
Comprehensive Two-Level Analysis of Role-Based

Delegation and Revocation Policies with UML and OCL

Karsten Sohr, Mirco Kuhlmann, Martin Gogolla

Center for Computing Technologies (TZI), Universität Bremen

Hongxin Hu, Gail-Joon Ahn

Arizona State University

Abstract

Context. Role-based access control (RBAC) has become the de facto stan-
dard for access management in various large-scale organizations. Often role-
based policies must implement organizational rules to satisfy compliance or
authorization requirements, e.g., the principle of separation of duty (SoD).
To provide business continuity, organizations should also support the dele-
gation of access rights and roles, respectively. This, however, makes access
control more complex and error-prone, in particular, when delegation con-
cepts interplay with SoD rules.

Objective. A systematic way to specify and validate access control policies
consisting of organizational rules such as SoD as well as delegation and re-
vocation rules shall be developed. A domain-specific language for RBAC as
well as delegation concepts shall be made available.

Method. In this paper, we present an approach to the precise specification
and validation of role-based policies based on UML and OCL. We signifi-
cantly extend our earlier work, which proposed a UML-based domain-specific
language for RBAC, by supporting delegation and revocation concepts.

Result. We show the appropriateness of our approach by applying it to a
banking application. In particular, we give three scenarios for validating the
interplay between SoD rules and delegation/revocation.

Preprint submitted to Information and Software Technology May 25, 2012



Conclusion. To the best of our knowledge, this is the first attempt to formal-
ize advanced RBAC concepts, such as history-based SoD as well as various
delegation and revocation schemes, with UML and OCL. With the rich tool
support of UML, we believe our work can be employed to validate and im-
plement real-world role-based policies.

Keywords:
UML, OCL, RBAC, Delegation, Revocation

1. Introduction

Today, role-based access control (RBAC) is widely-used to simplify ac-
cess management in various large-scale organizations, such as financial in-
stitutes, healthcare providers, and enterprises. In RBAC, users obtain ac-
cess to business processes and resources through roles rather than directly
through permissions. One important advantage of RBAC is that organiza-
tional rules, such as separation of duty (SoD), can be naturally specified and
implemented. Proceeding this way, various kinds of role-based authorization
constraints have been proposed in literature [1, 2, 3, 4, 5]. In contrast to
common static SoD constraints (e.g., no user can be assigned to the roles
cashier and cashier supervisor by an administrator), dynamic authorization
constraints are more flexible and hence are needed in many organizations. A
typical example of dynamic SoD is the rule “A check must not be prepared,
verified and signed by the same clerk”. In this case, the access decision for
signing the check depends on the actions that have been previously performed
by the clerk. In literature, several types of dynamic authorization constraints
have been discussed, such as history-based SoD and resource-based dynamic
SoD1 [2, 6].

Another advanced access control concept is role-based delegation and
revocation [7, 8, 9, 10, 11]. Many organizations may often face situations
in which employees need specific access rights in an ad-hoc fashion, without
involving security administrators. For example, consider a situation in which
an order must be timely confirmed, but the supervisor is not available due
to work overload. In this case, the supervisor may need to partially delegate

1In the access control literature, this constraint is often referred to as “object-based
dynamic SoD”. Due to the fact that the term “object” has another meaning in the context
of UML, we use “resource” instead.

2



her supervisor role to another colleague to process the confirmation request.
In a healthcare environment, physicians often need to consult a specialist,
and hence, need to pass on patient data. In such a situation, the attending
physician needs to delegate read access for the patient data to the specialist.
Sometimes delegations should be revoked, e.g., on returning from vacation,
a supervisor revokes privileges from her colleague who was member of the
delegated role.

Role-based policies, i.e., the defined roles and authorization constraints,
might become quite complex through the interplay between authorization
constraints and delegation/revocation schemes. For example, role delegation
may cause unexpected violations of a history-based SoD constraint since
delegation itself might conflict with the delegatee’s previous activities. For
this reason, it is desirable to allow a security officer to systematically create
and analyze the defined role-based policies.

In our earlier work, we introduced an approach to modeling role-based
policies—including dynamic authorization constraints—with the Unified Mod-
eling Language (UML) and the Object Constraint Language (OCL) [12]. In
particular, we designed a domain-specific language (DSL), based on a UML
metamodel using class diagrams and OCL constraints. Role-based concepts
(including various kinds of authorization constraints) have been formalized at
the level of the metamodel. The concrete policies of an organization can then
be defined with the help of UML object diagrams. Proceeding this way, an
administrator/security officer can use a more intuitive graphical UML-based
DSL, while the technical details (e.g., the OCL constraints) can be hidden in
the metamodel. In addition, using UML/OCL for policy specification allows
an organization to utilize the rich tool support available for UML, such as
CASE and UML validation tools, which are widely adopted by industry, in
contrast to logic-based policy languages. Due to the fact that our RBAC
DSL has its foundation in UML object diagrams, which is a basic diagram
type, UML tools generally support our RBAC DSL. Approaches which uti-
lize the UML profile mechanisms, e.g., SecureUML [13], have the drawback
that it is unclear if and to which extent CASE tools handle this extension
mechanism.

Having a UML-based formalization of role-based policies at hand, we
showed how to employ the USE model validator [14] and the USE tool (UML-
based Specification Environment) [15] to validate the metamodel as well as
role-based policies. The validation approach with USE allows an administra-
tor to define concrete test cases for RBAC policies as UML object diagrams.

3



A test case, for example, can be a situation (system state) in which a specific
user can execute certain permissions which she should never obtain. If the
policy allows this situation, this might be a hint that the policy is incorrect.

In this paper, we significantly extend our earlier works in supporting
delegation and revocation concepts. Our work is based on RDM2000, a
well-established delegation and revocation framework [7], which includes con-
strained delegation (i.e., constraints are imposed on delegation) as well as dif-
ferent revocation schemes as introduced by Hagström et al. [16]. Proceeding
this way, our metamodel can encompass important access control features in
combining advanced RBAC concepts (e.g., static and dynamic authorization
constraints and role-hierarchies) with delegation/revocation schemes. This
allows us to capture complex access control requirements demanded by real-
world applications. We further show the applicability of our concepts with
the help of a banking application defined by Chandramouli [17]. Last but not
least, we employ USE and the USE model validator to validate role-based
policies in order to detect subtle problems stemming from the combination
of authorization constraints, role hierarchies, and delegation.

In summary, our main contribution is a UML-based RBAC DSL, which
is expressive enough to support delegation and revocation schemes as well as
advanced RBAC concepts, such as role hierarchies and history-based autho-
rization constraints. The DSL is graphic-based and hence easy to understand
in contrast to approaches which utilize logics for policy specification. In ad-
dition, a policy designer can employ CASE tools (including functionality for
model driven development) to specify, analyze and implement the role-based
policies.

The remainder of this paper is organized as follows. Section 2 gives an
overview of the basic technologies and concepts used in this paper. We then
recapitulate the RBAC metamodel in Section 3, whereas Section 4 discusses
the validation of this metamodel. In Section 5, we describe the extensions of
the metamodel to support delegation and revocation schemes and thereafter
show how to apply our RBAC DSL to a banking application. After discussing
related work in Section 7, we conclude and give an outlook in Section 8.

2. Background

In the following, we describe the background of our work including the
basic techniques as we have done in [18] with the exception of delegation
concepts which have not been covered. Having briefly described the main

4



concepts behind UML, OCL, DSLs, and the validation tool USE, we reca-
pitulate access control concepts, such as RBAC, authorization constraints as
well as delegation and revocation. In particular, we give an overview of the
RDM2000 delegation model, which will be a central aspect of our current
work.

If the reader is familiar with the concepts treated in this section, she
might skip them and move on to Section 3.1.

2.1. Employed Modeling and Validation Approaches

2.1.1. Unified Modeling Language

The Unified Modeling Language (UML) [19, 20] represents a general-
purpose visual modeling language in which we can specify, visualize, and
document the components of software and hardware systems. It captures
decisions and understanding about systems that are to be constructed. UML
has become a standard modeling language in the field of software engineering
and is increasingly used in hardware/software co-design.

Through different views and corresponding diagrams, UML permits the
description of static, functional, and dynamic models [21]. In this paper, we
concentrate on UML class and object diagrams. A class diagram provides a
structural view of information in a system. Classes are defined in terms of
their attributes and relationships. The relationships include specifically asso-
ciations between classes, but also association classes which allow for adding
further information to the relationships. Object diagrams visualize instances
of the modeled system, i. e., class instances (objects), attribute instances
(values) and instances of associations (links).

Figure 1 shows an example class and object diagram. The class diagram
visualizes a small UML model consisting of the classes ‘Person’ which has
the attributes ‘name’ and ‘age’ and ‘Company’ also containing an attribute
‘name’. Persons may be related through the binary reflexive association
‘Parenthood’. The association ends ‘parent’ and ‘child’ determine the roles
a person can assume in a parenthood relationship. Persons can have jobs,
as the association class ‘Job’ relates them with companies. The attribute of
the association class holds the salary for each job. Since persons may have
more than one job, the operation ‘salary()’ of class Person calculates the sum
of all related salaries. Relationships between classes may be constrained by
multiplicities. In our example, a person may have any number of children,
but at most two parents. A company must have at least one employee.

5



Figure 1: Example UML class and object diagram.

The object diagram represents an example instance of the model including
a family with jobs at two different companies. Ada, for example, is employed
at IBM and Apple which pay individual salaries. Bob is unemployed.

2.1.2. Object Constraint Language

The Object Constraint Language (OCL) [22] is a declarative textual lan-
guage that describes constraints on object-oriented models. It is an industrial
standard for object-oriented analysis and design.

OCL expressions consist of OCL standard operations or user-defined OCL
query operations. The built-in standard operations support calculations on
the basic types Boolean (e. g., and, or and implies), Integer (e. g., +, *

and mod), Real (e. g., /, and round), as well as on collection types, i. e.,
sets, bags (multiset), ordered sets and sequences. Beside the usual collec-
tion type operations (e. g., union, size and includes) several operations
enable iteration over the members of a collection such as forAll, exists,
iterate, and select. The most important features of OCL are navigation
and attribute access, which connect an OCL expression with the values in
a concrete model instance. By definition, OCL constraints can restrict the
static aspects of a UML model through invariants. Dynamic aspects with
respect to user-defined class operations and their expected execution results
are addressed through pre- and postconditions. In this paper, we break this
distinction by explicitly integrating the dynamic problems into our RBAC
metamodel enabling our invariants to enforce temporal properties.

6



OCL invariants are related to a context class; i. e., the boolean expression
for an invariant is evaluated for each instance of this class. If the expres-
sion evaluates to false in the context of at least one object, the invariant is
violated, indicating an invalid model instance. The reserved word ‘self’ is
used to refer to the contextual instance. We extended our example UML
model presented in Figure 1 by the two simple invariants which are named
‘minimumWage’ and ‘minumumAge’.

context Person inv minimumWage:

self.employer->notEmpty() implies self.salary() >= 500

The first invariant describes a logical implication whose premise checks
whether the considered Person object has at least one employer. The subex-
pression self.employer is a navigation from an object (self) via the as-
sociation end employee to a set of linked Company objects. The collection
operation notEmpty evaluates to true if the source collection includes at least
one element. We implemented the operation salary() as an OCL query oper-
ation which calculates the total income of a person without side-effects (i. e.,
without changing the model instance).

Person::salary() : Integer = self.job.salary->sum()

After navigating from a person to her jobs, the attribute salary of each
Job object is accessed and all corresponding values are collected in a bag. In
the end, the sum of all elements of the bag is returned. Consequently, the
invariant demands each working person to earn at least 500 units.

The second invariant makes use of the operation forAll, which iterates
over each person who is employed in the considered company, and evaluates
the boolean body expression p.age >= 16.

context Company inv minimumAge:

self.employee->forAll(p | p.age >= 16)

2.1.3. UML-Based Specification Environment

The UML-based Specification Environment (USE) supports the valida-
tion of UML and OCL descriptions. USE is the only OCL tool enabling
interactive monitoring of OCL invariants and pre- and postconditions, as
well as automatic generation of non-trivial model instances. The central idea

7



Figure 2: Evaluation of class invariants and a user-defined OCL query expression in USE.

of the USE tool is to check for software quality criteria like correct function-
ality of UML descriptions in an implementation-independent manner. This
approach takes advantage of descriptive design level specifications by express-
ing properties more concisely and in a more abstract way. Such properties
can be given by state invariants and operation pre- and postconditions. They
are checked by the USE system against the test scenarios, i.e., object dia-
grams and operation calls given by sequence diagrams, which the developer
provides.

USE takes as input a textual description of a model and its OCL con-
straints. It then checks this description against the grammar of the specifica-
tion language, which is a superset of OCL, extended with language constructs
for defining the structure of the model. Having passed all these checks, the
model can be displayed by the GUI provided by the USE system. In partic-
ular, USE makes available a project browser which displays all the classes,
associations, invariants, and pre- and postconditions of the current model.

The diagrams shown in Figure 1 are provided by USE. The status of
the implemented OCL invariants in terms of the given model instance can
be examined via a class invariants window (see Figure 2). It reveals the
invariant minimumWage to be violated. Since USE allows us to query the
current model instance via user-defined OCL expressions, we exploit this
feature to further inspect the problem. The result is also shown in Figure 2.
Our query calculates a tuple of name and total income for each person. We
see that Ada and Bob do not reach the minimum wage of 500. However,
since Bob is unemployed, he is disregarded by the invariant.

8



2.1.4. Domain-Specific Modeling and Languages

Domain-specific modeling (DSM) is an approach for constructing systems
that fundamentally relies on employing domain-specific languages (DSLs) to
represent the different system aspects in the form of models. A DSL is said
to offer higher-level abstractions than a general-purpose modeling language
and to be closer to the problem domain than to an implementation-platform
domain. A DSL catches domain abstractions as well as domain semantics
and supports modelers in order to develop models with a direct use of domain
concepts. Domain rules can be incorporated into the DSL in the form of con-
straints, making the development of invalid or incorrect models much harder.
Thus, domain-specific languages play a central role in domain-specific mod-
eling. In order to define a domain-specific modeling language, two central
aspects have to be taken into account: the domain concepts including con-
straining rules (which constitute the abstract syntax of the DSL), and the
concrete notation employed to represent these concepts (which can be given
in either textual or graphical form). In this paper, we mainly focus on the
abstract syntax. The abstract syntax of a domain-specific language is fre-
quently described by a metamodel. A metamodel characterizes the concepts
of the domain, the relationships between the concepts, and the restricting
rules that constrain the model elements in order to reflect the rules that hold
in the domain. Such an approach supports fast and efficient development of
DSLs and corresponding tools (for example, translators, editors, or property
analyzers).

Let us explain these ideas with an example. We consider a few elements
of the well-known relational database language SQL as a domain-specific
language and show in the screenshot in Figure 3 how these features would
be represented and analyzed with our tool USE. We describe the abstract
syntax of the considered SQL elements with a metamodel, which embodies
structural requirements in the form of a class diagram together with restrict-
ing constraints. We show how this metamodel can be validated and analyzed
with usage scenarios.

• An overview of the metamodel for the tiny SQL subset is shown in the
project browser in the left upper part of the screenshot and in the class
diagram in the lower right part. Classes, associations and invariants
are pictured in the browser. From the class diagram we learn that
a relational schema (class RelSchema representing an SQL table) has
attributes (columns) and that an attribute is typed through a data

9



Figure 3: USE screenshot of Relational DB Metamodel.

10



type. A relational schema is populated with rows (tuples) in which
each attribute gets a value by means of attribute map objects.

• Further rules are stated in the form of invariants which restrict the
possible instantiations, i.e., the object diagrams of the metamodel. The
names of these invariants are shown in the ‘Class invariants’ window
in the middle of the screenshot. We hide the OCL details but only
informally explain the constraint purpose in the order in which the
invariants appear: (a) the set of key attributes of each relational schema
has to be non-empty, (b) the attributes names have to be unique within
the relational schema, (c) each row must have an attribute value for
each of its attributes, and (d) each row must have unique key attribute
values.

• In the upper part of the screenshot we see a usage scenario in concrete
SQL syntax. One table (relational schema) is created, populated by
two SQL insert commands and finally modified with an additional SQL
update command.

• This usage scenario is represented in the abstract syntax of the meta-
model in the form of an evolving object diagram. The screenshot
shows only the last object diagram after the SQL update has been
executed: (a) after the create command only the four left-most ob-
jects (rs1, a1, a2, dt1) are present; (b) after the first insert command
the five middle objects (r1, am1, v1, am2, v2) appear, however we will
have v1.content=‘Ada’; (c) after the second insert the five right-most
objects (r2, am3, v3, am4, v4) will show up; up to this point all four
invariants evaluate to ‘true’; (d) after the update command the ‘con-
tent’ value of v1 changes (v1.content=‘Bob’) and the evaluation of
the invariant keyMapUnique turns to ‘false’.

• Let us further explain the impact of the invariants by means of chang-
ing the stated object diagram: (a) the first invariant would turn to
‘false’ if we would say a1.isKey = false; (b) the second invariant
would turn to ‘false’ if we would say a2.name = ‘firstName’; (c) the
third invariant would turn to ‘false’ if we would delete the objects am2
and v2; (d) the fourth invariant would turn to ‘true’, if we would say
a2.isKey=true.

11



• The situation is analyzed with the OCL query shown in the screenshot.
The OCL query finds the objects which violate the failing constraints:
All objects are returned for which another object with the same key
attribute values exists.

Our approach to defining a (domain-specific) RBAC language, which will
be explained in the forthcoming parts, follows the principles used above for
the tiny SQL subset: Definition of the abstract syntax of the language con-
cepts, and characterization of their dynamic evaluation in the form of a
metamodel that consists of a class diagram and restricting constraints.

2.2. Role-Based Access Control and Authorization Constraints

RBAC has been widely used in organizations to simplify access man-
agement. Roles are explicitly handled in RBAC security policies. Thereby,
security management is simplified and the use of security principles like ‘sep-
aration of duty’ and ‘least privilege’ is enabled [1]. We now give an overview
of (general) hierarchical RBAC according to the RBAC standard [23] which
is the fundament of our following RBAC UML approach.

RBAC relies on the following sets: U , R, P , S (users, roles, permissions,
and sessions, respectively), UA ⊆ U × R (user assignment to roles), PA ⊆
R × P (permission assignment to roles), and RH ⊆ R × R (partial order
called role hierarchy or role dominance relation written as ≤). Users may
activate a subset of the roles they are assigned to in a session. P is the set of
ordered pairs of actions and resources. Actions and resources are also called
operations and objects in the RBAC context. For disambiguating RBAC and
UML concepts, we continuously use the former notion. Resources represent
all elements accessible in an information technology (IT) system, e. g., files
and database tables. Actions, e. g., ‘read’, ‘write’ and ‘append’, are applied
to resources.

The relation PA assigns a subset of P to each role. Therefore, PA deter-
mines for each role the action(s) it may execute and the resource(s) to which
the action in question is applicable for the given role. Thus, any user hav-
ing assumed this role can apply an action to a resource if the corresponding
ordered pair is an element of the subset assigned to the role by PA.

Role hierarchies can be formed by the RH relation. Senior roles inherit
permissions from junior roles through the RH relation, e. g., the role ‘chief
physician’ inherits all permissions from the ‘physician’ role.

12



An important advanced concept of RBAC is authorization constraints.
Authorization constraints can be regarded as restrictions on the RBAC func-
tions and relations. For example, a (static) SoD constraint may state that no
user may be assigned to both the cashier and cashier supervisor role, i.e., the
UA relation is restricted. It has been argued elsewhere [1] that authorization
constraints are the principal motivation behind the introduction of RBAC.
They allow a policy designer to express higher-level organizational rules as
indicated above. In the literature, several kinds of authorization constraints
have been identified. In this paper, we exemplarily consider static and dy-
namic SoD [3, 2] and cardinality constraints [1]. Temporal considerations
need extra preparation which we introduce later.

2.3. Role-based Delegation and Revocation

Delegation is the process whereby an active entity in a distributed envi-
ronment authorizes another entity to access resources. In current distributed
systems, a user often needs to act on another user’s behalf with some subset
of his/her privileges. Most systems have attempted to resolve such delega-
tion requirements with ad-hoc mechanisms by compromising existing disor-
ganized policies or simply attaching additional components to their appli-
cations. There is still a strong need in the large, distributed systems for a
mechanism that provides effective privilege delegation and revocation man-
agement. To this end, several delegation models have been proposed recently
for access control systems [9, 7, 24, 25]. RBDM0 is a model for delegat-
ing roles, which is based on the RBAC0 model of the RBAC96 family [9].
RDM2000 defines a rule-based framework for role-based delegation and re-
vocation [7]. The model considers role hierarchies and also provides support
for multi-step delegations. The PBDM model proposes a delegation model
for permissions that also supports multi-step delegations [24]. In this paper,
we address our approach based on well-established RDM2000 delegation and
revocation framework.

2.3.1. Role Delegation

In addition to the basic components defined in RBAC model, RDM2000
defines a new relation called delegation relation (DLGT). It includes three
elements: original user assignments UAO, delegated user assignment UAD,
and constraints. The motivation behind this relation is to address the rela-
tionships among different components involved in a delegation. To illustrate
main functional components in RDM2000, we use a role hierarchy example

13



Figure 4: An example of an organizational role hierarchy and users.

shown in Figure 4. In a user-to-user delegation, there are four components:
a delegating user, a delegating role, a delegated user, and a delegated role.
For example, (Deloris, PL1, Cathy, PL1) means Deloris acting in role PL1
delegates role PL1 to Cathy. The delegation relation supports role hierar-
chies: a user who is authorized to delegate a role r can also delegate a role r′

that is junior to r. For example, (Deloris, PL1, Lewis, PC1) means Deloris
acting in role PL1 delegates a junior role PC1 to Lewis. A delegation relation
is one-to-many relationship on user assignments. It consists of original user
delegation (ODLGT) and delegated user delegation (DDLGT).

In some cases, we may need to define whether or not each delegation can
be further delegated and for how many times, or up to the maximum dele-
gation depth. RDM2000 introduces two types of delegation: single-step del-
egation and multi-step delegation. Single-step delegation does not allow the
delegated role to be further delegated; multi-step delegation allows multiple
delegations until it reaches the maximum delegation depth. The maximum
delegation depth is a natural number defined to impose restriction on the
delegation. Single-step delegation is a special case of multi-step delegation
with maximum delegation depth equal to one.

A delegation path (DP) is an ordered list of user assignment relations
generated through multi-step delegation. A delegation path always starts
from an original user assignment.

RDM2000 has the following major components and theses components
are formalized from the above discussions.

14



• UAO ⊆ U × R is a many-to-many original user to role assignment
relation.

• UAD ⊆ U × R is a many-to-many delegated user to role assignment
relation.

• UA = UAO ∪ UAD.

• DLGT ⊆ UA × UA is one-to-many delegation relation. A delegation
relation can be represented by ((u, r), (u′, r′)) ∈ DLGT , which means
the delegating user u with role r delegated role r′ to user u′.

• ODLGT ⊆ UAO × UAD is an original user delegation relation.

• DDLGT ⊆ UAD × UAD is a delegated user delegation relation.

• DLGT = ODLGT ∪DDLGT .

Delegation authorization is to impose restrictions on which role can be
delegated to whom. RDM2000 adopts the notion of prerequisite condition
to delegation authorization specification. A prerequisite condition CR is a
Boolean expression using the usual “&” (and) and “|” (or) operators on terms
of form x and x where x is a regular role, for example, CR = r1&r2|r3.

The following relation authorizes user-to-user delegation in RDM2000:

• can delegate ⊆ R× CR×N
where R, CR, N are sets of roles, prerequisite conditions, and maximum
delegation depth, respectively.

The meaning of (r, cr, n) ∈ can delegate is that a user who is a member
of role r (or a role senior to r) can delegate role r (or a role junior to r) to
any user whose current entitlements in roles satisfy the prerequisite condi-
tion cr without exceeding the maximum delegation depth n. For example,
(PL1, PO2, 1) ∈ can delegate, then John can delegate role PC1 to Mark
who is a member of PO2 role, so that (John, PL1,Mark, PC1) ∈ DLGT

2.3.2. Role Revocation

Revocation is an important process that must accompany the delegation.
For example, Cathy delegated role PC1 to Mark ; however, if Mark is trans-
ferred to another division of the organization, he should be revoked from the
delegated role PC1 immediately. Several different semantics are possible for
user revocation [9, 16]. RDM2000 articulates user revocation in the follow-
ing dimensions: dominance, propagation, and grant-dependency. Dominance

15



refers to the effect of a revocation; strong revocation considers also implicit
role memberships (e.g, through role hierarchies), whereas weak revocation
does not. Propagation refers to the extent of a revocation; a cascading revo-
cation also revokes all the subsequent delegations. Grant-dependency refers
to the legitimacy of a user who can revoke a delegated role. Grant-dependent
(GD) revocation means only the delegating user can revoke the delegated
user from the delegated role. Grant-independent (GI) revocation means any
original user of the delegating role can revoke the user from the delegated
role.

RDM2000 defines the following relations authorizing delegation revoca-
tion with respect to grant-dependency:

• can revokeGD ⊆ R

• can revokeGI ⊆ R

The meaning of (b) ∈ can revokeGD is that only the delegating user who
has current membership in b can revoke a delegated user from the delegated
role that is junior to b. The meaning of (b) ∈ can revokeGI is that any
user whose current membership includes a delegated role b in the delegation
path that is prior to a delegated user whose current membership includes a
delegated role junior or equal to b, can revoke the delegated user from role b.
Similarly, revocation relations can be defined for dominance and propagation
properties.

3. RBAC UML Description

Three central requirements form the basis of the developed RBAC meta-
model. The model must provide for (1) the design of organizational (secu-
rity) policies with respect to core RBAC concepts including authorization
constraints, (2) a comprehensive validation of the specified policies includ-
ing time-independent (static) and time-dependent (dynamic) aspects, and
(3) extensibility.

These requirements result in a UML class diagram with two parts de-
scribing a policy level for the policy design and a user access level for the
policy analysis. Figure 5 visualizes the basic idea. An object diagram shows
an example instance of the RBAC class diagram (depicted in Fig. 6). The
dark grey part represents a role-based policy specified by an administrator

16



(security officer) through the creation of Role, Permission, Action and Re-
source objects and insertion of links between the objects. In this example,
no authorization constraints are involved.

In summary, the dark grey part represents the role-based policy as an
object diagram, which is based on the RBAC class diagram, i.e., the meta-
model. Proceeding this way, all the details of the RBAC metamodel are
hidden from a security officer, which leads to a more usable RBAC DSL
than a logic-based policy language. This is in line with Jaeger and Tidswell,
who pointed out that graphical policy languages were more suitable for an
administrator than logic-based languages [26].

The light grey part simulates an IT system with one user bob who is
present at two different points in time and his activities. With the help of
the object diagram, we can sketch the main principles of RBAC and our
UML model, which is examined in detail later. The example policy manages
the access to just one resource, a (bank) check. (This is a simplified view
to an RBAC permission management. RBAC policies often abstract from
individual resources.) Users in the role of a ‘clerk’ are entitled to prepare
checks. Users in the role of a ‘supervisor’ are allowed to approve them. As
mentioned before, policy designers (administrators) normally aim to prevent
situations in which the same user prepares and approves a critical resource
like a check (SoD requirement).

The user access level is exclusively designed for the analysis of policies in-
cluding authorization constraints like the aforementioned SoD requirement.
The analysis is performed by administrators who can either manually instan-
tiate the user access level or let a UML validation tool (e. g., USE) automat-
ically create user access scenarios. The user access level simulates concrete
user activities in the context of a policy, i.e., the actor ‘End-user’ in Figure 5
represents real users defined by an administrator, but the users’ activities
are simulations of real events. In the present case, the following situation is
at hand. The user bob prepares a check at 10 am and approves this check in
a different session at 11 am, thus, violating the SoD requirement. Speaking
more precisely, bob accesses the real resource ‘check’ via the action ‘prepare’
and later in the context of another access via the action ‘approve’. We call a
point in time a snapshot and a sequence of snapshots a scenario or film strip
to stress the sequential aspect.

The user activity can be checked with respect to the policy. It is either
valid, i. e., the whole object diagram fulfills all underlying UML and OCL
constraints specified with the RBAC metamodel, or invalid, i. e., the object

17



Figure 5: Policy and user access level of the RBAC UML description.

diagram violates at least one UML or OCL constraint. The UML and OCL
constraints are controlled by the policy part as the policy determines the set
of active authorization constraints. For example, if the administrator acti-
vates the respective SoD authorization constraint (a boolean UML attribute
belonging to Resource objects which is currently hidden in the diagram) for
the ‘check’, the OCL invariant enforcing the SoD requirement will come into
effect. Thus, the present scenario will not be valid in the context of the
restricting policy.

The distinction between the actors, i.e., the RBAC metamodel developers
(the authors of this paper), security officers (administrators), and end-users,
is helpful later when we address the various possibilities to analyze the RBAC
description.

18



Figure 6: The RBAC metamodel.

19



Figure 7: Use cases for policy management with the RBAC DSL.

To give a better overview, Fig. 7 depicts the different use cases, which
describe how our RBAC framework can be applied. The RBAC mm devel-
oper specifies the UML metamodel of our RBAC DSL including the OCL
constraints and the class diagram. Whenever new RBAC concepts are in-
troduced (e.g., new types of authorization constraints or as in this paper,
delegation and revocation concepts), the RBAC mm developer adjusts the
metamodel accordingly. Based on the metamodel, object diagrams can be
defined, which instantiate the RBAC metamodel. A security officer (admin-
istrator) defines the role-based policy of her organization and works at the
policy level to set attributes (e.g., expressing authorization constraints), add
objects (e.g., roles, users, resources), and set links between objects (e.g.,
defines RBAC relations). The end-user then accesses the security-critical re-
sources, such as accounts (“User Access Level Diagram” in Fig. 7). Please
note that this level can also be used by a security officer to simulate the
system and test the corresponding role-based policy. Also, it can serve as a
basis for an implementation of an authorization engine [27].

20



3.1. RBAC Metamodel

The object diagram shown in Figure 5 is based on the RBAC metamodel
shown in Figure 6. Please note that Figure 6 depicts one class diagram,
which, however, consists of the two parts policy level and user access level.
Classes and associations analogously belong to the policy level or the user
access level. This situation is similar to that shown in the bottom right cor-
ner of Figure 3, in which a class diagram for the Relational DB metamodel is
given. This class diagram describes two conceptually different parts, namely,
the definition of the DB schema as well as the modification/selection of DB
rows. In the following sections, we describe both parts of the RBAC meta-
model in more detail.

3.1.1. Policy Level

The dark grey policy part features the basic RBAC concepts. Users are
assigned to at least one role. Roles entail a particular set of permissions which
are needed for applying actions to resources. The role hierarchy and RBAC
authorization constraints form the realized advanced concepts. Roles may
have junior roles implying the inheritance of permissions. The authorization
constraints are based on the fundamental paper of Sandhu [1] supplemented
by dynamic constraints discussed in [28]. In our approach, the constraints
are realized as UML attributes and associations.

While integrating the authorization constraints into the RBAC meta-
model, we adhered to the principle of strictly separating the RBAC meta-
model from concrete policies. That is, concrete policies should be exclusively
defined in object diagrams so that their specification does not require adjust-
ments at the metamodel level. Generally speaking, our approach allows the
policy administrators to freely configure the needed authorization constraints
by setting attribute values and inserting links between objects. While the
attribute and association names are chosen to suggest the meaning of the
corresponding constraint, we provide a short description for each realized
authorization constraint within Tab. 1. The OCL invariants implementing
the authorization constraints are considered in Sect. 3.2.

3.1.2. User Access Level

As explained before, the user access level displayed in the light grey part
of Figure 6 is an essential means for policy analysis. On the one hand, the
class ‘User’ and related authorization constraints belong to the policy level
because administrators create users and configure their access rights through

21



Table 1: Realized authorization constraints
Constraint Description Reference
User:: maxRoles maximum number of roles the user is [1],

assigned to (respecting or ignoring the page 11, lines 29–30
role hierarchy, depending on the boolean
value of attribute ‘maxRolesRespecting-
Hierarchy’)

maxSessions maximum number of simultaneously [1],
active sessions with respect to a user page 12, lines 15–16

Role:: maxMembers maximum number of assigned users [1],
page 11, lines 27–28

maxJuniors maximum number of inheriting junior [1],
roles (mutually exclusive juniors allowed page 12, lines 30–31
or prohibited, depending on the boolean
value of attribute ‘exclusiveJuniors-
Allowed’)

maxSeniors maximum number of senior roles [1],
page 12, lines 30–31

PrerequisiteRoles dependent role postulates required role [1],
(Assoc.) with respect to user assignment page 11, lines 36–38

MutuallyExclusive::
wrtUserAssignment a user must not be assigned to both of [1],

the connected roles (identical seniors can page 11, lines 6–7
be explicitly allowed by setting the
boolean attribute ‘identicalSeniorAllowed’
to true)

wrtPermissionAssignment a permission must not be assigned to [1],
both roles page 11, lines 10–12

wrtActiveRoles the connected roles must not be both [1],
activated in a session (possibly involving page 12, lines 14–15
several snapshots)

wrtJuniors the connected roles must not have the [1],
same junior roles page 12, lines 31–32

wrtSeniors the connected roles must not have the [1],
same senior roles page 12, lines 31–32

Permission:: maxRoles maximum number of roles the permission [1],
is assigned to page 11, lines 30–32

maxSessions maximum number of sessions [1],
simultaneously activating the permission page 12, lines 16–17
(i. e., within the same snapshot)

PrerequisitePermissions assignment of the dependent permission [1],
(Assoc.) postulates the assignment of the required page 12, lines 1–3

permission
Resource::

resourceBasedDynamic- a user may not apply more than one [2],
SeparationOfDuty action to the resource page 4, line 16–20

historyBasedDynamic- a user may not apply all available actions [2],
SeparationOfDuty to the resource page 4, line 28–39

22



the assignment to roles and the determination of the respective attribute
values. On the other hand, a user represents a central element at the user
access level because we model the users’ activities via sessions and resource
accesses at this level. In other words, a User object is part of a concrete
policy, but the activated sessions and accesses related to the User object
simulate an IT system which underlies the designed policy. This way, during
the analysis process, we can, for example, identify user activities which are
forbidden by the given policy specification, but are valid in the eyes of the
administrators, or identify constellations which are allowed wrt. the policy
but should actually be forbidden.

The policy level of the RBAC UML description follows the principles of
an application model, whereas the user access level follows the principles of a
snapshot model [29, 30]. That is, one object diagram for Figure 6 describes
exactly one policy, but several situations on the user access level, i.e., points
in time in a IT system. The class ‘Snapshot’ and the associations with ‘Pred-
Succ’ prefix enable the corresponding dynamics. A scenario consists of one
chain of successive snapshots. Analogously, users, sessions and accesses can
have successors. These predecessor/successor relationships allow for identi-
fying the individual users, sessions and accesses over time (snapshots). For
example, the user Bob is represented by one object per snapshot so that
we can follow Bob’s activities within the whole scenario. This aspect is not
explicitly treated in [30].

This snapshot modeling of the user access level with pred/succ associa-
tions allows us to analyze time-dependent (dynamic) constraints.

3.2. Supplemental OCL Constraints

The RBAC class diagram is supplemented by OCL invariants which serve
three purposes. They (1) represent authorization constraints, (2) check for
reasonable policy designs, and (3) regulate the snapshot concepts.

The OCL invariants make use of OCL query operations displayed in the
operation parts of the classes (see Figure 6). The query operations represent
auxiliary functions simplifying the invariant bodies or calculating transitive
closures. For example, the operation ‘successors’ (Snapshot) returns all direct
and indirect successors of the snapshot under consideration, or the operation
‘required’ (Role) calculates all directly and indirectly required roles in the
context of the calling Role object.

23



3.2.1. Formalizing Authorization Constraints

Each authorization constraint is represented by an OCL invariant which
checks whether a user access scenario complies with the authorization con-
straint. The administrator determines for which objects the authorization
constraint should be activated, i. e., for which objects the invariant should
be applied. This is done by creating objects on the policy level, changing
attributes, or establishing links. The invariant corresponding to the autho-
rization constraint comes into play through these modifications. Please note
that the invariant is formulated only once, and can be activated in different
contexts. For example, consider the invariant ‘MaximumNumberOfMem-
bers’ stated below. It corresponds to the authorization constraint which is
configured with the attribute ‘maxMembers’ of class ‘Role’. After determin-
ing a value for ‘maxMembers’ in the context of a Role object in the policy,
the related invariant is activated which checks the requirement for the Role
object.

context r:Role inv MaximumNumberOfMembers:

r.maxMembers.isDefined implies r.user->size() <= r.maxMembers

This invariant expresses a static, time-independent property because it
must hold at each point in time. In contrast, the invariant ‘NoExclusiveRole-
sActive’ related to the (switch) attribute ‘wrtActiveRoles’ of class ‘Mutual-
lyExclusive’ has to respect the snapshot framework.

It ensures that no pair of roles exists which are characterized as mutually
exclusive with respect to the activation in a single session. That is, the
attribute ‘wrtActiveRoles’ is set to ‘true’, and it is used in the definition of
the query operation ‘activeRolesExclusives,’ which is used in the following
invariant:

context s:Session inv NoExclusiveRolesActive:

let activeRoles = s.successors().role->union(s.role) in

activeRoles->excludesAll(activeRoles.activeRolesExclusives())

As sessions are active in an arbitrary time frame, they often persist sev-
eral snapshots until the respective user terminates them. Hence, the invari-
ant must include the whole time frame wrt. a session, i.e., the sequence of
successive Session objects (s.successors()), representing the single considered
session over time.

24



Table 2: Different perspectives of analyzing RBAC
RBAC level Focus Analyzed by Considered subject
RBAC class diagram and RBAC DSL all instantiable policies
metamodel OCL constraints developers all possible RBAC scenarios
RBAC policy static policy policy one specific (partial) policy

aspects administrators all possible RBAC snapshots
dynamic policy policy one specific (partial) policy
aspects administrators all possible RBAC scenarios

User access resource access authorization system one specific RBAC scenario
(based on an RBAC policy)

3.2.2. Checking for Reasonable Policies

The model comprises further invariants assisting the administrators (at
a syntactical level) to design correct policies. Thus, structurally inconsistent
policies, e. g., showing self excluding roles or roles which simultaneously re-
quire and exclude themselves, can be avoided in the first place. The aim is
to allow the administrators to focus on semantical aspects, like assigning the
end-users to proper roles so that they achieve a policy which matches their
intended security properties.

3.2.3. Constraining User Access Scenarios

Finally, a set of OCL invariants is created to maintain valid sequences
of snapshots. For example, only one scenario is allowed within an object
diagram and the set of snapshots must be properly ordered. All sources
related to the RBAC metamodel can be found in [31].

4. Analyzing the RBAC Description

If we consider the complexity of real RBAC policies and the extensive
possibilities of designing a policy by means of the RBAC metamodel, and
if we consider the resulting possibilities of overlooking security holes, we see
that computer-aided analysis is essential at the policy level. In the following,
we discuss several ways to validate the RBAC description given above. This
discussion is based on our earlier work [18].

As an adequate RBAC metamodel is the precondition for designing ac-
curate policies, the model itself must be sound. Regarding the number of
classes, associations and attributes as well as the number of OCL constraints,
the RBAC UML model has reached a size which makes pure manual valida-
tion impossible. Thus, the UML and OCL experts who maintain the RBAC
metamodel (the DSL) within an organization (as well as the authors of this

25



paper) also need tool support. Table 2 shows the different approaches to an-
alyzing the RBAC artifacts including the RBAC metamodel, RBAC policies
and the user access. In the following, the user access level can be disregarded
because user activities are restricted by a policy. Consequently, a complete
and correct policy suffices to enable only valid user activities.

4.1. The USE Model Validator

Our RBAC description provides diverse interfaces for analysis so that
any UML and OCL tool with analysis functionality can help to ensure a
sound RBAC metamodel and well-designed policies. We follow the approach
of the USE system [15]. In order to ensure properties of the metamodel or
the policies, we search system state spaces, i. e., sets of object diagrams. The
existence of an object diagram fulfilling specified conditions gives information
about the model or the policy characteristics.

The success of this approach strongly depends on the performance of the
underlying search engine. In [28], we employ the ASSL generator [15] inte-
grated into USE to analyze RBAC policies in order to detect missing and
conflicting static authorization constraints. The enumerative generator has
to consider all possible object diagrams in the worst case, i.e., if there is no
state having the required properties. Hence, it cannot handle models of the
size of the present RBAC metamodel with acceptable execution times. The
developed USE model validator resolves this problem. It is based on the
relational model finder Kodkod representing the successor of the Alloy Ana-
lyzer [32]. Both tools provide a relational logic for specifying and analyzing
models. Internally, they translate the model and properties to be checked
into a SAT problem which can be handled by any SAT solver. Kodkod is
designed as a Java API simplifying the integration into other tools.

The model validator includes a translation from UML and OCL concepts
into relational logic. The current version comprises all important UML class
diagram and OCL features. As the RBAC metamodel is completely sup-
ported, it can be taken as an example for the successful use of the model
validator, see [31] for details.

4.2. Analyzing the RBAC Metamodel

A comprehensive analysis of the RBAC metamodel during development
helped us to discover several unwanted properties. Also future extensions of
the model with respect to further RBAC features will benefit from further

26



analysis of the model properties. Our examinations presented here are based
on the core concepts of independence and reasoning discussed in [33].

4.2.1. Independence

The independence of constraints describes the fact that each defined con-
straint adds essential information to the model, i. e., it further restricts the
space of valid object diagrams. This property can be checked by searching for
an object diagram fulfilling all constraints but the constraint under consider-
ation. If such a diagram exists, the respective constraint is independent from
the others because it does not follow from them. Each check results in an
object diagram or yields no solution. The latter case indicates dependencies
between the constraints which have to be further examined, e. g., by tem-
porarily disabling not involved constraints. Within the RBAC metamodel
given above, all constraints are independent. The results for each invariant
are presented in [31].

4.2.2. Reasoning

Reasoning stands for the universal examination of model properties. Prop-
erties under consideration are often complex, but in many cases simple prop-
erties already lead to the desired information. For example, in order to check
a specific RBAC metamodel invariant, we can configure the model validator
to search for a valid object diagram, in which the authorization constraint
corresponding to the invariant is activated. Proceeding this way, we discov-
ered a further erroneous invariant during development. We defined a search
space, from which we expected to find object diagrams which satisfy the in-
variant, but finally found none. More details on this situation can be found
in the paper from Kuhlmann et al. [18]

4.3. Analyzing RBAC policies

Complex security policies usually become opaque with respect to their im-
plicit properties, i. e., the combination of the explicitly stated authorization
constraints often yields new properties which have to be analyzed. Conse-
quently, changes to a policy may have various effects. Even simple policies
like the ones presented in this section can reveal unanticipated characteris-
tics. In the context of our RBAC metamodel and the model validator these
characteristics can be uncovered by searching for specific object diagrams.
In contrast to the analysis at the metamodel level, the analysis of policies
is normally based on a given object diagram representing the policy under

27



consideration or a partial policy which may be automatically adapted during
the search. That is, administrators can determine which parts of the de-
signed policy should be fixed (e. g., permission ‘p1’ must be assigned to role
‘clerk’ and the number of roles must not change) or are variable (e. g., the
user assignment to roles can arbitrarily be changed during the search). In
many cases, at least some parts of a policy remain variable.

The analysis with the model validator needs two artifacts, an object
diagram—the (partial) policy—and a property to be checked. The prop-
erty can be formulated in the form of a usually non-complex OCL expression
and by explicitly stating the bounds with respect to the number of objects
and links for each class and association as well as the definition of attribute
values. Let us take the object diagram shown in Figure 8 which presents
the first artifact, a partial policy (grey objects and black links) with some
fixed elements, e. g., the existing objects must not be deleted, users do not
change their roles, and the attribute value of ‘wrtUserAssignment’ must re-
main ‘true’, i.e., a user may not have both roles ‘clerk’ and ‘supervisor’ at the
same time. The white objects and grey links are not part of the policy. They
are addressed later. Please note that we manually adapted the displayed
object diagram to combine the elements existing before and after the search.
The second artifact represents the following property to be checked (infor-
mally): ‘Does the policy allow a user to apply both actions (‘prepare’ and
‘approve’) to the resource in the context of a snapshot, although a user can-
not have both roles?’ Modeling this property with OCL, we require (among
other requirements) the following statement to be fulfilled.

User.allInstances()->exists(u |

u.session.access.action->asSet()->size() = 2)

These kinds of statements normally have specific patterns which are often
reused in case of other properties. Thus, the administrators do not need to
have a deep insight into the OCL semantics. Moreover, the patterns could
be enforced and implemented in the used UML tool (e.g., USE) in order to
allow property configurations through a graphical user interface.

Giving both artifacts to the model validator, it returns a completed object
diagram fulfilling all constraints. It is partly shown with the white objects
and grey associations in Figure 8. We hide the overhead like the session in
which the user accesses the resource via both actions. We see that the static
SoD property is circumvented, if the role ‘clerk’ becomes the junior role of

28



Figure 8: Partial policy and partial search results (white objects, grey links).

‘supervisor’ because a supervisor will in turn inherit all permissions from a
clerk.

Beside the automatically generated object diagrams, it is also often help-
ful to manually specify scenarios of user activities. They can, for example,
be used as positive (valid object diagrams) and negative (invalid object di-
agrams) test cases during the development of policies. When a reasonable
set of test cases is available, it can be periodically checked during the de-
velopment process because a failed test can indicate the existence of a new
unwanted property within the policy, possibly resulting from the interplay of
several authorization constraints. However, if a policy undergoes great struc-
tural changes, the test cases must be adapted accordingly. We give further
examples of such test cases in the context of the discussion of the banking
application (see Section 6).

5. UML Description for RDM2000

In the following, we describe how we can extend the UML-based meta-
model for RBAC to represent the RDM2000 features, which have been pre-
sented in Section 2.3. The RBAC metamodel depicted in Figure 5 serves
as a basis as RDM2000 is based upon RBAC96. The class diagram shown
in Figure 9 represents the extension of the UML metamodel for RDM2000.
To better understand how our metamodel captures the RDM2000 concepts,
Table 3 gives an overview of the mapping between the RDM2000 features
and the corresponding elements of the metamodel.

We have introduced the class Delegation, which is used for express-
ing the ODLGT and DDLGT relations. For example, the delegating pairs
of users and roles are expressed by the associations DelegatingUser and
DelegatingRole, respectively; delegated users and roles can be represented
similarly by the DelegatedUser and DelegatedRole associations. The in-
stances of the reflexive association delegatedDelegation indicate that we

29



Figure 9: The delegation metamodel.

have a DDLGT relationship; if, however, a delegatedDelegation link is
absent, we have an ODLGT relationship.

RDM2000 lets one impose restrictions on delegation authorization through
the can delegate relation (see Section 2.3.1). The maximum delegation depth,
for example, is represented by the maxDelegationDepth attribute of the Role
class. In addition, we need an OCL invariant, expressing the fact the dele-
gation depth must not be exceeded (also see Table 3). For other modeling
elements of our metamodel, additional OCL invariants are also required. We
only give the invariant for the maxDelegationDepth attribute here as an ex-
ample:

context d:Delegation

inv MaxDelegationDepth:

let maxDepth = d.getDelegationPath()->first()

.delegatingRole.maxDelegationDepth in

(maxDepth.isDefined() implies

30



Table 3: Mapping between RDM2000 features and the corresponding metamodel elements.
RDM2000 concept metamodel element

UAO OriginalUserAssignment association
UAD Delegation class with the associations DelegatedUser and DelegatedRole

ODLGT Delegation class with the associations DelegatingUser, DelegatingRole,
DelegatedUser, and DelegatedRole,
invariant DelegatingUserOrDelegation

DDLGT Delegation class with the associations DelegatingUser, DelegatingRole,
and DelegatedDelegation, invariant DelegatingUserOrDelegation

Delegation authorization: maxDelegationDepth attribute of the classes Role and Delegation,
maximum delegation depth MaxDelegationDepth invariant
Delegation authorization: class DelegationAuthorization, association AuthorizationRole,
delegating role invariants DelegationAuthorizationWrtOriginalRole

and DelegationAuthorizationWrtDelegatedRole

Delegation authorization: class DelegationAuthorization, association DelegationPrerequisiteRoles,
prerequisite condition invariant DelegationAuthorizedWrtConditions

Delegation authorization: negation class DelegationAuthorization, association DelegationForbiddenRoles,
invariant DelegationAuthorizedWrtConditions

Delegation authorization: &-operator class DelegationAuthorization,
association DelegationPrerequisiteRoles,
invariant DelegationAuthorizedWrtConditions.
Explanation: Each prerequisite role link represents a conjunct of the form
‘the delegated user must have the linked role’
and each forbidden role link represents a conjunct of the form
‘the delegated user must not have the linked role’.

Delegation authorization: |-operator class DelegationAuthorization,
association DelegationPrerequisiteRoles,
invariant DelegationAuthorizedWrtConditions.
Explanation: Each DelegationAuthorization object
linked to a specific role represents a disjunct.

Grant-dependency attribute grantDependentRevocation of class Role and invariant
GrantDependency

Dominance attribute strongRevocation of class Role,
invariant ActionsPermitted with the query operation isRevoked()

Propagation attribute cacadingRevocation of class Role,
invariant ActionsPermitted with the query operation isRevoked()

d.getDelegationPath()->size()-1 <= maxDepth)

and

(d.maxDelegationDepth.isDefined() implies

d.getNumberOfFurtherDelegations() <= d.maxDelegationDepth)

This constraint comprises two parts, which must be checked. First, it
must be made sure that the current delegation d does not violate the max-
imum delegation depth of the (original) delegation starting the delegation
path. Second, if the current delegation has also set a maximum delegation
depth, it must be guaranteed that the subsequent delegations of d also re-
spect d’s maximum delegation depth.

31



The prerequisite roles, which the delegated user must possess on dele-
gation, are expressed in our approach with the help of the Delegation-

Authorization class and the DelegationPrerequisiteRoles association.
Roles which the delegated user must not possess on delegation are repre-
sented by the DelegationForbiddenRoles association. All Delegation-

ForbiddenRoles and DelegationPrerequisiteRoles links connected to a
DelegationAuthorization object express a conjunct of prerequisite and for-
bidden roles, which realizes the & operator of RDM2000 (also see Table 3).

The AuthorizationRole association also allows one to express alterna-
tive prerequisite restrictions on delegation (realizing the “|” operator in the
RDM2000 model), i.e., only one of the prerequisite conditions must be sat-
isfied for a successful delegation. Alternative prerequisite conditions can
be expressed by multiple instances of the DelegationAuthorization class,
which are connected to the authorizing role of a delegation via links of type
AuthorizationRole. Summarizing, we obtain a disjunctive normal form
for prerequisite conditions. The conjuncts are represented by all the links
of the types DelegationPrerequisiteRoles and DelegationForbidden-

Roles connected to an object of type DelegationAuthorization (see the
preceding paragraph); the disjuncts are expressed by all connections between
a single role (the authorizing role of a delegation) and such Delegation-

Authorization objects.
In order to realize the semantics of the aforementioned prerequisite con-

ditions for delegation (i.e., the disjunctive normal form), we also need OCL
constraints, which are listed in Table 3. For the sake of brevity, we do not
present them in this paper. The interested reader is referred to our OCL
specification [34], which can be downloaded and then invoked by the freely
available USE system.

The type of the revocation scheme (grant-dependency, dominance, prop-
agation) is represented by the respective attributes of the class Role. As a
consequence, the type of revocation (e.g., with respect to dominance, prop-
agation, and grant-dependency) cannot be selected by the revoking user,
but only by the policy designer/administrator according to our model. We
feel that otherwise the burden of security decisions would be placed on end-
users (such as physicians) who often do not understand in detail the security
implications of their actions. Revocation is expressed by the association
Revocation, with the associated user being the revoking user. Please note
that a revocation does not mean in our model that the delegation links are
removed; only a revocation link (i.e., an instance of the Revocation as-

32



sociation) is added between the revoked delegation and the revoking user.
Proceeding this way, the whole delegation history is preserved and can be
reconstructed despite revocation actions.

Figure 9 represents the user access level as well as the policy level. The lat-
ter is presented in dark grey, whereas the former is in light grey. The user ac-
cess level describes the user activities, i.e., performing delegation and revoca-
tion steps. In contrast, the policy level encompasses all administrative activi-
ties, such as constraining delegation through prerequisite rules or determining
the kind of revocation (i.e., setting the attribute values strongRevocation

or cascadingRevocation).
An OCL operation which is central for the specification of revocation is

the isRevoked() operation defined in the context of the Delegation class.
We give the OCL specification of isRevoked() in the following:

context d: Delegation

isRevoked(curSnap:Snapshot): Boolean =

revokingUser.isDefined and

self.revokingUser.snapshot.successors()->

including(self.revokingUser.snapshot)->includes(curSnap) or

delegatedUser.getAllDelegations()->select(d |

d.getDelegationPath()->first().delegatingRole.strongRevocation and

d.delegatedRole.seniors()->includes(self.delegatedRole))

->exists(d|d.isRevoked(curSnap)) or

getDelegationPath()->first().delegatingRole.cascadingRevocation and

getDelegationPath()->excluding(self)->exists(d|d.isRevoked(curSnap))

end

The operation isRevoked() evaluates to true in three cases, which are
discussed in the following:

1. The delegation self is revoked in the current snapshot curSnap or has
been revoked earlier. To put this in another way, the current snapshot
curSnap lies in the present/future of a point in time in which the
revocation has been carried out.

2. Considering the delegation self, the delegated user’s delegated role or
a junior role has been revoked strongly (recursive call of isRevoked()).
This means that the delegated role is also revoked if it is senior to a
strongly revoked role for a delegated user.

33



3. If the cascading revocation has been activated earlier on the delegation
path of self, the delegated role has been revoked (recursive call of
isRevoked()).

Another central invariant is ActionsPermitted, which makes sure that a
user can only execute permitted actions within a session, i.e., actions which
a user has obtained through her current roles:

context Session:s

inv ActionsPermitted:

s.access->forAll(a |

let

neededPermissions = a.action.permission->

select(p|p.resource=a.resource)

in

a.action.resource->includes(a.resource) and

s.role.permission->asSet()->includesAll(neededPermissions))

This invariant checks (1) if the action can be performed on the resource
at all (a.action.resource->includes(a.resource)) and (2) if the per-
missions obtained through the roles activated in this session are sufficient to
execute the action. Then, we need an additional constraint which makes sure
that a user can only access permissions in a session, which belong to roles
that the user holds:

inv ActiveRolesSubsetUserRoles:

s.user.getAllRoles()->includesAll(s.role)

The operation getAllRoles() collects all the roles which a user pos-
sesses, i.e., directly assigned roles, junior roles, and in particular, delegated
roles. Due to the fact that getAllRoles() must respect revocation, the
aforementioned isRevoked() operation is also called.

To make our concepts clearer, Figure 10 shows an object diagram, which is
based on the metamodel and serves the purpose of explaining our modeling
approach. It presents a concrete delegation and revocation scenario of a
system including the time steps, in which delegation and revocation activities
have been carried out.

34



In particular, we consider the following situation:

1. Ada delegates at point in time snap1 role r1 to user Bob.

2. Bob further delegates in point in time snap2 role r1 to Cyd.

3. Ada then revokes r1 from Bob in point in time snap3.

We also define the delegation rule: “Role r1 may be delegated (1) if the
delegated user possesses role r2, but not role r3, or (2) if she possesses role
r4, but not role r5”

Taking a closer look at Figure 10, we can see the aforementioned three
steps, which are represented by the snapshots snap1, snap2, and snap3. d1

represents the first delegation step (delegation from Ada to Bob), which is an
original delegation. The delegation object d2 represents the second delega-
tion, which is a delegated delegation. The revocation step is then carried out
within snap3; here, a corresponding link between the delegation d1 and the
revoking user Ada is added to the object diagram. The delegation constraints
(delegation policy) are displayed at the right-hand side of the object diagram,
expressing the aforementioned delegation rule. Please note that we use two
objects of type DelegationAuthorization to express the prerequisite rule
by simulating the “|” operator. Considering the formalism of the RDM2000
model, this corresponds to the prerequisite condition r1&r3 | r4&r5, which
is in disjunctive normal form.

6. Evaluation of our Approach with a Banking Application

In this section, we illustrate the concepts discussed in the previous sec-
tions with a banking application, which has been derived from [17]. In par-
ticular, we present several validation scenarios employing the USE tool as
well as the USE model validator, and we show how to use our UML-based
DSL to formulate role-based delegation and revocation policies.

6.1. An Overview

The banking application can be used by various bank officers to perform
transactions on customer deposit accounts and customer loan accounts, and
to generate and to verify financial account data. The roles in the banking sys-
tem contain teller, customer service representative, loan officer, accountant,
accounting manager, internal auditor and branch manager. The permissions
assigned to these roles include (a) create, delete, input, or modify customer

35



Figure 10: A concrete delegation and revocation scenario represented by an object dia-
gram.

deposit accounts, (b) create, or modify customer loan accounts, (c) create
general ledger report, and (d) modify, or verify the ledger posting rules.

The participating roles and permissions performed by each role in the
banking system are defined as follows:

1. teller - input and modify customer deposit accounts.

2. customerServiceRep - create and delete customer deposit accounts.

3. loanOfficer - create and modify loan accounts.

4. accountant - create general ledger reports.

5. accountingManager - in addition to the inherited privileges from ac-
countant, modify ledger posting rules.

6. internalAuditor - verify ledger posting rules.

7. branchManager - perform all privileges of other roles under the emer-
gency case.

Since some roles may perform the privileges of others, there exist depen-
dencies between roles. These dependency relations can be expressed by the

36



Figure 11: Role hierarchy for the banking authorization system.

role hierarchy. Figure 11 shows the role hierarchy structure in the banking
application. The accountingManager role is senior to the accountant role
and the branchManager role is senior to all other roles.

In the banking application, several organizational authorization rules
should be enforced to support common security principles such as separa-
tion of duty and least privilege. We address these authorization rules in the
banking application as follows:

• Rule 1 Some bank officers, such as teller and accountant, cannot
be performed by the same user (see below for the concrete SoD con-
straints).

• Rule 2 Some users cannot act as the same bank officer.

• Rule 3 Some bank officers, such as customerServiceRep and loanOffi-
cer, cannot be activated by the users in the same transaction session.

• Rule 4 A user can play the bank officer role only if the user has been
assigned to another specific bank officer role. For instance, teller is a
prerequisite role of customerServiceRep.

• Rule 5 The number of users assigned to the bank officer role should
be restricted. For example, only one user can be assigned to the inter-
nalAuditor role.

37



• Rule 6 When a user is on a business trip or long-term absence, the
user can temporarily delegate her authority to others.

• Rule 7 A user can revoke the delegated authority from others.

6.2. The RBAC policy for the banking application

In the following, we describe several authorization constraints in more
detail, which are a part of banking system’s RBAC policy.
Authorization constraints. We have discussed above several examples of
organizational authorization rules for the banking application. These organi-
zational authorization rules are represented and enforced in RBAC systems
by means of authorization constraints. RBAC constraints including static
separation of duty (SSD), dynamic separation of duty (DSD) 2, prerequisite
conditions, and cardinality rules can be used to support these organizational
authorization rules. Table 4 shows six typical RBAC constraints and corre-
sponding organizational authorization rules for the banking application.

Table 4: RBAC constraints and corresponding rules
Constraint Supported rule

Statical SoD constraint
SSDRole Rule 1

SSD User Rule 2

Dynamical SoD constraint DSD Rule 3

Prerequisite constraint Prerequisite-Role Rule 4

Cardinality constraint Cardinality-Role Rule 5

SSD-Role constraints : For the banking system, the following pairs of roles
are conflicting:

{(customerServiceRep, accountingManager),

(customerServiceRep, internalAuditor),

(loanOfficer, accountingManager), (loanOfficer, internalAuditor),

(accountingManager, internalAuditor), (teller, accountant),

(teller, loanOfficer), (teller, internalAuditor),

(accountant, loanOfficer), (accountant, internalAuditor)}
DSD constraints : For the banking system, the following pair of roles is in
DSD relation:

2As common in the literature on RBAC, we understand DSD in the sense of mutually
exclusive roles which must not be activated by a user [23].

38



{(customerServiceRep, loanOfficer)} .

Prerequisite-Role Constraints : For the banking system, the following pair of
roles is in a prerequisite role constraint:

- The Teller role is a prerequisite role for the customerServiceRep role.

Cardinality-Role Constraints : A cardinality constraint can be defined as fol-
lows:

- The maximum number of users that can be assigned to branchManager and
internalAuditor is ‘1’.

Similarly to our earlier works [12, 18], we now formulate the RBAC policy
for the banking application in our RBAC DSL, i.e., as a UML object diagram
(see Figure 12). Specifically, one can see the roles and the permission assign-
ments as well as role hierarchy relations (e.g., between the roles accountant
and accountingManager). An administrator can also formulate authoriza-
tion constraints by setting the corresponding attribute values for instances of
classes and association classes, respectively. For example, the SSD constraint
between the roles teller and accountant is represented by the association
class instance t A SSD exclusive. Since it is a static SoD constraint with
respect to user assignment, the attribute value wrtUserAssignment is set to
true. The other SSD constraints mentioned above are defined similarly with
our graphical RBAC DSL and are not shown for the sake of clarity. This is
one advantage of our DSL approach; we can hide parts of the policy, such
as authorization constraints and permission assignments, to concentrate on
those aspects of the policy which are currently interesting for an administra-
tor.

Delegation authorization. In some cases, users in the banking system
need to grant their authority to others when they are on a business trip
or long-term absence, or need to collaborate with others. Such cases need
temporary delegation of authority, for example,

can delegate(customerServiceRep, teller, 1).

This delegation rule means that a user who is a member of role custom-
erServiceRep (or a role senior to customerServiceRep) can delegate the role
customerServiceRep to a user who is a member of the teller role without
exceeding the maximum delegation depth of ‘1’.

Revocation authorization. Revocation is an important process that
accompanies the delegation, for example,

39



Figure 12: The RBAC policy of the banking application formulated in the UML-based
DSL.

can revokeGD(customerServiceRep).

The meaning of this revocation constraint is that only the delegating user
who has current membership in customerServiceRep can revoke a delegated
user from the delegated role customerServiceRep. Moreover, the revocation
is grant-dependent, i.e., only the user who has delegated the role can revoke
it.

6.3. RBAC Policy Analysis

Bringing in authorization constraints, role hierarchies as well as delega-
tion and revocation in access control systems gives rise to the problem of

40



possible conflicts. In other words, when the objectives of two role-based au-
thorization constraints cannot be fulfilled simultaneously, the enforcement of
one constraint causes the violation of another constraint. Therefore, it is crit-
ical for authorization management to ensure that an authorization constraint
is not in conflict with other existing constraints through policy analysis. In
this section, we demonstrate how our approach and tools, specifically, USE
and the USE model validator, can be leveraged to validate role-based poli-
cies in order to discover subtle policy conflicts. An administrator can employ
USE to define positive and negative test cases for a policy as UML object
diagrams. Positive test cases describe situations (system states), which the
policy should allow, whereas negative test cases should be forbidden by the
policy, such as unallowed access to resources. The USE system then confirms
or refutes the expectations of the administrator.

In addition, an administrator can define properties for the policy, formu-
lated in OCL. Then the USE model validator can be employed to automati-
cally generate system states that satisfy both the policy and the properties.
If the property is not desirable and the USE model validator finds a solution,
then the policy is incorrect with respect to the expectations of the admin-
istrator. If she, however, expects a solution and the validator does not find
any, then this lets one conclude that we have a too strict policy.

In the following, we describe three delegation and revocation scenarios to
illustrate our validation approach. We also show in this context how to use
our DSL to define delegation and revocation policies.

6.3.1. Scenario 1: Conflict between Delegation and SoD Constraints

A delegation constraint may conflict with a prohibition constraint, such
as an SoD constraint. Consider the following delegation rule and SSD con-
straint, which has been defined in the aforementioned RBAC policy:

DelegationConstraintAM:can delegate(accountingManager,teller,1).

SSD-A-T: a pair of roles (accountant, teller) is conflicting.

DelegationConstraintAM claims that a user who is a member of the
role teller can be assigned to the delegated role accountingManager or its
junior role accountant. As explained in Section 5, the class Delegation-

Authorization expresses the can delegate relation. In the object diagram
of Figure 13, we see the object auth AM T, which represents Delegation-

ConstraintAM. Please note that the delegation is only possible if the del-
egated user has the role teller, which is represented by the link between

41



Figure 13: Delegation scenario with a conflict between a delegation and an SSD constraint.

auth AM T and the role teller. Due to the fact that the maximum delegation
is set to ‘1’ by DelegationConstraintAM, the attribute maxDelegationDepth
of the delegated role accountingManager must also be set to ‘1’.

The constraint SSD-A-T defines that the roles accountant and teller

conflict with each other and cannot be assigned to the same user simulta-
neously. Thus, DelegationConstraintAM is in conflict with the SSD-A-T

constraint. The scenario (film strip) depicted in Figure 13 shows a situa-
tion which reveals this problem. Here, Ada delegates role teller to Bob.
The temporal aspect of this delegation can be shown with the help of the
two snapshots snap1 and snap2 which represent two successive points in
time, namely, before and after delegation. In the second point in time, Bob
has received the role accountingManager (see the object del AM T of type
Delegation).

Employing USE, we can see that the invariant User::AssignedtoEx-

clusiveRoles is violated by user Bob in the second point in time (bob2
represents user Bob in snapshot snap2). This problem stems from the fact
that Bob has indirectly received the role accountant through the delega-
tion of the accountingManager role, i.e., the delegation and the prohibition
constraints conflict with each other. In summary, an administrator can pre-

42



define such test cases as object diagrams and can thereafter test the policy
with these test cases employing the USE tool.

Looking again at Figure 13, one can see that the displayed object dia-
gram represents both the policy and the user access level. Specifically, the
policy part covers delegation authorization, e.g., the delegation authorization
object auth AM T and the attribute maxDelegationDepth of the account-

ingManager role. An administrator only needs to create objects and links as
well as set attributes for these instances. She is not directly confronted with
OCL constraints (as given in the sections 3.2.1 and 5), which again underlines
the DSL aspect of our approach. The user access level (which an adminis-
trator can utilize for testing purposes) encompasses the concrete delegation
steps. Similar remarks hold for the other scenarios described below. In the
following, we give the second scenario discussing the revocation concepts as
well as undesirable properties of revocation constraints.

6.3.2. Scenario 2: Blocked Access through Undesirable Revocation

In the following, we describe a situation in which an access is blocked
due to revocation. First, we define the following delegation and revocation
constraints:

DelegationConstraintAM: can delegate(accountingManager, , 1).

RevocationConstraintAM: can revokeGDStrongCasc(accountingManager).

The revocation is grant-dependent, strong, and cascading. Furthermore,
we assume that user Ada has the roles accountant and accountingManager

via original user assignment. Figure 14 now depicts a situation, which con-
sists of four points in time (snapshots) and which is allowed by these rules
and the RBAC policy defined above:

1. Snapshot 1: Ada delegates role accountant to Cyd by means of the
accountingManager role. This is expressed by the delegation del A T.

2. Snapshot 2: Ada delegates role accountingManager to Cyd. This is
expressed by the delegation del AM T.

3. Snapshot 3: Cyd delegates role accountant to Dan via the role ac-

countingManager delegated in the step before. This is expressed by
the delegation delDel AM T.

4. Snapshot 4: Dan tries to execute the action createLedgerReport on
the resource legderReport1. At the same time, Ada revokes the role

43



Figure 14: Revocation scenario blocking access to resources.

accountant from Cyd. This revocation is grant-dependent, strong, and
cascading.

With the help of USE, we now can learn that the invariant Session::Ac-
tionsPermitted is violated, i.e., Dan is not permitted to execute the action
createLedgerReport on the resource legderReport1 even though the per-
mission has not been directly revoked from him. Due to the strong revo-
cation, Cyd also loses the accountingManager role in addition to the ac-

countant role. As a consequence, however, Dan also loses the accountant

role because this role has been delegated via the role accountingManager

and all delegations based on accountingManager are revoked cascadingly
(see the small object diagram, which shows the configuration with respect to
the accountingManager role, at the bottom of Figure 14). Without the role
accountant, Dan does not have the permission to execute createLedger-

Report on ledgerReport1 anymore.

44



Again, an administrator can use such a scenario (film strip) as a test case
for the policy validation with USE, specifically, testing complex access control
concepts, such as cascading and strong revocation. Furthermore, the object
diagram depicted in Figure 14 shows that we store the whole “access control
state”. This means, even if delegations are revoked, the Delegation objects
and the corresponding links are not deleted. If our metamodel for role-based
delegation is used as a basis for the implementation of an authorization engine
[27, 35], this information can be used for an audit trail.

6.3.3. Scenario 3: Identify Leaking Permissions

The scenarios discussed presume that the administrator already knows
the situations in detail which might go wrong. Sometimes, however, an ad-
ministrator wishes to let the validation tool generate automatically desirable
or undesirable scenarios. In this case, the USE model validator comes into
play. Please note that we currently cannot handle revocation policies here
because Kodkod is based on relational logic and hence recursion, which is
used for the definition of the OCL operation isRevoked()) (see Section 5),
cannot be expressed.

Again, the basis of this scenario is the aforementioned RBAC policy, but
with the exception that we define the following DSD constraint for the roles
teller and accountant instead of the SSD constraint mentioned above:

DSD-Role-A-T: the pair of roles (accountant, teller) is conflicting with
respect to role activation within a session.

This constraint may have been introduced by an administrator for the
sake of a higher flexibility compared to the SSD constraint (less strict policy).
In addition, the following delegation constraint is defined by the administra-
tor:

DelegationConstraintT: can delegate(teller, , 1).

Furthermore, the following user assignment relations are presumed:

UAO(Ada,accountant), UAO(Bob,customerServiceRep),

UAO(Cyd,teller), UAO(Dan,teller)

Now, the administrator would like to test this new policy with the USE
model validator. She first defines a property which she expects to be satisfied
by the policy. Typically, this can be a safety property. The safety problem is

45



well-known in access control literature and states whether access rights can
leak to a user [36]. In our case, she might ask whether a user can execute
the actions inputDepositAccount and createLedgerReport on resources.
This situation should not be possible because these actions are assigned to
the mutually exclusive roles teller and accountant, respectively.

We can formulate the aforementioned property in OCL as follows:

User.allInstances()->exists(u|

u.session.access.action->includesAll(Set{inputDepositAccount,
createLedgerReport}))

We now give this property, the RBAC policy, and the delegation policy
to the USE model validator. The search space for the USE model validator
then is defined by:

1. the RBAC/delegation policy as a partial solution,

2. the additional property,

3. all UML and OCL constraints.

For the classes Session, Access, Delegation, and Snapshot, we only
configure a maximum number max of instances (objects) rather than define
concrete instances in advance. All possible attribute value and link combi-
nations are considered for the attributes and associations belonging to the
aforementioned classes. In particular, if we consider the class Delegation,
this means that the USE model validator generates delegation steps (in-
stances of the class Delegation) on its own. Starting from max = 0 , we can
successively increment max for each class until we obtain a solution (or we
are confident that no solution exists). Proceeding this way, the search space
is gradually increased.

In Figure 15, we see the solution which satisfies both the query and the
policy and which is an undesirable system state. Ada can access both actions,
although this should have been prohibited by the DSD constraint. Ada ob-
tains the teller role from Dan (in addition to the accontant role). This del-
egation step is not forbidden because we have not defined an SSD constraint
between accontant and teller. Since the DSD rule only considers one
session, Ada now can activate both roles in two different sessions session1

and session2 and finally execute the actions inputDepositAccount and
createLedgerReport.

46



Figure 15: A system state with an undesirable situation, automatically generated by the
USE model validator.

In summary, this example shows that USE model validator can be effec-
tively used in testing RBAC/delegation policies. In addition, the USE model
validator generated the solution depicted in Figure 15 only within a few sec-
onds on an ordinary laptop. Improving on the user interface in the future,
we believe that our validation environment consisting of USE and the model
validator can be employed in organizations to test real-world policies.

7. Related Work

In this section, we will show that our RBAC DSL is the first UML-based
policy language which supports delegation and revocation schemes as well as
advanced RBAC concepts, such as history-based SoD, a concept completely
different from the simple authorization constraints, which are enumerated in
the RBAC ANSI standard [23].

There is a plethora of works integrating security policies into system mod-
els based on UML. We have already commented on our earlier works [12, 18]
in the introduction of this paper, in particular, we now support the RDM2000

47



model for delegation and revocation. Other works which discuss role-based
policy languages based on UML include [28, 37, 38, 39, 40, 13]. Some of the
approaches do not particularly address RBAC like UMLsec [37]. Basin et al.
present the modeling language SecureUML for integrating the specification
of access control into application models and for automatically generating
access control infrastructures of applications [13]. They also deal with au-
thorization constraints, but do not support SoD constraints. Furthermore,
SecureUML is based on the UML profile mechanism and hence it is unclear
whether and to which extent current CASE tools support UML profiles,
whereas we use UML object diagrams, a very basic diagram type.

In [28], we explicitly model role-based SoD constraints with UML and
OCL. In this work, we have no means for handling dynamic aspects and
we do not strictly separate the presented RBAC metamodel from concrete
policy definitions. Ray et al. [38] solve the latter problem by generically de-
signing the authorization constraints. We follow their approach with respect
to the RBAC description presented in this paper and extend it in terms of
dynamic aspects as well as delegation and revocation. Owing to the fact that
Ray et al. utilize a template mechanism, only those UML object diagrams
can be expressed for which templates have been defined. Consequently, the
expressiveness of their policy language is more restricted than ours.

There is also recent work by Strembeck and Mendling with a similar goal
by providing a DSL which hides the OCL constraints. In particular, the au-
thors express role-based policies for business processes by an extension of the
UML2 metamodel (extended UML activity diagrams) [41]. As a consequence,
UML CASE tools do not support this extension such that the authors had
to develop their own tool support for processing their DSL in contrast to our
approach based on object diagrams. Moreover, delegation and revocation
is not treated in this work as directly noted in the conclusion. Conversely,
our RBAC DSL currently does not cover business processes, which remains
interesting future work. We believe that the snapshot models provide a good
foundation for this task.

Several works on the validation of RBAC policies based on UML and
OCL have been presented [42, 30, 28, 43]. Based upon SecureUML, Basin et
al. propose an approach to analyzing RBAC policies by stating and evaluat-
ing queries like ‘Which permissions can a user perform with a given role?’ or
‘Are there two roles with the same set of permissions?’ [42]. Although not ex-
plicitly addressed in this paper, our approach allows the same kind of queries
through the query facility of the USE tool [15] into which the model validator

48



is integrated. In [30], a scenario-based approach to analyzing UML models is
presented which is exemplified by an elementary RBAC UML model. In this
context, a policy is considered as a dynamic artifact which evolves through
administrator activities. Hence, it can be examined whether a sequence of
administrative RBAC operations such as assigning users to roles can violate
static SoD constraints. In contrast, we realize dynamics at the end-user level,
enabling dynamic SoD. Administrative actions are implicitly involved in our
approach when analyzing partial policies. In addition, our RBAC metamodel
consists of both a static and a dynamic part.

The main difference between all the aforementioned and our current work
lies in the fact that we now support delegation and revocation based upon a
concrete and well-established delegation and revocation model [7]. None of
the earlier works on RBAC and UML has tackled the problem of delegation
and different revocation semantics (as given by Hagström et al.) before.

There exist some tools designed to support the analysis of general access
control systems. In particular, the SERSCIS Access Modeller (SAM) [44],
which is inspired by Scollar [45], takes a model of a system and strives to
validate certain security properties about the system via examining all the
ways access can propagate through the system. However, this tool can only
model an RBAC system with limited notations and relations. In contrast,
our approach can represent complex RBAC systems with advanced concepts
like delegation and revocation. Besides, our DSL has the capability to express
a wide range of policies including history-based SoD and various delegation
and revocation schemes. In addition, due to the fact that we leverage basic
UML notations for model representation, our DSL can be processed by most
existing UML tools.

There are other approaches to the formal specification of access control
policies with notions of delegation, notably the work by Becker et al. [46]. In
particular, they designed the SecPAL language, which also hides the technical
(and formal) details behind a DSL. In contrast to the SecPAL approach, we
can exploit the rich tool support available for UML and OCL (CASE and
validation tools).

8. Conclusion and Outlook

In this paper, we presented a UML-based graphical DSL for role-based
delegation and revocation. In particular, our DSL allows an administrator
to define role-based access control policies with complex concepts, such as

49



different revocation schemes, in UML object diagrams. This hides the com-
plexity inherent in OCL. Moreover, we showed how to validate delegation
and revocation with the USE tool and the USE model validator. This allows
an administrator to identify subtle security holes, induced by the interplay
between delegation and revocation rules with other advanced access control
concepts, such as role hierarchies and authorization constraints.

There is plenty of room for future work. First, we can improve our user
interface. For example, currently we can only query properties of role-based
policies with the help of OCL queries. For often recurring queries, specific
user interfaces can be made available. Also, a graphical DSL for role-based
policies can be designed, which uses specific language constructs for access
control, such as the graphical language proposed by Jaeger and Tidswell
[26]. Having a transformation between our UML-based DSL and the specific
DSL at hand, validation tools such as USE and the USE model validator
can still be used. Furthermore, we can develop an authorization engine,
which enforces the delegation and revocation policies and can be integrated
with IT infrastructures of organizations. Last but not least, we can apply our
approach to other domains, such as the healthcare domain to express policies
on electronic health records, and perform larger case studies to evaluate
usability and effectiveness of our proposal.

References

[1] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, C. E. Youman, Role-Based
Access Control Models, IEEE Computer 29 (2) (1996) 38–47.

[2] R. Simon, M. Zurko, Separation of duty in role-based environments,
in: 10th IEEE Computer Security Foundations Workshop (CSFW ’97),
1997, pp. 183–194.

[3] V. D. Gligor, S. I. Gavrila, D. Ferraiolo, On the formal definition of
separation-of-duty policies and their composition, in: 1998 IEEE Sym-
posium on Security and Privacy (SSP ’98), IEEE, 1998, pp. 172–185.

[4] C. Georgiadis, I. Mavridis, G. Pangalos, R. Thomas, Flexible team-
based access control using contexts, in: Proc. of the ACM Symposium
on Access Control Models and Technologies, 2001, pp. 21–27.

50



[5] J. Joshi, E. Bertino, U. Latif, A. Ghafoor, A generalized temporal role-
based access control model., IEEE Trans. Knowl. Data Eng. 17 (1)
(2005) 4–23.

[6] M. J. Nash, K. R. Poland, Some conundrums concerning separation of
duty, in: Proc. IEEE Symposium on Research in Security and Privacy,
1990, pp. 201–207.

[7] L. Zhang, G.-J. Ahn, B.-T. Chu, A rule-based framework for role-based
delegation and revocation, ACM Transactions on Information and Sys-
tem Security 6 (3) (2003) 404–441.

[8] J. Joshi, E. Bertino, Fine-grained role-based delegation in presence of
the hybrid role hierarchy, in: Proc. of the 11th ACM Symposium on
Access Control Models and Technologies, Lake Tahoe, California, USA,
2006, pp. 81–90.

[9] E. Barka, R. Sandhu, A role-based delegation model and some exten-
sions, in: Proc. of 16th Annual Computer Security Application Confer-
ence, 2000, pp. 125–134.

[10] J. Wainer, A. Kumar, A fine-grained, controllable, user-to-user delega-
tion method in RBAC, in: Proc. of the 10th ACM Symposium on Access
Control Models and Technologies, Stockholm, Sweden, 2005, pp. 59–66.

[11] V. Atluri, J. Warner, Supporting conditional delegation in secure work-
flow management systems, in: Proc. of the 10th ACM Symposium on
Access Control Models and Technologies, Stockholm, Sweden, 2005, pp.
49–58.

[12] M. Kuhlmann, K. Sohr, M. Gogolla, Comprehensive Two-level Analysis
of Static and Dynamic RBAC Constraints with UML and OCL, in: Fifth
International Conference on Secure Software Integration and Reliability
Improvement, SSIRI 2011, IEEE Computer Society, 2011, pp. 108–117.

[13] D. A. Basin, J. Doser, T. Lodderstedt, Model driven security: From
UML models to access control infrastructures, ACM Trans. Softw. Eng.
Methodoly 15 (1) (2006) 39–91.

51



[14] M. Kuhlmann, L. Hamann, M. Gogolla, Extensive validation of OCL
models by integrating SAT solving into USE, in: J. Bishop, A. Valle-
cillo (Eds.), Objects, Models, Components, Patterns - 49th International
Conference, TOOLS 2011, Zurich, Switzerland, June 28-30, 2011. Pro-
ceedings, Vol. 6705 of Lecture Notes in Computer Science, Springer,
2011, pp. 290–306.

[15] M. Gogolla, F. Büttner, M. Richters, USE: A UML-Based Specifica-
tion Environment for Validating UML and OCL, Science of Computer
Programming 69 (2007) 27–34.

[16] A. Hagström, S. Jajodia, F. Parisi-Presicce, D. Wijesekera, Revocations
– a classification, in: 14th IEEE Computer Security Foundations Work-
shop (CSFW ’01), 2001, pp. 44–58.

[17] R. Chandramouli, Application of XML tools for enterprise-wide RBAC
implementation tasks, in: Proceedings of the fifth ACM workshop on
Role-based access control, Berlin, Germany, 2000, pp. 11–18.

[18] M. Kuhlmann, K. Sohr, M. Gogolla, Employing UML and OCL for De-
signing and Analyzing Role-Based Access Control, Mathematical Struc-
tures in Computer Science. To appear.

[19] Object Management Group, OMG Unified Modeling Language (OMG
UML), Infrastructure - Version 2.3, formal/2010-05-03 (May 2010).

[20] Object Management Group, OMG Unified Modeling Language (OMG
UML), Superstructure - Version 2.3, formal/2010-05-03 (May 2010).

[21] J. Rumbaugh, I. Jacobson, G. Booch, The Unified Modeling Language
Reference Manual, 2nd Edition, Object Technology Series, Addison-
Wesley Professional, Boston, Massachusetts, 2004.

[22] Object Management Group, Object Constraint Language - Version 2.2,
formal/2010-02-01 (Feb. 2010).

[23] American National Standards Institute Inc., Role Based Access Control,
ANSI-INCITS 359-2004 (2004).

[24] X. Zhang, S. Oh, R. Sandhu, Pbdm: a flexible delegation model in rbac,
in: Proceedings of the eighth ACM symposium on Access control models
and technologies, ACM, 2003, pp. 149–157.

52



[25] J. Crampton, H. Khambhammettu, Delegation in role-based access con-
trol, International Journal of Information Security 7 (2) (2008) 123–136.

[26] T. Jaeger, J. Tidswell, Practical safety in flexible access control models,
ACM TISSEC 4 (2) (2001) 158–190.

[27] K. Sohr, T. Mustafa, X. Bao, G.-J. Ahn, Enforcing Role-Based Access
Control Policies in Web Services with UML and OCL, in: Proceedings
of the 23th Annual Computer Security Applications Conference, IEEE
Computer Society, 2008, pp. 257–266.

[28] K. Sohr, M. Drouineaud, G.-J. Ahn, M. Gogolla, Analyzing and Manag-
ing Role-Based Access Control Policies, IEEE Trans. Knowl. Data Eng
20 (7) (2008) 924–939.

[29] M. Kuhlmann, M. Gogolla, Modeling and Validating Mondex Scenarios
Described in UML and OCL with USE, Formal Aspects of Computing
20 (1) (2008) 79–100.

[30] L. Yu, R. B. France, I. Ray, Scenario-Based Static Analysis of UML Class
Models, in: Model Driven Engineering Languages and Systems, 11th
International Conference, MoDELS 2008, Vol. 5301 of LNCS, Springer,
Berlin, 2008, pp. 234–248.

[31] M. Kuhlmann, K. Sohr, M. Gogolla, RBAC Metamodel:
Sources and Validation Results, http://www.db.informatik.

uni-bremen.de/publications/Kuhlmann 2010 RBAC sources.pdf

(2010).

[32] K. Anastasakis, B. Bordbar, G. Georg, I. Ray, UML2Alloy: A Challeng-
ing Model Transformation, in: Model Driven Engineering Languages
and Systems, 10th International Conference, MoDELS 2007, Vol. 4735
of LNCS, Springer, Berlin, 2007, pp. 436–450.

[33] M. Gogolla, M. Kuhlmann, L. Hamann, Consistency, Independence and
Consequences in UML and OCL Models, in: Proc. 3rd Int. Conf. Test
and Proof (TAP’2009), Springer, Berlin, LNCS 5668, 2009, pp. 90–104.

[34] M. Kuhlmann, K. Sohr, M. Gogolla, H. Hu, G.-J. Ahn, USE
specifications of the metamodel for role-based delegation and re-
vocation, http://www.db.informatik.uni-bremen.de/publications
/RDM2000 metamodel.use (2011).

53



[35] M. Zurko, R. Simon, T. Sanfilippo, A user-centered, modular autho-
rization service built on an RBAC foundation, in: Proc. of the IEEE
Symposium on Research in Security and Privacy, Oakland, CA, 1999,
pp. 57–71.

[36] M. S. Harrison, W. L. Ruzzo, J. D. Ullman, Protection in operating
systems, Communications of the ACM 19 (8).

[37] J. Jürjens, UMLsec: Extending UML for secure systems development,
Lecture Notes in Computer Science 2460 (2002) 412–425.

[38] I. Ray, N. Li, R. B. France, D.-K. Kim, Using UML to visualize role-
based access control constraints, in: Proc. of the 9th ACM symposium
on Access control models and technologies, ACM Press New York, USA,
2004, pp. 115–124.

[39] G.-J. Ahn, M. E. Shin, Role-Based Authorization Constraints Specifi-
cation Using Object Constraint Language, in: Proc. of the 10th IEEE
International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises, IEEE, 2001, pp. 157–162.

[40] E. Fernández-Medina, M. Piattini, Extending OCL for secure database
development, in: Proc. of UML 2004 - The Unified Modeling Language:
Modeling Languages and Applications, Vol. 3273 of LNCS, Springer,
2004, pp. 380–394.

[41] M. Strembeck, J. Mendling, Modeling process-related RBAC models
with extended UML activity models, Information and Software Tech-
nology 53 (5) (2011) 456 – 483.

[42] D. A. Basin, M. Clavel, J. Doser, M. Egea, Automated analysis of
security-design models, Information & Software Technology 51 (5)
(2009) 815–831.

[43] S. Höhn, J. Jürjens, Automated checking of SAP security permissions,
in: 6th Working Conference on Integrity and Internal Control in Infor-
mation Systems (IICIS), Kluwer, Lausanne, Switzerland, 2003.

[44] SERSCIS Access Modeller, http://www.serscis.eu/sam/.

[45] The Scoll Project, http://www.scoll.evoluware.eu/.

54



[46] M. Y. Becker, C. Fournet, A. D. Gordon, SecPAL: Design and semantics
of a decentralized authorization language, Journal of Computer Security
18 (4) (2010) 619–665.

55


