
HetSDN: Exploiting SDN for Intelligent Network
Usage in Heterogeneous Wireless Networks

Kang Chen∗#, Ryan Izard†, Hongxin Hu†, Kuang-Ching Wang†, James Martin†, Juan Deng†
∗Southern Illinois University, kchen@siu.edu

†Clemson University, {rizard, hongxih, kwang, jmarty, jdeng}@clemson.edu

Abstract—Mobile devices nowadays can find multiple wireless
networks, such as WiFi, 4G/LTE and relay through devices. These
networks have different characteristics in terms of coverage,
data rate, and price. Meanwhile, mobile applications (and even
different TCP/UDP connections) often have diverse and time-
variant network needs. Thus, to better use all wireless network
resources, it would be ideal to enable a TCP/UDP connection to 1)
select the most appropriate network dynamically and 2) migrate
between networks transparently. However, existing methods fail
to provide both functions in a systematic and efficient way at the
TCP/UDP connection level. In this paper, we adopt Software-
Defined Networking (SDN) to realize such a feature. We use the
features of SDN to realize intelligent network selection that is
adaptive to time-variant application needs, network availability,
and scheduling commands. To support transparent migration, an
intelligent home agent (HA) is designed with the SDN to anchor
packets from the mobile device. It can intelligently determine
which wireless network a TCP/UDP connection is running over.
Finally, our implementation demonstrates the effectiveness and
efficiency of the proposed system.

I. INTRODUCTION

The demand for network connectivity from mobile devices
is growing rapidly. By mobile devices, we refer to not only
smartphones or laptops but also devices in emerging mobile
networks such as connected vehicles [1] and Internet of
Things [2]. To satisfy such a need, various wireless access
techniques such as WiFi and 4G/LTE have been widely
used. These networks have diverse characteristics in terms
of coverage, data rate, and price and form a heterogeneous
wireless network environment. Generally, we can assume that
4G/LTE networks offer high speed and high coverage but are
expensive, while WiFi offers high speed network service at
a low cost but has a limited coverage. In order to exploit
all available wireless networks, mobile devices usually are
equipped with multiple wireless interfaces.

Meanwhile, mobile applications often present diverse and
time-variant network needs. For example, on connected vehi-
cles, the collision avoidance application needs reliable network
connection, while the backup of non-critical data can tolerant
certain delay. An important Skype video interview would favor
a faster network than that for video chat between friends. Such
a diversity also exists at the TCP/UDP connection level since
an application may have different TCP/UDP connections for
different tasks. For example, a vehicle status monitoring ap-
plication can accept an expensive (but more reliable) network
for emergency messages (e.g., accidents) but would like to use
the low cost network for regular status update.
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Fig. 1: HetSDN overview.

Furthermore, network availability may change due to user
mobility or the scheduling from network operator. All those
facts indicate that network usage (at the TCP/UDP level)
should be adaptive to not only application needs but also
network availability. To attain this goal, two features need to
be supported at the TCP/UDP connection level: 1) select the
most appropriate network dynamically and 2) migrate between
networks transparently without being disconnected. We denote
the two features as connection level intelligent network selec-
tion and connection level transparent mobility, respectively.
The former helps a connection select the optimal network
under diverse application needs and network availability, while
the latter is needed to enforce the network selection timely
(i.e., on the run) without being interrupted.

Therefore, in this paper, we propose HetSDN that utilizes
SDN to systematically realize both intelligent network se-
lection and transparent mobility at the TCP/UDP connection
level in a heterogeneous network environment. Figure 1 shows
an overview of HetSDN with two components: SDN based
intelligent network selection (SDN-NS) and SDN based intelli-
gent home agent (SDN-HA). The SDN-NS enables TCP/UDP
connections on a mobile device to dynamically use the most
appropriate wireless network based on application needs, local
network status, and global network scheduling commands.
The SDN-HA enables connections to migrate between wire-
less networks transparently and immediately without being
disrupted, once a network switch decision has been made.
Both components exploit unique features of SDN (i.e., flexible
control and/or global view).

In the following, Section II introduces related work. Sec-
tion III presents the design of HetSDN. Section IV evaluates
HetSDN, while Section V concludes the paper.

II. RELATED WORK



A. Exploiting Multiple Wireless Networks
Exploiting multiple concurrently available wireless net-

works has already been widely studied [3]–[10]. The first
group of works focus on augmenting network usage (e.g.,
bandwidth) by exploiting multiple wireless networks at the
same time [3]–[5]. Multipath TCP (MPTCP) [3] designs a
sub-layer above the TCP layer to distribute the traffic of a
TCP stream over multiple paths (on different networks) for
bandwidth aggregation. The WiRover system [4] designs a
controller to handle packets from different wireless networks
so that all networks can be exploited for data transfer. The
work in [5] offloads delay-tolerant traffic to WiFi to augment
the capacity of 3G network to time sensitive traffic.

The works in [6]–[10] further support transparent mobility
at the TCP/UDP connection level in heterogeneous wireless
networks. The work in [6] designs a control function for
each network layer and a new control middleware to support
core functionalities such as mobility, multi-homing and multi-
path. ECCP [7] is an end-to-end connection control protocol
that uses unique flow IDs to identify the flows between
two end hosts. The authors in [8] use SDN on the mobile
device to modify source/destination IPs so that a flow can be
transparently migrated between wireless networks. The work
of [9] proposes to either wait till the old flow ends and
starts a new flow on the new network or design an agent to
identify and resume migrated flows. In IFOM and IPMP [10], a
device’s traffic, though through different networks, is gathered
at a home agent (HA) that binds its current addresses to its
permanent address. Then, a connection can switch between
different networks transparently.

B. SDN in Wireless Networks
The work in [11] uses SDN to manage the packet forward-

ing from mobile devices to the gateway (over different wireless
networks) for transparent vertical handover. SoftRAN [12]
designs a centralized controller to abstract all base stations
in a local area as a virtual big base station, thus realizing
more efficient radio resource usage and interference control.
meSDN [13] extends the control of SDN to mobile devices.
Then, the wireless connection to APs can be better uti-
lized for functions such as WLAN virtualization, application-
awareness, E2E QoS and network troubleshooting. The work
in [14] summarizes challenges and benefits of adopting SDN
to manage the cellular network, as well as SDN extensions
needed to enable software-defined cellular networks.

In the work of [15], the concept of SDN is extended to wire-
less personal area networks. It uses SDN to define various rules
dynamically to handle packets between different body area
devices. MobileFlow [16] introduces an SDN based framework
for mobile networks that decouples the data forwarding and
control. It also introduces how applications can be realized in
such a framework. Odin [17] and OpenSDWN [18] exploit
SDN to improve wireless access performance and service
differentiation in enterprise and home WiFi networks.

III. SYSTEM DESIGN

In this section, we present the detail of each technical
component. We define the TCP/UDP connection that a packet

belongs to as the packet’s host connection. We use Open-
Flow [19] as the SDN protocol for illustration.

A. Network Needs Description

We represent a TCP/UDP connection’s network needs as a
profile describing the requirement on various properties. For
illustration purpose, we identify two properties (i.e., data rate
and cost) in this paper. The data rate property has two require-
ments: high and low, which means that the connection needs
a high data rate or can accept a low data rate, respectively.
The cost property also has two requirements: expensive and
economical, which means that the device owner is willing
to use an expensive network or only wants an economical
network for the connection, respectively. Consequently, there
are 4 profiles (Pra, Prb, Prc, Prd) as shown in Table I.

TABLE I: Network Needs Profile Example.

Network Needs Data Rate
Profile High Low

Cost Expensive Pra Prb
Economical Prc Prd

TABLE II: Network Needs Profile Value.

Profile \ Network WiFi RelayNet LTE
Pra 1 0 1
Prb 1 1 1
Prc 1 0 0
Prd 1 1 0

Each profile is further mapped to a binary value to show
networks that fall into its category. Each bit of the binary value
represents a network, and a bit is set to 1 when the network
belongs to the profile and 0 otherwise. We place networks in
the decreasing order of the preferability. For example, suppose
the preferability follows: WiFi > RelayNet > LTE, where
RelayNet is the network bridged through nearby devices. Then,
the three bits of the binary value of a network needs profile
represent WiFi, RelayNet, and LTE from left to right.

In this paper, the more economical a network is, the more
preferable it is to the device user. Following this definition,
the binary value of each network needs profile in Table I can
be determined as shown in Table II. With such a design,
applications determine the network needs profile of their
TCP/UDP connections, which will be used in subsequent
intelligent network selection.

B. SDN based Intelligent Network Selection

The SDN based intelligent network selection function
(SDN-NS) enables intelligent network selection for TCP/UDP
connections. It needs to solve two challenges. First, it cannot
change the behavior of applications except for specifying
network needs. Second, it can respond to the changes on
network needs, network status, and scheduling commands
quickly. We exploit SDN to solve both challenges.

To solve the first challenge, we exploit the concept of virtual
switch, i.e., Open vSwitch (OVS), to offer a virtual inter-
face for applications, as shown in Figure 2. Actual network
interfaces are associated with the virtual switch to enable
applications to forward and receive packets through actual
networks. Application only see and use the virtual interface
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Fig. 3: Pipeline processing with three flow tables.

for transferring its data as if using a normal network interface.
The detail of the OVS is introduced in Section III-B1.

We use the pipeline processing in the data plane in OVS
to solve the second challenge, as illustrated in Figure 3. Each
incoming packet from applications is associated with a meta-
data to go through three tables. The connection table (CnnT)
modifies the packet’s metadata to reflect its host connection’s
network needs. Then, the network table (NetT) modifies the
metadata to further select available and allowed networks
from those after the connection table. Finally, the interface
mapping table (ItfT) maps the packet to the most preferable
interface among those after the network table. Such a design
makes our design robust and easy for maintenance. The change
on network needs, available/allowed networks, or interface
mapping only needs to be updated to the corresponding table
while keeping others unchanged. The details on the three flow
tables are introduced in Sections III-B2 to III-B5.

SDN-NS also includes a local control unit that works
directly on the OVS. It is responsible for flow entry update
inside the mobile device based on input information.

1) Virtual Switch: An OVS is installed inside the mobile
device to realize major functions of SDN-NS, as shown in
Figure 2. With SDN-NS, all applications only use the virtual
interface offered by the OVS. This offers a good isolation
between applications and actual wireless networks. However,
it leads to a challenge on how to forward application packets
through the selected network. This is because all application
packets take the IP of the virtual interface (i.e., a local IP) as
the source IP and thus cannot go through the actual wireless
network directly. We solve this problem by building tunnels.

Specifically, we associate each wireless interface with a
tunnel port on OVS, as shown in Figure 2. The other end
point of the tunnel is an interface on the device’s home agent
(HA). Note that all packets from a device are aggregated
at the HA for transparent mobility, as introduced later in
Section III-C. Thus, packets arriving at the port will be
forwarded through the associated interface as tunnel packets
towards the HA. The details about tunnel construction are
introduced in Section III-C2.

in_port=Local, TCP port=49767             write_metadata (value NetReq1mask 111), goto NetT

Connection Table (CnnT)

Match Field Instruction Field

…

in_port=Local, UDP port=37654            write_metadata (value NetReq2mask 111), goto NetT

in_port=Local, TCP port=39182              write_metadata (value NetReq2mask 111), goto NetT

in_port=Local (default)                            write_etadata (value NetReqXmask 111), goto NetT

Fig. 4: Connection table example.

2) Packet Metadata: The metadata associated with a
packet reflects usable networks for the packet in the pipeline
processing. Thus, we follow the design of the binary value
of a network needs profile (in Section III-A) to determine its
structure. It uses a bit to represent one network, and 1 means
the network is usable and 0 not. In this paper, we set metadata
to 3 bits (WiFi, RelayNet, and LTE).

We adopt the metadata register in OpenFlow as the packet
metadata. As the OVS processes packets sequentially, the
metadata actually is only associated with the packet under
processing at a time. It supports the below bitwise update

mdata new = mdata & (∼ mask) | value & mask (1)

where mdata represents the metadata. It means that the bits of
mdata indicated in mask are set to value.

3) Connection Table (CnnT): The connection table (CnnT)
is built to write each TCP/UDP connection’s network needs
into the metadata of its packets. Figure 4 illustrates the
connection table in which each row represents the flow en-
try for one TCP/UDP connection. For the metadata update
operation in each flow entry, the value is the binary value of
the connection’s network needs profile (denoted by NetReq)
and the mask is set to 111. The update operation follows
Equation (1) to get mdata = NetReq, i.e., setting the
metadata to the connection’s network needs. As shown in the
figure, we also design a default flow entry for connections that
use the default network needs.

When an application is about to launch a TCP/UDP connec-
tion, it first notifies the local control unit the TCP/UDP port
to be used and the connection’s network needs profile. The
control unit then inserts a flow entry for the connection in
the CnnT table as described above. If one such entry already
exists, it will be overwritten. Applications that cannot notify
the local control unit can also work in HetSDN by using the
default flow entry in the connection table.

4) Network Table (NetT): The CnnT table modifies the
metadata to reflect networks that can satisfy the needs of
the packet’s host connection. Then, the network table (NetT)
further modifies the metadata to reflect networks that are
available (from local network status) and are allowed to use
(from global scheduling commands) among those indicated in
the first step. The NetT table has only one entry, as shown in
Figure 5. In the instruction field, the value is 000 and the mask
is the negative of available and allowed wireless networks
(denoted ∼AvailNet). Then, by applying to Equation (1), we
get mdata new = NetReq&AvailNet. Note that the initial
metadata value in this step is the NetReq resulted from the
CnnT table. Consequently, the metadata is set to a binary value
that reflects networks that are available and allowed to use and
can satisfy the host connection’s needs.
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in_port=Local            write_metadata (value 000 mask ~AvailNet), goto ItfT

Fig. 5: Network table example.

Interface Mapping Table (ItfT)

Match Field Instruction Field

metadata in [4,7]      output:Tunnel_to_HA_over_WiFi

metadata in [2,3]      output:Tunnel_to_HA_over_RelayNet

metadata in [1,1]      output:Tunnel_to_HA_over_LTE

Fig. 6: Interface mapping table example.

5) Interface Mapping Table (ItfT): Finally, the interface
mapping table (ItfT) forwards the packet to the most preferable
network interface from those selected after the first two tables.
Recall that the more significant a bit is, the more preferable
the network is. Thus, the ItfT table should forward the packet
to the network represented by the most significant 1 in its
metadata (i.e., the most left 1). For example, the metadata 101
(i.e., both WiFi and LTE are usable) means that the packet
should be forwarded to WiFi, which is represented by the
most left 1. We thereby design the ItfT table as shown in
Figure 6. In the figure, packets with metadata in range [4,7]
are forwarded to the WiFi interface. This because in this case,
the most significant bit of the metadata (i.e., WiFi) is always
1. Other flow entries follow the same rationale.

It is possible that the metadata of a packet is 000 after
the first two tables, i.e., no usable network. In this case, the
packet is forwarded to the local control unit, which notifies
the corresponding application for further handling. How such
an exception is handled is out of the topic of this paper.

6) Handling Reply Packets: We also design one flow entry
for each wireless interface to forward received packets to
applications through the local port of the OVS bridge. Finally,
applications just send and receive packets through the OVS
interface. This ensures the compatibility of HetSDN.

C. SDN based Intelligent Home Agent
Figure 7 shows the overall structure of SDN-HA. It includes

a virtual SDN switch and a NAT. They work together to
support transparent TCP/UDP migration, which is introduced
in Section III-C1. Mobile devices reach the HA through
tunnels, which is introduced in Section III-C2. The details
about how to automatically know which wireless network
should be used to forward reply packets to the mobile device
are described in Section III-C3.

1) Supporting Transparent TCP/UDP Connection Mobility:
To enable TCP/UDP connections to migrate transparently,

HetSDN requires all application traffic be anchored at the
SDN-HA and then translated by the NAT as if originated
from the HA. Therefore, when a migration happens, the
corresponding host is not aware of such a change. For example,
when a TCP/UDP connection migrates from WiFi to LTE, the
corresponding host cannot see a change on received packets
since all packets still take the IP of the NAT as the source IP.
Thus, the connection is not affected after the change, which
means that the migration is transparent.

2) Tunnels between SDN-HA and Mobile Device: As
mentioned in Section III-B1, a mobile device creates tunnels
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Fig. 7: SDN based intelligent HA (SDN-HA).

over different wireless interfaces to its HA to forward packets
to the HA. Thus, corresponding tunnels are built on the virtual
SDN switch inside the SDN-HA to 1) decapsulate received
tunnel packets and 2) send reply packets back through the
wireless network its host connection currently uses. Figure 7
shows the tunnel configuration on the SDN-HA.

While the HA can easily have multiple public IPs, the
wireless interface on a mobile device may have a public IP or
a private IP (i.e., inside a NAT). In the former case, the tunnel
is built directly. In the latter case, the private IP address cannot
be used as the remote end of a tunnel. We solve this problem
by setting the remote end as the NAT of the mobile device
and rely on the NAT to relay tunnel packets. Our experiment
shows that the NAT of a LTE network can rely tunnel packets
to the mobile device correctly.

3) SDN based Intelligent Packet Relay: For packets arriv-
ing at the SDN switch of the SDN-HA, we define incoming
packets as packets sent out by the mobile device, and reply
packets as those destined to the mobile device. As shown
in Figure 7, incoming packets just need to be forwarded to
the NAT (i.e., to port n). However, the challenge is how to
forward reply packets back through the wireless network that
is currently used by the host TCP/UDP connection.

We solve this challenge by extracting necessary information
from incoming packets to build flow entries to guide reply
packets. Figure 8 shows the process of our method. Suppose
a packet of a connection arrives at port port w with source
IP ip ovs and source TCP port tpx (step 1). Then, if there
is a matched flow entry, the packet is forwarded accordingly
(step 2.1). This means that flow entries for this connection
(both incoming and reply packets) have already been built.
Otherwise, we need to build flow entries for this connection’s
incoming and reply packets. Specifically, due to a miss, the
packet is forwarded to the HA controller (step 2.2). The
controller first removes all flow entries for the connection, if
exist, and then inserts two new flow entries (steps 3.1 and 3.2),
one for incoming packets and one for reply packets. The two
flow entries guide subsequent incoming packets to port port n
(to NAT) and reply packets to port port w (to reach mobile
device through the tunnel over WiFi), respectively (4.1 and
4.2). The flow entry for reply packets matches with packets
destined to ip ovs at TCP port tpx and forwards matched
packets to port w, as shown in Figure 9.

We can see that in the above design, the SDN-HA infers
the information needed to forward reply packets through the
correct wireless network automatically, without the need of
explicit report from either mobile devices or APs. Such a
design also does not compromise the transparent connection
migration. When a migration happens, incoming packets enter
the SDN switch through another port. This will make previous
flow entries fail to match with the incoming packets (since
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Packets entering port_w with src IP ip_ovs and src TCP port tpx, Output to port_n

Packets entering port_n with des IP ip_ovs and dst TCP port tpx, Output to port_w

Fig. 9: Inserted flow entries for a new connection.

we also match on the ingress port as shown in Figure 9).
Consequently, steps 1 to 3 will be executed to remove old
flow entries for the connection and insert new ones.

IV. PERFORMANCE EVALUATION

We implemented a simple HetSDN system on our campus
to demonstrate its effectiveness and efficiency. The deployment
is not complex and does not need to change any existing
infrastructures. Figure 10 illustrates the overall structure of
our deployment. We used a laptop with Ubuntu 14.04 as the
SDN-HA in the test, which is located in our campus network.
Mobile devices are the same type of laptops. Open vSwitch
is used as the virtual SDN switch and Floodlight [20] is
used as the SDN controller. On the mobile device, static flow
pusher API of Floodlight is used to update flow entries in the
three tables (Figure 3). On the SDN-HA, the intelligent packet
relay function (Section III-C3) is realized as a module of the
Floodlight with less than 500 lines of code, and the NAT is
simply realized by postrouting IP forwarding.

In this test, we used three wireless networks: WiFi, Re-
layNet, and LTE. Their preferability follows: WiFi > RelayNet
> LTE. There are commercial LTE and university WiFi signals
on our campus. The RelayNet is simulated by the campus WiFi
network by 1) limiting its coverage to our lab; 2) limiting the
data rate to 6 Mbps; and 3) adding additional 20ms delay.
Those limitations reflect the relaying through another device.
The tunnel between the SDN-HA and the WiFi/RelayNet
interface is built directly since both are in our campus network.
The tunnel between the SDN-HA and the LTE interface is
relayed by the NAT. We found that the LTE NAT can correctly
relay GRE tunnel packets in our experiments.

A. Supporting the Design Goal
We evaluate how HetSDN supports the design goal: in-

telligent network selection and transparent mobility at the
TCP/UDP connection level. We developed an example appli-
cation for test. It echoes to a remote server (send a packet, wait
for a reply, and send again) through UDP/TCP. Whenever a
new connection is started or its network needs change, it talks
to the local control unit to update its flow entries in the CnnT
table, which requires only a few lines of code.

We use NetReq and AvailNet to represent the network
needs of a connection and available networks, respectively.
Thus, NetReq=5 (101) means that WiFi and LTE satisfy the
connection’s network needs, while AvailNet=6 (110) means

LTE

SDN‐HA

WiFi

RelayNet

Campus Network

Internet

LTE NAT

Fig. 10: HetSDN deployment on our campus.

that only WiFi and RelayNet are available. In each test, we
change the connection’s network needs and available networks
intensively through software signalling to show HetSDN’s
ability. Such a scheme actually is more challenging for mobile
devices since the network availability changes more frequently.
An echo is regarded as failed if no reply is received after 2
seconds. The round trip time (RTT) of an echo is recorded to
identify which network it actually uses.

1) Change Available Networks: We first fix NetReq to 5
(i.e., only WiFi and LTE can satisfy the needs) and 6 (i.e., only
WiFi and RelayNet can satisfy the needs) and change AvailNet
from 7 to 0 (i.e., “all available” to “none is available”). The
AvailNet decreases 1 after every 10 echoes. The RTTs of each
echo using the UDP and TCP are shown in Figures 11(a)
and 11(b) and Figures 12(a) and 12(b), respectively.

From the four figures, we find that both the UDP connection
and the TCP connection select the network based on available
networks dynamically and migrate transparently. Firstly, in
this test, packets are always forwarded through the most
preferable one among available networks. For example, in
Figures 11(a) and 12(a), when AvailNet is larger than 3,
which means that WiFi exists anyway, the connection only
chooses WiFi since it is the most preferable one. However,
when AvailNet decreases to 3 (i.e., RelayNet and LTE are
available), the connection immediately chooses the LTE since
only LTE satisfies the requirement. Such a phenomenon can
also be found in Figures 11(b) and 12(b).

Secondly, we did not observe any errors during the test,
and all echoes are continuous. This means that the connection
is not aware of the network change but only shows different
RTTs on its echoes. Thus, the migration is transparent without
disconnecting the TCP/UDP connection.

2) Change Network Needs: We then fix AvailNet to 5 (i.e.,
WiFi and LTE are available) and 7 (i.e., all networks are
available) and change NetReq from 7 to 1 (i.e., “all networks
can satisfy the needs” to “only LTE can satisfy the needs”).
The NetReq decreases 1 after every 10 echoes. The RTTs of
each echo using the UDP and TCP are shown in Figures 11(c)
and 11(d) and Figures 12(c) and 12(d), respectively.

We find that the results in this test are consistent with the
previous test. Firstly, both the UDP connection and the TCP
connection migrate between networks based on its network
needs dynamically and transparently. For example, as shown in
Figures 11(d) and 12(d), when all networks are available (Ne-
tAvail=7), the connection always choose the most preferable
one based on its network needs. When WiFi can satisfy the
needs (i.e., NetReq>3), it always chooses the WiFi. Otherwise,
if the RelayNet can satisfy the needs (NetReq=3 or 2), it
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Fig. 11: RTT to the remote server with UDP.

0

50

100

150

200

250

300

350

400

7 7 7 7 7 6 6 6 6 6 5 5 5 5 5 4 4 4 4 4 3 3 3 3 3 2 2 2 2 2 1 1 1 1 1 0 0 0 0 0

Ro
un

d 
Tr
ip
 T
im

e 
(m

s)

Available Networks

Network Needs=5 (101)

WiFi

LTE None LTE None

(111)     (110)      (101)     (100)      (011)     (010)      (001)    (000)     

(a) NetReq=5 (101).

0

30

60

90

120

7 7 7 7 7 6 6 6 6 6 5 5 5 5 5 4 4 4 4 4 3 3 3 3 3 2 2 2 2 2 1 1 1 1 1 0 0 0 0 0

Ro
un

d 
Tr
ip
 T
im

e 
(m

s)

Available Networks

Network Needs=6 (110)

WiFi

RelayNet

None

(111)     (110)      (101)     (100)      (011)     (010)      (001)    (000)     

(b) NetReq=6 (110).

0

50

100

150

200

250

300

7 7 7 7 7 6 6 6 6 6 5 5 5 5 5 4 4 4 4 4 3 3 3 3 3 2 2 2 2 2 1 1 1 1 1

Ro
un

d 
Tr
ip
 T
im

e 
(m

s)

Network Needs

Available Networks=5 (101)

WiFi

LTE None LTE

(111)        (110)        (101)       (100)         (011)       (010)       (001)

(c) AvailNet=5 (101).

0

50

100

150

200

250

300

350

7 7 7 7 7 6 6 6 6 6 5 5 5 5 5 4 4 4 4 4 3 3 3 3 3 2 2 2 2 2 1 1 1 1 1

Ro
un

d 
Tr
ip
 T
im

e 
(m

s)

Network Needs

Available Networks=111

RelayNetWiFi

LTE

(111)        (110)        (101)       (100)         (011)       (010)       (001)

(d) AvailNet=7 (111).
Fig. 12: RTT to the remote server with TCP.

only uses the RelayNet. If only the LTE can satisfy the needs
(NetReq=1), it switches to the LTE. Such a phenomenon can
also be found in Figures 11(c) and 12(c). Secondly, we find
that the migration between different networks is transparent
without incurring any errors or disconnection.

Furthermore, in both tests, the change of NetReq or Avail-
Net only needs to update relevant flow entries in the CnnT
table or the NetT table without affecting others. This shows
the high efficiency of the SDN-NS.

Combining all above results, we conclude that the proposed
HetSDN system can enable a TCP/UDP connection to dy-
namically select the most suitable network and transparently
migrate between networks based on its network needs, local
network status, and global network scheduling commands.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose an SDN-based system, namely
HetSDN, to enable intelligent network usage for mobile
devices in a heterogeneous network environment. HetSDN
consists of two components: SDN-NS and SDN-HA, both
of which novelly exploit the flexible control over packet
forwarding provided by SDN to fulfill their tasks. The SDN-
NS uses a virtual SDN switch to dynamically guide application
packets to the most suitable wireless interface. The SDN-HA
anchors all traffic for the mobile device. It also uses SDN to
intelligently guide reply packets back to the device through the
network currently used by their host TCP/UDP connections.
Finally, a mobile device can dynamically use the most suitable
network and transparently migrate between different networks
at the TCP/UDP connection level. The deployment on our
campus demonstrates that HetSDN can efficiently realize the
design goal. In the future, we plan to deploy HetSDN in
a larger scale and investigate how to leverage the global
controller for overall network access optimization.
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