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1 Introduction

In the previous two chapters, we have

� introduced the basic complexity classes,

� summarized the known relationships between these classes, and

� seen how reducibility and completeness can be used to establish tight links between
natural computational problems and complexity classes.

Some natural problems seem not to be complete for any of the complexity classes we
have seen so far. For example, consider the problem of taking as input a graph G and a
number k, and deciding whether k is exactly the length of the shortest traveling salesper-
son’s tour. This is clearly related to the

� ��

problem discussed in Chapter 28, Section 3,
but in contrast to

� � �

, it seems not to belong to NP, and also seems not to belong to
co-NP.

To classify and understand this and other problems, we will introduce a few more com-
plexity classes. We cannot discuss all of the classes that have been studied—there are fur-
ther pointers to the literature at the end of this chapter. Our goal is to describe some of the
most important classes, such as those defined by probabilistic and interactive computation.

A common theme is that the new classes arise from the interaction of complexity theory
with other fields, such as randomized algorithms, formal logic, combinatorial optimization,
and matrix algebra. Complexity theory provides a common formal language for analyzing
computational performance in these areas. Other examples can be found in other chapters
of this Handbook.
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2Supported by the National Science Foundation under Grant CCR-9315696.
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2 The Polynomial Hierarchy

Recall from Chapter 27, Section 2.8 that PSPACE is equal to the class of languages that
can be recognized in polynomial time on an alternating Turing machine, and that NP cor-
responds to polynomial time on a nondeterministic Turing machine, which is just an alter-
nating Turing machine that uses only existential states. Thus, in some sense, NP sits near
the very “bottom” of PSPACE, and as we allow more use of the power of alternation, we
slowly climb up toward PSPACE.

Many natural and important problems reside near the bottom of PSPACE in this sense,
but are neither known nor believed to be in NP. (We shall see some examples later in this
chapter.) Most of these problems can be accepted quickly by alternating Turing machines
that make only two or three alternations between existential and universal states. This
observation motivates the definition in the next paragraph.

With reference to Section 2.4 of Chapter 24, define a k-alternating Turing machine
to be a machine such that on every computation path, the number of changes from an
existential state to universal state, or from a universal state to an existential state, is at
most k � 1. Thus, a nondeterministic Turing machine, which stays in existential states, is a
1-alternating Turing machine.

It turns out that the class of languages recognized in polynomial time by 2-alternating

Turing machines is precisely NPSAT. This is a manifestation of something more general,
and it leads us to the following definitions.

Let C be a class of languages. Define

� NPC � �

A � C NPA,

� ∑P
0

� ∏P
0

� P;

and for k

�

0, define

� ∑P
k

	

1

� NP∑P
k ,

� ∏P
k

	

1

� co-∑P
k

	

1.

Observe that ∑P
1

� NPP � NP, because each of polynomially many queries to an or-
acle language in P can be answered directly by a (nondeterministic) Turing machine in
polynomial time. Consequently, ∏P

1

� co-NP. For each k, ∑P
k


 ∑P
k

	

1, and ∏P
k


 ∑P
k

	

1,
but these inclusions are not known to be strict. See Figure 1.

The classes ∑P
k and ∏P

k constitute the polynomial hierarchy. Define

PH � �

k

�

0

∑P
k 


It is straightforward to prove that PH




PSPACE, but it is not known whether the inclusion
is strict. In fact, if PH � PSPACE, then the polynomial hierarchy collapses to some level,
i.e., PH � ∑P

m for some m.
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Figure 1: The polynomial hierarchy.
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We have already hinted that the levels of the polynomial hierarchy correspond to k-
alternating Turing machines. The next theorem makes this correspondence explicit, and
also gives us a third equivalent characterization.

Theorem 2.1 For any language A, the following are equivalent:

1. A � ∑P
k .

2. A is decided in polynomial time by a k-alternating Turing machine that starts in an
existential state.

3. There exists a language B � P and a polynomial p such that for all x, x � A if and
only if

	


y1 :

�

y1

��

p

	 �

x

�
 
 	�

y2 :

�

y2

��
p

	 �
x

� 
 
�� � � 	

Qyk :

�

yk

��

p

	 �

x

� 
 
� 	

x � y1 � 
 
 
 � yk


 � B � �

where the quantifier Q is



if k is odd,

�

if k is even.

In Section 8 of Chapter 28, we discussed some of the startling consequences that would
follow if NP were included in P/poly, but observed that this inclusion was not known
to imply P � NP. It is known, however, that if NP




P/poly, then PH collapses to its
second level, ∑P

2 [Karp and Lipton, 1982]. It is generally considered likely that PH does
not collapse to any level, and hence that all of its levels are distinct. Hence this result is
considered strong evidence that NP is not a subset of P/poly.

Also inside the polynomial hierarchy is the important class BPP of problems that can
be solved efficiently and reliably by probabilistic algorithms, to which we now turn.

3 Probabilistic Complexity Classes

Since the 1970s, with the development of randomized algorithms for computational prob-
lems (see Chapter 15), complexity theorists have placed randomized algorithms on a firm
intellectual foundation. In this section, we outline some basic concepts in this area.

A probabilistic Turing machine M can be formalized as a nondeterministic Turing
machine with exactly two choices at each step. During a computation, M chooses each
possible next step with independent probability 1

�

2. Intuitively, at each step, M flips a
fair coin to decide what to do next. The probability of a computation path of t steps is
1

�

2t . The probability that M accepts an input string x, denoted by pM

	

x




, is the sum of the
probabilities of the accepting computation paths.

Throughout this section, we consider only machines whose time complexity t

	

n




is
time-constructible. Without loss of generality, we may assume that every computation path
of such a machine halts in exactly t steps.

Let A be a language. A probabilistic Turing machine M decides A with
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for all x � A for all x

�� A
unbounded two-sided error if pM

	

x


 � 1

�

2 pM

	

x


 �

1

�

2
bounded two-sided error if pM

	

x


 � 1

�

2

� ε pM

	

x


 � 1

�

2 � ε
for some constant ε

one-sided error if pM

	

x


 � 1

�

2 pM

	

x


 � 0

Many practical and important probabilistic algorithms make one-sided errors. For ex-
ample, in the Solovay-Strassen primality testing algorithm of Chapter 15 (on randomized
algorithms), when the input x is a prime number, the algorithm always says “prime”; when
x is composite, the algorithm usually says “composite,” but may occasionally say “prime.”
Using the definitions above, this means that the Solovay-Strassen algorithm is a one-sided
error algorithm for the set A of composite numbers. It also is a bounded two-sided error
algorithm for A, the set of prime numbers.

These three kinds of errors suggest three complexity classes:

� PP is the class of languages decided by probabilistic Turing machines of polynomial
time complexity with unbounded two-sided error.

� BPP is the class of languages decided by probabilistic Turing machines of polyno-
mial time complexity with bounded two-sided error.

� RP is the class of languages decided by probabilistic Turing machines of polynomial
time complexity with one-sided error.

In the literature, RP is also called R.
A probabilistic Turing machine M is a PP-machine (respectively, a BPP-machine, an

RP-machine) if M has polynomial time complexity, and M decides with two-sided error
(bounded two-sided error, one-sided error).

Through repeated Bernoulli trials, we can make the error probabilities of BPP-
machines and RP-machines arbitrarily small, as stated in the following theorem. (Among
other things, this theorem implies that RP




BPP.)

Theorem 3.1 If L � BPP, then for every polynomial q

	

n




, there exists a BPP-machine M
such that pM

	

x


 � 1 � 1

�

2q

�

n

�

for every x � L, and pM

	

x


 � 1

�

2q

�

n

�

for every x

�� L.
If L � RP, then for every polynomial q

	

n




, there exists an RP-machine M such that
pM

	

x


 � 1 � 1

�

2q

�

n

�

for every x in L.

It is important to note just how minuscule the probability of error is (provided that the
coin flips are truly random). If the probability of error is less than 1

�
25000, then it is less

likely that the algorithm produces an incorrect answer than that the computer will be struck
by a meteor. An algorithm whose probability of error is 1

�

25000 is essentially as good as an
algorithm that makes no errors. For this reason, many computer scientists consider BPP to
be the class of practically feasible computational problems.

Next, we define a class of problems that have probabilistic algorithms that make no
errors. Define
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� ZPP � RP

�

co-RP.

The letter Z in ZPP is for zero probability of error, as we now demonstrate. Suppose
A � ZPP. Here is an algorithm that checks membership in A. Let M be an RP-machine that
decides A, and let M

�

be an RP-machine that decides A. For an input string x, alternately
run M and M

�

on x, repeatedly, until a computation path of one machine accepts x. If M
accepts x, then accept x; if M

�

accepts x, then reject x. This algorithm works correctly
because when an RP-machine accepts its input, it does not make a mistake. This algorithm
might not terminate, but with very high probability, the algorithm terminates after a few
iterations.

The next theorem expresses some known relationships between probabilistic complex-
ity classes and other complexity classes, such as classes in the polynomial hierarchy (see
Section 2).

Theorem 3.2

(a) P




ZPP




RP




BPP



PP




PSPACE.

(b) RP




NP




PP.

(c) BPP


 ∑P
2

� ∏P
2 .

(d) PH




PPP.

(e) TC0 � PP.

(Note that the last inclusion is strict! TC0 is not known to be different from NP, but it is a
proper subset of PP.) Figure 2 illustrates many of these relationships. PP is not considered
to be a feasible class because it contains NP.

Even though it is not clear that there is a good physical source of randomness that can be
used to execute probabilistic algorithms and obtain the desired low error bounds, pseudo-
random generators are often used and seem to work well. There is currently great interest in
de-randomizing probabilistic algorithms, but that topic is beyond the scope of this chapter.
There is a simple sense in which a probabilistic algorithm can be de-randomized, however.
If an algorithm has very small error probability (in particular, if it has error probability a
little less than 1

�

2n), then there is one sequence of coin flips that gives the right answer
on all inputs of length n, and this sequence can be hard-wired into the algorithm to yield a
deterministic (but non-uniform) circuit family. More formally:

Theorem 3.3 BPP




P/poly.

There is another important way in which BPP �RP, and ZPP differ from PP (as well
as from NP and all of the other complexity classes we have discussed thus far): BPP, RP,
and ZPP are not known to have any complete languages. Intuitively, BPP is believed to
lack complete sets because there is no computable way to weed out those polynomial-time
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Figure 2: Probabilistic complexity classes.

probabilistic Turing machines that are not BPP-machines from those that are. The same
goes for RP and ZPP—a more detailed discussion of this point may be found in [Sipser,
1982] and [Ambos-Spies, 1986]. To be sure, if these classes equal P then trivially they
have complete languages. Recent work [Impagliazzo and Wigderson, 1997] proves that a
highly plausible hardness assertion for languages in exponential time implies P � BPP.

Log-space analogues of these probabilistic classes have also been studied, of which
the most important is RL, defined by probabilistic TMs with one-sided error that run in
log space and may use polynomially many random bits in any computation. An important
problem in RL that is not known to be in L is that of whether there is a path from node s
to node t in an undirected graph, or much the same thing, whether an undirected graph is
connected.

4 Formal Logic and Complexity Classes

There is a surprisingly close connection between important complexity classes and natu-
ral notions that arise in the study of formal logic. This connection has led to important
applications of complexity theory to logic, and vice-versa. Below, we present some basic
notions from formal logic, and then we show some of the connections between logic and
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complexity theory.
Descriptive complexity refers to the ability to describe and characterize individual prob-

lems and whole complexity classes by certain kinds of formulas in formal logic. These de-
scriptions do not depend on an underlying machine model—they are machine-independent.
Furthermore, computational problems can be described in terms of their native data struc-
tures, rather than under ad hoc string encodings.

A relational structure consists of a set V (called the universe), a tuple E1 � 
 
 
 � Ek of
relations on V , and a tuple c1 � 
 
 
 � c � of elements of V (k � � �

0). Its type τ is given by the
tuple

	

a1 � 
 
 
 � ak




of arities of the respective relations, together with

�

. In this chapter, V
is always finite. For example, directed graphs G � 	V � E
 are relational structures with the
one binary relation E, and their type has k � 1, a1

� 2, and

� � 0, the last since there are
no distinguished vertices. For another example, instances of the GRAPH ACCESSIBILITY

PROBLEM (GAP) consist of a directed graph G � 	V �E
 along with two distinguished
vertices s � t � V (see Chapter 28, Section 5), so they have

� � 2.
An ordinary binary string x can be regarded as a structure

	

V � X �� 
 , where

�

is a total
order on V that sequences the bits, and for all i (1

�

i

� �

x

�

), xi

� 1 if and only if X

	

ui




holds. Here ui is the ith element of V under the total order, and xi is the ith bit of x. It is
often desirable to regard the ordering

�

as fixed, and focus attention on the single unary
relation X

	� 
 as the essence of the string.

4.1 Systems of Logic

For our purposes, a system of logic (or logic language) L consists of the following:

1. A tuple

	

E1 � 
 
 
 �Ek




of relation symbols, with corresponding arities a1 � 
 
 
 � ak

�

1,
and a tuple

	

c1 � 
 
 
 � c �
 of constant symbols (k � � �

0). These symbols constitute the
vocabulary of L , and can be identified with the corresponding type τ of relational
structures.

2. Optionally, a further finite collection of relation and constant symbols whose inter-
pretations are fixed in all universes V under consideration. By default this collection
contains the symbol �, which is interpreted as the equality relation on V .

3. An unbounded supply of variable symbols u � v �w � 
 
 
 ranging over elements of V , and
optionally, an unbounded supply of variable relation symbols R1 � R2 � R3 � 
 
 
 , each
with an associated arity and ranging over relations on V .

4. A complete set of Boolean connectives, for which we use

�

,

�

, �, �, and �,
and the quantifiers

�

,




. Additional kinds of operators for building up formulas are
discussed later.

The well-formed formulas of L , and the free, bound, positive, and negative occurrences
of symbols in a formula, are defined in the usual inductive manner. A sentence is a formula
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φ with no free variables. A formula, or a whole system, is called first-order if it has no
relation variables Ri; otherwise it is second-order.

Just as machines of a particular type define complexity classes, so also do logical formu-
las of a particular type define important classes of languages. The most common nomencla-
ture for these classes begins with a prefix such as FO or F1 for first-order systems, and SO
or F2 for second-order. SO




denotes systems whose second-order formulas are restricted
to the form

	


R1


 	


R2


 
 
 
 	
 Rk




ψ with ψ first-order. After this prefix, in parentheses, we
list the vocabulary, and any extra fixed-interpretation symbols or additions to formulas. For
instance, SO


 	

Graphs �� 
 stands for the second-order existential theory of graphs whose
nodes are labeled and ordered. (The predicate � is always available in the logics we study,
and thus it is not explicitly listed with the other fixed-interpretation symbols such as

�

.)
The fixed-interpretation symbols deserve special mention. Many authorities treat them

as part of the vocabulary. A finite universe V may without loss of generality be identified
with the set

�

1 � 
 
 
 � n �

, where n � N. Important fixed-interpretation symbols for these sets,
besides � and

�

, are Suc,

�

, and � , respectively standing for the successor, addition, and
multiplication relations. (Here

� 	

i � j � k
 stands for i

�

j � k, etc.) Insofar as they deal with
the numeric coding of V and do not depend on any structures that are being built on V , such
fixed-interpretation symbols are commonly called numerical predicates.

4.2 Languages, Logics, and Complexity Classes

Let us see how a logical formula describes a language, just as a Turing machine or a pro-
gram does. A formal inductive definition of the following key notion, and much further
information on systems of logic, may be found in the standard text [Enderton, 1972].

Definition 4.1. Let φ be a sentence in a system L with vocabulary τ. A relational structure
R of type τ satisfies (or models) φ, written R

� � φ, if φ becomes a true statement about
R when the elements of R are substituted for the corresponding vocabulary symbols of φ.
The language of φ is Lφ

� �

R : R

� � φ

�

.

We say that φ describes Lφ, or describes the property of belonging to Lφ. Finally, given
a system L of vocabulary τ, L itself stands for the class of structures of type τ that are
described by formulas in L . If τ is the vocabulary Strings of binary strings, then Lφ is a
language in the familiar sense of a subset of

�

0 � 1 ��

, and systems L over τ define ordinary
classes of languages. Thus defining sets of structures over τ generalizes the notion of
defining languages over an alphabet.

For example, the formula

	�

u




X

	

u




over binary strings describes the language 1

�

, while	�

v �w
� v

� � w � E

	

v �w
 � defines complete (loop-free) graphs. The formula

Undir � 	� v �w
� E

	

v �w
 � E

	

w � v
 � � 	�
u


 �E

	

u � u


describes the property of being an undirected simple graph, treating an undirected edge as a
pair of directed edges, and ruling out “self-loops.” Given unary relation symbols X1 � 
 
 
 �Xk,

9

the formula

UniqX1 �� � � � Xk

� 	� v


� �

1

�

i

�

k

Xi

	

v


 � �

1

�

i

	

j

�

k

� 	Xi

	

v


 �

Xj

	
v


 
 �

expresses that every element v is assigned exactly one i such that Xi
	

v



holds. Given an
arbitrary finite alphabet Σ � �

c1 � 
 
 
 � ck

�

, the vocabulary

�

X1 � 
 
 
 � Xk

�

, together with this
formula, enables us to define languages of strings over Σ. (Since the presence of Uniq does
not affect any of the syntactic characterizations that follow, we may now regard Strings as
a vocabulary over any Σ.) Given a unary relation symbol R and the numerical predicate Suc
on V , the formula

AltsR

� 	
 s � t
 	� u � v
� �Suc

	

u � s
 � �Suc

	

t � u
 �
R

	
s


 � �R

	

t


 � 	

Suc

	

u � v
 � 	R 	u
 � �R

	

v


 
 �

says that R is true of the first element s, false of the last element t, and alternates true and
false in-between. This requires

�

V

�
to be even. The following examples are used again

below.

(1) The regular language
	

10

 �

is described by the first-order formula φ1

� AltsX .

(2)

	

11


 �

is described by the second-order formula φ2

� 	
 R


 	�

u


�

X

	

u


 �

AltsR

�

.

(3) GRAPH THREE-COLORABILITY:

φ3

� Undir
� 	


R1 � R2 � R3


�

UniqR1 � R2 � R3

� 	�

v �w
 	E 	v �w
 � �

1

�

i

�

3

Ri

	

v


 � �Ri

	

w


 
 � 


(4)

 ��

(i.e., s-t connectivity for directed graphs):

φ4

� 	� R


 � 	� u � v
� R

	

s


 � �R

	

t


 � 	

R

	

u


 �

E

	

u � v
 � R

	

v


 
 � 


Formula φ4 says that there is no set R




V that is closed under the edge relation and
contains s but doesn’t contain t, and this is equivalent to the existence of a path from s to
t. Much trickier is the fact that deleting “UniqR1 � R2 � R3

” from φ3 leaves a formula that still
defines exactly the set of undirected 3-colorable graphs. This fact hints at the delicacy of
complexity issues in logic.

Much of this study originated in research on database systems, because data base query
languages correspond to logics. First-order logic is notoriously limited in expressive power,
and this limitation has motivated the study of extensions of first-order logic, such as the
following first-order operators.

Definition 4.2.

(a) Transitive closure (TC): Let φ be a formula in which the first-order variables
u1 � 
 
 
 � uk and v1 � 
 
 
 � vk occur freely, and regard φ as implicitly defining a binary
relation S on V k. That is, S is the set of pairs

	�

u � � v
 such that φ

	�

u � � v
 holds. Then
TC �

u1 �� � � � uk � v1 �� � � � vk

� φ is a formula, and its semantics is the reflexive-transitive closure
of S.
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(b) Least fixed point (LFP): Let φ be a formula with free first-order variables u1 � 
 
 
 � uk

and a free k-ary relation symbol R that occurs only positively in φ. In this case, for
any relational structure R and S




V k, the mapping fφ

	

S


 � � 	

e1 � 
 
 
 � ek




: R

� �

φ

	

S � e1 � 
 
 
 � ek


 �

is monotone. That is, if S




T , then for every tuple of domain
elements

	

e1 � 
 
 
 � ek




, if φ

	

R � u1 � 
 
 
 � uk




evaluates to truewhen R is set to S and each
ui is set to ei, then φ also evaluates to true when R is set to T , because R appears
positively. Thus the mapping fφ has a least fixed point in V k. Then LFP �

R � u1 �� � � � uk

� φ
is a formula, and its semantics is the least fixed point of fφ, i.e., the smallest S such
that fφ

	

S


 � S.

(c) Partial fixed point (PFP): Even if fφ above is not monotone, PFP �

R � u1 �� � � � uk

� φ
is a formula whose semantics is the first fixed point found in the sequence
fφ

	

/0


 � fφ

	

fφ

	

/0


 
 � 
 
 
 , if it exists, /0 otherwise.

The first-order variables u1 � 
 
 
 � uk remain free in these formulas. The relation symbol R is
bound in LFP �

R � u1 �� � � � uk

� φ, but since this formula is fixing R uniquely rather than quantifying
over it, the formula LFP �

R � u1 �� � � � uk

� φ is still regarded as first-order (provided φ is first-order).
A somewhat less natural but still useful operation is the “deterministic transitive clo-

sure” operator. We write “DTC” for the restriction of (a) above to cases where the
implicitly defined binary relation S is a partial function. The DTC restriction is en-
forcible syntactically by replacing any (sub)-formula φ to which TC is applied by φ

� � �

φ � 	�

w1 � 
 
 
 �wk


�

φ

� � � k
i � 1vi

� wi

�

, where φ

�

is the result of replacing each vi in φ by wi,
1

�

i

�

k.
For example, s-t connectivity is definable by the FO

	

TC




and FO

	

LFP




formulas

φ

�

4

� 	


u � v
� u � s �

v � t �

TC �

u � v

� E

	

u � v
 � �

φ

� �

4

� 	


u � v
� u � s �

v � t �

LFP �

R � u � v

� ψ

� �

where ψ � 	

u � v

�

E

	

u � v
 � 	


w


�

R

	

u �w
 �

R

	

w � v
 � 
 . To understand how φ

� �

4 works,
starting with S as the empty binary relation and substituting the current S for R at each
turn, the first iteration yields S � � 	

u � v
 : u � v �

E

	

u � v
 �

, the second iteration gives pairs
of vertices connected by a path of length at most 2, then 4, . . . , and the fixed-point is
the reflexive-transitive closure E

�

of E. Then φ

� �

4 is read as if it were

	


u � v
 	u � s
�

v �

t

�

E

� 	

u � v
 
 , or more simply, as if it were E

� 	

s � t
 .
Note however, that writing DTC 
 
 
 in place of TC 
 
 
 in φ

�

4 changes the property defined
by restricting it to directed graphs in which each non-sink vertex has out-degree 1. It is not
known whether s-t connectivity can be expressed using the DTC operator. This question is
equivalent to whether L � NL.

4.3 Logical Characterizations of Complexity Classes

As discussed by [Fagin, 1993], there is a uniform encoding method Enc such that for any
vocabulary τ and (finite) relational structure R of type τ, Enc

	

R




is a standard string en-
coding of R . For instance with τ � Graphs, an n-vertex graph becomes the size-n2 binary
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string that lists the entries of its adjacency matrix in row-major order. Thus one can say that
a language Lφ over any vocabulary belongs to a complexity class C if the string language
Enc

	

Lφ


 � �

Enc

	

R




: R

� � φ

�

is in C .
The following theorems of the form “C � L” all hold in the following strong sense:

for every vocabulary τ and L

	

τ




-formula φ, Enc

	

Lφ


 � C ; and for every language A � C ,
there is a L

	

Strings




-formula φ such that Lφ

� A. Although going to strings via Enc may
seem counter to the motivation expressed in the first paragraph of this whole section, the
generality and strength of these results has a powerful impact in the desired direction: they
define the right notion of complexity class C for any vocabulary τ. Hence we omit the
vocabulary τ in the following statements.

Theorem 4.1

(a) PSPACE � FO

	

PFP �� 
 .
(b) PH � SO.

(c) (Fagin’s Theorem) NP � SO



.

(d) P � FO

	

LFP �� 
 .
(e) NL � FO

	
TC �� 
 .

(f) L � FO
	

DTC �� 
 .
(g) AC0 � FO

	 � � �
 .

One other result should be mentioned with the above. Define the spectrum of a formula
φ by Sφ

� �

n : for some R with n elements, R

� � φ

�

. The paper [Jones and Selman,
1974] proved that a language A belongs to NE if and only if there is a vocabulary τ and
a sentence φ � FO

	

τ




such that A � Sφ (identifying numbers and strings). Thus spectra
characterize NE.

The ordering

�

is needed in results (a), (d), (e), and (f). The paper [Chandra and Harel,
1982] proved that FO

	

LFP




without

�

cannot even define

	

11


 �

(and their proof works
also for FO

	

PFP




). Put another way, without an (ad-hoc) ordering on the full database,
one cannot express queries of the kind “Is the number of widgets in Toledo even?” even
in the powerful system of first-order logic with PFP. Note that, as a consequence of what
we know about complexity classes, it follows that FO

	

PFP �� 
 is more expressive than
FO

	

TC �� 
 . This result is an example of an application of complexity theory to logic. In
contrast, when the ordering is not present, it is much easier to show directly that FO

	

PFP




is more powerful than FO

	

TC




than to use the tools of complexity theory. Furthermore, the
hypotheses FO

	

LFP


 � FO

	

PFP




and FO

	

LFP �� 
 � FO

	

PFP �� 
 are both equivalent to
P � PSPACE [Abiteboul and Vianu, 1995]. This shows how logic can apply to complexity
theory.
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4.4 A Short Digression: Logic and Formal Languages

There are two more logical characterizations that seem at first to have little to do with com-
plexity theory. Characterizations such as these have been important in circuit complexity,
but those considerations are beyond the scope of this chapter.

Let SF stand for the class of star-free regular languages, which are defined by regular
expressions without Kleene stars, but with /0 as an atom and complementation ( �) as an
operator. For example,

	

10


 � � SF via the equivalent expression �
� 	

� /0


 	

00

�

11


 	
�

/0


 �

0

	
� /0


 � 	 � /0




1

�

.
A formula is monadic if each of its relation symbols is unary. A second-order system

is monadic if every relation variable is unary. Let mSO denote the monadic second-order
formulas. The formula φ2 above defines

	

11


 �

in mSO


 	

Suc




. The following results are
specific to the vocabulary of strings.

Theorem 4.2

(a) REG � mSO

	

Strings �� 
 � mSO


 	

Strings � Suc




.

(b) SF � FO

	

Strings �� 
 .

Theorem 4.2, combined with Theorem 4.1 (b) and (c), shows that SO is much more
expressive than mSO, and SO


 	� 


is similarly more expressive than mSO


 	� 


. A seem-
ingly smaller change to mSO




also results in a leap of expressiveness from the regular lan-
guages to the level of NP. The paper [Lynch, 1982] showed that if we consider mSO


 	 �


instead of mSO


 	� 


(for strings), then the resulting class contains NTIME

�

n

�

, and hence
contains many NP-complete languages, such as GRAPH THREE-COLORABILITY.

5 Interactive Models and Complexity Classes

5.1 Interactive Proofs

In Section 2.2 of Chapter 27, we characterized NP as the set of languages whose member-
ship proofs can be checked quickly, by a deterministic Turing machine M of polynomial
time complexity. A different notion of proof involves interaction between two parties, a
prover P and a verifier V , who exchange messages. In an interactive proof system, the
prover is an all-powerful machine, with unlimited computational resources, analogous to a
teacher. The verifier is a computationally limited machine, analogous to a student. Interac-
tive proof systems are also called “Arthur-Merlin games”: the wizard Merlin corresponds
to P, and the impatient Arthur corresponds to V .

Formally, an interactive proof system comprises the following:

� A read-only input tape on which an input string x is written.

� A prover P, whose behavior is not restricted.
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� A verifier V , which is a probabilistic Turing machine augmented with the capability
to send and receive messages. The running time of V is bounded by a polynomial in�

x

�

.

� A tape on which V writes messages to send to P, and a tape on which P writes
messages to send to V . The length of every message is bounded by a polynomial in�

x

�

.

A computation of an interactive proof system

	

P �V 
 proceeds in rounds, as follows. For
j � 1 � 2 � 
 
 
 , in round j, V performs some steps, writes a message m j, and temporarily
stops. Then P reads m j and responds with a message m

�

j, which V reads in round j

�

1. An
interactive proof system

	

P �V 
 accepts an input string x if the probability of acceptance by
V satisfies pV

	

x


 � 1

�

2.
In an interactive proof system, a prover can convince the verifier about the truth of a

statement without exhibiting an entire proof, as the following example illustrates.
Example: Consider the graph non-isomorphism problem: the input consists of two

graphs G and H, and the decision is “yes” if and only if G is not isomorphic to H. Although
there is a short proof that two graphs are isomorphic (namely: the proof consists of the
isomorphism mapping G onto H), nobody has found a general way of proving that two
graphs are not isomorphic that is significantly shorter than listing all n! permutations and
showing that each fails to be an isomorphism. (That is, the graph non-isomorphism problem
is in co-NP, but is not known to be in NP.) In contrast, the verifier V in an interactive
proof system is able to take statistical evidence into account, and determine “beyond all
reasonable doubt” that two graphs are non-isomorphic, using the following protocol.

In each round, V randomly chooses either G or H with equal probability; if V chooses
G, then V computes a random permutation G

�

of G, presents G

�

to P, and asks P whether
G

�
came from G or from H (and similarly if V chooses H). If P gave an erroneous answer

on the first round, and G is isomorphic to H, then after k subsequent rounds, the probability
that P answers all the subsequent queries correctly is 1

�

2k. (To see this, it is important
to understand that the prover P does not see the coins that V flips in making its random
choices; P sees only the graphs G

�

and H

�

that V sends as messages.) V accepts the interac-
tion with P as “proof” that G and H are non-isomorphic if P is able to pick the correct graph
for 100 consecutive rounds. Note that V has ample grounds to accept this as a convincing
demonstration: if the graphs are indeed isomorphic, the prover P would have to have an
incredible streak of luck to fool V .

The complexity class IP comprises the languages A for which there exists a verifier V
and an ε such that

� there exists a prover P̂ such that for all x in A, the interactive proof system

	

P̂ �V 


accepts x with probability greater than 1

�

2

� ε; and

� for every prover P and every x

�� A, the interactive proof system

	

P �V 
 rejects x with
probability greater than 1

�

2

� ε.
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By substituting random choices for existential choices in the proof that ATIME

	

t


 


DSPACE

	

t




(Theorem 2.8 in Chapter 27), it is straightforward to show that IP




PSPACE.
It was originally believed likely that IP was a small subclass of PSPACE. Evidence sup-
porting this belief was the construction in [Fortnow and Sipser, 1988] of an oracle language
B for which co-NPB � IPB � � /0, so that IPB is strictly included in PSPACEB. Using a proof
technique that does not relativize, however, [Shamir, 1992] (building on the work of [Lund
et al., 1992]) proved that in fact, IP and PSPACE are the same class.

Theorem 5.1 IP � PSPACE.

If NP is a proper subset of PSPACE, as is widely believed, then Theorem 5.1 says that
interactive proof systems can decide a larger class of languages than NP.

5.2 Probabilistically Checkable Proofs

In an interactive proof system, the verifier does not need a complete conventional proof to
become convinced about the membership of a word in a language, but uses random choices
to query parts of a proof that the prover may know. This interpretation inspired another
notion of “proof”: a proof consists of a (potentially) large amount of information that the
verifier need only inspect in a few places in order to become convinced. The following
definition makes this idea more precise.

A language L has a probabilistically checkable proof if there exists an oracle BPP-
machine M such that

� for all x � L, there exists an oracle language Bx such that MBx accepts x.

� for all x

�� L, and for every language B, machine MB rejects x.

Intuitively, the oracle language Bx represents a proof of membership of x in L. Notice
that Bx can be finite since the length of each possible query during a computation of MBx

on x is bounded by the running time of M. The oracle language takes the role of the prover
in an interactive proof system—but in contrast to an interactive proof system, the prover
cannot change strategy adaptively in response to the questions that the verifier poses. This
change results in a potentially stronger system, since a machine M that has bounded error
probability relative to all languages B might not have bounded error probability relative
to some adaptive prover. Although this change to the proof system framework may seem
modest, it leads to a characterization of a class that seems to be much larger than PSPACE.

Theorem 5.2 A has a probabilistically checkable proof if and only if A � NEXP.

Although the notion of probabilistically checkable proofs seems to lead us away from
feasible complexity classes, by considering natural restrictions on how the proof is ac-
cessed, we can obtain important insights into familiar complexity classes.
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Let PCP

	

r

	

n


 � q 	n
 
 denote the class of languages with probabilistically checkable
proofs in which the probabilistic oracle Turing machine M makes O

	

r
	

n

 


random bi-
nary choices, and queries its oracle O

	

q

	

n


 


times. (For this definition, we assume that
M has either one or two choices for each step.) It follows from the definitions that
BPP � PCP

	

nO

�

1

� � 0
 , and NP � PCP

	

0 � nO

�

1

� 


.

Theorem 5.3 NP � PCP

	

logn � 1
 .

Theorem 5.3 asserts that for every language L in NP, a proof that x � L can be encoded
so that the verifier can be convinced of the correctness of the proof (or detect an incorrect
proof) by using only O

	

logn




random choices, and inspecting only a constant number of
bits of the proof!

This surprising characterization of NP has important applications to the complexity of
finding approximate solutions to optimization problems, as discussed in Section 6.2 below.

6 Classifying the Complexity of Functions

Up to now, we have considered only the complexity of decision problems. (Recall that a
decision problem is a problem in which, for every input, the output is either “yes” or “no”.)
Most of the functions that we actually compute are functions that produce more than one
bit of output. For example, instead of merely deciding whether a graph has a clique of size
m, we often want to find a clique. Problems in NP are naturally associated with this kind
of search problem.

Of course, any function f can be analyzed in terms of a decision problem in a straight-
forward way by considering the decision problem A f that takes as input x and i, and answers
“yes” if the ith bit of f

	

x




is 1. But there are other ways of formulating functions as deci-
sion problems, and sometimes it is instructive to study the complexity of functions directly
instead of their associated decision problems. In this section and the sections that follow,
we will discuss some of the more useful classifications.

The most important class of functions is the class that we can compute quickly.

� FP is the set of functions computable in polynomial time by deterministic Turing
machines.

In an analogous way, we define FL, FNCk, etc., to be the set of functions computable by
deterministic log-space machines, by NCk circuits, etc. We also define FPSPACE to be the
class of functions f computable by deterministic machines in polynomial space, such that
also

�

f

	

x


 �

is bounded by a polynomial in

�

x

�

. This restriction is essential because a machine
that uses polynomial space could run for an exponential number of steps, producing an
exponentially long output.

To study functions that appear to be difficult to compute, we again use the notions of
reducibility and completeness. Analogous to Cook reducibility to oracle languages, we
consider Cook reducibility to a function given as an oracle. For a function f whose length
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�

f

	

x


 �

is bounded by a polynomial in

�

x

�

, we say that a language A is Cook reducible to
f if there is a polynomial-time oracle Turing machine M that accepts A, where the oracle
is accessed as follows: M writes a string y on the query tape, and in the next step y is
replaced by f

	

y




. As usual, we let P f and FP f denote the class of languages and functions
computable in polynomial time with oracle f , respectively.

Let C be a class of functions. When C is at least as big as FP, then we will use
Cook reducibility to define completeness. That is, a function f is C -complete, if f is in C
and C 


FP f . When we are discussing smaller classes C (where polynomial-time is too
powerful to give a meaningful notion of reducibility), then when we say that a function f
is C -complete, it refers to completeness under AC0-Turing reducibility, which was defined
in Chapter 28, Section 6. In this chapter, we consider only these two variants of Turing
reducibility. There are many other ways to reduce one function to another, just as there are
many kinds of reductions between languages.

We use these notions to study optimization problems in Sections 6.1 and 6.2 and count-
ing problems in Section 7.

6.1 Optimization Classes

Given an optimization (minimization) problem, we most often study the following associ-
ated decision problem:

“Is the optimal value at most k”?

Alternatively, we could formulate the decision problem as the following:

“Is the optimal value exactly k?”

For example, consider the TRAVELING SALESPERSON problem (

� � �

) again.

� ��

asks
whether the length of the optimal tour is at most d0. Define EXACT TSP to be the decision
problem that asks whether the length of the optimal tour is exactly d0. It is not clear that
EXACT TSP is in NP or in co-NP, but EXACT TSP can be expressed as the intersection of
TSP and its complement

� � �

: the length of the optimal tour is d0 if there is a tour whose
length is at most d0, and no tour whose length is at most d0

� 1. Similar remarks apply to
the optimization problem MAX CLIQUE: given an undirected graph G, find the maximum
size of a clique in G.

Exact versions of many optimization problems can be expressed as the intersection of
a language in NP and a language in co-NP. This observation motivates the definition of a
new complexity class:

� DP is the class of languages A such that A � A1

�

A2 for some languages A1 in NP
and A2 in co-NP.

The letter D in DP means difference: A � DP if and only if A is the difference of two
languages, i.e., A � A1

� A3 for some languages A1 and A3 in NP.
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Not only is EXACT TSP in DP, but also EXACT TSP is DP-complete. Exact versions of
many other NP-complete problems, including CLIQUE, are also DP-complete [Papadim-
itriou and Yannakakis, 1984].

Although it is not known whether DP is contained in NP, it is straightforward to prove
that

NP




DP 


PNP 
 ∑P
2

� ∏P
2 


Thus, DP lies between the first two levels of the polynomial hierarchy.
We have characterized the complexity of computing the optimal value of an instance of

an optimization problem, but we have not yet characterized the complexity of computing
the optimal solution itself. An optimization algorithm produces not only a “yes” or “no”
answer, but also, when feasible solutions exist, an optimal solution.

First, for a maximization problem, suppose that we have a subroutine that solves the
decision problem “Is the optimal value at least k?” Sometimes, with repeated calls to the
subroutine, we can construct an optimal solution. For example, suppose subroutine S solves
the CLIQUE problem; for an input graph G and integer k, the subroutine outputs “yes” if
G has a clique of k (or more) vertices. To construct the largest clique in an input graph,
first, determine the size K of the largest clique by binary search on

�

1 � 
 
 
 � n �

with log2 n
calls to S. Next, for each vertex v, in sequence, determine whether deleting v produces a
graph whose largest clique has size K by calling S. If so, then delete v and continue with
the remaining graph. If not, then look for a clique of size K � 1 among the neighbors of v.

The method outlined in the last paragraph uses S in the same way as an oracle Turing
machine queries an oracle language in NP. With this observation, we define the following
classes:

� FPNP is the set of functions computable in polynomial time by deterministic oracle
Turing machines with oracle languages in NP.

� FPNP �

logn

�

is the set of functions computable in polynomial time by deterministic or-
acle Turing machines with oracle languages in NP that make O

	

logn




queries during
computations on inputs of length n

FPNP and FPNP �

logn

�

contain many well-studied optimization problems (see [Krentel,
1988]). The problem of producing the optimal tour in the TRAVELING SALESPERSON

problem is FPNP-complete. The problem of determining the size of the largest clique

subgraph in a graph is FPNP �

logn

�

-complete.

6.2 Approximability and Complexity

As discussed in Chapter 34 (on approximation algorithms), because polynomial-time al-
gorithms for NP-complete optimization problems are unlikely to exist, we ask whether a
polynomial-time algorithm can produce a feasible solution that is close to optimal.

Fix an optimization problem Π with a positive integer-valued objective function g. For
each problem instance x, let OPT

	

x




be the optimal value, that is, g

	

z




, where z is a feasible
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solution to x that achieves the best possible value of g. Let M be a deterministic Turing
machine that on input x produces as output a feasible solution M

	

x




for Π. We say M is an
ε-approximation algorithm if for all x,

�

g

	

M

	

x


 
 � OPT

	

x


 �

max

�

g

	

M

	

x


 
 �OPT

	

x


 �
� ε 


(This definition handles both minimization and maximization problems.) The problem Π
has a polynomial-time approximation scheme if for every fixed ε, there is a polynomial-
time ε-approximation algorithm. Although the running time is polynomial in

�

x

�

, the time
could be exponential in 1

�

ε.
Several NP-complete problems, including KNAPSACK, have polynomial-time approx-

imation schemes. It is natural to ask whether all NP-complete optimization problems have
polynomial-time approximation schemes. We define an important class of optimization
problems, MAX-SNP, whose complete problems apparently do not.

First, we define a reducibility between optimization problems that preserves the quality
of solutions. Let Π1 and Π2 be optimization problems with objective functions g1 and
g2, respectively. An L-reduction from Π1 to Π2 is defined by a pair of polynomial-time
computable functions f and f

�

that satisfy the following properties:

1. if x is an instance of Π1 with optimal value OPT

	

x




, then f

	

x




is an instance of Π2

whose optimal value satisfies OPT

	

f

	

x


 
 �

c� OPT

	

x




for some constant c

2. if z is a feasible solution of f

	

x




, then f

� 	

z




is a feasible solution of x, such that

�

OPT

	

x


 � g1

	

f

� 	

z


 
 ��

c

� �

OPT

	

f

	

x


 
 � g2

	

z


 �

for some constant c

�

.

The second property implies that if z is an optimal solution to f

	

x




, then f

� 	

z




is an optimal
solution to x. From the definitions, it follows that if there is an L-reduction from Π1 to Π2,
and there is a polynomial-time approximation scheme for Π2, then there is a polynomial-
time approximation scheme for Π1.

To define MAX-SNP, it will help to recall the characterization of NP as SO



in Sec-
tion 4.3. This characterization says that for any A in NP, there is a first-order formula ψ
such that x � A if and only if




S1 
 
 
 
 Slψ

	

x � S1 � 
 
 
 � Sl


 


For many important NP-complete problems, it is sufficient to consider having only a sin-
gle second-order variable S, and to consider formulas ψ having only universal quantifiers.
Thus, for such a language A we have a quantifier-free formula φ such that x � A if and only
if 


S

�

u1 
 
 
 � uk φ

	

S � u1 � 
 
 
 � uk
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Now define MAX-SNP0 to be the class of optimization problems mapping input x to

max
S

� � 	

y1 � 
 
 
 � yk




: φ

	

S � y1 � 
 
 
 � yk


 � � 


For example, we can express in this form the MAX CUT problem, the problem of finding
the largest cut in an input graph G � 	V � E
 with vertex set V and edge set E. A set of
vertices S is the optimal solution if it maximizes

� � 	

v �w
 : E

	

v �w
 �

S

	

v


 � �S
	

w

 � � 


That is, the optimal solution S maximizes the number of edges

	

v �w
 between vertices v in
S and vertices w in V � S.

Define MAX-SNP to be the class of all optimization problems that are L-reducible to a
problem in MAX-SNP0. MAX-SNP contains many natural optimization problems. MAX

CUT is MAX-SNP-complete, and MAX CLIQUE is MAX-SNP-hard, under L-reductions.
A surprising connection between the existence of probabilistically checkable proofs

(Section 5.2) and the existence of approximation algorithms comes out in the next major
theorem.

Theorem 6.1 If there is a polynomial-time approximation scheme for some MAX-SNP-
hard problem, then P � NP.

In particular, unless P � NP, there is no polynomial-time approximation scheme for
MAX CUT or MAX CLIQUE. To prove this theorem, all we need to do is show its state-
ment for a particular problem that is MAX-SNP-complete under L-reductions. However,
we prefer to show the idea of the proof for the MAX CLIQUE problem, which although
MAX-SNP-hard is not known to belong to MAX-SNP. It gives a strikingly different kind
of reduction from an arbitrary language A in NP to

�� � �� � over the reduction from A
to

� � �

to

� � � �� � in Chapter 28, Section 4, and its discovery by [Feige et al., 1991,
Feige et al., 1996] stimulated the whole area.

Proof. Let A � NP. By Theorem 5.3, namely NP � PCP

�

O

	

logn


 �O 	

1


 �

, there is a
probabilistic oracle Turing machine M constrained to use r

	

n


 � O

	

logn




random bits and
make at most a constant number

�

of queries in any computation path, such that:

� for all x � A, there exists an oracle language Bx such that Probs � �

0 � 1

�

r

�

n

	� MBx

	

x � s
 �

1

� � 3

�

4;

� for all x

� � A, and for every language B, Probs

� �

0 � 1

�

r

�

n

	� MB 	x � s
 � 1

� � 1

�

4.

Now define a transcript of M on input x to consist of a string s � �

0 � 1 � r

�

n

�

together
with a sequence of

�

pairs

	

wi � ai




, where wi is an oracle query and ai

� �

0 � 1 �

is a possible
yes/no answer. In addition, a transcript must be valid: for all i, 0

�

i � �

, on input x with
random bits s, having made queries w1 � 
 
 
 �wi to its (unspecified) oracle and received an-
swers a1 � 
 
 
 � ai, machine M writes wi

	

1 as its next query string. Thus a transcript provides
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enough information to determine a full computation path of M on input x, and the transcript
is accepting if and only if this computation path accepts. Finally, call two transcripts con-
sistent if whenever a string w appears as “wi” in one transcript and “w j” in the other, the
corresponding answer bits ai and a j are the same.

Construction: Let Gx be the undirected graph whose node set Vx is the set of all accept-
ing transcripts, and whose edges connect pairs of transcripts that are consistent.

Complexity: Since r

	

n


 � � � O

	

logn




, there are only polynomially many transcripts,
and since consistency is easy to check, Gx is constructed in polynomial time.

Correctness: If x � A, then take the oracle Bx specified above and let C be the set of
accepting transcripts whose answer bits are given by Bx. These transcripts are consistent
with each other, and there are at least

	

3

�

4




2r

�

n

�

such accepting transcripts, so C forms a
clique of size at least

	

3

�

4




2r

�

n

�

in Gx. Now suppose x

� � A, and suppose C

�

is a clique of
size greater than

	

1

�

4




2r

�

n

�

in Gx. Because the transcripts in C

�

are mutually consistent,
there exists a single oracle B that produces all the answer bits to queries in transcripts in C

�

.
But then Probs

�

MB 	x � s
 � 1

� � 1

�

4, contradicting the PCP condition on M.
Thus we have proved the statement of the theorem for MAX CLIQUE. The proof of the

general statement is similar.

�

Note that the cases x � A and x

� � A in this proof lead to a “(3/4,1/4) gap” in the max-
imum clique size ω of Gx. If there were a polynomial-time algorithm guaranteed to de-
termine ω within a factor better than 3, then this algorithm could tell the “3/4” case apart
from the “1/4” case, and hence decide whether x � A. Since Gx can be constructed in
polynomial time (in particular, Gx has size at most 2r

�

n

� 	 � � nO

�

1

�

), P � NP would fol-
low. Hence we can say that

� � � �� � is NP-hard to approximate within a factor of 3.
A long sequence of improvements to this basic construction has pushed the hardness-of-
approximation not only to any fixed constant factor, but also to factors that increase with n.
Moreover, approximation-preserving reductions have extended this kind of hardness result
to many other optimization problems.

7 Counting

Two other important classes of functions deserve special mention:

� #P is the class of functions f such that there exists a nondeterministic polynomial-
time Turing machine M with the property that f

	

x




is the number of accepting com-
putation paths of M on input x.

� #L is the class of functions f such that there exists a nondeterministic log-space Tur-
ing machine M with the property that f

	

x




is the number of accepting computation
paths of M on input x.

Some functions in #P are clearly at least as difficult to compute as some NP-complete
problems are to decide. For instance, consider the following problem.
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NUMBER OF SATISFYING ASSIGNMENTS TO A 3CNF FORMULA (#3CNF)
Instance: A Boolean formula in conjunctive normal form with at most three variables per clause.
Output: The number of distinct assignments to the variables that cause the formula to evaluate

to

�� � � .

Note that #3CNF is in #P, and note also that the NP-complete problem of determining
whether x � � � � �

is merely the question of whether #3CNF
	

x

 � 0.

In apparent contrast to #P, all functions in #L can be computed by NC circuits.

Theorem 7.1 Relationships between counting classes.

� FP




#P




FPSPACE

� PPP � P#P (and thus also FPNP 

FP#P)

� FL




#L




FNC2.

It is not surprising that #P and #L capture the complexity of various functions that
involve counting, but as the following examples illustrate, it sometimes is surprising which
functions are difficult to compute.

The proof of Cook’s Theorem that appears in Chapter 28 also proves that #3CNF is
complete for #P, because it shows that for every nondeterministic polynomial-time ma-
chine M and every input x, one can efficiently construct a formula with the property that
each accepting computation of M on input x corresponds to a distinct satisfying assignment,
and vice versa. Thus the number of satisfying assignments equals the number of accepting
computation paths. A reduction with this property is called parsimonious.

Most NP-complete languages that one encounters in practice are known to be complete
under parsimonious reductions. (The reader may wish to check which of the reductions
presented in Chapter 34 are parsimonious.) For any such complete language, it is clear
how to define a corresponding complete function in #P.

Similarly, for the GRAPH ACCESSIBILITY PROBLEM (GAP), which is complete for
NL, we can define the function that counts the number of paths from the start vertex s to
the terminal vertex t. For reasons that will become clear soon, we consider two versions
of this problem: one for general directed graphs, and one for directed acyclic graphs. (The
restriction of GAP to acyclic graphs remains NL-complete.)

NUMBER OF PATHS IN A GRAPH (#PATHS)
Instance: A directed graph on n vertices, with two vertices s and t.
Output: The number of simple paths from s to t. (A path is a simple path if it visits no vertex

more than once.)

NUMBER OF PATHS IN A DIRECTED ACYCLIC GRAPH (#DAG-PATHS)
Instance: A directed acyclic graph on n vertices, with two vertices s and t.
Output: The number of paths from s to t. (In an acyclic graph, all paths are simple.)
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As one might expect, the problem #DAG-PATHS is complete for #L, but it may come as
a surprise that #PATHS is complete for #P, as shown by [Valiant, 1979]! That is, although
it is easy to decide whether there is a path between two vertices, it seems quite difficult to
count the number of distinct paths, unless the underlying graph is acyclic.

As another example of this phenomenon, consider the problem 2SAT, which is the
same as 3SAT except that each clause has at most two literals. 2SAT is complete for NL,
but the problem of counting the number of satisfying assignments for these formulas is
complete for #P.

A striking illustration of the relationship between #P and #L is provided by the follow-
ing two important problems from linear algebra.

DETERMINANT

Instance: An integer matrix.
Output: The determinant of the matrix.

Recall that the determinant of a matrix M with entries Mi � j is given by

∑
π

sign

	

π


 n

∏
i � 1

Mi � π

�

i

� �

where the sum is over all permutations π on

�

1 � 
 
 
 � n �

, and sign

	

π




is � 1 if π can be written
as the composition of an odd number of transpositions, and sign

	

π




is 1 otherwise.

PERMANENT

Instance: An integer matrix.
Output: The permanent of the matrix. The permanent of a matrix is given by

∑
π

n

∏
i � 1

Mi � π

�

i

� 


The reader is probably familiar with the determinant function, which can be computed
efficiently by Gaussian elimination. The permanent may be less familiar, although its defi-
nition is formally simpler. Nobody has ever found an efficient way to compute the perma-
nent, however.

We need to introduce slight modification of our function classes to classify these prob-
lems, however, because #L and #P consist of functions that take only non-negative values,
whereas both the permanent and determinant can be negative.

Define GapL to be the class of functions that can be expressed as the difference of two
#L functions, and define GapP to be the difference of two #P functions.

Theorem 7.2 (a) PERMANENT is complete for GapP.

(b) DETERMINANT is complete for GapL

The class of problems that are AC0-Turing reducible to DETERMINANT is one of the
most important subclasses of NC, and in fact contains most of the natural problems for
which NC algorithms are known.
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8 Kolmogorov Complexity

Until now, we have considered only dynamic complexity measures, namely, the time and
space used by Turing machines. Kolmogorov complexity is a static complexity measure
that captures the difficulty of describing a string. For example, the string consisting of
three million zeroes can be described with fewer than three million symbols (as in this
sentence). In contrast, for a string consisting of three million randomly generated bits, with
high probability there is no shorter description than the string itself.

Let U be a universal Turing machine (see Chapter 26, Section 2.2). Let ε denote the
empty string. The Kolmogorov complexity of a binary string y with respect to U , denoted
by KU

	

y




, is the length of the shortest binary string i such that on input

�

i � ε �

, machine U
outputs y. In essence, i is a description of y, for it tells U how to generate y.

The next theorem states that different choices for the universal Turing machine affect
the definition of Kolmogorov complexity in only a small way.

Theorem 8.1 (Invariance Theorem) There exists a universal Turing machine U such that
for every universal Turing machine U

�

, there is a constant c such that for all y, KU

	

y


 �

KU

� 	y
 �

c.

Henceforth, let K be defined by the universal Turing machine of Theorem 8.1. For
every integer n and every binary string y of length n, because y can be described by giving
itself explicitly, K

	
y


 �
n

�

c

�

for a constant c

�

. Call y incompressible if K

	

y


 �

n. Since
there are 2n binary strings of length n, and only 2n � 1 possible shorter descriptions, there
exists an incompressible string for every length n.

Kolmogorov complexity gives a precise mathematical meaning to the intuitive notion of
“randomness.” If someone flips a coin fifty times and it comes up “heads” each time, then
intuitively, the sequence of flips is not random—although from the standpoint of probability
theory the all-heads sequence is precisely as likely as any other sequence. Probability
theory does not provide the tools for calling one sequence “more random” than another;
Kolmogorov complexity theory does.

Kolmogorov complexity provides a useful framework for presenting combinatorial ar-
guments. For example, when one wants to prove that an object with some property P exists,
then it is sufficient to show that any object that does not have property P has a short de-
scription; thus any incompressible (or “random”) object must have property P. This sort
of argument has been useful in proving lower bounds in complexity theory. For example,
the paper [Dietzfelbinger et al., 1991] uses Kolmogorov complexity to show that no Turing
machine with a single worktape can compute the transpose of a matrix in less than time
Ω

	

n3

�

2 � �

logn




.

9 Research Issues and Summary

As stated in the introduction to Chapter 27, the goals of complexity theory are (i) to as-
certain the amount of computational resources required to solve important computational
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problems, and (ii) to classify problems according to their difficulty. The preceding two
chapters have explained how complexity theory has devised a classification scheme in or-
der to meet the second goal. The present chapter has presented a few of the additional
notions of complexity that have been devised in order to capture more problems in this
scheme. Progress toward the first goal (proving lower bounds) depends on knowing that
levels in this classification scheme are in fact distinct. Thus the core research questions in
complexity theory are expressed in terms of separating complexity classes:

� Is L different from NL?

� Is P different from RP or BPP?

� Is P different from NP?

� Is NP different from PSPACE?

Motivated by these questions, much current research is devoted to efforts to understand
the power of nondeterminism, randomization, and interaction. In these studies, researchers
have gone well beyond the theory presented in Chapters 27 through this chapter:

� beyond Turing machines and Boolean circuits, to restricted and specialized models
in which nontrivial lower bounds on complexity can be proved;

� beyond deterministic reducibilities, to nondeterministic and probabilistic reducibili-
ties, and refined versions of the reducibilities considered here;

� beyond worst case complexity, to average case complexity.

We have illustrated how recent research in complexity theory has had direct applications
to other areas of computer science and mathematics. Probabilistically checkable proofs
were used to show that obtaining approximate solutions to some optimization problems is
as difficult as solving them exactly. Complexity theory provides new tools for studying
questions in finite model theory, a branch of mathematical logic. Fundamental questions in
complexity theory are intimately linked to practical questions about the use of cryptography
for computer security, such as the existence of one-way functions and the strength of public
key cryptosystems.

This last point illustrates the urgent practical need for progress in computational com-
plexity theory. Many popular cryptographic systems in current use are based on unproven
assumptions about the difficulty of computing certain functions (such as the factoring and
discrete logarithm problems; see Chapters 38–42 of this Handbook for more background
on cryptography). All of these systems are thus based on wishful thinking and conjecture.
The need to resolve these open questions and replace conjecture with mathematical cer-
tainty should be self-evident. (In the brief history of complexity theory, we have learned
that many popular conjectures turn out to be incorrect.)

With precisely defined models and mathematically rigorous proofs, research in com-
plexity theory will continue to provide sound insights into the difficulty of solving real
computational problems.
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10 Defining Terms

Descriptive complexity: The study of classes of languages described by formulas in
certain systems of logic.

Incompressible string: A string whose Kolmogorov complexity equals its length, so
that it has no shorter encodings.

Interactive proof system: A protocol in which one or more provers try to convince an-
other party called the verifier that the prover(s) possess certain true knowledge, such
as the membership of a string x in a given language, often with the goal of reveal-
ing no further details about this knowledge. The prover(s) and verifier are formally
defined as probabilistic Turing machines with special “interaction tapes” for ex-
changing messages.

Kolmogorov complexity: The minimum number of bits into which a string can be com-
pressed without losing information. This is defined with respect to a fixed but uni-
versal decompression scheme, given by a universal Turing machine.

L-reduction A Karp reduction that preserves approximation properties of optimization
problems.

Optimization problem: A computational problem in which the object is not to decide
some yes/no property, as with a decision problem, but to find the best solution in
those “yes” cases where a solution exists.

Polynomial hierarchy: The collection of classes of languages accepted by k-alternating
Turing machines, over all k

�

0 and with initial state existential or universal. The
bottom level (k � 0) is the class P, and the next level (k � 1) comprises NP and
co-NP.

Polynomial time approximation scheme (PTAS): A meta-algorithm that for every ε �

0 produces a polynomial time ε-approximation algorithm for a given optimization
problem.

Probabilistic Turing machine: A Turing machine in which some transitions are random
choices among finitely many alternatives.

Probabilistically checkable proof: An interactive proof system in which provers follow
a fixed strategy, one not affected by any messages from the verifier. The prover’s
strategy for a given instance x of a decision problem can be represented by a finite
oracle language Bx, which constitutes a proof of the correct answer for x.

Relational structure: The counterpart in formal logic of a data structure or class instance
in the object-oriented sense. Examples are strings, directed graphs, and undirected
graphs. Sets of relational structures generalize the notion of languages as sets of
strings.
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L’Enseignement Mathématique, 28:191–210, 1982.

[Krentel, 1988] M. Krentel. The complexity of optimization problems. J. Comp. Sys. Sci.,
36:490–509, 1988.

[Lautemann, 1983] C. Lautemann. BPP and the polynomial hierarchy. Inf. Proc. Lett.,
17:215–217, 1983.
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Further Information
Primary sources for major theorems presented in this chapter include: Theorem 2.1

[Stockmeyer, 1976, Wrathall, 1976, Chandra et al., 1981]; Theorem 3.2(a,b) [Gill, 1977],
(c) [Sipser, 1983, Lautemann, 1983], (d) [Toda, 1991], (e) [Allender, 1997]; Theorem 3.3
[Adleman, 1978]; Theorem 4.1(a) [Abiteboul and Vianu, 1991], (b) [Stockmeyer, 1976],
(c) [Fagin, 1974], (d,e,f) [Immerman, 1989], (g) ([Lindell, 1994], cf. [Barrington et al.,
1990]); Theorem 4.2(a) [Büchi, 1960], (b) [Schützenberger, 1965, McNaughton and Papert,
1971]; Theorem 5.1 [Shamir, 1992]; Theorem 5.2 [Babai et al., 1991]; Theorem 5.3 [Arora
and Safra, 1992]; Theorem 6.1 [Arora et al., 1992]; Theorem 7.2(a) [Valiant, 1979], (b)
[Vinay, 1991]. The operators in Definition 4.2 are from [Immerman, 1989] and [Abiteboul
and Vianu, 1991]. Interactive proof systems were defined by [Goldwasser et al., 1989], and
in the “Arthur-Merlin” formulation, by [Babai and Moran, 1988]. A large compendium
of optimization problems and hardness results collected by P. Crescenzi and V. Kann is
available at:

http://www.nada.kth.se/˜viggo/index-en.html

The class #P was introduced by [Valiant, 1979], and #L by [Alvarez and Jenner, 1993]. The
book [Li and Vitányi, 1993] gives a far-reaching and comprehensive scholarly treatment of
Kolmogorov complexity, with many applications, as well as the source of Theorem 8.1.

Three contemporary textbooks on complexity theory are [Balcázar et al., 1990], [Bovet
and Crescenzi, 1994], and [Papadimitriou, 1994]. [Wagner and Wechsung, 1986] is an
exhaustive survey of complexity theory that covers work published before 1986. Another
perspective of some of the issues covered in these three chapters may be found in the survey
[Stockmeyer, 1987].

A good general reference is the Handbook of Theoretical Computer Science [van
Leeuwen, 1990], volume A. The following chapters in the Handbook are particularly rel-
evant: “Machine models and simulations,” by P. van Emde Boas, pp. 1–66; “A catalog
of complexity classes,” by D. S. Johnson, pp. 67–161; “Machine-independent complexity
theory,” by J. I. Seiferas, pp. 163–186; “Kolmogorov complexity and its applications,” by
M. Li and P. M. B. Vitányi, pp. 187–254; and “The complexity of finite functions,” by
R. B. Boppana and M. Sipser, pp. 757–804, which covers circuit complexity.

A collection of articles edited by Hartmanis [Hartmanis, 1989] includes an overview
of complexity theory, and chapters on sparse complete languages, on relativizations, on
interactive proof systems, and on applications of complexity theory to cryptography. For
historical perspectives on complexity theory, see [Hartmanis, 1994], [Sipser, 1992], and
[Stearns, 1990].

There are many areas of complexity theory that we have not been able to cover in
these chapters. Some of them cross-pollinate with other fields of computer science and are
reflected in other chapters of this Handbook. Three others are average-case complexity,
resource-bounded measure theory, and parameterized complexity. Recent surveys on the
first two are [Wang, 1997, Lutz, 1997], while the third stems from [Downey and Fellows,
1995] and has its own Web site, currently maintained by M. Hallett at:
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http://csr.uvic.ca/home/mhallett/W.hier/compendium.html

Surveys and lecture notes on complexity theory that can be obtained via WWW are main-
tained by A. Czumaj and M. Kutylowski at:

http://www.uni-paderborn.de/fachbereich/AG/agmadh/WWW/english/scripts.html

As usual with the WWW, these links are subject to change. A good stem page to begin
searches is the site for SIGACT, the ACM Special Interest Group on Algorithms and Com-
putation Theory:

http://sigact.acm.org/

This has a pointer to a “Virtual Address Book” that indexes the personal Web pages of
over 1,000 computer scientists, including all three authors of these chapters. Many of these
pages have downloadable papers and links to further research resources.

Research papers on complexity theory are presented at several annual conferences, in-
cluding the annual ACM Symposium on Theory of Computing; the annual International
Colloquium on Automata, Languages, and Programming, sponsored by the European As-
sociation for Theoretical Computer Science (EATCS); and the annual Symposium on Foun-
dations of Computer Science, sponsored by the IEEE. The annual Conference on Computa-
tional Complexity (formerly Structure in Complexity Theory), also sponsored by the IEEE,
is entirely devoted to complexity theory. Research articles on complexity theory regularly
appear in the following journals, among others: Chicago Journal on Theoretical Computer
Science, Computational Complexity, Information and Computation, Journal of the ACM,
Journal of Computer and System Sciences, Mathematical Systems Theory, SIAM Journal
on Computing, and Theoretical Computer Science. Each issue of ACM SIGACT News and
Bulletin of the EATCS contains a column on complexity theory.
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