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Abstract. The orbit of a regular function f over a field F under action by a matrix group G is the
collection of functions f(Ex) for E ∈ G. We show that some lower bounds of Bürgisser and Lotz
[BL03] and Shpilka and Wigderson [SW99] in restricted arithmetical circuit/formula models extend
to orbits, where E does not count against the complexity bounds and is not subject to the (same)
restriction(s). Our “orbit model” and a second “linear-combination model” aim to bridge the gap
between the bounded-coefficient linear/bilinear circuit model of [Mor73,NW95,Raz03,BL03] and the
arbitrary-coefficient case. We extend size-depth tradeoff methods of Lokam [Lok01] to the latter model.
Variants of the Baur-Strassen “Derivative Lemma” are developed, including one that can be iterated
for sums of higher partial derivatives.

1 Introduction

One of the central mysteries in arithmetic circuit complexity over infinite fields F is the compu-
tational power conferred by the ability to use “for free” constants of arbitrary magnitude and/or
precision from F . These constants are a major technical obstacle in relating arithmetic complex-
ity to Boolean circuit complexity theory. It is commonly observed (e.g. by [Mor73,Cha98,Mul99])
that classic important algorithms employ only simple constants. A major exception is polynomial
interpolation, but even here it seems that over fields containing the rationals, small constants with
enough bits of precision are equally as useful as large ones.

To probe the significance of field constants, several researchers have obtained size lower bounds
on arithmetical circuits with a uniform bound on the absolute value of constants. Morgenstern
[Mor73] proved that bounded-coefficient circuits (henceforth, bc-circuits) need size Ω(n log n) to
compute the linear transformation for the Fast Fourier Transform. Chazelle [Cha98] obtained similar
bounds for geometric range-searching problems, while Lokam [Lok01] obtained related size-depth
tradeoffs for bc-circuits computing linear transformations with certain degrees of rigidity . More
recently Raz [Raz02] broke through by obtaining Ω(n log n) lower bounds for a natural bi-linear
function, namely multiplication of two

√
n ×
√
n matrices. Bürgisser and Lotz [BL03] extended

Raz’s ideas to obtain tight Ω(n log n) bounds on bc-circuits for cyclic convolution, and thence
for polynomial multiplication and related bi-linear functions. These lower bounds hold even when
the bc-restriction is lifted for O(n1−ε)-many “help gates.” The natural question is, can one obtain
similar lower bounds without the bc-restriction at all?

A flag of difficulty is that the best-known lower bounds on general arithmetical circuit size of
any explicit family of nO(1)-degree polynomials f(x0, . . . , xn−1) are Ω(n log n). These employ the
“Derivative Lemma” of Baur and Strassen [BS82], which converts circuits of size s computing f
into n-output circuits of size O(s) computing (∂f) : Fn → Fn = (∂f/∂x1, . . . , ∂f/∂xn). They
apply to functions like f = xn0 + . . . + xnn−1 such that the geometric degree of the ideals If in
F [x0, . . . , xn−1, y0, . . . , yn−1] generated by (y0−∂f/∂x0, . . . , yn−1−∂f/∂xn−1) grow as exp(n log n).
For bilinear forms, however, the first derivatives are linear, and so the associated geometric degree
is just 1. Thus extending the results of [Raz02,BL03] to unbounded-coefficient cases seems a hard
task, hence one worthy of attack by building bridges of partial progress.

Our main bridging concept allows certain linear transformations of unit determinant at the
inputs free of charge. For a bilinear function f(x, y) of 2n variables, we consider the orbit of f under
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the natural “double action” Gf = {λx, y.f(Ex,Dy) : D,E ∈ G } of some group G of n×n matrices.
This is a special case of a “single action” by a group of 2n× 2n (block) matrices. Such actions on
multilinear maps f like the determinant and permanent polynomials form the basis of Mulmuley
and Sohoni’s recently-proposed attack on super-polynomial (arithmetical or Boolean) circuit lower
bounds [MS02]. Note that this model not only works past the above-mentioned O(n1−ε) limit on
“help” gates with unbounded constants, it also does not constrain the linear circuit complexity of
D and E themselves, which may be as high as quadratic. We note first that taking G to be all of
SLn(C), the group of complex matrices of determinant 1, is close to the arbitrary-coefficients case
from the standpoint of lower bounds. This means, however, that partial progress should further
restrict either the matrices D,E or some other aspect of the circuits. We extend the lower bounds
in [BL03] when D,E (also) have bounded condition number , and we extend the size-depth tradeoff
method of Lokam [Lok01] to handle some other cases of orbits.

Orbits have no effect on the multiplicative-complexity (`∗) measure for sum-of-products-of-
sums (ΣΠΣ) formulas (always with arbitrary coefficients) used by Shpilka and Wigderson [SW99].
We show that they do matter for additive-complexity (`+) and overall formula size (` = `+ +`∗), by
proving Ω(n4/3) ΣΠΣ-formula size lower bounds on a tri-linear function whose orbit under triple-
action by unitary matrices includes a polynomial with linear-size ΣΠΣ formulas. The function
is the inner product of cyclic convolution with a third vector of variables. For several functions
in [SW99] we combine a closed-form derivative lemma for ΣΠΣ formulas with their methods to
obtain lower bounds on `+ and ` that are sharper for low degree than those they gave for `∗, and
that do carry over to entire GLn(C) orbits.

Finally, in place of bc-linear or bc-bilinear circuits computing m-ary functions f =
(f1, . . . , fm), we consider bc circuits with n + m inputs and one output that compute Lf =∑m
j=1 ajfj(x0, . . . , xn−1). As reported in [BL03], Pudlák has noted the counterexample f =

2n
∑n−1
i=0 xiyi to the erroneous assertion in [NW95] that the Derivative Lemma preserves asymptotic

bc-complexity. Nevertheless, we give a new form of the Derivative Lemma that preserves asymptotic
bc-complexity in passing from f to L∂f . This form can be iterated, yielding for example circuits of
size O(s(f)) with inputs x0, . . . , xn−1, a0, . . . , an−1, b0, . . . , bn−1 that compute

n−1∑
i,j=0

aibj
∂2f

∂xi∂xj
,

and likewise bc-circuits of size O(sbc(f)). Going to Lf rules out the way spectral methods are
applied in [Mor73,Raz03,BL03], because all diagonal matrices D with entries of absolute value at
most 2n have linear-size circuits for LD. Nevertheless, we show that the spectra/rigidity technique
used by Lokam [Lok01] can be extended to prove size-depth tradeoffs on Lf for certain f that are
vectors of linear transformations. A short concluding section assesses the prospects of extending
the two bridges to prove strongly super-linear lower bounds on general arithmetic circuits.

2 Definitions and Background

Throughout the paper, we let Fn abbreviate
(

DFT n√
n

)
, where (DFTn)ij = ωij for ω = e2πi/n.

Arithmetical circuits computing a function f : Fn → Fm over some field F have binary addition
(+) and binary multiplication (∗) gates, n-many input gates labeled x0, . . . , xn−1, and m-many
output gates. The wires into a + or ∗ gate may contain multiplicative constants from F . For
instance, a binary + gate with constants c, d on the two incoming wires computes the operation
cy + dz given arguments y and z. With c = 1, d = −1 the gate computes subtraction. The size of
the circuit is the number of binary gates, or equivalently for bounded fan-in, the number of wires.
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Linear circuits have no ∗-gates. Bilinear circuits as described in [Raz02,BL02] have a single
layer of k-many ∗-gates, and clusters T1, T2, T3 of addition gates. The gates in T1 compute k-many
linear forms `1, . . . , `k in the variables x0, . . . , xn−1 (so T1 is a linear transformation from Cn to Ck),
while those in T2 compute linear forms r1, . . . , rk in y0, . . . , yn−1. The multiplication gates compute
the respective products `1r1, . . . , `krk, while the gates in T3 compute a linear transformation from
Ck to Cn that gives the final output f = (f1, . . . , fn) = T3(`1r1, . . . , `krk).

We follow [Raz02] in defining bounded coefficient (bc) circuits to have all constants on wires be
of magnitude at most 1. Bürgisser and Lotz use a bound of 2, but theirs can be converted to Raz’s
circuits by inserting extra + gates, and the only effect on our results would be a halving of the
size-depth tradeoffs. As attested in [Raz02], every (bc) circuit computing bilinear forms (f1, . . . , fn)
can be converted into a bilinear (bc) circuit computing (f1, . . . , fn) with a small constant-factor
increase in size and depth, and likewise for linear circuits. Thus we may restrict attention to
(bi-)linear circuits for the functions we consider. The complexity of a linear transformation A for
bounded-coefficient circuits is denoted by sbclin(A).

The cyclic convolution x ◦ y of two n-vectors x, y as above is the n-vector (z0, . . . , zn−1) with

zk =
∑

i+j≡k mod n

xiyj

for 0 ≤ k < n. When fixing x = a = (a0, . . . , an−1)T , the induced map on y is computed by the
circulant matrix Circ(a) at left. We also find it convenient to consider the “half convolution” defined
by HCirc(x)y, where HCirc(a) is the lower-triangular matrix at right:

Circ(a) =


a0 an−1 · · · a2 a1

a1 a0 · · · a3 a2
...

...
...

...
an−2 an−3 · · · a0 an−1

an−1 an−2 · · · a1 a0

 , HCirc(a) =


a0 0 · · · 0 0
a1 a0 · · · 0 0
...

...
...

an−2 an−3 · · · a0 0
an−1 an−2 · · · a1 a0

 .

Then adding HCirc(x)y to the inverted vector HCirc(xn−1, xn−2, . . . , x1)(y1, y2, . . . , yn−1), which
can be done by bilinear (bc) circuits with linearly many extra + gates, gives x ◦ y. Thus lower
bounds on x ◦ y extend immediately to HCirc(x)y. The convenience is that HCirc(x)y is definable
by recursion from HCirc(x1, . . . , xn−2)(y1, . . . , yn−2), needing only linearly-many extra binary ∗
gates applied to x0, y0 and elements of x0, . . . , xn−1 and y0, . . . , yn−1 and preserving the bilinear
format. Namely, zero out the first column and main diagonal of HCirc(a), observe that the piece
in between is the lower triangle of HCirc(a1, . . . , an−2) multiplying the interior n− 2 elements of y,
and restore the summands in the first column and main diagonal involving x0 and y0. We use this
fact in the proof of Theorem 1 below. Now we define our orbit model in the bilinear case.

Definition 1. Let E and D be n×n non-singular complex matrices. An orbit circuit is the compo-
sition Γ (Ex,Dy), where Γ is a bounded-constants bilinear circuit. The size of the circuit is taken
to be the size of Γ .

To emphasize, the entries of the matrices E and D above are not restricted to be of norm at
most one. An orbit circuit thus has the potential help of 2n2-many unbounded constants, although
flowing through only 2n-many input gates.

First, any bilinear circuit C can be converted to a bc-bilinear orbit circuit Γ of the same size for
some diagonal matrices E and D. If g is a + gate with m outgoing wires with constants c1, . . . , cm
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and constants d, e on its incoming wires, then we may take c to be the maximum of |c1|, . . . , |cm|,
replace each ci by ci/c (which has norm at most 1), and make cd, ce the new constants on the
incoming wires. If g is a ∗ gate, we need only propagate cd, e upward. Iterating this from the
outputs up pushes all unbounded constants up to the wires from the inputs. Repeating this one
more time pushes the unbounded constants onto the inputs themselves as nonnegative reals, and
they can be the entries of E and D. None of the final constants will be zero unless the corresponding
input was already zeroed out. Thus the orbit model with G = GLn(C), namely the group of all
invertible complex matrices, is no less general than the unbounded-coefficients case (possibly more
so, if D and E have high circuit complexity by themselves).

Things become more interesting with G = SLn(C). If (the function computed by) C ignores
inputs x0 and y0, then we can create diagonal matrices D,E of determinant 1 by taking the first
entry to be 1/Kn−1 and the remaining entries to be K, where K is the maximum real constant
obtained in the pushing-up process. The tiny entry in D and E gets thrown away while the large
ones feed the bc-circuit Γ left over from the process. If we insist on functions f that depend on all
of their inputs, then techniques that tolerate two unbounded “help gates” (not needing the n1−ε

allowance in [BL02]) still imply lower bounds in the general case, with x0 and y0 becoming the help
gates. If we disallow this but “relax” orbit circuits Γ by allowing access also to the un-transformed
inputs x0 and y0, we can still prove rigorously that SLn(C)-orbit bc-circuit lower bounds imply
unbounded-coefficient lower bounds, for half-convolution and functions with a similar recursion:

Theorem 1. Bilinear circuits C of size s computing HCirc(x)y can be converted into “relaxed”
SLn-orbit circuits Γ of size s+O(n) computing HCirc(x)y.

Proof. Convert C to Γ0 by pushing up constants as before, along with the above diagonal D,E ∈
SLn(R). Now reduce Γ0 by zeroing the constants out of x0 and y0, splicing out gates their wires
connect to. The resulting circuit computes HCirc(x1, . . . , xn−2)(y1, . . . , yn−2). Finally use the free
access to the untransformed inputs x0 and y0 to re-create HCirc(x)y as above, adding 2n-many ∗
gates and 2n− 1 + gates at the outputs. On products x0yi with i > 0, the constant K on yi from
D is counter-acted by a constant 1/K on the wire from x0, and similarly for products xiy0. This
yields the desired “relaxed” orbit bc-circuit Γ . ut

Without any relaxation, allowing such matrices D and E certainly defeats the proof methods of
Raz and Bürgisser-Lotz. These rely on bounding the volume-expansion factor on all r-dimensional
subspaces of Cn, for some value r = Θ(n). Matrices of this form can expand volume in many of
these subspaces by the unbounded factor K (or rather by Kr), and it seems not to matter that the
first co-ordinate is crushed by 1/Kn−1. We adapt these methods for cases where we can avoid or
contain this problem. We refer to the probabilistic machinery from [BL02].

2.1 Standard Gaussian vectors

When we need to distinguish row and column vectors x, we write the latter as (x0, . . . , xn−1)T .
The conjugate transpose of a vector x and matrix A are written x∗ and A∗, respectively. A random
vector x ∈ C is called standard Gaussian if the real and imaginary parts of all components xi
comprise 2n independent standard normally distributed random variables. An important fact is
that if F is any unitary transformation, then Fx is again standard Gaussian distributed.

For an r-dimensional linear subspace U , we say that a random vector a is standard Gaussian
distributed in U if we can write a = β1v1 + . . .+βrvr, where β is standard Gaussian in Cr and {vi}i
is an orthonormal basis. This representation is independent of the choice of orthonormal basis.
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We will use the following two lemmas from [BL02]. A random variable t is exponentially dis-
tributed with parameter 1 if it has density function p(t) = e−t for t ≥ 0, and p(t) = 0 otherwise.

Lemma 1 ([BL02]). Let (x1, . . . , xn)T be standard Gaussian in Cn. Let f = (f1, . . . , fn)T ∈ Cn.
Then S := f1x1 + . . .+fnxn is normally distributed with mean 0 and variance ‖f‖2. And T := |S|2

2‖f‖2
is exponentially distributed with parameter 1. Hence T has mean and variance both equal to 1.

As in [BL02], when we say a vector z ∈ Cr is normal distributed with mean 0, the real and
imaginary parts of each component zi are normal distributed random variables with mean 0.

Lemma 2 ([BL02]). Let z = (z1, . . . , zr)T be a normal distributed random vector in Cr with
mean 0. Define the complex covariance matrix of z to be the outer product Σ = zz∗. Then we have
Pr[|z1|2 · · · |zr|2 ≥ δr det(Σ)] > 1/2, for some absolute constant δ > 0.

2.2 Mean Square Volume & Matrix Rigidity

It is well known that the volume of the parallelepiped subtended by the rows of a matrix A ∈
Cn×n is given by |det(A)|. Morgenstern [Mor73] proved that log |det(A)| is an asymptotic lower
bound on the size of a linear arithmetical circuit with bounded coefficients computing the linear
transformation given by A. Given an m× n matrix A and sets I ⊆ { 1, . . . ,m } of row indices and
J ⊆ { 1, . . . , n } of column indices, define AI,J to be the matrix of elements with row index in I and
column index in J , and AI to be AI,{ 1,...,n }.

Definition 2 ([BL02]). Given A ∈ Cm×n, and r such that 1 ≤ r ≤ minm,n, define the r-mean
square volume msvr(A) of A by

msvr(A) =

∑
I,J

|det(AI,J)|2
1/2

.

An important fact is that mean square r-volume is invariant under unitary transformations. That
is, for A as above and all unitary matrices U ∈ Cm×m and V ∈ Cn×n,

msvr(A) = msvr(UAV ).

As we have remarked above, msvr is not preserved under transformations in SLn(R) (unless r = n).
The following theorem states the use of the mean square volume measure for proving lower bounds.

Theorem 2 ([BL02]). For A ∈ Cm×n, and 1 ≤ r ≤ min(m,n), we have that a linear bounded-
constant circuit computing A has size at least log msvr(A)− 1

2 log(mr )( nr ).

Next we introduce Raz’s notion of geometric rigidity.

Definition 3 ([Raz02]). Let A ∈ Cn×n be an matrix with with row vectors ai, The r-rigidity of
A is defined to be

rigr(A) = min
dimV=r

max
1≤i≤n

dist(ai, V ),

where V ranges over all linear subspaces of Cm, and dist(a, V ) = minv∈V ‖a− v‖.
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Lemmas 3.1 and 3.2 in [Raz02] give the following

Theorem 3. For A ∈ Cm×n, and 1 ≤ r ≤ m, we have that a linear bounded-constant circuit
computing A has size at least r log rigr(A)− n.

The term n in the above stems from the fact that in [Raz02] norms are bounded by 1 instead of 2.
We will use the following lemma from [BL02]. Here for f, a ∈ Cn, we think of f as a linear form
via f(a) = f∗a.

Lemma 3 ([BL02]). Let f1, . . . , fk be linear forms and 1 ≤ r < n. Then there exists a linear
subspace U of Cn of dimension r such that for a ∈ U standard Gaussian, we have that

Pr[max
i
|fi(a)| ≤ 2

√
ln 4k ·rign−r(f

T
1 , . . . , f

T
k )] ≥ 1

2
.

3 Well-Conditioned Orbit Circuits

In this section, we will consider orbit circuits Γ (Ex,Dy) for which matrices E and D are well
conditioned in the following traditional sense, with reference to [GvL96].

Definition 4. The condition number κ(E) of a non-singular matrix E is defined to be the ratio
σ1(E)
σn(E) of it largest and smallest singular value. This equals the product ||E||2 · ||E−1||2. We fix some
absolute constant κ1, and stipulate that a well-conditioned matrix E has κ(E) ≤ κ1.

Unitary matrices have condition number 1. That the results of [BL02,BL03] carry over to
orbits under unitary matrices follows immediately on the “x side” because the image of a standard-
Gaussian vector under unitary transformation is standard Gaussian, and on the “y side” because
unitary transformations preserve msvr. For bounded condition number the “y side” needs only:

Proposition 1. For any two n×n nonsingular matrices A and B where B has determinant equal
1, for any 1 ≤ r ≤ n, msv2

r(AB) ≥ κ(B)−2rmsv2
r(A).

Proof. Let B = UDV be the singular value decomposition of B. Then msv2
r(AB) =

msv2
r(AUDV ) = msv2

r(AUD). So the general case reduces to the case where B is diagonal with
real entries. So assume B = diag(b1, . . . , bn). Observe that each bi ≥ κ(B)−1. Hence msv2

r(AB) =

ΣI,J |det(AB)I,J |2 = ΣI,J
∏
j∈J
|bj |2|detAI,J |2 ≥ κ(B)−2rΣI,J |detAI,J |2 = κ(B)−2rmsv2

r(A).ut

However, the “x side” needs more care that the deviation from standard Gaussian distribution
incurred in going from x to Ex does not disturb the statistical machinery by too much. The crux
of the matter lies in the following generalization of a lemma in [BL02]. The proof is in Appendix 1.

Lemma 4. Let 1 ≤ r < n, and Let E and D be an n×n complex matrices with determinant 1 that
are well-conditioned. Let U be a linear subspace of dimension r, and let a be standard Gaussian in
U . Then

Pr[sbclin(Circ(Ea)D) ≥ 1
2
r log n− cn] >

1
2
,

where c is some absolute constant.
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Combining this with Lemma 3 in the same manner as in [BL02] yields the main theorem of
this section.

Theorem 4. Any orbit circuit Γ (Ex,Dy), where E and D have determinant 1 and are well-
conditioned, computing cyclic convolution x ◦ y must have Ω(n log n) gates.

Proof. The main idea is that the two lemmas show the existence of a value a to fix for x, so that
simultaneously the values of the linear forms `1(a), . . . , `k(a) are manageably small and the bc-
complexity of the resulting linear map in y is high. The values `1(a), . . . , `k(a) are small enough
that the linear circuit obtained from the original bilinear bc-circuit Γ by plugging them in and
deleting the “x side” can be converted into a linear bc-circuit adding not too many gates, leading
to the conclusion that Γ itself must have been large. For completeness the remaining details, mostly
un-altered from [BL02], are in Appendix 1. ut

We are able to drop the well-conditioning requirement in the above theorem for circuits Γ with
exactly n multiplication gates, but have not been able to push that even to n+ 1.

4 Orbits of ΣΠΣ-Formulas

We consider orbit circuits of the form C(Ex), where E ∈ GLn(C) and C is a ΣΠΣ-formula—
namely, a formula with one layer of unbounded-fanin + gates, one layer of unbounded-fanin ∗ gates,
and output + gate(s) of unbounded fanin. In this entire section, constants on wires are unrestricted.
Shpilka and Wigderson [SW99] proved super-linear lower bounds on the multiplicative complexity
`∗, which counts the wires fanning in to the layer of ∗ gates, on ΣΠΣ formulas for certain natural
families of polynomials that we also analyze below. We obtain sharper and more general bounds,
but on additive complexity and total formula size instead. Let lo3(f) denote the smallest number
of wires for a ΣΠΣ-formula C for which there exists invertible matrix E such that C(Ex) = f .
Regular ΣΠΣ-formula size, that is fixing E to be the identity map in the above, is denoted by
l3(f). We refer to [SW99] for definitions and basic results used in the following.

To separate the orbit-ΣΠΣ-formula model from the original, for ` and `+, consider the tri-
linear function g = zTCirc(x)y. In Theorem 10, we show an Ω(n4/3) lower bound on `+(g). To find
a polynomial h in the orbit of g that has O(n) ΣΠΣ-formula size, apply DFT−1

n to x, Fn to y
and F−1

n to z. Since Circ(x) = Fndiag(λ)F−1
n for λ = DFTnx, we get zTF−1

n Circ(DFT−1
n x)Fny =

zTdiag(x)yT . We can divide out constants to make the three matrices unitary. To show which lower
bounds do extend to orbits, we first extend a lemma of [SW99].

Lemma 5. Let g ∈ C[y1, . . . , yn] and let E ∈ GLn(C). Suppose f = g(Ex). If it holds that for every
affine subspace A of codimension κ, dim(∂d(f)|A) > D, then also for every affine subspace B of
codimension κ, dim(∂d(g)|B) > D.

Proof. Suppose there exists an affine subspace B of codimension κ such that dim[∂d(g)|B)] ≤ D.
Let S = ∂d(g), S(Ex) = {s(Ex) : s ∈ S} and T = ∂d(f). Observe that T ⊆ span(S(Ex)). Suppose
restriction to B is represented by the substitution (Bx+ b). E−1B is also affine of codimension κ,

dim[∂d(f)|E−1B] = dim[{p(E−1Bx+ E−1b) : p ∈ T}]

Since {p(E−1Bx+E−1b) : p ∈ T} is contained in the span of S(Bx+ b), we obtain a contradiction.
ut
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Theorem 5. Let f ∈ C[x1, . . . , xn]. Suppose for integers d,D, κ it holds that for every affine
subspace A of codimension κ, dim(∂d+1(f)|A) > D. Then

lo3(f) ≥ min(
κ2

d+ 2
,

D

( κ+d
d )

).

Proof. Suppose f = C(Ex), where C is a ΣΠΣ formula with lo3(f) many wires and E is some
invertible matrix. Write Let g = C(y). By lemma 5, for any affine A of codimension κ,

n∑
i=1

dim[∂d(
∂g

∂yi
)|A] ≥ dim[∂d+1(g)|A] > D. (1)

Let M1, . . . ,Ms be the multiplication gates of C. We have that g =
∑s
i=1Mi, where for 1 ≤ i ≤ s,

Mi = Πdi
j=1li,j with deg(li,j) = 1 and di = indeg(Mi). Write li,j = ci,j,1y1 + ci,j,2y2 + . . .+ ci,j,nyn +

ci,j,0. Computing the partial derivative of g w.r.t. variable yk we get:

∂g

∂yk
=

s∑
i=1

di∑
j=1

ci,j,k
Mi

li,j
. (2)

This embodies a closed-form of the Baur-Strassen Derivative Lemma forΣΠΣ formulas, and confers
extra power for `+ over the methods in [SW99]. Let S = {i|dim(Mh

i ) ≥ κ}. If |S| ≥ κ
d+2 , then

lo3(f) ≥ κ2

d+2 . Suppose |S| < κ
d+2 . If S = ∅, then let A be an arbitrary affine subspace of codimension

κ. Otherwise, we have d + 2 < κ. It is possible to pick d + 2 input linear forms lj,1, . . . , lj,d+2 of
each multiplication gate Mj with j ∈ S, such that {lhj,1, . . . , lhj,d+2|j ∈ S} is a set of at most κ
independent homogeneous linear forms. Define A = {y|li,j(y) = 0, i ∈ S, j ∈ [d + 2]}. We have
codim(A) ≤ κ. Wlog. assume codim(A) = κ. For each i ∈ S, d+2 linear forms of Mi vanish on A.
This implies that

dim(∂d(
Mi

li,j
)|A) = 0, while for i /∈ S, dim(∂d(

Mi

li,j
)|A) < ( κ+d

d )

by Proposition 2.3 in [SW99]. Let Dk = dim(∂d(
∂g
∂yk

)|A). By equation (1),
∑n
k=1Dk > D. By

Proposition 2.2 of [SW99] and equation (2),

Dk ≤
∑
i,j

ci,j,k 6=0

dim(∂d(
Mi

li,j
)|A).

Hence there must be at least Dk
( κ+d
d

)
terms on the RHS, i.e. there are at least that many wires from

yk to gates in the next layer. Hence in total the number of wires to fanning out from the inputs of
C is at least

∑n
i=1

Di
( κ+d
d

)
> D

( κ+d
d

)
. ut

In case we just want to prove lower bounds on ΣΠΣ-formula size, we observe that the above
proof actually yields the following:

Theorem 6. Let f ∈ C[x1, . . . , xn]. Suppose for integers d,D, κ it holds that for every affine
subspace A of codimension κ,

∑n
i=1 dim(∂d(

∂f
∂xi

)|A) > D. Then

l3(f) ≥ min(
κ2

d+ 2
,

D

( κ+d
d )

).ut
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Typically, in applications the expression
∑n
i=1 dim(∂d(

∂f
∂xi

)|A) is bounded from below by con-
sidering dim(∂d+1(f)|A), and hence we get no stronger lower bound without orbits. However, we’ll
see one example where we do need to call upon Theorem 6 to prove a nonlinear ΣΠΣ-formula
lower-bound, while there exists no such lower bound in the orbit model.

4.1 Lower Bounds

The degree-d symmetric polynomial in n variables is defined to be Sdn =
∑
|I|=d

∏
i∈I xi.

Theorem 7. For 1 ≤ d ≤ log n, lo3(S2d
n ) = Ω(n

2d
d+1

d+1 ).

Proof. By lemma 4.14 in [SW99], for any affine subspace A of codimension κ and d ≥ 0,

dim(∂d+1(S2d+2
n )|A) ≥ ( n−κd+1 )

Applying Theorem 5 we get that

l3(S2d+2
n ) ≥ min(

κ2

d+ 2
,
( n−κd+1 )

( κ+d
d )

) = min(
κ2

d+ 2
,
( n−κd )
( κ+d
d )

n− κ− d− 1
d+ 1

) ≥ min(
κ2

d+ 2
,
( n−κd )
( κ+d
d )

n− 2κ
d+ 1

)),

(3)
subject to the condition (d+ 1) < κ. Set κ = 1

9n
d+1
d+2 . Then we have that

( n−κd )
( κ+d
d )

n− 2κ
d+ 1

≥ (
n− κ
κ+ d

)d
n− 2κ
d+ 1

≥ (
8/9n

2/9n
d+1
d+2

)d
n− 2κ
d+ 1

= 4dn
d
d+2

n− 2κ
d+ 1

≥ n
2d+2
d+2

d+ 1
.

Hence (3) is at least min( n
2d+2
d+2

81(d+2) ,
n

2d+2
d+2

d+1 ) = Ω(n
2d+2
d+2

d+2 ). ut

Comparing this with [SW99] we see that we get a slightly stronger lower bound on the size
of an orbital ΣΠΣ-formula if we count the wires in the first layer rather than the wires in the
multiplication layer. The number of wires in the multiplication layer of a formula for S2d

n was
bounded there to be Ω(n

2d/(d+2)

d ) for d ≤ log n. This result includes the extension to the orbit
model, since the composition with an invertible linear map does not alter the number of wires in
the multiplication layer. Our results show that the extension to the orbit model is also possible,
even when counting wires at the input layer of the circuit.

Definition 5. Define product-of-inner-products by PIP 2
n = (

∑n
j=1 ajbj)(

∑n
i=1 cidi).

Theorem 8. `o3(PIP 2
n) = Ω(n4/3).

Proof. Set d = 1, κ = n2/3. Observe that ∂PIP 2
n

∂aicj
= bidj . Let A be any affine subspace of codimension

κ with basis B. At least n− κ variables in {b1, . . . , bn} are not in B. Symmetrically, at least n− κ
variables in {d1, . . . , dn} are not in B. So for at least (n − κ)2 indices (i, j), ∂PIP 2

n
∂aicj |A

= ∂PIP 2
n

∂aicj
.

These are independent terms, hence dim(∂2(PIP 2
n)|A) ≥ (n−κ)2. Applying theorem 5 we get that

`o3(PIP 2
n) ≥ min(n

4/3

3 , (n−n2/3)2

n2/3+1
) = Ω(n4/3). ut

We can generalize this to taking d inner products:
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Definition 6. Define the product-of-d-inner-products polynomial by PIP dn =
∏d
i=1(

∑n
j=1 a

i
jb
i
j), for

variables aij , b
i
j with i, j ∈ {1, . . . , n}.

Theorem 9. For constant d ≥ 2, `o3(PIP dn) = Ω(n
2d
d+1 ).

Compare with `∗3(PIP dn) = Ω(n
2d
d+2 ) in [SW99], which for the special case d = 2 even becomes

trivial. As far as we know the above theorem is the first non-linear lower bound on the (orbital)
ΣΠΣ-formula size of PIP 2

n .

Theorem 10. `3(zTCirc(x)y) = Ω(n
4
3 ).

Proof. Let f = zTCirc(x)y. Apply theorem 6 for d = 1. Since ∂1( ∂f∂zi ) contains all variables
x1, . . . , xn, we conclude dim[∂1( ∂f∂zi )|A] is at least n − κ for any affine A of codimension κ. Hence

`3(f) ≥ min(κ2/3, n(n−κ)
κ+1 ). Taking κ = n2/3 yields `3(f) = Ω(n4/3). ut

Note that zTCirc(x)y can be computed in O(n log n) size using a bounded constant ΣΠΣΠΣ
circuit, and also note that theorem 3.1 and 3.2 of [SW99] are rendered useless for this polynomial,
because the dimension of the set of first partials and also the dimension of the set of second partials
is just O(n). Indeed, we cannot prove a non-linear lower bound on `o3(zTCirc(x)y) because this is
O(n) as shown at the top of this section! The proof of our last lower bound is in the Appendix:

Definition 7. For d ≥ 1, define the linear-sum of the product of d n × n matrices X1, . . . , Xd to
be the polynomial LMMd =

∑n
i=1

∑n
j=1 aij(X

1 ·X2 . . . ·Xd)ij

Theorem 11. For constant d ≥ 1, `o3(LMM2d+1) = Ω(n4− 4
d+2 ).

5 Derivative Lemmas and Linear Combinations

In this section inputs are not considered gates, fan-in is bounded by two, and size is measured by
counting gates. Given a function f : Fn → Fm, f = (f1, . . . , fm), define Lf : Fn+m → F by

Lf (x0, . . . , xn−1, a1, . . . , am) =
m∑
j=1

ajfj(x0, . . . , xn−1).

Define the linear combination complexity of f , denoted by subscripting “lc” to a complexity mea-
sure, to be the complexity of Lf in that measure. Thus sbclc (f) denotes sbc(Lf ). For unbounded-
coefficient circuits, applying the standard Baur-Strassen Derivative Lemma [BS82] to Lf shows
that slc(f) and s(f) are asymptotically equivalent. Pudlák’s example g = 2n

∑n−1
j=0 xjyj shows that

sbc cannot be preserved, since ∂g = (2nx0, . . . , 2nyn−1) requires Ω(n2) size for bc-circuits.
Note, however, that L∂g has O(n)-size bc circuits that form a0x0 + · · ·+ a2n−1yn−1 and then

add this to itself iteratively n times. Thus sbclc (∂g) = O(n), which separates the lc-bc model from
the bc-model. Moreover, ∂g has O(n) size in the “inhomogeneous” bc-circuit model, which allows
the circuits a separate constant-1 input and allows them to build up higher constants by iteratively
adding this constant to itself. Inspection of standard proofs of the Derivative Lemma shows that
this example is basically the worst possible thing that can happen:
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Proposition 2. For any nontrivial function f , sbclc (∂f) = O(sbc(f)), and sbclc (f) equals the min-
imum size of bc circuits with constant-1 input that are allowed to multiply their output gates by
built-up constants. ut

The equivalences apply to linear/bilinear circuits modulo charging for the multiplications by the
linear-combining variables. Now we observe that in contrast to sbc complexity, the Derivative Lemma
can be adapted to preserve sbclc complexity, in a form that also allows iteration to higher partial
derivatives (fixing b0 = 0 computes L∂f exactly). The proof is in the Appendix.

Theorem 12. Given a bc-circuit of size s computing f = (f1, . . . , fm) in variables x0, . . . , xn−1,
we can construct a bc-circuit of size at most 5s with extra inputs b0, b1, . . . , bn and output gates for
j = 1, . . . ,m each of which computes

b0fj +
n∑
i=1

bi
∂fj
∂xi

.

6 Size-Depth Tradeoffs for Linear Combination Circuits

In this section we consider bilinear lc-circuits of the following structure. There are three sets of
input vectors namely x, y and special interpolation inputs z. There are two top-level mappings
computing separately for input vectors x and y. Both these mapping are computed by depth-d
circuits, where the length of each path from variable to linear form is exactly d. Multiplication
gates are allowed, but are restricted to have exactly one of it’s inputs taken to be a z variable. Say
the outputs of these circuits are l1(x), ..., lk(x) and r1(y), . . . , rk(y). (These are actually bilinear,
but we drop the z in the notation, because we want to think of these as linear forms, when z is
fixed). Then there are k multiplication gates computing mi = `i(x)ri(y) for 1 ≤ i ≤ k. Finally there
is a bottom layer with a single output. This layer is restricted to be formula consisting of addition
gates only. Constants on the wires are assumed to have norm at most one.

We identify a bilinear form p(x, y) on n+ n variables in a natural way with the n× n matrix
of coefficients (p)ij = coefficient of monomial xiyj . Linear forms `i(x) and ri(y) are identified with
row vectors. So multiplication gate mi computes `Ti ri, when z is fixed. The function computed by
the circuit is required to be of the form

∑m
k=1 zk(x

TAky), for certain n × n matrices Ak. In this
situation, we say the circuit is an lc-circuit for computing A1, . . . , Am.

Definition 8 ([Lok01]). Given 1 ≤ r ≤ n and an n × m matrix A, define its L2-r-rigidity to
be ∆2

r = min{||A−B||2F : B is an n×m matrix of rank at most r}, where ||A−B||F denotes the
Frobenius norm.

Theorem 13. Let C be a depth-d lc-circuit of structure as defined above that computes A1, . . . , An.
Then for 1 ≤ r ≤ n, the number of wires of C is at least

r

(
min
|I|=n−r

∑
i∈I

∆2
r(Ai)

) 1
2d+1

n
−2

2d+1 .

The proof is in the Appendix. The above theorem yields lower bounds whenever the bilinear
forms that are computed have associated matrices of high L2-r-rigidity. For example:
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Corollary 1. Let n = 2i and let A1, . . . An be a set of n Hadamard matrices. Then any
depth d bilinear lc-circuit, of the structure defined above, that computes A1, . . . , An has size
Ω(4−2d−1n1+ 1

2d+1 ).

Proof. It is well-known that for a Hadamard matrix H, ∆2
r(H) ≥ n(n − r). Applying the above

theorem with r = n/2 yields the corollary. ut
Finally, let us note that because the Frobenius norm is invariant under unitary transformations,

the results in this section extend to an orbit model of the form C(U1x,U2y, z), where U1 and U2

are unitary matrices and C is a depth d lc-circuit restricted as before.

7 Conclusions

We have introduced two “bridging models” and shown that some lower bounds for stricter models
extend to them. We have separated them from the stricter models, and have noted that the mod-
ifications of spectral methods made recently by Raz [Raz02] and Bürgisser and Lotz [BL03] may
be powerless in our models. The natural first question to ask is, can they be separated from the
arbitrary-coefficients case, or are they equivalent to it? For the latter, “linear combination” model,
equivalence may follow if one can prove a good bound g(s, d) such that for every linear circuit C
of size s and depth d computing the mapping of an n× n matrix A in the standard basis, there is
a circuit of size s and depth d (or O(s), O(d)) computing A with constants bounded in magnitude
by g(s, d) maxi,j |Aij |. However, even then it is not clear how one can scale such constants down to
bounded and restore the original values of the circuit by a single multiplication with a constant of
magnitude 2s at the output gates. Certainly we have opened new combinatorial ground for further
progress. Our iterable Derivative Lemma may also be useful for work involving higher derivatives.

References

[BL02] P. Bürgisser and M. Lotz. Lower bounds on the bounded coefficient complexity of bilinear maps. In Proc.
43rd Annual IEEE Symposium on Foundations of Computer Science, pages 659–668, 2002.

[BL03] P. Bürgisser and M. Lotz. Lower bounds on the bounded coefficient complexity of bilinear maps. J. Assn.
Comp. Mach., 2003. to appear; also at arXiv.org/cs/0301016.

[BS82] W. Baur and V. Strassen. The complexity of partial derivatives. Theor. Comp. Sci., 22:317–330, 1982.
[Bür00] Peter Bürgisser. Cook’s versus Valiant’s hypothesis. Theor. Comp. Sci., 235:71–88, 2000.
[Cha98] B. Chazelle. A spectral approach to lower bounds, with application to geometric searching. SIAM J.

Comput., 27:545–556, 1998.
[GvL96] G.H. Golub and C. van Loan. Matrix Computations. The Johns Hopkins University Press, Baltimore, 1996.
[Koi96] Pascal Koiran. Hilbert’s Nullstellensatz is in the polynomial hierarchy. Journal of Complexity, 12(4):273–286,

December 1996.
[Lok01] S. Lokam. Spectral methods for matrix rigidity with applications to size-depth tradeoffs and communication

complexity. J. Comp. Sys. Sci., 63, 2001.
[Mor73] J. Morgenstern. Note on a lower bound of the linear complexity of the fast Fourier transform. J. Assn.

Comp. Mach., 20:305–306, 1973.
[MS02] K. Mulmuley and M. Sohoni. Geometric complexity theory I: An approach to the P vs. NP and related

problems. SIAM J. Comput., 31(2):496–526, 2002.
[Mul99] K. Mulmuley. Lower bounds in a parallel model without bit operations. SIAM J. Comput., 28:1460–1509,

1999.
[NW95] Noam Nisan and Avi Wigderson. On the complexity of bilinear forms. In Proc. 27th Annual ACM Symposium

on the Theory of Computing, pages 723–732, 1995.
[Raz02] R. Raz. On the complexity of matrix product. In Proc. 34th Annual ACM Symposium on the Theory of

Computing, pages 144–151, 2002. Also ECCC TR 12, 2002.
[Raz03] R. Raz. On the complexity of matrix product. SIAM Journal of Computing, 32(5):1356–1369, 2003.
[SW99] A. Shpilka and A. Wigderson. Depth-3 arithmetic formulae over fields of characteristic zero. Technical

Report 23, ECCC, 1999.

12



A Proofs from Section 3

Proof of Lemma 4.
We can write

Circ(Ea) = Fndiag(λ0, . . . , λn−1)F−1
n where (λ0, . . . , λn−1)T = DFTnEa.

See for example [GvL96]. Let α = λ√
n

. By invariance of mean-square-volume under unitaries,

msv2
r(Circ(Ea)) = msv2

r(diag(λ0, . . . , λn−1)) =
∑
J

∏
j∈J
|λj |2 = nr

∑
J

∏
j∈J
|αj |2,

where J ranges over all subsets of {1, . . . , n} of size r. By definition of standard Gaussian, we can
write α = V β, where V is an n × r matrix with orthonormal column vectors v1, . . . , vr and β
standard Gaussian in Cr. Let W = FnEV . Then α = FnEa = FnEV β = Wβ.

For a subset J of {1, . . . , n} of size r, let WJ be the sub-matrix of W consisting of rows indexed
by J , and let αJ = (αj)Tj∈J . Observe that αJ = WJβ. The covariance matrix of αJ is given by

Σ = E[αJα∗J ] = E[WJββ
∗W ∗J ] = WJE[ββ∗]W ∗J = WJW

∗
J .

The last line follows because β is standard Gaussian distributed. We get that det(Σ) = |det(WJ)|2.
The Binet-Cauchy theorem as cited in [BL02,BL03] yields∑

J

|detWJ |2 = det(W ∗W ) = det(V ∗E∗EV ).

We claim now that det(V ∗E∗EV ) ≥ κ−r, where κ > 0 is a global constant. To prove the
claim, observe that for any β ∈ Cr, if V β is an eigenvector of E∗E with eigenvalue γ, then β is an
eigenvector of V ∗E∗EV with eigenvalue γ. Namely, V ∗E∗EV β = V ∗γV β = γβ. For E∗E we have
positive real eigenvalues γ1 ≥ . . . ≥ γn > 0. Associate a basis v1, . . . , vn of eigenvectors to these.
Since the rank of V is r, there must be indices i1, . . . , ir, so that vi1 , . . . , vir are in the range of V .
Hence V ∗E∗EV has eigenvalues γi1 , . . . , γir . Since E is well-conditioned γ1 ≤ κγi, for each i, for
some global constant κ. Since det(E) = 1, γ1 ≥ 1. So γi ≥ κ−1. Hence det(V ∗E∗EV ) = γi1 · · · γir ≥
κ−r, proving the claim. Thus we conclude that there exists a set J such that

|det(WJ)|2 ≥ κ−r( nr )−1.

Applying Lemma 2 to the vector αJ , we get that with probability greater than 1
2 that∏

i∈J
|αi|2 ≥ δrκ−r det(Σ) ≥ δr( nr )−1,

where δ is an absolute constant. Hence, and with applying Proposition 1,

msv2
r(Circ(Ea)) ≥ nrδrκ−r( nr )−1 ≥ nrδrκ−r2−n ≥ nrδrκ−3r2−n.

Hence applying theorem 2 we get, for some absolute constant c,

sbclin(Circ(Ea)D) ≥ log msvr(Circ(Ea)D)− n ≥ r

2
log n− cn.ut

Proof of Theorem 4.
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Let Γ (Ex,Dy) be an orbit circuit computing x ◦ y. Fix r = 1
2n. Canceling the matrices E and

D, we get that Γ (x, y) computes Circ(E−1x)D−1y. Let f1, . . . , fk be the linear forms computed by
the circuit in Γ (x, y). in the variables x1, . . . , xn. To be precise, if a gate computes c1x1 + . . .+cnxn,
then it corresponding linear form as a vector is (c1, . . . , cn)T . Let R = rign−r(fT1 , . . . , f

T
k ). Observe

that E−1 and D−1 have determinant 1 and are well-conditioned as well. By lemmas 4 and 3, there
exists an a ∈ Cn such that:

1. sbclin(Circ(E−1a)D−1) ≥ 1
2r log n− cn, for absolute constant c, and

2. maxi |fi(a)| ≤ 2
√

ln 4kR.

Let α = maxi |fi(a)|. Then Γ (a, y) computes the linear mapping Circ(E−1a)D−1. As in [BL02], we
can make this circuit into a bounded-constant linear circuit by:

1. replacing each multiplication with fi(a) with a multiplication by 2α−1fi(a), and
2. multiplying each output with α

2 using at most log(α2 ) additions and one scalar multiplication of
absolute value at most 2.

Letting S(Γ ) denote the size of Γ , we thus obtain a bounded-constant linear circuit that has at
most S(Γ ) + n logα ≤ S(Γ ) + n log(2

√
ln 4kR) gates computing Circ(E−1a)D−1. We can assume

k ≤ n2, and by the rigidity bound of theorem 3:

S(Γ ) ≥ sbclin(fT1 , . . . , f
T
k ) ≥ (n− r) logR− n. (4)

So we obtain the inequality

S(Γ ) + n log(2
√

4n2R) ≥ n log n− cn,

which together with (1) yields S(Γ ) = Ω(n log n). ut

Proof of Theorem 11.
Rewrite LMM2d+1 =

∑
i0,...,i2d+1∈{1,...,n} ai0,i2d+1

x1
i0,i1

x2
i1,i2 . . . x

2d+1
i2d,i2d+1

. Consider fixed indices
i0, . . . , i2d+1. Taking (d + 1)-order partials w.r. to variables x1

i0,i1
, x3

i2,i3
, . . . , x2d+1

i2d,i2d+1
of LMM2d+1

yields the monomial ai0,i2d+1
x2
i1,i2

x4
i3,i4

. . . x2d
i2d−1,i2d

. Consider an arbitrary affine subspace A of codi-
mension κ. Since in each matrix there are at least n2 − κ unassigned variables when doing the
substitution corresponding to restriction to A, we conclude that there are at least (n2 − κ)d+1

choices for the indices, which produce a partial derivative that is not altered by restricting to A.
Since each choice yields a different partial we conclude dim[∂d+1(LMM2d+1)|A] ≥ (n2 − κ)d+1).

Taking κ = n
2d+2
d+2 in theorem 5 yields the theorem. ut

B Proof of Theorem 12

We use induction on the number of gates r other than the outputs. The base case is when r = 0.
In this case each fj is a gate taking both inputs directly from the input variables, s = m and the
theorem follows readily. Suppose r > 0. Let h be a gate taking both inputs from the variables. Let
Γ ′ be the circuit obtained from Γ by replacing h with a new variable xn+1. That is, whenever there
is a wire from h to a gate, have the same wire (with identical constant) to that gate from xn+1, and
finally remove h. Say the new circuit computes (f ′1, . . . , f

′
m). By induction, we obtain a bounded

coefficient circuit Γ ′′ with inputs x1, . . . , xn+1 and b0, . . . , bn+1 computing

b0f
′
j +

n+1∑
i=1

bi
∂f ′j
∂xi

,
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for all j = 1 . . .m of size at most 5(s− 1). Note that for each i, f ′i [xn+1 ← h] = fi. The chain rule
gives us the follow equality for any j = 1 . . .m and k = 1 . . . n,

∂fj
∂xk

=
∂f ′j
∂xk

[xn+1 ← h] +
∂f ′j
∂xn+1

[xn+1 ← h] · ∂h
∂xk

Let Γ ′′′ be the circuit obtained from Γ ′′ by replacing the input variable xn+1 with the gate h. That
is, whenever there is a wire from xn+1 to a gate have exactly the same wire (with identical constant)
from h to that gate, and finally remove xn+1. We see that Γ ′′′ has a gate gj computing

gj = b0f
′
j [xn+1 ← h] +

n+1∑
i=1

bi
∂f ′j
∂xi

[xn+1 ← h],

for j = 1 . . .m. Hence we obtain the required circuit by substituting bn+1 ←
∑n
i=1 bi

∂h
∂xi

, since

gj [bn+1 ←
n∑
i=1

bi
∂h

∂xi
] = b0f

′
j [xn+1 ← h] +

n∑
i=1

bi
∂f ′j
∂xi

[xn+1 ← h] +
n∑
i=1

bi
∂h

∂xi
·
∂f ′j
∂xn+1

[xn+1 ← h]

= b0fj +
n∑
i=1

bi
∂fj
xi
.

for any j = 1 . . .m. The substitution for bn+1 can be done by adding at most 3 gates. That is, in case
h = αxi + βxj , we substitute αbi + βbj , which takes one gate. In case h = αxi · βxj , we substitute
αβbixj +αβbjxi, which takes 3 gates. In both cases constants on the wires are 1 or constants from
Γ . We conclude that Γ ′′′ has size at most 5(s− 1) + 4 ≤ 5s and that it is a bc-circuit. ut

With m = 1 this gives sbclc (f, ∂(f)) = O(sbc(f)). We can also obtain the “transposed” theorem:

Theorem 14. Given a bounded coefficient circuit Γ computing f1, . . . , fm at (non-input) gates of
fanout zero in variables x1, . . . , xn of size s, we can construct a bounded-coefficient circuit of size
at most 5s with extra inputs b1, . . . , bm computing

∑m
i=1 bifi and

∑m
i=1 bi

∂fi
∂xj

, for all j = 1 . . . n,
whenever these are not identically zero.

C Proof of Theorem 13

Let C be given as indicated. Fix 1 ≤ r ≤ n. Let S equal the number of wires of C. We call a
gate g special if the number of wires leaving g is at least S/r. Note there can be at most r special
gates. No gate in the layer below the multiplication gates can be special. There are at least n − r
variables zi that are not special. We now will consider what happens to corresponding outputs Ai
as we remove a special gate g. That is, temporarily fix zi = 1 and zk = 0 for k 6= i and then remove
g.

case 1: g is an input variable xj .
In this case we remove the wires fanning out from xj . That means `newi = `i with jth entry set to
zero. Hence mnew

i = mi with row j zeroed out. Since each output Ai s simply a linear combination
of the matrices mi, we get Anewi = Ai with jth row zeroed out, i.e. Ai gets modified by subtracting
a rank-≤ 1 matrix.

case 2: g is an input variable yj .
Similarly as above we can conclude each output gets modified by subtracting a rank-≤ 1 matrix.
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case 3: g is a multiplication gate mi = `Ti ri.
Each output gets modified by subtracting a scalar multiple of mi. Observe that rank(mi) ≤ 1,
hence each output gets again modified by subtraction of a rank-≤ 1 matrix.

case 4: g is an addition gate linear in x.
Suppose gate g computes the linear form l. Then `newi = `i − γil, for certain scalars γi. Hence
mnew
i = (`newi )T ri = `Ti ri − γilT ri. Since Ai = Σk

j=1αjmj , we get that

Anewi = Σk
j=1αjm

new
j

= Σk
j=1αjmj − γjlT rj

= Ai − lTΣk
j=1αjγjrj .

Observe that lTΣk
j=1αjγjrj has rank at most 1. Hence again we have that each output is modified

by a rank at most 1 matrix.
case 5: g is an addition gate linear in y.

Similarly as case 4, we can show that each output get modified by subtracting a rank at most 1
matrix.

case 6: g is a multiplication gate with input zj .
If j 6= i, then Ai is unaltered. Otherwise, this case reduces to case 4 or 5.

Let C ′ be the circuit obtained by consecutively removing all special gates. From the above we
conclude C ′ computes Ai1 − Bi1, ..., Ain−r − Bin−r , where each Bit has rank at most r. Wlog we
assume i1 = 1, i2 = 2, etc. The fanout of each gate in C ′ is at most S/r. We are now going to
estimate the following quantity, which is the sum of norms of all entries of the computed matrices:

Φ =
n−r∑
m=1

n∑
i=1

n∑
j=1

|(Am −Bm)ij |2.

For a given triple (xi, yj) there are at most (S/r)2d paths starting in xi and yj that come
together in the same multiplication gate. Then from that gate there are at most S/r choices. Then
there is a fixed path to the output. On these paths there can be at most one multiplication gate
with z-input. Hence there are at most (S/r)2d+1 path starting in xi, yj and going to an output via
the same multiplication gate. Φ can be computed by summing over all such paths the product of
the constants on the wires. Since each constant has norm at most 1, we conclude each such path
contributes at most 1 to Φ. Hence

Φ ≤ n2(S/r)2d+1.

Thus
S ≥ rΦ

1
2d+1n

−2
2d+1 .

Observe that

Φ =
n−r∑
m=1

||Am −Bm||2F ≥ min
|I|=n−r

∑
i∈I

∆2
r(Ai),

from which the theorem readily follows. ut
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