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Abstract

Despite great progress in 3D pose estimation from

single-view images or videos, it remains a challenging task

due to the substantial depth ambiguity and severe self-

occlusions. Motivated by the effectiveness of incorporating

spatial dependencies and temporal consistencies to allevi-

ate these issues, we propose a novel graph-based method

to tackle the problem of 3D human body and 3D hand

pose estimation from a short sequence of 2D joint detec-

tions. Particularly, domain knowledge about the human

hand (body) configurations is explicitly incorporated into

the graph convolutional operations to meet the specific de-

mand of the 3D pose estimation. Furthermore, we introduce

a local-to-global network architecture, which is capable of

learning multi-scale features for the graph-based represen-

tations. We evaluate the proposed method on challenging

benchmark datasets for both 3D hand pose estimation and

3D body pose estimation. Experimental results show that

our method achieves state-of-the-art performance on both

tasks.

1. Introduction
3D pose estimation that involves estimating 3D joint lo-

cations of a human hand or body from single-view images
or videos is a fast-growing research area and has aroused
long-standing research attention in the past decades[11, 47,
48], since it plays a significant role in numerous appli-
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Figure 1. Graphical spatial-temporal dependencies between differ-
ent joints of (a) full human body, and (b) human hand. The tempo-
ral edges connect the same joints between consecutive frames and
the spatial edges represent the natural connections of each frame.
For easy illustration, we only plot the whole spatial connections on
the front frame of the spatial-temporal graph, including the direct
physical connections (solid line) and the indirect “symmetrical”
relations (dashed curve). We color-code the joints to show differ-
ent parts of the human body (hand).

cations such as gesture recognition, robotics and human-
computer interactions. Despite the tremendous success
achieved in recent years [8, 27, 28, 38, 44, 5, 16, 49, 25, 13],
it remains a challenging problem due to the frequent self-
occlusions and substantial depth ambiguity in 2D represen-
tations.

Many existing works [3, 12, 17, 29, 54, 53, 15, 14] rely
on effective 2D pose estimation frameworks to first localize
the 2D keypoints on the image plane, and then lift 3D poses
from the estimated 2D joint positions. Additionally, recent
works [12, 17, 29] have shown that well-designed deep net-
works can achieve competitive performance in 3D pose esti-
mation using only 2D joint detections as input. However, it
is worth noting that estimating 3D poses from 2D represen-
tations is inherently an ill-posed problem, since there may
exist multiple valid 3D interpretations for a single 2D skele-
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Figure 2. Schematic overview of our proposed network architecture for 3D pose estimation from consecutive 2D poses. The input is a
small number of adjacent 2D poses estimated from RGB images and the output is the 3D joint locations of the target frame. We construct a
spatial-temporal graph on skeleton sequences and design a hierarchical “local-to-global” architecture with graph convolutional operations
to effectively process and consolidate features across scales. To further refine the estimation results, a pose-refinement process is applied
which can be trained end-to-end with the graph convolutional network. Note that this pipeline is applicable for both 3D human body and
hand pose estimation and here we simply take 3D human body pose estimation as a visualization example.

ton, which makes it difficult to infer a unique valid solution,
especially for cases with severe occlusions. To overcome
this ambiguity, several methods [4, 51, 12] attempted to em-
bed kinematic correlations to ensure the spatial validity of
the 3D structures. For instance, Fang et al. [12] explicitly
incorporated geometric dependencies among different body
parts by enforcing spatial consistency over the estimated 3D
human poses. Moreover, to deal with the incoherent and jit-
tery predictions, some work [17, 39, 30] turned to exploit
the temporal information across sequences. For example,
Hossain et al. [17] designed a sequence-to-sequence net-
work to predict 3D joint locations and imposed temporal
smoothness constraints during training to ensure the tempo-
ral consistency over a sequence.

Despite their promising results, we observe that most of
the existing work only focus on incorporating either spatial
configuration constraints or temporal correlations, while ig-
noring the complementarity between these two types of in-
formation. More precisely, we note that having priors on
the spatial dependencies can reduce the possibility of gener-
ating physically impossible 3D structures and alleviate the
problem of self-occlusions, while utilizing temporal infer-
ence helps resolve the challenging issues such as depth am-
biguity and visible jitters. These observations encourage us
to develop a method that can effectively embed both spa-
tial and temporal relationships into a learning-based frame-
work, and leverage it for 3D pose estimation.

Motivated by the natural graph-based representation for
a series of skeletal forms and inspired by recent advances
in graph convolution networks (GCNs) [9, 20, 41, 50], in
this work, we propose to utilize GCNs to exploit spatial
and temporal relationships for 3D pose estimation. Note
that different from the two recent papers [15, 26] that ei-
ther uses uniform GCN for dense hand mesh reconstruc-

tion or considers spatial graph-lstm, our work uses GCN for
spatial-temporal graph with semantic grouping for sequen-
tial 3D pose estimation. Specifically, as depicted in Fig-
ure 1, we define the sequence of skeletal joints as a spatial-
temporal graph. The graph topology is formed with joints
as the graph nodes, linked by two types of connections: spa-
tial edges that represent spatial dependencies among differ-
ent joints, and temporal edges that connect the same joint
across neighboring frames. To deal with sparse connec-
tions and functionally-variant graph edges for 3D pose es-
timation, we propose to learn different convolutional kernel
weights for different neighborhood types, while the generic
graph convolutional operatinos uniformly treat the neigh-
boring nodes at the same degree with shared kernel weights.
Moreover, inspired by the previous 2D pose estimation ap-
proach [32] that processed and consolidated information
at multiple resolutions, we analogously propose a graph-
convolutional “local-to-global” hierarchical network archi-
tecture that captures multi-scale features, where our graph
pooling and upsampling layers are designed based on the
interpretable human body (or hand) configurations. Finally,
a pose refinement step is introduced to further improve the
estimation accuracy (see Figure 2 for system overview).

The contributions of this work are threefold:

• By treating a sequence of skeletons as a spatial-
temporal graph, we propose to use GCN to effectively
exploit the spatial configurations and temporal consis-
tencies for 3D pose estimation, both of which are sig-
nificant for improving the 3D pose estimation accu-
racy.

• We design a local-to-global network architecture,
which is capable of learning multi-scale graph features
via successive graph pooling and upsampling layers.
Experimental results demonstrate the benefits of such
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Figure 3. Visualization of different neighboring nodes for (a) hu-
man body and (b) human hand. The neighboring nodes are divided
into six classes according to their sematic meanings: center node
(blue), physically-connected nodes including the one closer (pur-
ple) to and the one farther (green) from the skeleton root, indirect
“symmetrically”-related node (dark blue), time forward node (yel-
low), and time backward node (orange).

hierarchical architecture that can effectively consoli-
date the local and global features in our network.

• We propose a non-uniform graph convolutional strat-
egy based on the generic graph convolutional op-
erations, which learns different convolutional kernel
weights for different neighboring nodes according to
their semantic meanings. Experiments show that the
proposed graph convolutional strategy is crucial for
performance improvement with the constructed sparse
spatial-temporal graph for 3D pose estimation.

We conduct comprehensive experiments on two widely-
used benchmarks: the Human3.6M dataset [18] for 3D hu-
man body pose estimation and the STB dataset [52] for 3D
hand pose estimation. Experimental results show that our
proposed method achieves state-of-the-art performance on
both tasks.

2. Related Work
3D Pose Estimation. Different aspects of learning-

based human hand (and body) pose estimation have been
explored in the past few years, which can be roughly classi-
fied into two categories: i) directly regressing the 3D loca-
tions of each joint from 2D images; ii) decoupling 3d pose
estimation into the 2D pose estimation and 3D pose estima-
tion from 2D joint detections.

For the first category, Li and Chan [24] designed a multi-
task framework that jointly learns pose regression and body
part detectors. Park et al. [36] introduced an end-to-end
framework with simultaneous training of both 2D joint clas-
sification and 3D joint regression. Pavlakos et al. [38] in-
troduced a deep convolutional neural network based on the
stacked hourglass architecture, with a fine discretization of
the 3D space to predict per voxel likelihoods for each joint.

For the second category, Martinez et al. [28] directly re-

gressed 3D keypoints from extracted 2D poses via a simple
network composed of several fully-connected layers. Zim-
mermann et al. [54] adopted a PoseNet module to local-
ize the 2D hand joint locations, from which the most likely
3D structure of the hand was then estimated. To incor-
porate spatial priors into the framework, Fang [12] devel-
oped a deep grammar network to explicitly encode the hu-
man body dependencies and relations. Moreover, to deal
with the depth ambiguity and visual jitters in static image,
Hossain et al. [17] utilized the temporal information by
propagating joint position information across frames based
on a sequence-to-sequence model. The performance gain
achieved by these methods motivates us to take a follow-
up exploration towards the incorporation of both spatial and
temporal dependencies, instead of only focusing on one as-
pect. Specifically, our approach learns the spatial-temporal
information implicitly by combining graph convolutional
operations with the domain-specific knowledge for 3D pose
estimation.

Graph Convolutional Neural Network (GCN). GCNs
are deep learning based methods that perform convolutional
operations on graphs. Compared with traditional CNN,
GCN has its unique convolutional operators for irregular
data structures. In general, GCNs can be divided into two
categories: spectral based GCN [9, 20, 22, 23, 41] and non-
spectral based GCN [1, 2, 10]. The latter attempts to ex-
pand the spatial definition of a convolution by rearranging
graph vertices into a certain grid form so as to directly ap-
ply conventional convolutional operations, while the former
performs the convolutional process with Fourier transfor-
mation. Usually spectral GCN is good for handling graphs
with fixed topology while non-spectral GCN can handle
topology-varied graphs.

3. Methodology
Overview. Figure 2 depicts an overview of our proposed

network architecture. Given a small number of adjacent 2D
joint locations of a hand (or body) estimated from video
frames as input, we aim at predicting a target frame’s 3D
joint locations � = {�i}Mi=1 2 ⇤3D in the camera coordi-
nate system, where M is the number of joints, and ⇤3D is
the M ⇥ 3 dimensional hand joint space. In particular, we
construct a spatial-temporal graph with the joints as graph
nodes and the local connectivities in the spatial (skeleton
structure) and temporal domains as graph edges. To effec-
tively learn the multi-scale features of the graph-based rep-
resentation, a hierarchical “local-to-global” scheme is intro-
duced into the framework, which takes successive steps of
pooling and upsampling before generating the 3D predic-
tions. Lastly, a pose-refinement process is added to further
refine the 3D pose estimation. The whole model is trained
in an end-to-end manner with backpropagation. Next, we
will describe the individual components in details.
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Figure 4. Illustration of the “local-to-global” network architecture, which is able to effectively process and consolidate features across
scales. For convenience of illustration, we only plot the whole spatial connections on the front frame of the spatial-temporal graphs.

Spatial-temporal Graph Construction. A skeleton se-
quence can be naturally organized as a spatial-temporal
graph representation. Specifically, we define a pose se-
quence as an undirected graph G = (V, E ,W ), where V =
{vti|t = 1, ...T ; i = 1, ...M} denotes a set of vertices,
corresponding to T frames and M body joints per frame,
E = {eij} is the set of edges, indicating the connections
between nodes, and W = (wij)N⇥N with N = MT is the
adjacency matrix, with wij = 0 if (i, j) 62 E , and wij = 1
if (i, j) 2 E . The normalized graph Laplacian [7] is com-
puted as L = IN � D� 1

2WD� 1
2 , where Dii =

P
j W

ij .
The edge set consists of two parts: temporal connections
that link each joint with its counterpart in the neighbor-
ing frames, and spatial connections that include both direct
and indirect kinematic dependencies in each frame (see Fig-
ure 1).

3.1. Revisiting Graph Convolutional NNs
In this work, we adopt a spectral-based GCN, since it

works well with structured graphs with predefined topology.
In particular, the spectral convolutions on graphs [41] can be
considered as the multiplication of a signal x 2 RN with a
filter g✓ = diag(✓) in Fourier domain:

g✓ ⇤ x = Ug✓U
Tx, (1)

where graph Fourier basis U is the matrix of the eigenvec-
tors of the normalized graph Laplacian L, and UTx denotes
the graph Fourier transform of x.

To reduce the computational complexity, Kipf and
Welling [20] introduced a layer-wise linear formulation de-
fined by stacking multiple localized graph convolutional
layers with the first-order approximation of graph Lapla-
cian:

Z = eD� 1
2 fW eD� 1

2X⇥, (2)

where the input signal X 2 RN⇥C is a generalized one,
representing the C-dim features of N vertices on the graph,

⇥ 2 RC⇥F is the matrix of filter parameters, fW and eD are
the normalized versions with fW = W + IN and eDii =P

j
fW ij , and Z 2 RN⇥F is the convolved signal matrix.

3.2. Graph Convolution for Pose Estimation
In the existing graph convolution (Eq. (2)), essentially

each kernel ⇥ is shared by all the 1-hop neighboring
nodes. This works fine for dense graph. However, our
spatial-temporal graph for 3D pose estimation is sparse
with functionally-variant graph edges (e.g., spatial edges
and temporal edges representing different correlations), for
which a uniform treatment of neighboring nodes is not suit-
able.

To tackle this issue, inspired from the previous stud-
ies [33, 50] that take the convolutional operator with a
larger kernel size, we made modifications to the generic
graph convolutional operations. In particular, we classify
neighboring nodes according to their semantic meanings
and use different kernels for different neighboring nodes.
As presented in Figure 3, the neighboring nodes are di-
vided into six classes based on intuitive interpretations: 1)
the center node itself; 2) a physically-connected neighbor-
ing node that is closer to the root node than the center
node; 3) a physically-connected neighboring node that is
farther from the root node than the center node; 4) an indi-
rect “symmetrically-related” neighboring node; 5) a time-
forward neighboring node; and 6) a time-backward neigh-
boring node. Based on the classification, the graph convo-
lution in (2) is updated to:

Z =
X

k

D
� 1

2
k WkD

� 1
2

k X⇥k, (3)

where k is the index of the neighbor types, and ⇥k is the
filter matrix for the k-th type 1-hop neighboring nodes.
Note that here fW is dismantled into k sub-matrices with
fW =

P
k Wk, and Dii

k =
P

j W
ij
k .
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Figure 5. The defined hierarchical graph pooling strategy for (a)
human body and (b) human hand. Given the original graph struc-
ture per-frame, we first divide the nodes into individual subsets
based on the interpretable skeleton structure, which are repre-
sented with the same color, and then perform the max-pooling
operations on each of the subsets. Next, the coarsened graph is
max-pooled into one node which contains the global information
of the whole skeleton. Note that in the subsequent top-down pro-
cessing, upsampling is performed as the reverse operation of the
proposed pooling, which allocates the features of a vertex in the
coarser graph to its children vertices in the finer graph.

3.3. GCN-based Local-to-global Prediction
A design choice that has been particularly effective for

pose estimation is capturing visual patterns or semantics
at different resolutions in a feed-forward fashion. Bottom-
up processing is first performed by subsampling the feature
maps, and then top-down processing is conducted by up-
sampling the feature maps with the combination of higher
resolution features from bottom layers, as proposed in the
Stacked Hourglass network [32] for 2D pose estimation. In-
spired by the success of such hierarchical architectures, we
propose a conceptually similar “local-to-global” scheme,
which aims at learning multi-scale features but from the
graph-based representations.

Graph Pooling and Upsampling: For graph-based rep-
resentations, the pooling operation requires meaningful
neighborhoods on graphs, where similar vertices are clus-
tered together. In this work, we propose to gradually clus-
ter the whole skeleton per frame based on interpretable hu-
man body (or hand) configurations, as specified in Figure 5.
For the top-down process, the upsampling procedure simply
takes a reverse step of the graph pooling procedure, where
the features of vertices in the coarser graph are duplicated
to the corresponding child vertices in the finer scale. In ad-
dition, the temporal links remain the same throughout the
different abstraction levels, connecting each node with its
counterparts in neighboring frames.

Hierarchical Architecture: Figure 4 shows the pro-
posed hierarchical “local-to-global” network, which can ef-
fectively process and consolidate features across scales. In
the earlier stage, we gradually perform the graph convo-
lution and pooling operations from the original scale to a

very low resolution. Thereafter, the network conducts a top-
down process with a sequence of upsampling and combin-
ing of features across scales. To utilize both bottom-up and
top-down features, we perform an element-wise concatena-
tion for features with the same scale, followed by a per-node
FC layer to update the combined features. Furthermore, a
non-local block [45] is introduced before generating the 3D
pose sequences to facilitate a holistic processing of the full
body.

3.4. Pose Refinement
For the 3D pose estimation task, there are two types of

widely-used 3D pose representations. The first uses root-
relative 3D coordinates of the joints in the camera coordi-
nate system, while the second involves concatenating the
predicted depths of each joint and the UV coordinates ex-
tracted from 2D detectors. These two representations can
be easily converted from one to the other using the camera
intrinsic matrix.

For relatively accurate 2D pose , the second representa-
tion is preferred since it guarantees the consistency between
the predicted 3D pose and the 2D projections on the image
plane. However, for poor 2D pose , maintaining the consis-
tency between the projections and the 3D pose often leads to
a physically invalid 3D pose structure; here the first repre-
sentation is better as it is more capable of generating a valid
3D pose structure. To strike a balance between the two cir-
cumstances, we design a simple two-layer fully-connected
network for pose refinement, which takes the 3D pose esti-
mation results in both representations (where the depth val-
ues in the second representation are directly computed from
the first) as the input, and output the confidence values for
the two sets of results. Finally, the refined 3D joint loca-
tions are computed as the confidence-weighted sum of the
two sets of estimation results.

3.5. Training
We use the following losses in training.

3D Pose Loss. Lp =
PT

t=1

PM
i=1

����̂t,i � �t,i

���
2

2
, where

�̂t,i and �t,i represent the estimated and ground truth 3D
joint locations of joint i at time t, respectively

Derivative Loss. Similar to [17], we adopt a derivative
loss Ld to enforce temporal smoothness. Considering that
joints located at limb terminals commonly move faster than
other joints, we divide the joints of a human body into three
sets: torso head, limb mid and limb terminal, while for the
human hand we divide the 21 joints into: palm root, finger
mid and finger terminal. Mathematically, the derivative loss
Ld is defined as

Ld =
TX

t=2

MX

i=1

X

s2S

⌘s
����̂s

t,i � �̂s
t�1,i

���
2

2
, (4)
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where �̂s
t,i denotes the the predicted 3D locations of joints

belonging to the set s, and ⌘s is the scalar hyper-parameter
controlling the significance of each set, where a higher
value is assigned to the set of joints that are generally more
stable than others.

Symmetry Loss Ls. It is defined for penalizing the dif-
ferences in the lengths of left and right bone pairs, as is
typically employed in 3D body pose estimation. Mathemat-
ically, Ls can be written as

Ls =
TX

t=1

X

b

���B̂t,b � B̂t,C(b)

���
2

2
(5)

where B̂t,b is the estimated bone length for a right-side bone
b and C(b) is the corresponding left-side bone.

Training strategy. In our implementation, we first train
the network prior to the pose refinement layers using the
3D pose loss Lp, which generates consecutive 3D joint lo-
cations from input 2D pose sequences. We then train the
entire network in an end-to-end manner with the combined
loss:

L = �pLp + �dLd + �sLs (6)

where �p = 1,�d = 1 and �s = 0.01. Note that the pose
loss Lp and the symmetry loss Ls are applied on all of the
3D pose estimation results, including all intermediate 3D
pose predictions and the final refined 3D joint locations.
The derivative loss is only applied on the consecutive 3D
joint estimation before pose refinement.

4. Experiments
4.1. Implementation Details

In our experiments, we first feed the input 2D skeletons
into a batch normalization layer to keep the consistency of
the input data, which are then passed to our proposed hi-
erarchical “local-to-global” network. Specifically, we em-
ploy six graph convolutional layers during the bottom-up
process, with 3, 2 and 2 layers for the three graph reso-
lutions. For the top-down process, we deploy a per-node
fully-connected operation for each stage of the feature con-
catenation to get the consecutive 3D joint locations and then
choose the target frame 3D pose estimation. Finally, we
feed the estimation results into a pose refinement network
which is composed of two fully-connected layers with 1024
hidden units followed by a ReLU function. For better un-
derstanding, detailed diagrams of our network architecture
can be found in our supplementary materials.

We implement our method within the PyTorch frame-
work. For the first training stage described in Section 3.5,
we train for 60 epochs with a mini-batch size of 256 us-
ing the Amsgrad optimizer. The learning rate starts from
0.001, with a shrink factor of 0.95 applied after each epoch
and 0.5 after every 10 epochs. For the second stage, we set
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Figure 6. Left: Comparisons of the 3D PCK results with the state-
of-the-art methods on STB for 3D hand pose estimation. Right:
The impact of the pose refinement on the mean error distances of
different body parts on Human3.6M.

�p = 1,�d = 1 and �s = 0.01 and train for 20 epochs with
the learning rate of 5 ⇥ 10�6. All experiments were con-
ducted on one GeForce GTX 1080 GPU with CUDA 8.0.

4.2. Datasets
We evaluate our method on two publicly available

datasets: the Human3.6M dataset [18] for 3D human body
pose estimation, and STB [52] for 3D hand pose estimation.

Human3.6M. The Human3.6M dataset [18] is a large-
scale and commonly used dataset for 3D human pose esti-
mation, which consists of 3.6 million images captured from
4 different cameras, with 11 subjects performing a variety of
actions, such as “Walking”, “Sitting” and “Smoking”. The
3D pose ground truth and all camera parameters (includ-
ing intrinsic and extrinsic parameters) are provided in this
dataset. In this research, we follow the evaluation protocols
in prior work [17, 21, 26, 28, 37, 39], in which 5 subjects
(S1, S5, S6, S7, S8) are used for training and 2 subjects
(S9 and S11) are adopted for testing. All camera views are
trained with a single model for all actions. We perform 2D
pose detections using the cascaded pyramid network (CPN)
[6] which is an extension of FPN, as proposed in [39].

STB Dataset. The STB (Stereo Hand Pose Tracking
Benchmark) dataset [52] is a real world dataset captured
under varying illumination conditions with 6 different back-
grounds. Both 2D and 3D annotations of the total 21 hand
keypoints are provided for each frame. We follow the same
training and evaluation protocol used in [3, 54], training on
10 sequences and testing on the other two, with the Convo-
lutional Pose Machine [46] used for detecting the 2D joint
locations.

4.3. Evaluation Metrics
For Human3.6M, we report the mean per joint position

error (MPJPE) as the evaluation metric, which calculates
the average Euclidean distance of the estimated joints to
ground truth after the alignment of the root joint (central
hip). This protocol is referred to as protocol #1. In some
work, an alternative metric is adopted, where the estimated

6



Protocol #1 Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.
Mehta, 3DV’17 [29] (T = 1) 57.5 68.6 59.6 67.3 78.1 82.4 56.9 69.1 100.0 117.5 69.4 68.0 55.2 76.5 61.4 72.9
Pavlakos, CVPR17 [38] (T = 1) 67.4 71.9 66.7 69.1 72.0 77.0 65.0 68.3 83.7 96.5 71.7 65.8 74.9 59.1 63.2 71.9
Zhou, ICCV’17 [53] (T = 1) 54.8 60.7 58.2 71.4 62.0 65.5 53.8 55.6 75.2 111.6 64.1 66.0 51.4 63.2 55.3 64.9
Martinez, ICCV’17[43] (T = 1) 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9
Sun, ICCV17 [43] (T = 1) 52.8 54.8 54.2 54.3 61.8 67.2 53.1 53.6 71.7 86.7 61.5 53.4 61.6 47.1 53.4 59.1
Fang, AAAI’18 [12] (T = 1) 50.1 54.3 57.0 57.1 66.6 73.3 53.4 55.7 72.8 88.6 60.3 57.7 62.7 47.5 50.6 60.4
Pavlakos, CVPR18 [37] (T = 1) 48.5 54.4 54.4 52.0 59.4 65.3 49.9 52.9 65.8 71.1 56.6 52.9 60.9 44.7 47.8 56.2
Hossain, ECCV’18 [17] (T = 5) 48.4 50.7 57.2 55.2 63.1 72.6 53.0 51.7 66.1 80.9 59.0 57.3 62.4 46.6 49.6 58.3
Lee, ECCV18 [21] (T = 3) 40.2 49.2 47.8 52.6 50.1 75.0 50.2 43.0 55.8 73.9 54.1 55.6 58.2 43.3 43.3 52.8
Liu, TPAMI’19 [26] (T = 1) 50.7 60.0 51.1 63.6 59.7 69.3 48.8 52.0 72.7 105.3 58.6 61.0 62.2 45.9 48.7 61.1
Pavllo, arxiv’18 [39] (T = 9) - - - - - - - - - - - - - - - 49.8
Pavllo, arxiv’18 [39] (T = 1) 47.1 50.6 49.0 51.8 53.6 61.4 49.4 47.4 59.3 67.4 52.4 49.5 55.3 39.5 42.7 51.8
Ours, (T = 1) 46.5 48.8 47.6 50.9 52.9 61.3 48.3 45.8 59.2 64.4 51.2 48.4 53.5 39.2 41.2 50.6
Ours, (T = 3) 44.9 48.1 46.1 49.4 50.6 58.4 47.2 44.4 57.1 62.2 49.7 47.2 52.2 38.2 40.8 49.1
Ours, (T = 7) 44.6 47.4 45.6 48.8 50.8 59.0 47.2 43.9 57.9 61.9 49.7 46.6 51.3 37.1 39.4 48.8
Protocol #2 Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

Martinez, ICCV’17 [28] (T = 1) 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 45.0 49.5 38.0 43.1 47.7
Sun, ICCV17 [43] (T = 1) 42.1 44.3 45.0 45.4 51.5 53.0 43.2 41.3 59.3 73.3 51.0 44.0 48.0 38.3 44.8 48.3
Fang, AAAI’18 [12] (T = 1) 38.2 41.7 43.7 44.9 48.5 55.3 40.2 38.2 54.5 64.4 47.2 44.3 47.3 36.7 41.7 45.7
Pavlakos, CVPR18 [37] (T = 1) 34.7 39.8 41.8 38.6 42.5 47.5 38.0 36.6 50.7 56.8 42.6 39.6 43.9 32.1 36.5 41.8
Hossain, ECCV’18 [17] (T = 5) 35.7 39.3 44.6 43.0 47.2 54.0 38.3 37.5 51.6 61.3 46.5 41.4 47.3 34.2 39.4 44.1
Lee, ECCV18 [21] (T = 3) 34.9 35.2 43.2 42.6 46.2 55.0 37.6 38.8 50.9 67.3 48.9 35.2 50.7 31.0 34.6 43.4
Pavllo,arxiv’18 [39] (T = 1) 36.0 38.7 38.0 41.7 40.1 45.9 37.1 35.4 46.8 53.4 41.4 36.9 43.1 30.3 34.8 40.0

Ours, (T = 1) 36.8 38.7 38.2 41.7 40.7 46.8 37.9 35.6 47.6 51.7 41.3 36.8 42.7 31.0 34.7 40.2
Ours, (T = 3) 36.0 38.4 37.6 40.8 39.9 45.2 37.0 35.0 46.0 50.5 40.6 36.5 42.2 30.6 34.5 39.4
Ours, (T = 7) 35.7 37.8 36.9 40.7 39.6 45.2 37.4 34.5 46.9 50.1 40.5 36.1 41.0 29.6 33.2 39.0

Table 1. Quantitative comparisons of Mean Per Joint Position Error (MPJPE) in millimeter between the estimated pose and the ground-truth
on Human3.6M under Protocol #1 and Protocol #2, where T denotes the number of input frames used in each method. The best score is
marked in bold.

3D pose is aligned to the ground truth via a rigid trans-
formation, which is referred as protocol #2. For the STB
dataset, we evaluate the 3D hand pose estimation perfor-
mance with two metrics. The first metric is the area un-
der the curve (AUC) on the percentage of correct keypoints
(PCK) score, which is a popular criterion to evaluate the
pose estimation accuracy with different thresholds, as pro-
posed in [3, 54]. The second metric is MPJPE, identical to
that for 3D body pose estimation. Following the same con-
dition used in [3, 42, 54], we assume that the global hand
scale and the absolute depth of the root joint are provided at
test time for 3D hand pose estimation.

4.4. Comparison with the State-of-the-art
Results on Human3.6M. As shown in Table 1, we com-

pare the performance of our approach with previously re-
ported results on Human3.6M, where T represents the num-
ber of input frames. For fair comparison, previous methods
with different input sequence lengths are listed in this table.
Note that [39] reported better results for 3D pose estimation
using 243 frames. However, this is not suitable for the on-
line scenarios we focus on, wherein it is not viable to have
long sequences of frames as input. From the table, we can
see that compared with the state-of-the-art methods with a
similar number of input frames, our approach achieves the
best performance under all protocols.

Results on STB Dataset. Figure 6 (left) shows the com-
parison with the state-of-the-art methods [3, 19, 31, 34, 35,

1-frame 3-frames 5-frames 7-frames

Human3.6M 50.62 49.08 48.86 48.78
STB 6.95 6.70 6.65 6.61

Table 2. MPJPE Results (in mm) of our method with different in-
put sequence lengths on Human3.6M and STB.

Method Error (mm)

Uniform GCN 69.8
Split Temporal Connect. 54.8
Split Temporal & Symmetrical Connect. 54.0
Split Temporal & Symmetrical & Physical Connect. (proposed) 49.1

Table 3. MPJPE Results (in mm) of our method with 3 in-
put frames and different graph convolutional strategies on Hu-
man3.6M.

40, 42, 54] on STB for 3D hand pose estimation. It can
be seen that our approach outperforms the state-of-the-art
methods over most error thresholds, improving the AUC
value to 0.995 in the joint error range between 20mm and
50mm. Note that here we measure the 3D PCK curve of our
proposed method with a single-frame model for fair com-
parison, since most of the previous works focus on estimat-
ing 3D pose from a single image.

4.5. Ablation Studies
Impact of input sequence length. Table 2 shows the

MPJPE results of our method with different input sequence
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Figure 7. Visual results of our proposed method on Human3.6M and STB datasets. First row: Human3.6M [18]. Second row: STB [52].
Note that skeletons are shown at a novel viewpoint for easy comparison.

lengths on the Human3.6M and STB datasets. We can see
that with more input frames used for predictions, our pro-
posed method obtained larger gains in both 3D human and
hand pose estimation. This is expected since temporal cor-
relations help resolve issues such as depth ambiguity and
self-occlusions, which are typically challenging for single-
frame 3D pose estimation task. Noticing that the estimation
error with T = 3 (49.08 mm) is only slightly higher than
those with T = 5 (48.86 mm) and T = 7 (48.78 mm), we
fix T = 3 in the following experiments to balance between
the estimation accuracy and the computational complexity.

Effect of modified graph convolution. To assess the ef-
fectiveness of our modified graph convolution for 3D pose
estimation, we carry out experiments on Human3.6M with
three variants of our method. a) Uniform GCN: all nodes
in a neighborhood are uniformly treated with a shared filter
matrix. b) Split Temporal Connect.: neighboring nodes
are divided into three classes: time-forward node, time-
backward node and other nodes. c) Split Temporal & Sym-
metrical Connect.: neighboring nodes are divided into four
classes: time-forward node, time-backward node, symmet-
rical node and other nodes. All the models are with 3 input
frames and consistent graph topology for fair comparisons.
The results are presented in Table 3. It can be seen that the
strategy of separating neighboring nodes into three classes
(the first variant) with individual kernel weights consider-
ably improves the performance by a large margin (from 69.8
mm to 54.8 mm). Among the multiple ways of partition-
ing neighboring nodes, our proposed implementation (Split
Temporal & Symmetrical & Physical Connect.) achieves
the best result (49.1 mm), which indicates the effectiveness
of our proposed non-uniform graph convolution that pre-
cisely classifies neighboring nodes based on the semantics
of the sparse spatial-temporal graph for 3D pose estimation.

Effect of local-to-global prediction. We examine the
advantage of using our proposed local-to-global architec-
ture by successively removing the graph pooling and up-
sampling layers from our model. As presented in Table 4,
removing the pooling and upsampling layers leads to 3 mm
to 5 mm increase in error, which demonstrates the benefit of
leveraging multi-scale features in our proposed framework.

Method Error (mm) �

Ours, proposed 49.1 -
w/o last pooling & 1st upsampling layers 52.3 3.2
w/o all pooling & upsampling layers 53.9 4.8

Table 4. Ablation studies on different components of our network
architecture. The evaluation is performed on Human3.6M with the
MPJPE metric under Protocol #1.

Impact of pose refinement. We also evaluate the impact
of the proposed pose refinement. As presented in Figure 6
(right), with the pose refinement, the average estimation er-
rors of different body parts as well as the overall mean errors
consistently decrease on Human3.6M [18], which indicates
that our proposed pose refinement can further improve the
estimation accuracy of 3D joint locations.

4.6. Qualitative results.

Figure 7 shows some visual results of our method on
Human3.6M [18] and STB [52] datasets. We exhibit sam-
ples captured from various viewpoints with serious self-
occlusions. The results show that our proposed model can
reliably handle the challenging poses with various orienta-
tions and complicated pose articulation.

5. Conclusion

In this paper, we have presented a novel graph-based
method for 3D pose estimation from a short sequence of
extracted 2D joint locations. To incorporate the domain-
specific knowledge of the constructed spatial-temporal
graph, we have introduced a non-uniform graph convolu-
tonal operation by learning individual kernel weights for
functionally-variant neighbors. Moreover, a local-to-global
network architecture has also been proposed to effectively
capture the representative features at different scales. Ex-
perimental results on two benchmark datasets have demon-
strated the superior performance of our method for both 3D
hand pose estimation and 3D human body pose estimation
tasks.
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In this supplementary document, we provide materials not included in the main paper due to space constraints. Firstly,
Section 1 provides more details of our proposed network structures. Next, Section 2 elaborates on our quantitative results
on Human3.6M using the MPJPE metric under protocol #1. Finally, Section 3 presents additional qualitative results for
comparison.

1. Network Architecture
Figure 1 illustrates the detailed architectures of our proposed GCN unit and the hierarchical local-to-global network. We

note that the local-to-global network takes consecutive 2D joint locations with the size of T ⇥M0⇥ 2 as input and the output
is the consecutive 3D poses with the size of T ⇥M0⇥3. Here T is the input sequence length. Mi denotes the node number of
the i-th graph resolution level for each frame, with M0 = 17, M1 = 5, M2 = 1 for 3D body pose estimation and M0 = 21,
M1 = 6, M2 = 1 for 3D hand pose estimation, respectively.

For data-processing, the input 2D joint locations are normalized between -1 to 1 based on the size of the input image. We
perform horizontal flip augmentations at train and test time. Since we do not predict the global position of the 3d prediction,
we zero-centre the 3d poses around the hip joint for human pose estimation and palm joint for hand pose estimation (in line
with previous work) .

2. Additional Quantitative Evaluation
2.1. 3D Pose Estimation from Ground Truth 2D joints

In Section 4.4 of the main manuscript, we provide results of 3D pose estimation with the input 2D poses detected from
RGB images. For human pose estimation, some previous work additionally reported estimation results using the ground
truth 2D coordinates as input. In this section, we follow the evaluation protocol #1 and present our estimation performance
in comparison with the previously reported approaches on Human3.6M, where T represents the number of input frames.
As shown in Table 1, our method obtains superior results to the competing methods using ground truth 2D joints as input,
achieving an error of 37.2mm with 3 input frames.

Protocol #1 Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.
Pavlakos, CVPR18 [5] (T = 1) 47.5 50.5 48.3 49.3 50.7 55.2 46.1 48.0 61.1 78.1 51.05 48.3 52.9 41.5 46.4 51.9
Martinez, ICCV’17[6] (T = 1) 37.7 44.4 40.3 42.1 48.2 54.9 44.4 42.1 54.6 58.0 45.1 46.4 47.6 36.4 40.4 45.5
Hossain, ECCV’18 [2] (T = 5) 35.7 39.3 44.6 43 47.2 54.0 38.3 37.5 51.6 61.3 46.5 41.4 47.3 34.2 39.4 44.1
Lee, ECCV18 [4] (T = 3) 34.6 39.7 37.2 40.9 45.6 50.5 42.0 39.4 47.3 48.1 39.5 38.0 31.9 41.5 37.2 40.9
Ours, (T = 1) 33.4 39.0 33.8 37.0 38.1 47.3 39.5 37.3 43.2 46.2 37.7 38.0 38.6 30.4 32.1 38.1
Ours, (T = 3) 32.9 38.7 32.9 37.0 37.3 44.8 38.7 36.1 41.0 45.6 36.8 37.7 37.7 29.5 31.6 37.2

Table 1. Comparison with the state-of-the-art methods for the Human3.6M under Protocol #1, using ground truth 2D joint locations as
input. T denotes the number of input frames used in each method. The best score is marked in bold.
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Figure 1. Details of our proposed network architectures. (a) Illustration of GCN Unit. (b) The hierarchical local-to-global network. Here
‘BN’ is short for batch normalization. T is the input sequence length. Mi denotes the node number of the i-th graph resolution level for
each frame, with M0 = 17, M1 = 5, M2 = 1 for 3D body pose estimation and M0 = 21, M1 = 6, M2 = 1 for 3D hand pose estimation,
respectively.

3. Additional Qualitative Evaluation
We provide additional qualitative results of the our proposed method under challenging scenarios with various viewpoints

and severe self-occlusions. The included images are from Human3.6M dataset[3], STB dataset [7] and MPII dataset [1], as
shown in Figure 2.

Figure 2. Additional quantitative results of our proposed method on Human3.6M, STB and MPII datasets. The detected 2D joint locations
are overlaid with the RGB images. First and second rows: Examples from Human3.6M dataset[3]. Third row: Examples from STB
dataset[7]. Forth row: Examples from MPII dataset[1].
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