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Abstract—Emerging computing technologies such as Web services, service-oriented architecture, and cloud computing has
enabled us to perform business services more efficiently and effectively. However, we still suffer from unintended security
leakages by unauthorized actions in business services while providing more convenient services to Internet users through such a
cutting-edge technological growth. Furthermore, designing and managing Web access control policies are often error-prone due
to the lack of effective analysis mechanisms and tools. In this paper, we represent an innovative policy anomaly analysis approach
for Web access control policies, focusing on XACML (eXtensible Access Control Markup Language) policy. We introduce a policy-
based segmentation technique to accurately identify policy anomalies and derive effective anomaly resolutions, along with an
intuitive visualization representation of analysis results. We also discuss a proof-of-concept implementation of our method called
XAnalyzer and demonstrate how our approach can efficiently discover and resolve policy anomalies.
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1 INTRODUCTION

With the tremendous growth of Web applications and Web
services deployed on the Internet, the use of a policy-
based approach has recently received considerable attention
to accommodate the security requirements covering large,
open, distributed and heterogeneous computing environ-
ments. XACML (eXtensible Access Control Markup Lan-
guage) [25], which is a general purpose access control pol-
icy language standardized by the Organization for the Ad-
vancement of Structured Information Standards (OASIS),
has been broadly adopted to specify access control policies
for various applications, especially Web services [28]. In an
XACML policy, multiple rules may overlap, which means
one access request may match several rules. Moreover,
multiple rules within one policy may conflict, implying
that those rules not only overlap each other but also yield
different decisions. Conflicts in an XACML policy may
lead to both safety problem (e.g. allowing unauthorized
access) and availability problem (e.g. denying legitimate
access).

An intuitive means for resolving policy conflicts by a
policy designer is to remove all conflicts by modifying the
policies. However, resolving conflicts through changing the
policies is notably difficult, even impossible, in practice
from many aspects. First, the number of conflicts in an
XACML policy is potentially large, since an XACML
policy may consist of hundreds or thousands of rules.
Second, conflicts in XACML policies are probably very
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complicated, because one rule may conflict with multiple
other rules, and one conflict may be associated with sev-
eral rules. Besides, an XACML policy for a distributed
application may be aggregated from multiple parties. Also,
an XACML policy may be maintained by more than one
administrator. Without a priori knowledge on the original
intentions of policy specification, changing a policy may
affect the policy’s semantics and may not resolve conflicts
correctly. Furthermore, in some cases, a policy designer
may intentionally introduce certain overlaps in XACML
policy components by implicitly reflecting that only the first
rule is important. In this case, conflicts are not an error, but
intended, which would not be necessary to be changed.

Since the conflicts in XACML policies always ex-
ist and are hard to be eliminated, XACML defines
four different combining algorithms to automatically re-
solve conflicts [25]: Deny-Overrides, Permit-Overrides,
First-Applicable and Only-One-Applicable. Unfortunately,
XACML currently lacks a systematic mechanism for pre-
cisely detecting conflicts. Identifying conflicts in XACML
policies is critical for policy designers since the correct-
ness of selecting a combining algorithm for an XACML
policy or policy set component heavily relies on the in-
formation from conflict diagnosis. Without precise conflict
information, the effectiveness of combining algorithms for
resolving policy conflicts cannot be guaranteed.

Another critical problem for XACML policy analysis is
redundancy discovery and removal. A rule in an XACML
policy is redundant if every access request that matches
the rule also matches other rules with the same effect. As
the response time of an access request largely depends
on the number of rules to be parsed within a policy,
redundancies in a policy may adversely affect the perfor-
mance of policy evaluation. Therefore, policy redundancy is
treated as policy anomaly as well. Redundancy elimination
can be regarded as one of effective solutions for optimiz-
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ing XACML policies and improving the performance of
XACML evaluation.

Policy anomaly detection has recently received a great
deal of attention [3], [13], [23], [29], especially, in firewall
policy analysis. Corresponding policy analysis tools, such
as Firewall Policy Advisor [3], FIREMAN [29]
and FAME [13], with the goal of discovering firewall
policy anomalies have been developed. However, we cannot
directly adopt those prior anomaly analysis approaches
for XACML due to several reasons. First, most prior
approaches mainly have the capability to detect pairwise
policy anomalies, while a complete anomaly detection
should consider all policy components as a whole piece.
In other words, prior policy anomaly analysis approaches
are still needed to be improved [4]. Second, the structure
of firewall policies is flat but XACML has a hierarchical
structure supporting recursive policy specification. Third,
a firewall policy only supports one conflict resolution
strategy (first-match) to resolve conflicts but XACML has
four rule/policy combining algorithms. Additionally, a fire-
wall rule is typically specified with fixed fields, while an
XACML rule can be multi-valued. Therefore, a new policy
analysis mechanism is desirable to cater the requirements
from anomaly analysis in XACML policies.

In this paper, we introduce a policy-based segmentation
technique, which adopts a binary decision diagram (BDD)-
based data structure to perform set operations, for policy
anomaly discovery and resolution. Based on this technique,
an authorization space defined by an XACML policy or
policy set component can be divided into a set of disjoint
segments. Each segment associated with a unique set of
XACML components indicates an overlapping relation (ei-
ther conflicting or redundant) among those components.
Accurate anomaly information is crucial to the success
of anomaly resolution. For example, conflict diagnosis
information provided by a policy analysis tool can be uti-
lized to guide the policy designers in selecting appropriate
combining algorithms. Moreover, we present a grid-based
representation technique to show policy anomaly diagnosis
information in an intuitive manner, facilitating more ef-
ficient policy anomaly management. Besides, we observe
that current XACML conflict resolution mechanisms are
too restrictive by applying only one combining algorithm
to resolve all identified conflicts within an XACML policy
or policy set component. Also, many other desirable conflict
resolution strategies exist [14], [16], [17], but cannot be di-
rectly supported by XACML. Thus, we additionally provide
a flexible and extensible policy conflict resolution method
in this paper. In addition, based on our policy-based seg-
mentation technique, we provide an effective redundancy
discovery mechanism, where both rule redundancies within
one policy and redundancies across multiple policies or
policy sets can be detected and eliminated. Furthermore,
we implement a policy analysis tool XAnalyzer based
on our approach along with extensive experiments.

The rest of this paper is organized as follows. Section 2
briefly discusses anomalies in XACML policies. We de-
scribe the underlying data structure for XACML repre-

sentation based on binary decision diagrams in Section 3.
Section 4 presents our conflict detection and resolution ap-
proaches. In Section 5, we address our redundancy discov-
ery and removal approaches. In Section 6, we discuss the
implementation of our tool XAnalyzer and the evaluation
of our approach. Section 7 overviews the related work and
we conclude this paper in Section 8.

2 BACKGROUND

2.1 Overview of XACML
XACML has become the de facto standard for describing
access control policies and offers a large set of built-in
functions, data types, combining algorithms, and standard
profiles for defining application-specific features. At the
root of all XACML policies is a policy or a policy set.
A policy set is composed of a sequence of policies or
other policy sets along with a policy combining algorithm
and a target. A policy represents a single access control
policy expressed through a target, a set of rules and a rule
combining algorithm. The target defines a set of subjects,
resources and actions the policy or policy set applies to.
A rule set is a sequence of rules. Each rule consists of
a target, a condition, and an effect. The target of a rule
determines whether an access request is applicable to the
rule and it has a similar structure as the target of a policy
or a policy set.

An XACML policy often has conflicting rules or poli-
cies, which are resolved by four different combining algo-
rithms: Deny-Overrides, Permit-Overrides, First-Applicable
and Only-One-Applicable [25]. Figure 1 shows an example
XACML policy. The root policy set PS1 contains two poli-
cies, P1 and P2, which are combined using First-Applicable
combining algorithm. The policy P1 has three rules, r1, r2
and r3, and its rule combining algorithm is Deny-Overrides.
The policy P2 includes two rules r4 and r5 with Deny-
Overrides combining algorithm. In this example, there are
four subjects: Manager, Designer, Developer and Tester;
two resources: Reports and Codes; and two actions: Read
and Change. Note that both r2 and r3 define conditions
over the Time attribute.

2.2 Anomalies in XACML Policies
An XACML policy may contain both policy components
and policy set components. Often, a rule anomaly occurs in
a policy component, which consists of a sequence of rules.
On the other hand, a policy set component consists of a set
of policies or other policy sets, thus anomalies may also
arise among policies or policy sets. We address XACML
policy anomalies at both policy level and policy set level.
• Anomalies at Policy Level: A rule is conflicting with

other rules, if this rule overlaps with others but defines
a different effect. For example, the deny rule r1 is in
conflict with the permit rule r2 in Figure 1 because
rule r2 allows the access requests from a designer
to change codes in the time interval [8:00, 17:00],
which are supposed to be denied by r1; and a rule is
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Fig. 1. An example XACML policy.
redundant if there is other same or more general rules
available that have the same effect. For instance, if we
change the effect of r2 to Deny, r3 becomes redundant
since r2 will also deny a designer to change reports
or codes in the time interval [12:00, 13:00].

• Anomalies at Policy Set Level: Anomalies may also
occur across policies or policy sets in an XACML pol-
icy. For example, considering two policy components
P1 and P2 of the policy set PS1 in Figure 1, P1 is
conflicting with P2, because P1 permits the access
requests that a developer changes reports in the time
interval [8:00, 17:00], but which are denied by P2.
On the other hand, P1 denies the requests allowing a
designer to change reports or codes in the time interval
[12:00, 13:00], which are permitted by P2. Supposing
the effect of r2 is changed to Deny and the condition
of r2 is removed, r4 is turned to be redundant with
respect to r2, even though r2 and r4 are placed in
different policies P1 and P2, respectively.

A policy anomaly may involve in multiple rules. For ex-
ample, in Figure 1, access requests that a designer changes
codes in the time interval [12:00, 13:00] are permitted
by r2, but denied by both r1 and r3. Thus, this conflict
associates with three rules. For another example, suppose

the effect of r3 is changed to Permit and the subject of r3
is replaced by Manager and Developer. If we only examine
pairwise redundancies, r3 is not a redundant rule. However,
if we check multiple rules simultaneously, we can identify
r3 is redundant considering r2 and r5 together. We observe
that precise anomaly diagnosis information is crucial for
achieving an effective anomaly resolution. In this paper, we
attempt to design a systematic approach and corresponding
tool not only for accurate anomaly detection but also for
effective anomaly resolution.

3 UNDERLYING DATA STRUCTURE

Our policy-based segmentation technique introduced in
subsequent sections requires a well-formed representation
of policies for performing a variety of set operations. Binary
Decision Diagram (BDD) [9] is a data structure that has
been widely used for formal verification and simplification
of digital circuits. In this work, we leverage BDD as the
underlying data structure to represent XACML policies and
facilitate effective policy analysis.

Given an XACML policy, it can be parsed to identify sub-
ject, action, resource and condition attributes. Once these
attributes are identified, all XACML rules can be trans-
formed into Boolean expressions [5]. Each Boolean expres-
sion of a rule is composed of atomic Boolean expressions
combined by logical operators ∨ and ∧. Atomic Boolean
expressions are treated as equality constraints or range
constraints on attributes (e.g. Subject = “Designer”) or
on conditions (e.g. 8 : 00 ≤ Time ≤ 17 : 00).

Example 1: Consider the example XACML policy in
Figure 1 in terms of atomic Boolean expressions. The
Boolean expression for rule r1 is:

(Subject = “Designer” ∨ Subject = “Tester”) ∧
(Resource = “Codes”) ∧ (Action = “Change”)

The Boolean expression for rule r2 is:
(Subject = “Designer” ∨ Subject =
“Developer”) ∧ (Resource = “Reports” ∨
Resource = “Codes”) ∧ (Action = “Read” ∨
Action = “Change”) ∧ (8 : 00 ≤ Time ≤ 17 : 00)

Boolean expressions for XACML rules may consist
of atomic Boolean expressions with overlapping value
ranges. In such cases, those atomic Boolean expressions are
needed to be transformed into a sequence of new atomic
Boolean expressions with disjoint value ranges. Agrawal et
al. [1] have identified different categories of such atomic
Boolean expressions and addressed corresponding solutions
for those issues. We adopt similar approach to construct our
Boolean expressions for XACML rules.

We encode each of the atomic Boolean expression as
a Boolean variable. For example, an atomic Boolean ex-
pression Subject=“Designer” is encoded into a Boolean
variable S1. A complete list of Boolean encoding for the
example XACML policy in Figure 1 is shown in Table 1.
We then utilize the Boolean encoding to construct Boolean
expressions in terms of Boolean variables for XACML
rules.
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TABLE 1
Atomic Boolean expressions and corresponding

Boolean variables for P1.

Unique Atomic Boolean Expression Boolean Variable
Subject = “Designer” S1

Subject = “Tester” S2

Subject = “Developer” S3

Subject = “Manager” S4

Resource = “Reports” R1

Resource = “Codes” R2

Action = “Read” A1

Action = “Change” A2

8 : 00 ≤ Time < 12 : 00 C1

12 : 00 ≤ Time < 13 : 00 C2

13 : 00 ≤ Time ≤ 17 : 00 C3

Example 2: Consider the example XACML policy in
Figure 1 in terms of Boolean variables. The Boolean
expression for rule r1 is:

(S1 ∨ S2) ∧ (R2) ∧ (A2)

The Boolean expression for rule r2 is:
(S1 ∨S3)∧ (R1 ∨R2)∧ (A1 ∨A2)∧ (C1 ∨C2 ∨C3)

Fig. 2. Representing and operating on rules of XACML
policy with BDD.

BDDs are acyclic directed graphs which represent
Boolean expressions compactly. Each nonterminal node in
a BDD represents a Boolean variable, and has two edges
with binary labels, 0 and 1 for nonexistent and existent,
respectively. Terminal nodes represent Boolean value T
(True) or F (False). Figures 2(a) and 2(b) give BDD
representations of two rules r1 and r2, respectively.

Once the BDDs are constructed for XACML rules,
performing set operations, such as unions (∪), intersections
(∩) and set differences (\), required by our policy-based
segmentation algorithms (see Algorithm 1 and Algorithm
2) is efficient as well as straightforward. Figure 2(c) shows
an integrated BDD, which is the difference of r2’ BDD
from r1’ BDD (r2 \r1). Note that the resulting BDDs from
the set operations may have less number of nodes due to
the canonical representation of BDD.

4 CONFLICT DETECTION AND RESOLUTION
We first introduce a concept of authorization space, which
adopts aforementioned BDD-based policy representation to
perform policy anomaly analysis. This concept is defined
as follows:

Definition 1: (Authorization Space). Let Rx, Px and
PSx be the set of rules, policies and policy sets, respec-
tively, of an XACML policy x. An authorization space for

an XACML policy component c ∈ Rx∪Px∪PSx represents
a collection of all access requests 1 Qc to which a policy
component c is applicable.

4.1 Conflict Detection Approach
Our conflict detection mechanism examines conflicts at
both policy level and policy set level for XACML policies.
In order to precisely identify policy conflicts and facilitate
an effective conflict resolution, we present a policy-based
segmentation technique to partition the entire authorization
space of a policy into disjoint authorization space segments.
Then, conflicting authorization space segments (called con-
flicting segment in the rest of this paper), which contain
policy components with different effects, are identified.
Each conflicting segment indicates a policy conflict.

4.1.1 Conflict Detection at Policy Level
A policy component in an XACML policy includes a set
of rules. Each rule defines an authorization space with the
effect of either permit or deny. We call an authorization
space with the effect of permit permitted space and an
authorization space with the effect of deny denied space.

Algorithm 1 shows the pseudocode of generating con-
flicting segments for a policy component P . An entire
authorization space derived from a policy component is first
partitioned into a set of disjoint segments. As shown in lines
17-33 in Algorithm 1, a function called Partition()
accomplishes this procedure. This function works by adding
an authorization space s derived from a rule r to an
authorization space set S. A pair of authorization spaces
must satisfy one of the following relations: subset (line 19),
superset (line 24), partial match (line 27), or disjoint (line
32). Therefore, one can utilize set operations to separate
the overlapped spaces into disjoint spaces.

Conflicting segments are identified as shown in lines 6-
10 in Algorithm 1. A set of conflicting segments CS : {cs1,
cs2, . . . , csn} from conflicting rules has the following three
properties:

1) All conflicting segments are pairwise disjoint:
csi ∩ csj = ∅, 1 ≤ i ̸= j ≤ n;

2) Any two different requests q and q
′

within a single
conflicting segment (csi) are matched by exact same
set of rules:
GetRule(q) = GetRule(q

′
) 2, ∀q ∈ csi, q

′ ∈
csi, q ̸= q

′
; and

3) The effects of matched rules in any conflicting seg-
ments contain both “Permit” and “Deny.”

To facilitate the correct interpretation of analysis results,
a concise and intuitive representation method is necessary.
For the purposes of brevity and understandability, we first
employ a two dimensional geometric representation for
each authorization space segment. Note that a rule in
an XACML policy typically has multiple fields, thus a
complete representation of authorization space should be

1. We only consider single-valued requests in this definition. Multi-
valued requests are discussed in Section 5.

2. GetRule() is a function that returns all rules matching a request.
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(a) Disjoint segments of authorization
space for policy P1

(b) Grid representation of policy conflict in
policy P1

Fig. 3. Authorization space representation for policy P1 in the example XACML policy.

Algorithm 1: Identify Disjoint Conflicting Authoriza-
tion Spaces of Policy P

Input: A policy P with a set of rules.
Output: A set of disjoint conflicting authorization spaces CS for P .

1 /* Partition the entire authorization space of P into disjoint spaces*/
2 S.New();
3 S ←− Partition P(P );
4 /* Identify the conflicting segments */
5 CS.New();
6 foreach s ∈ S do
7 /* Get all rules associated with a segment s */
8 R

′
←− GetRule(s);

9 if ∃ri ∈ R
′
, rj ∈ R

′
, ri ̸= rj and ri.Effect ̸= rj .Effect then

10 CS.Append(s);

11 Partition P(P )
12 R←− GetRule(P );
13 foreach r ∈ R do
14 sr ←− AuthorizationSpace(r);
15 S ←− Partition(S, sr);

16 return S;

17 Partition(S, sr)
18 foreach s ∈ S do
19 /* sr is a subset of s*/
20 if sr ⊂ s then
21 S.Append(s \ sr);
22 s←− sr ;
23 Break;

24 /* sr is a superset of s*/
25 else if sr ⊃ s then
26 sr ←− sr \ s;

27 /* sr partially matches s*/
28 else if sr ∩ s ̸= ∅ then
29 S.Append(s \ sr);
30 s←− sr ∩ s;
31 sr ←− sr \ s;

32 S.Append(sr);
33 return S;

multi-dimensional. Also, we utilize colored rectangles to
denote two kinds of authorization spaces: permitted space
(white color) and denied space (grey color), respectively.
Figure 3(a) gives a representation of the segments of autho-
rization space derived from the policy P1 in the XACML
example policy shown in Figure 1. We can notice that
five unique disjoint segments are generated. In particular,
three conflicting segments cs1, cs2 and cs3 are identified,
representing three policy conflicts.

When a set of XACML rules interacts, one overlapping
relation may be associated with several rules. Meanwhile,
one rule may overlap with multiple other rules and can be
involved in a couple of overlapping relations (overlapping
segments). Different kinds of segments and associated rules
can be viewed like Figure 3(a). However, it is still difficult

for a policy designer or administrator to figure out how
many segments one rule is involved in. To address the
need of a more precise conflict representation, we addition-
ally introduce a grid representation that is a matrix-based
visualization of policy conflicts, in which space segments
are displayed along the horizontal axis of the matrix, rules
are shown along the vertical axis, and the intersection of a
segment and a rule is a grid that displays a rule’s subspace
covered by the segment.

Figure 3(b) shows a grid representation of conflicts
in the policy P1 in our example policy. We can easily
determine which rules are covered by a segment, and which
segments are associated with a rule. For example, as shown
in Figure 3(b), we can notice that a conflicting segment
cs2, which points out a conflict, is related to a rule set
consisting of three rules r1, r2 and r3 (highlighted with a
horizontal red rectangle), and a rule r2 is involved in three
conflicting segments cs1, cs2 and cs3 (highlighted with a
vertical red rectangle). Our grid representation provides a
better understanding of policy conflicts to policy designers
and administrators with an overall view of related segments
and rules.

4.1.2 Conflict Detection at Policy Set Level
There are two major challenges that need to be taken into
consideration when we design an approach for XACML
analysis at policy set level.

1) XACML supports four rule/policy combining
algorithms: First-Applicable, Only-One-Applicable,
Deny-Overrides, and Permit-Overrides.

2) An XACML policy is specified recursively and there-
fore has a hierarchical structure. In XACML, a policy
set contains a sequence of policies or policy sets,
which may further contain other policies or policy
sets.

Each authorization space segment also has an effect,
which is determined by the XACML components covered
by this segment. For nonconflicting segments, the effect of
a segment equals to the effect of components covered by
this segment. Regarding conflicting segments, the effect of a
segment depends on the following four cases of combining
algorithm (CA), which is used by the owner (a policy or a
policy set) of the segment.

1) CA=First-Applicable: In this case, the effect of a
conflicting segment equals to the effect of the first
component covered by the conflicting segment.
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2) CA=Permit-Overrides: The effect of a conflicting
segment is always assigned with “Permit,” since
there is at least one component with “Permit” effect
within this conflicting segment.

3) CA=Deny-Overrides: The effect of a conflicting seg-
ment always equals to “Deny.”

4) CA=Only-One-Applicable: The effect of a conflict-
ing segment equals to the effect of only-applicable
component.

Algorithm 2: Identify Disjoint Conflicting Authoriza-
tion Spaces of Policy Set PS

Input: A policy set PS with a set of policies or other policy sets.
Output: A set of disjoint conflicting authorization spaces CS for PS.

1 /* Partition the entire authorization space of PS into disjoint spaces*/
2 S.New();
3 S ←− Partition PS(PS);
4 /* Identify the conflicting segments */
5 CS.New();
6 foreach s ∈ S do
7 E ←− GetElement(s);
8 if ∃ei ∈ E, ej ∈ E, ei ̸= ej and ei.Effect ̸= ej .Effect then
9 CS.Append(s);

10 Partition PS(PS)

11 S
′′
.New();

12 C ←− GetChild(PS);
13 foreach c ∈ C do
14 S

′
.New();

15 /* c is a policy*/
16 if IsPolicy(c) = true then
17 S

′
←− Partition P(c);

18 /* c is a policy set*/
19 else if IsPolicySet(c) = true then
20 S

′
←− Partition PS(c)

21 EP .New();
22 ED.New();
23 foreach s

′
∈ S

′
do

24 if Effect(s
′
) = Permit then

25 EP ←− EP ∪ s
′
;

26 else if Effect(s
′
) = Deny then

27 ED ←− ED ∪ s
′
;

28 S
′′
←− Partition(S

′′
, EP );

29 S
′′
←− Partition(S

′′
, ED);

30 return S
′′

;

To support the recursive specifications of XACML poli-
cies, we parse and model an XACML policy as a tree
structure [20], [21]. Algorithm 2 shows the pseudocode of
identifying disjoint conflicting authorization spaces for a
policy set PS. In order to partition authorization spaces of
all nodes contained in a policy set tree, this algorithm recur-
sively calls the partition functions, Partition_P() and
Partition_PS(), to deal with the policy nodes (lines
16-17) and the policy set nodes (lines 19-20), respectively.
Once all children nodes of a policy set are partitioned, we
can then represent the authorization space of each child
node (E) with two subspaces permitted subspace (EP )
and denied subspace (ED) by aggregating all “Permit”
segments and “Deny” segments, respectively, as follows:{

EP =
∪

si∈SE
si if Effect(si) = Permit

ED =
∪

si∈SE
si if Effect(si) = Deny

(1)

where SE denotes the set of authorization space segments
of the child node E. 
Fig. 4. Aggregation of authorization spaces for policy
P1 in the example XACML policy.

For example, since the combining algorithm of the policy
P1 in our example XACML policy is Deny-Overrides, the
effects of three conflicting segments shown in Figure 3
are “Deny”. Figure 4 shows the result of aggregating
authorization spaces of the policy P1, where two subspaces
PP
1 and PD

1 are constructed.
In order to generate segments for the policy set PS, we

can then leverage two subspaces (EP and ED) of each
child node (E) to partition existing authorization space set
belonging to PS (lines 28-29). Figure 5(a) represents an
example of the segments of authorization space derived
from policy set PS1 in our example policy (Figure 1).
We can observe that seven unique disjoint segments are
generated, and two of them cs1 and cs2 are conflicting
segments. We additionally give a grid representation of
conflicts in the policy set PS1 shown in Figure 5(b). Then,
we can easily identify that the conflicting segment cs1 is
related to two subspaces: P1’s permitted subspace PP

1 and
P2’s denied subspace PD

2 , and the policy P1 is associated
with two conflicts, where P1’s permitted subspace PP

1 is
involved in the conflict represented by cs1 and P1’s denied
subspace PD

1 is related to the conflict represented by cs2.

4.2 Fine-Grained Conflict Resolution

Once conflicts within a policy component or policy set
component are identified, a policy designer can choose
appropriate conflict resolution strategies to resolve those
identified conflicts. However, current XACML conflict res-
olution mechanisms have limitations in resolving conflicts
effectively. First, existing conflict resolution mechanisms
in XACML are too restrictive and only allow a policy
designer to select one combining algorithm to resolve all
identified conflicts within a policy or policy set component.
A policy designer may want to adopt different combining
algorithms to resolve different conflicts. Second, XACML
offers four conflict resolution strategies. However, many
conflict resolution strategies exist [14], [17], but cannot
be specified in XACML. Thus, it is necessary to seek
a comprehensive conflict resolution mechanism for more
effective conflict resolution. Towards this end, we introduce
a flexible and extensible conflict resolution framework
to achieve a fine-grained conflict resolution as shown in
Figure 6.
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(a) Disjoint segments of authorization space for pol-
icy set PS1

(b) Grid representation of policy con-
flicts in policy set PS1

Fig. 5. Authorization space representation for policy set PS1 in the example XACML policy.

Fig. 6. Fine-grained conflict resolution framework.

4.2.1 Effect Constraint Generation from Conflict Res-
olution Strategy

Our conflict resolution framework introduces an effect
constraint that is assigned to each conflicting segment. An
effect constraint for a conflicting segment defines a desired
response (either permit or deny) that an XACML policy
should take when any access request matches the conflicting
segment. The effect constraint is derived from the conflict
resolution strategy applied to the conflicting segment, using
a similar process of determining the effect of a conflicting
segment described in Section 4.1.2. A policy designer
chooses an appropriate conflict resolution strategy for each
identified conflict by examining the features of conflicting
segment and associated conflicting components. In our con-
flict resolution framework, a policy designer is able to adopt
different strategies to resolve conflicts indicated by different
conflicting segments. In addition to four standard XACML
conflict resolution strategies, user-defined strategies [17],
such as Recency-Overrides, Specificity-Overrides and High-
Majority-Overrides, can be implied in our framework as
well. For example, applying a conflict resolution strategy,
High-Majority-Overrides, to the second conflicting segment
cs2 of policy P1 depicted in Figure 3, an effect constraint
Effect = “Deny” will be generated for cs2.

4.2.2 Conflict Resolution Based on Effect Constraints
A key feature of adopting effect constraints in our frame-
work is that other conflict resolution strategies assigned
to resolve different conflicts by a policy designer can
be automatically mapped to standard XACML combining
algorithms, without changing the way that current XACML
implementations perform. As illustrated in Figure 6, an
XACML combining algorithm can be derived for a target
component by examining all effect constraints of the con-
flicting segments. If all effect constraints are “Permit,”
Permit-Overrides is selected for the target component to
resolve all conflicts. In case that all effect constraints
are “Deny,” Deny-Overrides is assigned to the target
component. Then, if the target component is a policy
set and all effect constraints can be satisfied by apply-
ing Only-One-Applicable combining algorithm, Only-One-
Applicable is selected as the combining algorithm of the
target component. Otherwise, First-Applicable is selected
as the combining algorithm of the target component. In
order to resolve all conflicts within the target component
by applying First-Applicable, the process of reordering
conflicting components is compulsory to enable that the
first-applicable component in each conflicting segment has
the same effect with corresponding effect constraint.

Practically, one XACML component may get involved
in multiple conflicts. In this case, removing such a com-
ponent to satisfy one effect constraint may violate other
effect constraints. Therefore, we cannot resolve a conflict
individually by reordering a set of conflicting components
associated with one conflict. On the other hand, it is also
inefficient to deal with all conflicts together by reordering
all conflicting components simultaneously. Thus, we next  
Fig. 7. Example of conflicting segment correlation.
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introduce a correlation mechanism to identify dependent
relationships among conflicting segments. The major ben-
efit of identifying dependent relationships for a conflict
resolution is to lessen the searching space of reordering
conflicting components.

Figure 7 shows an example for conflicting segment
correlation, considering an XACML policy component P
with eight rules. Five conflicting segments are identified
in this example. Several rules in this XACML policy
component are involved in multiple conflicts. For example,
r2 contributes to two policy conflicts corresponding to two
conflicting segments cs1 and cs2, respectively. Also, r8
is associated with two conflicting segments cs2 and cs3.
Suppose we want to satisfy the effect constraint of cs2
by reordering associated conflicting rules, r2, r5 and r8.
The position change of r2 and r8 would affect conflicting
segments, cs1 and cs2, respectively. Thus, a dependent
relationship can be derived among cs1, cs2 and cs3 with
respect to the conflict resolution. Similarly, we can identify
the dependent relation between cs4 and cs5. We organize
those conflicting segments with a dependent relationship as
a group called conflict correlation group. The pseudocode
of an algorithm for identify conflict correlation groups is
given in Algorithm 3.

Algorithm 3: Conflicting Segment Correlation
Input: A set of conflicting segments, C.
Output: A set of groups for correlated segment, G.

1 G.New();
2 g ←− G.NewGroup();
3 foreach c ∈ C do
4 R←− GetRule(c);
5 foreach g ∈ G do
6 foreach c

′
∈ GetSegment(g) do

7 R
′
.Append(GetRule(c

′
));

8 if R ∩ R
′
̸= ∅ then

9 g.Append(c);
10 else
11 G.NewGroup().Append(c);

12 return G;

5 REDUNDANCY DISCOVERY AND
REMOVAL

Our redundancy discovery and removal mechanism also
leverage the policy-based segmentation technique to ex-
plore redundancies at both policy level and policy set level.

5.1 Redundancy Elimination at Policy Level
We employ following steps to identify and eliminate redun-
dant rules at policy level.

5.1.1 Authorization Space Segmentation
We first perform the policy segmentation function
Partition_P() defined in Algorithm 1 to divide the
entire authorization space of a policy into disjoint seg-
ments. We classify the policy segments in following cate-
gories: non-overlapping segment and overlapping segment,

Algorithm 4: Checking if a Rule r is Irremovable in a
Policy P : IrremovableCheck(r, P)

Input: A rule r and the policy P contains r.
Output: True or false.

1 Flag ←− F ;
2 /* Case 1: rule combining algorithm is First-Applicable */
3 if P.CA = First-Applicable then
4 foreach r′ ∈ GetSubsequentRule(r, P ) do
5 if r′.Effect ̸= r.Effect then
6 Flag ←− T ;

7 /* Case 2: rule combining algorithm is Permit-Override */
8 if P.CA = Permit-Override then
9 if r.Effect = Permit then

10 foreach r′ ∈ GetOtherRule(r, P ) do
11 if r′.Effect = Deny then
12 Flag ←− T ;

13 /* Case 3: rule combining algorithm is Deny-Override */
14 if P.CA = Deny-Override then
15 if r.Effect = Deny then
16 foreach r′ ∈ GetOtherRule(r, P ) do
17 if r′.Effect = Permit then
18 Flag ←− T ;

19 if Flag = T then
20 return true;
21 else
22 return false;

which is further divided into conflicting overlapping seg-
ment and non-conflicting overlapping segment. Each non-
overlapping segment associates with one unique rule and
each overlapping segment is related to a set of rules, which
may conflict with each other (conflicting overlapping seg-
ment) or have the same effect (non-conflicting overlapping
segment). Figure 8(a) illustrates a grid representation of au-
thorization space segmentation for a policy with eight rules.
In this example, one policy segment s4 is a non-overlapping
segment. Other policy segments are overlapping segments,
including three conflicting overlapping segments s1, s2 and
s6, and two non-conflicting overlapping segments s3 and
s5.

5.1.2 Irremovable Rule Identification Considering
Multi-valued Requests
An XACML request may be multi-valued. For example, an
XACML request can be “a person, who is both a Developer
and a Designer, wants to change reports”, where the subject
has two values, Developer and Designer. A multi-valued
request may match several rules, which do not overlap with
each other in terms of single-valued requests. For instance,
the above multi-valued request matches both r4 and r5 in
the example policy shown in Figure 1, although r4 and
r5 have no overlapping relation considering single-valued
requests. We observe that an XACML rule may be remov-
able with respect to single-valued requests but irremovable
taking into account multi-valued requests. Therefore, we
introduce a process to examine whether an XACML rule
is irremovable considering multi-valued requests based on
the three cases of rule combining algorithm (CA).

1) CA=First-Applicable: In this case, since a multi-
valued request may match the examined rule and
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Fig. 8. Example of eliminating redundancies at policy level.

any subsequent rule(s) in the policy, if there is a
subsequent rule with a different effect, the examined
rule is considered irremovable.

2) CA=Permit-Overrides: A multi-valued request may
match the examined rule and any other rule(s) in
the policy. If the examined rule is a “permit” rule
and there is any other rule being a “deny” rule, the
examined rule is irremovable.

3) CA=Deny-Overrides: If the examined rule is a
“deny” rule and there is any other rule being a
“permit” rule, the examined rule is irremovable.

Algorithm 4 shows the pseudocode for the definition of
a function IrremovableCheck(), which will subse-
quently be used in both property assignment and redun-
dancy removal processes to check if a rule is irremovable
in a policy considering multi-valued requests.

5.1.3 Property Assignment for Rule Subspaces
In this step, every rule subspace covered by a policy
segment is assigned with a property. Four property values,
removable (R), strong irremovable (SI), weak irremovable
(WI) and correlated (C), are defined to reflect different
characteristics of rule subspace. Removable property is
used to indicate that a rule subspace is removable. In
other words, removing such a rule subspace does not
make any impact on the original authorization space of
an associated policy. Strong irremovable property means
that a rule subspace cannot be removed because (1) this
rule subspace belongs to an irremovable rule with respect
to multi-valued requests; or (2) the effect of corresponding
policy segment can be only decided by this rule. Weak irre-
movable property is assigned to a rule subspace when any
subspace belonging to the same rule has strong irremovable
property. That means a rule subspace becomes irremovable
due to the reason that other portions of this rule cannot be
removed. Correlated property is assigned to multiple rule
subspaces covered by a policy segment, if the effect of this
policy segment can be determined by any of these rules.
We next introduce four processes to perform the property
assignments to all of rule subspaces within the segments
of a policy, considering irremovable rules and different
categories of policy segments.

Process1: Property assignment for the rule subspace
belonging to an irremovable rule. An irremov-
able rule can be identified by calling function
IrremovableCheck(). All subspaces belong-
ing to an irremovable rule are assigned with strong
irremovable property.

Process2: Property assignment for the rule subspace
covered by a non-overlapping segment. A non-
overlapping segment contains only one rule sub-
space. Thus, this rule subspace is assigned with
strong irremovable property. Other rule subspaces
associated with the same rule are assigned with
weak irremovable property, excepting the rule
subspaces that already have strong irremovable
property.

Process3: Property assignment for rule subspaces cov-
ered by a conflicting segment. We present this
property assignment process based on the follow-
ing three cases of rule combining algorithm.

1) CA=First-Applicable: In this case, the first
rule subspace covered by the conflicting
segment is assigned with strong irremovable
property. Other rule subspaces in the same
segment are assigned with removable prop-
erty. Meanwhile, other rule subspaces asso-
ciated with the same rule are assigned with
weak irremovable property except the rule
subspaces already having strong irremovable
property.

2) CA=Permit-Overrides: All subspaces of
“deny” rules in this conflicting segment
are assigned with removable property. If
there is only one “permit” rule subspace,
this case is handled which is similar to the
First-Applicable case. If any “permit” rule
subspace has been assigned with irremov-
able property, other rule subspaces without
irremovable property are assigned with re-
movable property. Otherwise, all “permit”
rule subspaces are assigned with correlated
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property.
3) CA=Deny-Overrides: This case is dealt with

as the same as Permit-Overrides case.

Process4: Property assignment for rule subspaces cov-
ered by a non-conflicting overlapping segment.
If any rule subspace has been assigned with ir-
removable property, other rule subspaces without
irremovable property are assigned with removable
property. Otherwise, all subspaces within the seg-
ment are assigned with correlated property.

Figure 8(b) shows the result of applying our property
assignment mechanism to the example presented in Fig-
ure 8(a). We can easily identify that r3 and r8 are removable
rules, where all subspaces are with removable property.
However, we need to further examine the correlated rules
r2, r4 and r7, which contain subspaces with correlated
property.

5.1.4 Rule Correlation Break and Redundancy Re-
moval
Rules covered by an overlapping segment are correlated
with each other when the effect of the overlapping segment
can be determined by any of those rules. Thus, keeping one
correlated rule and removing others do not change the effect
of the overlapping segment. In addition, some rules may
get involved in multiple correlated relations. For example,
in Figure 8(b), r4 has two subspaces that are involved in the
correlated relations with r2 and r7, respectively. Therefore,
similar to the construction of conflict correlation groups, we
build rule correlation groups based on these two situations
so that dependent relationships among multiple correlated
rules within one group can be examined simultaneously.
For example, a correlation group consisting of three rules
r2, r4 and r7 can be identified in Figure 8(b).
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Fig. 9. Example of rule correlation break.

The goal of rule correlation break is to discover as
many redundant rules as possible. Different sequences
to break rule correlations may lead to different results
for redundancy removal. For example, Figure 9(a) shows
correlated relations of rules r2, r4 and r7, and we can break
their correlated relations into different sequences. As shown
in Figure 9(b), if we first choose r2 as an irremovable
rule and assign r2’ subspace strong irremovable property,
only r4 becomes a removable rule and r7 is turned to
be irremovable. However, as shown in Figure 9(c), if we
first choose r4 as an irremovable rule and assign two
subspaces of r4 with strong irremovable property, both r2
and r7 then become removable rules. To seek an optimal
solution for rule correlation break, we measure a breaking
degree for each correlated rule r, denoted as BD(r), which
indicates the number of removable rules if choosing r as

Algorithm 5: Redundancy Elimination of Policy P :
RedundancyEliminate P(P)

Input: A policy P with a set of rules.
Output: A redundancy-eliminated policy P

′
.

1 /* Partition the entire authorization space of P into disjoint spaces*/
2 S.New();
3 S ←− Partition P(P );
4 /* Property assignment for all rule subspaces */
5 PropertyAssgin P(S);
6 /* Rule correlation break */
7 G←− CorrelatonGroupConstruct(S);
8 foreach g ∈ G do
9 foreach r ∈ g do

10 r.BD ←−
∑

si∈CS(r)(NC(si)− 1);

11 SP ←− GetCorrelatedSubspace(MaxBDRule(g))
12 foreach sp ∈ SP do
13 sp.Property ←− R ;
14 if |GetCorrelatedSubspace(sp)| = 1 then
15 SP

′
←− GetCorrelatedSubspace(sp);

16 SP
′
.Property ←− SI ;

17 AssginSI(SP
′
);

18 /*Redundancy removal */
19 P

′
←− P ;

20 foreach r ∈ P
′

do
21 if AllRemovalProperty(r) = true and

IrremovableCheck(r, P
′
) = false then

22 P
′
←− P

′
\ r;

23 return P
′
;

an irremovable rule. BD(r) can be calculated with the
following equation:

BD(r) =
∑

si∈CS(r)

(NC(si)− 1) (2)

where, function CS(r) returns the set of all overlapping
segments covering correlated subspaces of the rule r, and
function NC(si) returns the number of correlated rules
covered by the segment si. For example, CS(r4) returns
a segment set {s3, s5} and NC(s3) equals to 2. Since
choosing r as an irremovable rule turns the subspaces
of other rules covered by the segment si to removable,
NC(si)− 1 donates the number of these removable rules.
Consequently, BD(r) aggregates the number of removable
rules if setting r as irremovable. To maximize the number
of removable rules for redundancy elimination, our cor-
relation break process selects the rule with the maximum
BD value as the candidate irremovable rule each time.
For instance, applying this equation to compute breaking
degrees of three rules demonstrated in Figure 9(a), both
BD(r2) and BD(r7) are equal to 1, and BD(r4) is equal
to 2. Thus, we choose r4 as the candidate irremovable rule
in the first step for rule correlation break. Finally, two rules
r2 and r7 become removable after breaking all correlations.

The pseudocode of the algorithm for eliminating redun-
dancy at policy level is shown in Algorithm 5. Note that
a function IrremovableCheck() is called to check
if a candidate rule is truly removable considering multi-
valued requests before removing the rule from the policy.
Figure 8(c) depicts the result of applying this algorithm to
the example given in Figure 8(a). Four rules r2, r3, r7 and
r8 were identified as redundant rules and removed from



11

Fig. 10. Example of authorization space segmenta-
tion at policy set level for redundancy discovery and
removal.

the policy. However, if we leverage traditional redundancy
detection method [23], [3], which was limited to detect
pairwise redundancies, to this example, only two redundant
rules r2 and r7 can be discovered.

5.2 Redundancy Elimination at Policy Set Level

Similar to the solution of conflict detection at pol-
icy set level, we handle the redundancy removal
for a policy set based on an XACML tree struc-
ture representation. If the children nodes of the pol-
icy set is a policy node in the tree, we perform
RedundancyEliminate_P() function to eliminate re-
dundancies. Otherwise, RedundancyEliminate_PS()
function is excused recursively to eliminate redundancy in
a policy set component.

After each component of a policy set PS performs
redundancy removal, the authorization space of PS can
be then partitioned into disjoint segments by performing
Partition() function. Note that, in the solution for
conflict detection at policy set level, we aggregate autho-
rization subspaces of each child node before performing
space partition, because we only need to identify conflicts
among children nodes to guide the selection of policy
combining algorithms for the policy set. However, for
redundancy removal at policy set level, both redundancies
among children nodes and rule (leaf node) redundancies,
which may exist across multiple policies or policy sets,
should be discovered. Therefore, we keep the original
segments of each child node and leverage those segments to
generate the authorization space segments of PS. Figure 10
demonstrates an example of authorization space segmenta-
tion of a policy set PS with three children components
P1, P2 and P3. The authorization space segments of PS
are constructed based on the original segments of each
child component. For instance, a segment s

′

2 of PS covers
three policy segments P1.s1, P2.s1 and P3.s2, where Pi.sj
denotes that a segment sj belongs to a policy Pi.

The property assignment step at policy set level is similar
to the property assignment step at policy level, except
that the policy combining algorithm Only-One-Applicable
needs to be taken into consideration at policy set level. The

Only-One-Applicable case is handled similar to the First-
Applicable case. We first check whether the combining
algorithm is applicable or not. If the combining algorithm
is applicable, the only-applicable subspace is assigned
with strong irremovable property. Otherwise, all subspaces
within the policy set’s segment are assigned with removable
property.

After assigning properties to all segments of children
components of PS, we next examine whether any child
component is redundant. If a child component is redundant,
this child component and all rules contained in the child
component are removed from PS. Then, we examine
whether there exist any redundant rules. In this process,
the properties of all rule subspaces covered by a removable
segment of a child component of PS needs to be changed
to removable. Note that when we change the property of a
strong irremovable rule subspace to removable, other sub-
spaces in the same rule with dependent weak irremovable
property need to be changed to removable correspondingly.

6 IMPLEMENTATION AND EVALUATION

We have implemented a policy analysis tool called
XAnalyzer in Java. Based on our policy anomaly analysis
mechanism, it consists of four core components: segmen-
tation module, effect constraint generation module, strat-
egy mapping module, and property assignment module.
The segmentation module takes XACML policies as an
input and identifies the authorization space segments by
partitioning the authorization space into disjoint subspaces.
XAnalyzer utilizes APIs provided by Sun XACML im-
plementation [27] to parse the XACML policies and con-
struct Boolean encoding. JavaBDD [15], which is based
on BuDDy package [10], is employed by XAnalyzer
to support BDD representation and authorization space
operations. The effect constraint generation module takes
conflicting segments as an input and generates effect con-
straints for each conflicting segment. Effect constraints are
generated based on strategies assigned to each conflicting
segment. The strategy mapping module takes conflict corre-
lation groups and effect constraints of conflicting segments
as inputs and then maps assigned strategies to standard
XACML combining algorithms for examined XACML pol-
icy components. The property assignment module auto-
matically assigns corresponding property to each subspace
covered by the segments of XACML policy components.
The assigned properties are in turn utilized to identify
redundancies.

We evaluated the efficiency and effectiveness of
XAnalyzer for policy analysis on both real-life and
synthetic XACML policies. Our experiments were per-
formed on Intel Core 2 Duo CPU 3.00 GHz with 3.25
GB RAM running on Windows XP SP2. In our evaluation,
we utilized five real-life XACML policies, which were
collected from different sources. Three of the policies,
CodeA, Continue-a and Continue-b are XACML policies
used in [11]; among them, Continue-a and Continue-b are
designed for a real-world Web application supporting a
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conference management. GradeSheet is utilized in [7]. The
Pluto policy is employed in ARCHON system, 3 which
is a digital library that federates the collections of physics
with multiple degrees of meta data richness. In addition, we
generated four large synthetic policies SyntheticPolicy-1,
SyntheticPolicy-2, SyntheticPolicy-3 and SyntheticPolicy-4
for further evaluating the performance and scalability of our
tool. These synthetic policies are multi-layered, where each
policy component has a randomly selected combining algo-
rithm and each rule has randomly chosen attribute sets from
a predefined domain. We also use SamplePolicy, which is
the example XACML policy represented in Figure 1, in our
experiments. Table 2 summarizes the basic information of
each policy including the number of rules, the number of
policies, and the number of policy sets.

We conducted two separate sets of experiments for the
evaluation of conflict detection approach and the evaluation
of redundancy removal approach, respectively. Also, we
performed evaluations at both policy level and policy set
level.

TABLE 2
XACML policies used for evaluation.

Policy Rule (#) Policy (#) Policy Set (#)
1 (CodeA) 4 2 5

2 (SamplePolicy) 6 2 1
3 (GradeSheet) 13 1 0

4 (Pluto) 22 1 0
5 (SyntheticPolicy-1) 147 30 11

6 (Continue-a) 312 276 111
7 (Continue-b) 336 305 111

8 (SyntheticPolicy-2) 456 65 40
9 (SyntheticPolicy-3) 572 114 75

10 (SyntheticPolicy-4) 685 188 84

Evaluation of Conflict Detection: Time required by
XAnalyzer for conflict detection highly depends upon
the number of segments generated for each XACML policy.
The increase of the number of segments is proportional to
the number of components contained in an XACML policy.
From Table 3, we observed that XAnalyzer performs fast
enough to handle larger size XACML policies, even for
some complex policies with multiple levels of hierarchies
along with hundreds of rules, such as two real-life XACML
policies Continue-a and Continue-b and four synthetic
XACML policies. The time trends observed from Table 3
are promising, and hence provide the evidence of efficiency
of our conflict detection approach.

TABLE 3
Conflict detection algorithm evaluation.

Policy Conflict Detection
Policy Level(#) Policy Set Level(#) Time (s)

1 (CodeA) 1 1 0.082
2 (SamplePolicy) 0 2 0.090
3 (GradeSheet) 0 4 0.098

4 (Pluto) 0 5 0.136
5 (SyntheticPolicy-1) 8 14 0.329

6 (Continue-a) 9 17 0.583
7 (Continue-b) 10 21 0.635

8 (SyntheticPolicy-2) 29 17 0.896
9 (SyntheticPolicy-3) 39 19 0.948

10 (SyntheticPolicy-4) 56 19 1.123

3. http://archon.cs.odu.edu/

Evaluation of Redundancy Removal: In the second
set of experiments, we evaluated our redundancy analysis
approach based on those experimental XACML policies in
terms of two different cases: redundancy removal consid-
ering single-valued requests and redundancy removal con-
sidering multi-valued requests. From Table 4, we noticed
that 140 rules were identified as redundant rules in the
experimental XACML policies by our redundancy removal
approach considering single-valued requests. By compar-
ison, if multi-valued requests were taken into account in
our redundancy removal algorithm, 21 rules became irre-
movable. Besides, the evaluation results shown in Table 4
indicate the efficiency of our redundancy analysis algorithm
as well.

We also conducted the evaluation of effectiveness by
comparing our redundancy analysis approach with tradi-
tional redundancy analysis approach [3], [23], which can
only identify redundancy relations between two rules. Fig-
ure 11(a) depicts the results of our comparison experiments.
From Figure 11(a), we observed that XAnalyzer could
identify that an average of 5.6% of total rules are redundant.
However, traditional redundancy analysis approach could
only detect an average 3.1% of total rules as redundant
rules. Therefore, the enhancement for redundancy elimi-
nation was clearly observed by our redundancy analysis
approach compared to traditional redundancy analysis ap-
proach in our experiments.

Furthermore, when redundancies in a policy are re-
moved, the performance of policy enforcement is improved
generally. For each of XACML policies in our experi-
ments, Figure 11(b) depicts the total processing time in
Sun XACML PDP [27] for responding 10,000 randomly
generated XACML requests. The evaluation results clearly
show that the processing times are reduced after elimi-
nating redundancies in XACML policies applying either
traditional approach or our approach, and our approach
can obtain better performance improvement than traditional
approach.

7 RELATED WORK

Many research efforts have been devoted to modeling and
verification of XACML policies [2], [8], [11]. In [8],
the authors formalized XACML policies using a process
algebra known as Communicating Sequential Processes
(CSP). This work utilizes a model checker to formally
verify properties of policies, and to compare access control
policies with each other. Fisler et al. [11] introduced
an approach to represent XACML policies with Multi-
Terminal Binary Decision Diagrams (MTBDDs). They de-
veloped a policy analysis tool called Margrave, which
can verify XACML policies against the given properties and
perform change-impact analysis. Ahn et al. [2] presented a
formalization of XACML using answer set programming
(ASP), which is a recent form of declarative programming,
and leveraged existing ASP reasoners to conduct policy
verification. However, lacking an exhaustive elicitation of
properties, the completeness of the analysis results of policy
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TABLE 4
Redundancy removal algorithm evaluation.

Policy Redundant Removal Considering Single-valued Requests Redundant Removal Considering Multi-valued Requests
Policy Level(#) Policy Set Level(#) Time (s) Policy Level(#) Policy Set Level(#) Time (s)

1 (CodeA) 1 0 0.087 1 0 0.088
2 (SamplePolicy) 0 2 0.095 0 2 0.098
3 (GradeSheet) 0 2 0.113 0 2 0.120

4 (Pluto) 0 3 0.147 0 3 0.151
5 (SyntheticPolicy-1) 7 4 0.158 6 4 0.163

6 (Continue-a) 11 7 0.214 8 6 0.223
7 (Continue-b) 12 7 0.585 9 7 0.597

8 (SyntheticPolicy-2) 14 8 0.623 12 7 0.647
9 (SyntheticPolicy-3) 17 10 0.672 15 9 0.695
10 (SyntheticPolicy-4) 23 12 0.803 18 10 0.852

(a) Redundancy elimination rate (b) Performance improvement

Fig. 11. Evaluation of redundancy removal approach.

verification cannot be guaranteed. In contrast, our approach
for policy anomaly analysis can indicate accurate anomaly
information without the need of any external properties.

Several work presenting policy analysis tools with the
goal of detecting policy anomalies in firewall are closely
related to our work. Al-Shaer et al. [3] designed a tool
called Firewall Policy Advisor which can only
detect pairwise anomalies in firewall rules. Yuan et al. [29]
presented a toolkit, FIREMAN, which can detect anomalies
among multiple firewall rules by analyzing the relationships
between one rule and the collections of packet spaces
derived from all preceding rules. Liu et al. [22] introduced a
method for complete redundancy detection in firewall rules
using a tree representation of firewalls, call Firewall Deci-
sion Trees (FDTs). However, as we discussed previously,
XACML policy and firewall policy have some significant
distinctions. Hence, directly applying prior firewall policy
anomaly analysis approaches to XACML is not suitable.

Some XACML policy evaluation engines, such as Sun
PDP [27] and XEngine [20], [21], have been developed to
handle the process of evaluating whether a request satisfies
an XACML policy. During the process of policy enforce-
ment, conflicts can be checked if a request matches multiple
rules having different effects, and then conflicts are resolved
by applying predefined combining algorithms in the policy.
In contrast, our tool XAnalyzer focuses on policy anal-
ysis at policy design time. XAnalyzer can identify all
conflicts within a policy and help policy designers select
appropriate combining algorithms for conflict resolution
prior to the policy enforcement. Additionally, XAnalyzer
has the capability of discovering and eliminating policy

redundancies that cannot be dealt with by policy evaluation
engines.

Some work addressed the general conflict resolution
mechanisms for access control [11], [14], [16], [17]. Espe-
cially, Li et al. [17] proposed a policy combining language
PCL, which can be utilized to specify a variety of user-
defined combining algorithms for XACML. These conflict
resolution mechanisms can be accommodated in our fine-
grained conflict resolution framework. In addition, Bauer
et al. [6] adopted a data-mining technique to eliminate in-
consistencies occurring between access control policies and
user’s intentions. By comparison, our approach detects and
resolves anomalies within access control policies caused by
overlapping relations.

Other related work includes XACML policy integra-
tion [24], [26] and XACML policy similarity analysis [19].
In particular, Lin et al. [18] designed a comprehensive
environment called EXAM for XACML policy analysis and
management. EXAM can be used to perform a variety of
functions, such as policy property analyses, policy simi-
larity analysis, and policy integration. In contrast, our tool
XAnalyzer also deals with policy analysis but focuses on
policy anomaly detection and resolution.

8 CONCLUSION

We have proposed an innovative mechanism that facilitates
systematic detection and resolution of XACML policy
anomalies. A policy-based segmentation mechanism and
a grid-based representation technique were introduced to
achieve the goals of effective and efficient anomaly anal-
ysis. In addition, we have described an implementation of
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a policy anomaly analysis tool called XAnalyzer. Our
experimental results showed that a policy designer could
easily discover and resolve anomalies in an XACML policy
with the help of XAnalyzer. We believe our systematic
mechanism and tool will significantly help policy managers
support an assurable Web application management service.
As our future work, the coverage of our approach needs
to be further extended with respect to obligations and user-
defined functions in XACML. Moreover, we would explore
how our anomaly analysis mechanism can be applied to
other existing access control policy languages. In addition,
we plan to conduct formal analysis [2], [12] of policy
anomalies, particularly dealing with multi-valued requests.
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