, such as load balancing,
also need to maintain state information for packet processing.
An important issue when operating a load balancing service
is how to handle information that must be kept across the
multiple requests in a user’s session. The records of ongoing
TCP connections between clients and servers are the state

324

State

HEE Operating

— Instructions —>

Transition

Fig. 1: SDPA paradigm

information that need to be maintained. In the current SDN
architecture, switches can not keep session data.

In summary, the following reasons make it necessary to
realize stateful processing in the data plane. Firstly, the state
information of each packet in some applications needs to be
recorded for advanced packet handling. In such a situation, if
the state information is maintained in the controller, there will
be considerable Packet-Ins sent to the controller. The forward-
ing efficiency of SDN would be significantly affected, because
it causes significant forwarding latency and the bottleneck
between controllers and data plane. Secondly, existing SDN
techniques only provide limited support for stateful processing
in the data plane. OpenFlow’s simple “match-action” paradigm
is almost stateless [26]. Under such a circumstance, it is
challenging to fully support those advanced stateful network
functions in SDN-based networks. Thirdly, although some of
advanced network functions can be implemented with mid-
dleboxes, middleboxes usually lack a general programming
interface [14], [23]. The network is filled with various mid-
dleboxes and the structure of the network becomes complex.
Consequently, it is critical to design a systematic mechanism
for supporting efficient stateful processing in SDN data plane.

B. SDPA Paradigm

Although OpenFlow’s “match-action” paradigm is simple
and capable enough to support many data plane functions,
it provides limited support for stateful processing due to the
lack of state-related modules in the pipeline of OpenFlow date
plane. In essence, the limited “match-action” paradigm seems
to be an involuntary outcome of being amenable to high-
performance and low-cost implementations, without taking
into account a rich set of complicated network functions (such
as stateful firewalls, load balancing, FTP, NAT, etc).

We propose a new “match-state-action” paradigm for SDN
data plane as shown in Fig. 1. In this paradigm, we add
state fields and state operating instruction to enable stateful
processing in SDN data plane. The state fields are used to keep
state information of flows or packets and the state operating
instructions are used to maintain state information. It is a
general paradigm and can be implemented through a diversity
of hardware platforms, such as CPU, NPU, NetFPGA, ASIC,
etc. When implementing stateful network applications such
as stateful firewalls, input packets are processed according
to related state information. Then, the state information is
updated according to incoming packets or internal/external
events. With this new paradigm, state processing can be
programmed by SDN applications and the state information
can be maintained in SDN data plane. Thus, based on this
paradigm stateful processing can be efficiently supported in
the data plane without conveying all packets to the controller
for state information maintaining.

In stateful SDN data plane, the inputs can be divided into
two categories: one is incoming packets, the other is the states
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Fig. 2: SDPA architecture

of flows or packets. They are under the control of the transfer
function. The outputs include both packets and states. We
define S as nonempty finite set of states in SDN data plane.
> is defined as the input packet set of SDN data plane. We
define A as a collection of actions for the data plane, including
forward, modify, drop, etc. A is defined as a transfer matrix
issued by the controller. sy is defined as the start state. It is
the state when a switch has not processed any input packets.
F is defined as the set of final states. F' is a subset of S.
Then the data plane can be abstracted as a five-tuple model
(S, 2, A, s0, F).

In the paradigm of traditional SDN data plane, the transi-
tion matrix can be expressed as formula 1. In this paradigm,
the input of this transition matrix A is the input packet set
alone and the output is simply the output packet set X.

NPES Y M
In SDPA paradigm, the input packet set X and state set S

in the data plane converts to the output packet set > and state

set S. The transition matrix can be expressed as formula 2.

A:DxSAnxS 2)

In this new paradigm, the state information of flows or
packets is maintained in the data plane. Stateful processing can
be smoothly supported. The paradigm is a generic SDN data
plane processing paradigm.We developed prototype systems
based on the software and hardware in this work, which will
be detailed below.

III. DESIGN

In OpenFlow architecture, packets are simply forwarded
based on flow tables in switches. Through adding intelligence
to switches, they can maintain state information in the data
plane in SDPA architecture. Concretely, we design a co-
processing unit in SDN switches named Forwarding Processor
(FP), which can be implemented using CPU, NPU, NetFPG,
etc. Through extended OpenFlow instructions, flows or packets
are directed from the OpenFlow pipeline to FP. FP realizes
more complex processing of flows or packets through instruc-
tions. We design state tables for FP, in which FP maintains the
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associated state of flows or packets. Fig. 2 depicts the design
of SDPA architecture.

A. Forwarding Processor

FP maintains the state of flows or packets. Besides, it
can modify the metadata of packets, and initiate or delate
state table entries asynchronously. FP can receive and react
to incoming events from both the controller and the switch,
such as configuration change, state change, or just packets.

We add a GOTO_ST(n) instruction in the data plane,
which is used to direct packets from OpenFlow pipeline to
state table n in FP. And the packet is directed from FP back
to the flow table m through the instruction GOTO_FT(m).
We design instructions for stateful processing in FP. These
instructions can be flexibly extended to meet application re-
quirements in the data plane. The instructions can be divided
into following categories: Control instructions: they are used to
direct packets transferring between the controller, flow tables
and FP, including GOTO_ST(n), GOTO_FT(m). Processing
instructions: they are used for FP to process flows or packets.
State operating instructions: they are used to operate the
state table. Arithmetic instructions: they are used to perform
arithmetic operations. Logical instructions: they are used to
perform logical operations.

B. Extended OpenFlow Protocol

The controller and FP communicate with each other
through an extended OpenFlow protocol. It is mainly used for
the operations of state information in the data plane. such as
initialization of the state table and state transition table, action
table, etc. The controller has a full control of FP. We design
two new message types, controller-to-FP messages and asyn-
chronous messages for the new protocol. Each of them contains
multiple sub-types. Controller-to-FP messages are initiated by
the controller and used to manage or inspect the state of the FP.
Note that controller-to-FP messages may or may not require
a response from the FP. Asynchronous messages are initiated
by the FP and used to update the controller of changes to
state information. They are sent without a controller soliciting
them from the FP. The FP sends asynchronous messages to the
controller to denote the state changes or other events, including
STATE_ENTRY_REMOVE and STATE_ENTRY_MODIFY.



STATE_ENTRY_REMOVE messages are triggered when the
state table entry is removed because of timeout or other
reasons. STATE _ENTRY_MODIFY messages are used for FP
to notify the controller for the changes of state table entries.

C. State Manipulation

In order to maintain state information in SDN data plane,
we design three kinds of tables: state table(ST), sstate transi-
tion table(STT) and action table(AT).

1) State table(ST): State tables are used to maintain state
information in SDN data plane. Since different protocols may
need to maintain different state information, each protocol has
a corresponding state table. State tables are initiated by the
controller dynamically. When an application requires stateful
processing, the controller informs FP to initiate corresponding
state tables through an extended instruction INIT. The con-
troller tells FP explicitly which domains the state table should
have.

The state information is updated according to incoming
packets or internal/external events, and maintained in the data
plane. The state information can also be uploaded to the
controller through the asynchronous messages, so that the
controller can keep the global state information of the network.
When the state information is updated in FP, it can be sent
to the controller to retain consistency. The controller can
decide how often switches send STATE_ENTRY_MODIFY
messages to controller according to application requirements.
For example, switches may send STATE_ENTRY_MODIFY
messages to controller after a period of time. It doesn’t need
to sent STATE_ENTRY_MODIFY messages to the controller
after every change.

Fig. 2 shows the structure of state tables. The “Match
Fields” domain in a state table refers to the match fields
of packets. It is flexible and extensible. For example, it can
store connections possibly represented by both source and
destination addresses. The “State” domain in a state table
is used to record the state information of flows or packets.
And the “Instructions” domain is utilized to record associated
processing instructions to process packets and update the
states. Those instructions can be divided into State Operating
instructions and Packet Processing instructions. The realization
of state tables can be based on TCAM, SRAM, etc. State
table entries are removed from state tables in two ways, either
receiving a request of the controller or via the state table expiry
mechanism. The controller may actively remove state table
entries by sending state operating instructions. We also design
an expiry mechanism for state tables.

2) State transition table(STT): We design a state transition
table to support the specification of state update policies with
respect to a specific connection-oriented protocol. Each state
table should be accompanied by a state transition table. A state
transition table specifies the transition policies indicating how
the states transfer according to the specific protocol. A state
transition table contains three different domains, including
State, Event, Next State, as shown in Fig. 2. State transition
tables are issued to FP by the controller.

Let us consider a case of TCP protocol. The automaton
describes the normal behaviors of a TCP connection. The states
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of TCP connection include LISTEN, CONNECTION RE-
QUEST, CONNECTION ESTABLISH, DATA TRANSFER,
CLOSING and CLOSED. They are updated according to the
events specified by TCP flags which are contained in the head-
ers of TCP packets. The state transition table content presents
two types of information: the next state determined by current
state and the input events, and the associated instructions to
be executed on packets. When illicit packets come, they can
be easily identified through the invalid transitions.

3) Action table(AT): The action table(AT) is used to give
the according action of each flow or packet. The structure of
AT is shown in Fig. 2. “Match Fields” and “State” domains
are the same as the domains in ST. The “Actions” domains
describe the corresponding actions.

As a general architecture, SDPA can support a variety
of applications. Since different applications should maintain
different state information, each application should have a
specific state table. The first packet of a flow should be sent
to the controller to determine which applications the flow
belongs to. Then, a corresponding flow entry is issued by the
controller carrying the extended instruction GOTO_ST(n). The
parameter n refers to the state table /D that the packet should
be sent to. At the same time, corresponding state table domain
information and a state transition table is issued to FP for
stateful processing in the data plane. It also can issue flow
entries proactively before flow arriving.

D. SDPA APIs

In order to support flexibly-defined stateful functions, we
design corresponding north bound API on top of the con-
troller and south bound API between the controller and FP.
North bound API is mainly used for administrator to program
applications, determine its processing logic, and initialize the
state table, state transition table and action table. South bound
API is mainly used for communication between the controller
and FP. The controller initializes state tables, state transition
tables and action tables in the FP through the south bound
API. There are four major elements needed to be determined
in state tables and state transition tables: match fields, state,
event and instruction. API design associated with those four
elements are elaborated as follows.

1) South bound API: The south bound interface includes
the following key components. (1) Match fields: A match field
definition describes the sequence and value of a serious of
header fields. Match fields can be flexibly defined according
to application requirements. Different APPs may have different
match fields. We extend current match fields in OpenFlow flow
tables by assigning the position and length of the new fields,
including TCP flags. (2) State: State can be flexibly defined as
an enum data structure since switches need not understand the
meaning of each state. The controller can construct the state
table and the state transition table using the enum value of state
and send them to the switch. (3) Event: Event is the trigger
of state transition. For instance, the TCP flag carried in each
packet triggers the TCP session state transition. We standardize
events into Paraml + Comparison_Operator + Param?2
form. FP can fetch Paraml and Param?2 from packets,
tables, the switch and the controller. If necessary, the two
params can come from the same source, such as Packet



Source IP Address and Packet Destination IP Address. The
Comparison operator is restricted to <, >, =, > or <. Events
may vary in different APPs. We consider an event is happened
if this (in)equation is satisfied, which will trigger a state
transition according to relevant STT entry. For instance, if
the TCP flag of a packet = FIN, the state of this connec-
tion will be triggered from ESTABLISH to CLOSING. (4)
Instruction: We classify the functions of Instruction into several
categories as discussed above. An instruction is defined in
InstructionType + Parameter form. Instructions can be
flexibly extended as long as we assign their execution methods
and necessary parameters in both the control and data plane.

2) North bound API: The north bound API can be divided
into three kinds of functions. Table formation function: Users
call those APIs to fill table content using previously defined
match fields, state, event and instruction. Message construc-
tion function: Those functions are used to build messages
transmitted between the controller and the switch, including
initializing table formation and conducting table modification.
Message transmission function: These functions are used to
send messages to the switch.

E. SDN Switch Architecture Supporting SDPA

We design an SDN switch architecture supporting SDPA
as shown in Fig. 3. We add FP and State Table to SDN
switch architecture to maintain the state information in the
data plane. Besides, we add a policy module, which is used to
adjust the processing policies. This module includes the state
transition table discussed above. The new architecture consists
of following functional modules:

e Network interface: it is directly connected to the
physical layer and its main functions include receiv-
ing/sending packets and packet processing. It works
in the physical layer and the link layer.

e Forwarding engine: it is responsible for determining
the packet forwarding paths. It parses the received
packet headers and looks up the forwarding table
to obtain the destination ports for the forwarding
operation.

e  Forwarding processor (FP): it interacts with the con-
troller and is responsible for the maintenance and
management of state information in the data plane.

e Forwarding table: it plays the role of connecting
the entire system. It can be updated according to
the information issued by the controller and returns
associated forwarding instructions to the forwarding
engine.

e  State table: it is used to maintain state information
during the processing procedure in the data plane.

e  Policy module: it is used to adjust and control the
processing policies of the switch such as the state
transition policy, packet processing policy, etc. The
policies are issued by the controller.

IV. IMPLEMENTATION OF SDPA SWITCH

SDPA architecture is a generic architecture that it can be
implemented in a variety of ways. To demonstrate the feasibil-
ity and efficiency, we implemented both software and hardware
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prototype systems of the SDPA switch. And we developed
several applications such as stateful firewall, DNS reflection
attack defense and NAT to form a network function chain both
in SDPA software platform and in hardware platform.

A. SDPA Implementation in Software

In our implementation, we extended Open vSwitch (OVS)
[5] to support FP and used Floodlight [6] as the controller,
on which we developed three applications including stateful
firewall, DNS reflection attack defense and NAT. The SDPA
switch runs in Ubuntu 12.04 system running on a DELL
OPTIPLEX 780 computer. The CPU of this computer is
Intel(R) Core(TM) 2 Duo Processor E7500 (2.93 GHz) and
the internal memory is 3.21GB. The network card is Intel(R)
82567LM-3 Gigabit Network Connection. The controller runs
on another computer with same configuration. We used IXIA
[2] to generate and send original packets in our testbed
environment.

We implemented the stateful firewall application based on
the SDPA architecture,where FP is used to maintain the state
of TCP connections and UDP pseudo connections. The state
tables reside in FP to record state information. A detailed
structure of state tables in the stateful firewall application is
depicted in Fig. 4. The “Match fields” domain consists of SIP,
SPORT, protocol, DIP and DPORT. And the “State” domain
contains Connection state, Sequence number, Acknowledge
number , Idle timeout and Hard timeout. The “Instructions”
domain includes state operating instructions and packet pro-
cessing instructions. When a packet arrives, it is matched
against the flow tables to examine if there is a corresponding
flow entry. If not, the packet is sent to the controller to match
firewall rules through Packet-Ins. If the packet is allowed to
pass through the firewall, the controller issues a new flow table
entry to the switch, whose instructions contain GOTO_ST(n).
Also, the controller issues a new state table entry to FP, whose
instructions contain GOTO_FT(m).
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Algorithm 1: Packet Processing in SDPA-based Stateful
Firewalls

Input: Input packets X, the state of packets or flows S.
Output: Output packets X/, the state of packets or flows S”.
foreach o € X do

1

2 Flow_Entry e;

3 e = Switch.Match_Flow_Table(o);

4 if e = NULL then

5 Switch.Send_Packet_In(o);

6 /* The packet is matched against firewall policies. */

7 if Controller.Match_Policy_Table(c) = Allow then

8 /* The controller issues a new flow entry with
instructions GOTO_ST (n) where n is the ID of state
table. */

9 Controller.Issue_Flow_Entry(o, GOTO_ST(n));

10 /* The controller issues a new state entry with
instructions GOTO_FT(m) where m is the ID of
Sflow table. */
Controller.Issue_State_Entry(o, GOTO_FT(m));

11 else

12 L Controller.Issue_Flow_Entry(o, Drop);

13 else if e.Instruction = Drop then

14 | Switch.Drop_Packet(o);

15 else if e.Instruction = GOTO_ST(x) then

16 /* The packet is sent to state table n in FP. */

17 Switch.GOTO_ST (n);

18 /* The sequence number of a packet is checked to defend

against replay attacks. */

19 if F'P.Check_Sequence_Number (o) = Allow then

20 /* The packet is matched against the state table to
check its legitimacy. */

21 if F'P.Match_State_table(o,n) = Allow then

22 S" = FP.Update_State_Table(o,n);

23 o' = FP.Process_Packet(o,n);

24 /* The packet is sent to the flow table m. */

25 FP.GOTO_FT(m);

26 else

27 | FP.Drop_Packet(o);

28 else

29 L FP.Drop_Packet(o);

Then, the packet is sent to the state table n in FP to
maintain the TCP session states or the UDP Pseudo connection
states. A state table entry is created when a connection is
established through the SDN switch. Every entry of the state
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table holds a list of information that uniquely identifies the
communication session it represents. Subsequent messages are
directly sent to FP to match the corresponding state table to
determine whether it is a part of a legitimate communication
session. According to the current state of the connection and
the input event, the associated action and the next state are
decided based on the state transition policies defined in the
state transition table. The pseudocode of packet processing in
stateful firewalls based on the SDPA architecture is given in
Algorithm 1.

B. SDPA Implementation in Hardware

To validate the feasibility of SDPA, we also implemented
a proof-of-concept hardware prototype using the ONetCard
platform [4]. The ONetCard development platform is an ac-
celeration card supporting four Gigabit Ethernet interfaces and
two 10G network interfaces based on PCI Express which
provides a hardware board similar to NetFPGA. Its center
is the FPGA device Kintex7 (XC7K325T-2), which connects
network sub-system, storage sub-system, CPU connection sub-
system and inter-board sub-system. As the programmable
center of the entire ONetCard developing board, the Xilinx
Kintex7-325T FPGA provides over 326 thousand logic cells.

We modified the datapath of the OpenFlow hardware
switch portion as Fig. 5 depicts. The hardware packet pro-
cessing pipeline is composed of seven stages: (1) RxQs input
queues: buffering packets received from the Ethernet physical
ports and DMA virtual ports. (2) Input Arbiter: selecting one
input queue through polling and dealing with that queue.
(3) Tag Remover: detaching the VLAN tag from original
data packet. (4) Output Port Lookup: core module for packet
processing inside which the packets are temporarily buffered
in the packet queue and the Header Parser analyses the packets
to get the header fields. The Flow Table Lookup module and
the State Table Lookup module match the header fields in flow
tables or state tables and get according instructions. The Packet
Processor deals with packets according to the instructions,
such as modifying the header fields, dropping the packet or
outputting the packet. (5) Tag Adder: combing the processed
packet with VLAN tags to form a complete packet. (6) Output
Queues: sending the packet to relevant output queues on the
basis of the processing decisions of the packet. (7) TxQs
Output Queue: buffering the output queue to corresponding



output port. The following two modules are added for stateful
processing in ONetCard platform .

1) State table: 1t is used to store the state information. We
use TCAM + SRAM to keep the state table. The match fields
of state table can be flexibly defined according to application
requirements. For different applications, the fields of state table
may be different. Taking TCP protocol as an example, the state
table is equipped with a TCAM with 64 entries of 104 bits,
which is the length of the five tuple (Source IP, Destination
IP, Source Port, Destination Port, Protocol), and an associated
block RAM of 64 entries of 8 bits (length of TCP state)
that reads the output of the TCAM. Since each of the TCP
connections are bidirectional, we use two adjacent table entries
to hold the state of one TCP connection. Those two entries are
established and updated at the same time, ensuring that packets
from both directions can be matched in the state table. With
the development of hardware, TCAM capacity will certainly
be increased to meet the demand.

2) State table lookup: 1t realizes the management, lookup
and update of the state table. Its input is the packet header
and associated TCP flag. The Header Parser will analyze the
packet header and look up the state table. The Packet Processer
refers to the result of state table lookup, which is denoted by
0 or 1 to decide whether the packet should be allowed to pass
or be dropped.

C. Customization of Network Function Chain in an SDPA
Hardware Switch

SDPA hardware switches support the customization of
network function chains. It offers scalability through the
SDPA paradigm and corresponding APIs. In SDPA hardware
switches, network functions can be deployed, updated and
removed flexibly through configuration from the controller.
For instance, to deploy a new network function to the SDPA
hardware switch, we just need to configure the state table and
the state transition table through APIs from the controller.
It can support the deployment of new functions through
pre-configuration hardware resources in the SDPA hardware
platform. We developed a sample network function chain based
on the SDPA hardware switch, which includes stateful firewall,
DNS reflection attacks defense and NAT functions.

In a DNS reflection attack, attackers send DNS requests
to name servers using the victim host’s source IP address, so
the victim will be flooded by the name servers’ responses. To
filter out these unsolicited responses, the SDPA gateway of the
victim network maintains the requests sent out from the local
network, and checks the validity of the incoming responses. In
detail, packets whose UDP source or destination port equals
53 will be sent to the DNS reflection attack defense pipeline.
In the ST, an unmatched DNS request will trigger the switch to
install 2 new entries. There are four states in the state transition
table: the initial state, the state where a request is sent, the
state where the connection is legitimately closed, and the state
where an unsolicited response is detected.

NAT is a methodology of remapping one IP address space
into another by modifying network address information in IP
datagram packet headers while they are in transit across a
traffic routing device. It includes basic NAT, one-to-many NAT,
etc. All these NATs are implemented in a routing device that
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uses stateful translation tables to map the private addresses
into a public IP address and readdresses the outgoing packets
so they appear to originate from the routing device. In the
reverse communications path, responses are mapped back to
the originating IP addresses using the rules stored in the
translation tables. In the traditional SDN architecture, the flow
tables cannot support the stateful translation tables. While
in SDPA architecture, the stateful translation tables can be
easily supported. The incoming packets can directly query the
corresponding IP addresses in SDPA-based data plane.

D. Dynamic Deployment of New Applications on SDPA Hard-
ware Switch

Based on the unified SDPA paradigm and southbound
APIs, SDPA hardware switches are more scalable than tra-
ditional middleboxes. For those applications that can be ab-
stracted into the SDPA paradigm, SDPA hardware switches
support the dynamic deployment of these applications through
the pre-configuration of hardware resources. If an application
needs to maintain state information in the data plane, and its
actions have been developed in SDPA switches in advance, it
can be deployed on SDPA switches by the configuration from
the controller.

The new application can be deployed in the network
function chain in any order according to application require-
ments. It can be implemented through adjusting the action
GOTO_APP() of the flow tables and the action NEXT_APP(k)
of applications in the network function chain. It is deployed on
SDPA hardware switches through the following steps. Firstly,
the controller calculates corresponding state table and state
transition table of the application. Secondly, the controller
sends the encapsulated messages to SDPA switches, which are
used to install the state table, the state transition table and the
action table of the new application. Thirdly, the software layer
of the switch parses the messages issued by the controller and
installs the tables into the hardware card. Among them, the
time needed for the first step depends on the needs of the new
network function and the programmer’s efficiency.

V. EVALUATIONS

1) Performance of stateful firewalls in SDPA architecture
against stateful firewalls in traditional SDN architecture: We
conducted a contrast experiment to evaluate the efficiency of
SDPA. We evaluated the performance of processing states in
switches in the SDPA architecture against processing states
in the controller in the traditional SDN architecture. We
also developed a stateful firewall application based on the
traditional SDN architecture, where the state information is
maintained in the controller. In this architecture, much more
packets should be sent to the controller to check its state
information before forwarding.

We tested the forwarding latency and the throughput re-
spectively. We sent 100,000 packets for each packet size
ranging from 64 to 1024 bytes. As can be seen from the
experiment results, the average forwarding latency reduces
significantly in SDPA architecture than that in transitional SDN
architecture as shown in Fig. 6(a). In addition, the throughput
increases significantly in the SDPA architecture as shown in
Fig. 6(b). When realizing stateful firewalls in the traditional
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SDN architecture, the processing bottleneck of the controller
limits the processing capability of the firewalls. When realizing
stateful firewalls in the SDPA architecture, SDN data plane
maintains all state information. The throughput of firewalls
is significantly improved regardless of the size of packets.
The performance improvement of SDPA architecture lies in
the architecture, which can maintain state information in data
plane that is independent of traffic types.

2) Performance of stateless forwarding in SDPA architec-
ture against in traditional SDN architecture: Since the SDPA
architecture is fully compatible with OpenFlow, SDPA can
also support stateless processing just like OpenFlow. While
performing stateless processing in the data plane, the average
forwarding latency in the SDPA architecture is almost the
same as that in the traditional SDN architecture, as shown
in Fig. 7(a). And the throughput in the SDPA architecture is
almost the same as that in the traditional SDN architecture
as depicted in Fig. 7(b). It demonstrates that the SDPA
architecture is fully compatible with OpenFlow. Applications
that do not need to maintain state information in the data
plane can be fully supported as well without causing additional
processing overhead.

3) Performance of stateful firewalls in SDPA architecture
against stateless firewalls in traditional SDN architecture:
We compared our stateful firewall in the SDPA architecture
with a stateless firewall in the traditional SDN architecture.
Regarding the stateless firewall in traditional SDN architecture,
only the first packet of a flow is sent to the controller to match

256
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Fig. 7: Performance of stateless
forwarding in SDPA architecture
against in traditional SDN architecture
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Fig. 8: Performance of stateful firewalls
in SDPA architecture against stateless
firewalls in traditional SDN architecture

firewall rules. Then, the controller issues a new flow entry
to the flow table. The subsequent packets of the flow are in
turn directly matched against the flow table to decide whether
those packets should be forwarded or dropped. As can be seen
in Fig. 8(a), the average forwarding latency of the stateful
firewall in the SDPA architecture is slightly increased. Also,
the processing overhead is acceptable and the throughput rate
is nearly unchanged as shown in Fig. 8(b).

Considering both the stateful firewall in the SDPA ar-
chitecture and the stateless firewall in the traditional SDN
architecture, when the data transfer rate ranges from 10 Mbps
to 980 Mbps, the CPU utilization and memory utilization in
the SDPA architecture are almost the same as those in the
traditional SDN architecture.

4) Performance of SDPA-based stateful firewall against net-
filter/iptables: Netfilter/iptables [3] is a user-space application
program that allows a system administrator to configure the
tables provided by the Linux kernel firewall and the chains
and rules it stores. Nevertheless, our stateful firewall is an
application running on top of a controller to enable effective
state information processing in SDN-based networks. Although
the functions of our stateful firewall application are slightly
different to the functions provided by netfilter/iptables, we
can still compare their forwarding latency and packet loss
rate in the same experiment environment. We selected a
gigabit network card and used 64-bytes packet to conduct our
experiment. As shown in Fig. 9(a), the forwarding latency of
stateful firewalls in the SDPA architecture is just a little bit
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higher than that of netfilter/iptables. And the packet loss rates
of the two firewalls are almost the same as shown in Fig. 9(b).

5) Testing the scalability of state tables: We performed
a test on the scalability of state tables and the influence of
forwarding efficiency under different sizes of state tables both
in SDPA software prototype and hardware prototype. Since
state tables are implemented based on SRAM in software
prototype, the size of the state tables can be increased theoret-
ically. We used 64-byte packets to conduct our experiment.
As the state table size increases, the forwarding efficiency
does not deteriorate obviously as depicted in Fig. 10, in which
we use logarithmic scale for x axis. As shown in Fig. 10(a),
when the size of state table increases from 200 to 500000,
the network forwarding latency does not increase significantly,
and the network throughout almost keeps no change as shown
in Fig. 10(b). In our experiment, the table look-up process
consumes short time and has little variance, exerting little
effect on the performance, which will be the only factor as
the size of state table grows. The SDPA hardware prototype
is developed based on ONetCard, in which state tables are
implemented in TCAM. The capacity of state tables can
satisfy various application requirements with the increase of
the TACM capacity.

6) Evaluation of the network function Chain in SDPA hard-
ware switch: We evaluated the performance of the network
function chain implemented on the SDPA hardware switch,
which includes stateful firewall, DNS reflection attack defense
and NAT functions. We used 10G bits network cards to eval-
uate the performance of the hardware-based network function

State Table Size
(b) Throughput
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chain implemented in the SDPA switch. The experiment results
are shown in Fig. 11 . From the experiment results, average
forwarding latency is 2.6 us for 64 bytes size packets, and
6.9 pus for 1024 bytes size packets. Throughput reaches 9566
Mbps when sending 1024 bytes size packets.

7) Evaluation based on a real-world network topology:
We also developed a network function chain based on the
SDPA software prototype. We performed experiments in a
Mininet simulation environment based on a real-world network
topology derived from the Stanford backbone network [1].
By using this real world network topology, we attempted to
evaluate the efficiency of the network function chain. Each
switch in this topology is embedded with the network function
chain. We selected a three-hop forwarding path for a TCP
connection. The forwarding latency is approximately 95 us
and the throughput is about 9.2 Gbps.

VI

Some research efforts have been recently devoted to extend
the OpenFlow data plane abstraction [9], [11], [13], [18],
[28]. Bosshart et al. [11] pointed out that the rigid table
structure of current hardware switches limits the scalability
of OpenFlow packet processing to match on a fixed-set of
fields and to a small set of actions. They introduced a logical
table structure RMT (Reconfigurable Match Table) on top of
the existing fixed physical tables and new action primitives.
By comparison, we strive to enhance the programmability
of the data plane by adding a co-processing unit in SDN
switches. Bianchi et al. [9] proposed a new abstraction to

RELATED WORK



formally describe a desired stateful processing of flows inside
SDN data plane based on eXtended Finite State Machines
(XFSM). Moshref et al. [20] proposed FAST (Flow-level State
Transitions) as a new switch primitive for SDN. Shuyong et
al. [28] introduced a preliminary stateful forwarding solution
in SDN data plane. However, all of them did not present
the relationships and interactions between the state tables
and flow tables in SDN switches, thus the compatibility with
OpenFlow remains unclarified. They also did not elaborate the
fundamental shortcoming of data plane paradigm caused by
the incompletion of current OpenFlow specification. Besides,
they could not provide concrete implementations and extensive
evaluations. In this paper, we presented a novel “match-state-
action” paradigm for the SDN data plane and designed an
extended OpenFlow protocol for the SDN controller to operate
the state information in the data plane. We also developed
both software and hardware prototypes based on the SDPA
architecture. Especially, we developed three stateful applica-
tions and organized them as a network function chain in an
SDPA hardware switch, and provided the support of dynamic
deployment of new applications.

Since current OpenFlow data plane is limited to support
stateful processing, the advanced packet processing has been
turned to specialized middleboxes [8], [15]. Anwer et al [8]
also believe that expanding the “match-action” interface could
make it possible for network operators to implement more
sophisticated policies. To support complex middlebox func-
tions in SDN, Fayazbakhsh et al. [12] developed a FlowTags
architecture. Such an approach attempts to combine traditional
middleboxes with the SDN architecture. There are also some
efforts for developing middlebox functions using SDN [14],
[21], [25]. In particular, Gember et al. [14] advocated for a
mechanism that helps exercise unified control over the key
factors influencing middlebox operations. Qazi et al. [21]
proposed to add an SDN-based policy enforcement layer to
efficient middlebox-specific traffic steering. However, those
work lacks a general programming interface for applications.
Moreover, the network is filled with various middleboxes and
the structure of the network is complex. We believe that with
SDPA stateful data plan abstraction, new approaches would
be stimulated for designing middlebox functions within the
SDN architecture. Another option to address current middlebox
limitations is to utilize virtualization technologies to manage
core networking functions via software as opposed to having
to rely on proprietary middleboxes to handle these functions,
referred to as Network Functions Virtualization (NFV) [16].
Since SDN and NFV are complementary technologies [29].
We believe our solution can facilitate the realization of stateful
network functions in NFV through integrating our SDPA
architecture into Service Function Forwarder (SFF) in NFV
[7]. Especially, our hardware implementation of SDPA can
provide high forwarding capacity to fulfill the requirements
of stateful packet processing required by advanced network
functions.

VII.

OpenFlow protocol provides limited support for stateful
packet processing in the SDN data plane, which limits it
to support advanced network applications. In this paper, we
have proposed a novel stateful data plane architecture SDPA.
Through adding a co-processing unit FP, it can manipulate state

CONCLUSION AND FUTURE WORK

332

information in the SDN data plane. We have also designed
an extended OpenFlow protocol to implement the commu-
nication between the controller and the FP. We presented a
new “match-state-action” paradigm in the data plane, which
has the generality to support various applications that need
to process state information in the data plane. In addition,
we have implemented both software and hardware prototypes
of SDPA switches, and developed a network function chain
including stateful firewall, DNS reflection attack defense and
NAT functions on a SDPA hardware switch. Our experimental
results show that the SDPA architecture can tremendously
improve the forwarding efficiency with manageable processing
overhead for those applications that need stateful forwarding
in SDN-based networks. For the future work, we will develop
more stateful network applications based on the SDPA archi-
tecture to further validate the effectiveness of our approach.
We will also extend the concept of states in our architecture
to application-level and customized states to support more
comprehensive network applications.
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