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Abstract

We prove a super-linear lower bound on the size of a bounded depth bilinear arithmetical
circuit computing cyclic convolution. Our proof uses the strengthening of the Donoho-Stark
uncertainty principle [DS89] given by Tao [Tao05], and a combinatorial lemma by Raz and
Shpilka [RS03]. This combination and an observation on ranks of circulant matrices, which we
use to give a much shorter proof of the Donoho-Stark principle, may have other applications.
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1 Introduction

One of the central mysteries in arithmetic circuit complexity is the computational power conferred
by the ability to perform arithmetic operations with arbitrary field elements at unit cost. Over the
real numbers, for example, this assigns unit cost to manipulations with numbers of infinite precision
and/or unbounded magnitude. Morgenstern [Mor73] argued that most algorithms used in practice
use only constants of “reasonably” bounded magnitude. Possible exceptions are algorithms with
constants obtained via de-randomization procedures or polynomial interpolation.

Restricting scalars in circuits to have bounded magnitude does make it easier to prove lower
bounds. Examples are the volumetric lower bounds of [Mor73] for bounded coefficient linear circuits,
and the Ω(N logN) size lower bound of Raz [Raz03] in the bounded coefficient bilinear model for the
mapping defined by multiplication of two n×n matrices, where N = n2 [Raz03]. Bürgisser and Lotz
[BL04], building on the work of Raz, proved a tight Ω(n log n) size lower bound for the convolution
of two n-vectors of variables.

For linear and bilinear circuits with unrestricted constants, however, no super-linear size lower
bounds have been obtained despite four decades of attention. The question is whether this owes
only to a current lack of lower bound techniques, or whether there is a real loss in computational
power when restricting scalar magnitudes. The known results are mainly size-depth tradeoffs. For
linear circuits of fixed depth d, Pudlák [Pud94] obtained size lower bounds of order Ω(nλd(n)), where
the functions λd(n) for d = 1, 2, . . . are unbounded but extremely slow growing. These were partly
based on lower bounds for depth-d superconcentrators. Shoup and Smolensky [SS91] gave lower
bounds of order Ω(dn1+1/d) for the task of evaluating a univariate polynomial at some fixed set of
complex numbers p1, p2, . . . , pn. This corresponds to computation of the linear map defined by the
Vandermonde matrix with ijth entry pji . Here, either p1, p2, . . . , pn are required to be algebraically
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independent over the field of rationals, or they have to grow very rapidly. This result can also be
interpreted as giving a lower bound for a set of degree n polynomials, by considering p1, p2, . . . , pn to
be part of the input. Related to this, in a very recent paper, Raz has proved an Ω(n1+1/(2d)) lower
bound on the size of depth-d circuits computing some explicitly defined polynomials of degree 5d+ 2
[Raz08].

For bounded depth bilinear circuits, Raz and Shpilka proved that any depth d circuit for multi-
plying two m×m matrices is of size Ω( 1

d2m
2λd(m2)) [RS03]. In this paper, building on the work of

[RS03], we prove a size-depth tradeoff for the circular convolution mapping that was considered in
[BL04]. We employ Tao’s strengthening for prime n [Tao05] of the discrete form of the Heisenberg
uncertainty principle obtained by Donoho and Stark [DS89]. The next section gives background and
circuit definitions, a new and notably shorter proof of Donoho and Stark’s result, a sketch of Tao’s
proof, and combinatorial information used by above-cited papers.

2 Preliminaries

We define the discrete Fourier transform matrix DFTn by (DFTn)st = ωst, for s, t ∈ {0, 1, . . . , n−1},
and where ω = e2πi/n. Let Fn = n−1/2DFTn. The conjugate transpose of a matrix A will be
denoted by A∗. The cyclic convolution x ◦ y of two n-vectors x = (x0, x1, . . . , xn−1)T and y =
(y0, y1, . . . , yn−1)T is the n-vector z = (z0, . . . , zn−1)T with components

zk =
∑

i+j≡k mod n

xiyj ,

for 0 ≤ k < n. In other words, thinking of x and y as representing univariate polynomials f =∑n−1
i=0 xit

i and g =
∑n−1
i=0 yit

i, z = x ◦ y represents the polynomial f · g computed modulo tn− 1. For
example with n = 5:

x ◦ y =


x0y0 + x4y1 + x3y2 + x2y3 + x1y4

x1y0 + x0y1 + x4y2 + x3y3 + x2y4

x2y0 + x1y1 + x0y2 + x4y3 + x3y4

x3y0 + x2y1 + x1y2 + x0y3 + x4y4

x4y0 + x3y1 + x2y2 + x1y3 + x0y4

 .

For vector x = (x0, . . . , xn−1)T , the circulant matrix Circ(x) is defined by

Circ(x) =


x0 xn−1 · · · x2 x1

x1 x0 · · · x3 x2
...

...
...

...
xn−2 xn−3 · · · x0 xn−1

xn−1 xn−2 · · · x1 x0

 .

We have that x◦y = Circ(x)y = Circ(y)x. We write diag(x) for the n×n matrix with x on the main
diagonal and 0s elsewhere. Convolution can be computed using the Fourier transform, according to
the following folklore result:

Theorem 2.1 (The Convolution Theorem) For any n-vector x = (x0, x1, . . . , xn−1)T ,

Circ(x) = F ∗ndiag(DFTnx)Fn.
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2.1 Discrete Uncertainty Principles

The following alternative proof exploits Theorem 2.1 and the relation it gives between rank and the
support of an n-vector f , which is defined by supp(f) = {i : fi 6= 0}. The size of supp(f) is a crude
measure of the amount of localization of the vector f . Analogous to the Heisenberg uncertainty
principle, the following says that a nonzero vector f and its Fourier transform f̂ =def Fnf cannot
both be arbitrarily narrowly localized.

Theorem 2.2 ([DS89]) For any n-vector f 6= 0, |supp(f)| · |supp(f̂)| ≥ n.

Proof. Since by Theorem 2.1,
Circ(f) =

√
nF ∗ndiag(f̂)Fn,

we have that |supp(f̂)| = rank(Circ(f)). Now partition f into “blocks” consisting of a nonzero
entry and the maximal string of zero entries following it, wrapping from the end of the vector to the
beginning if needed. Take R to be the maximum length of a block. Then R ≥ n/|supp(f)|. Now
consider the R rows of Circ(f) corresponding to a size-R block—without loss of generality we may
cycle these around to the first R positions. These contain an R × R upper-triangular matrix with
nonzero main diagonal, and so are independent. Hence rank(Circ(f)) ≥ R ≥ n

|supp(f)| .

In case n is prime, Tao showed that Theorem (2.2) can be significantly improved [Tao05]. The
point is that for prime p the matrix DFTp is totally regular , i.e. every square submatrix is non-
singular, a fact attributed to Chebotarëv in [SJ96]. Given this fact, for which [Tao05] gives an
elementary proof, Tao’s improvement follows readily:

Theorem 2.3 ([Tao05]) For prime p, for any nonzero p-vector f and its Fourier transform f̂ =
Fpf we have that |supp(f)|+ |supp(f̂)| ≥ p+ 1.

Proof. Let k = p − |supp(f̂)|. There are k zeroes in f̂ . Let I ⊆ { 0, 1, . . . , p − 1 } be the indices
of these zeroes. Suppose |supp(f)| ≤ k. Let J ⊆ { 0, 1, . . . , p − 1 } be a set of size k that contains
all indices of non-zero entries of f . In the following DFT pI,J denotes the minor of DFTp with rows
I and columns J . We have that (DFT pI,J)fJ = (DFTpf)I = 0, but fJ 6= 0 since f 6= 0. This is a
contradiction since DFT pI,J is non-singular. Hence |supp(f)| > k = p− |supp(f̂)|.

2.2 Combinatorial Lemma

For a function f : N→ N, define f (i) to be the composition of f with itself i times—i.e., f (0) is the
identity function, and for i > 0, f (i) = f ◦ f (i−1). Then provided f(n) < n for all n > 0, define

f∗(n) = min{i : f (i) ≤ 1}.

The labeling of the following set of extremely slow-growing functions λd(n) follows [RS03]; each is a
monotone non-decreasing function tending to infinity.

Definition 2.1 ([RS03]). Let

1. λ1(n) = b
√
nc,

2. λ2(n) = dlog ne,

3. λd(n) = λ∗d−2(n), for d > 2.
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For a directed acyclic graph G, VG denotes the set of all nodes, IG those with in-degree 0, and
OG those with out-degree 0. The depth of G is the length in edges of the longest path from IG to
OG. For subsets A ⊆ IG, B ⊆ OG and V ⊂ VG, let P[A,B, V ] be the number of distinct paths from
vertices in A to vertices in B that do not go over vertices in V .

Lemma 2.4 ([RS03]) Let 0 < β < 1, 0 < ε < 1/400 and d ≥ 2. For any large enough n, if G is a
leveled directed acyclic graph of depth d, with more than n vertices and less than εnλd(n) edges, then
there exists a set of vertices V and a set J of inputs and outputs such that:

1.
√
n ≤ |V | ≤ βn,

2. |J | ≤ 5εdn, and

3. PG[IG\J,OG\J, V ] ≤ ε n2

|V | .

2.3 Bilinear Circuits

Let C denote the field of complex numbers. An arithmetical circuit over inputs X = {x1, x2, . . . , xn}
and C is given by a directed acyclic graph G = (V,E). Vertices of in-degree zero are called inputs,
and are labeled with variables from X or field constants from C. Vertices with out-degree zero are
called outputs. Any vertex of in-degree at least one is labeled with an element ∈ {+,×}. These are
called gates. Edges are labeled with field constants. A label α ∈ C on an edge is intended to mean
multiplication with α. Associated then, with each input or gate g is the polynomial computed by g,
defined in the obvious way. Linear circuits are those without × gates.

Since we are working over a field of characteristic zero, for the computation of bilinear forms,
we can assume our circuits to be bilinear, at the cost of a constant factor increase in size and depth
(See Proposition 4.2 in [RS03]). A bilinear circuit over sets of variables X = {x1, x2, . . . , xn} and
Y = {y1, y2, . . . , yn} has the following structure. First, there is a set S1 of addition gates computing
homogeneous linear forms in X. Second, there is a set S2 disjoint from S1 computing homogeneous
linear forms in Y . Third, there is a set S3 of multiplication gates of degree two, that take one input
from S1 and one from S2. Finally, there is a set S4 of addition gates that compute linear combinations
of the bilinear forms computed by the multiplication gates in S3. The outputs of the circuit form
a subset of S4. As in [RS03], we only count the number of edges present in the circuit above the
multiplication gates.

Definition 2.2 ([RS03]). For a bounded depth bilinear circuit C, define its size s(C) to be the
number of edges in the circuit between the multiplication gates and the outputs, and define its depth
d(C) to be the length of a longest path in edges from a multiplication gate to an output.

A circuit of depth d is leveled, if we can partition the vertices into sets L0, L1, . . . , Ld, such that
edge only go between consecutive levels Li and Li+1. A circuit of depth d can be leveled at the cost
of increasing the size by factor of d.

Note that Cooley and Tukey [CT65] gave O(n log n) size, O(log n) depth linear circuits that
compute DFTn. So using Theorem 2.1, we obtain O(n log n) size bilinear circuits for computing
circular convolution. These circuits have complex coefficients on the wires of norm 1. Bürgisser and
Lotz proved that this is optimal for circuits that have their constants restricted to be of norm O(1)
[BL04].
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3 Lower Bounds for Cyclic Convolution

For depth one we have the following result, which is tight due to Theorem 2.1.

Proposition 3.1 Any leveled bilinear circuit C of depth 1 computing the circular convolution
xTCirc(y) has size s(C) ≥ n2.

Proof. A circuit of depth 1 has a very simple structure. There are some number r of multiplication
gates Mr computing products Mr = Lr(x)Rr(y), where Lr(x) and Rr(y) are homogeneous linear
forms. Then there is one layer of output gates, each gate computing summation over some set of
input multiplication gates.

We will argue that each output gate must be connected to at least n multiplication gates. For
purpose of contradiction suppose that this is not the case. Say some output gate Oi takes input from
< n multiplication gates. Without loss of generality we may assume gate Oi computes (Circ(y)x)i.
Consider the subspace of dimension at least 1 defined by equations Lj(x) = 0, for each multiplication
gate j attached to output Oi. We can select a non-zero vector a from this space such that for any
assignment y = b,

(Circ(b)a)i = 0.

This yields a contradiction, for example we can take b to be equal to a∗ shifted by i, then Circ(b)a)i =
||a||22, which is non-zero, since a is a non-zero vector.

Theorem 3.2 There exists δ > 0, such that for any d, for any large enough prime number p, any
leveled bilinear circuit with inputs x = (x0, x1, . . . , xp−1)T and y = (y0, y1, . . . , yp−1)T of depth d
computing cyclic convolution Circ(y)x has size s(C) ≥ δ 1

dpλd(p).

Proof. The result holds for d = 1 by Proposition 3.1. Assume d ≥ 2. Write using Theorem 2.1,

Circ(y)x = F ∗p diag(DFTp(y))Fpx.

We first apply substitutions x := F ∗p x
′ and y = 1

pDFT
∗
p y
′ at the inputs. This does not alter the

circuit above the multiplication gates, but now we have a circuit computing

F ∗p diag(y′)x′.

For simplicity, let us rename x′ by x and y′ by y again. Let G be the leveled directed acyclic graph
of depth d given by the part of circuit above the multiplication gates. The set IG is the collection of
multiplication gates Mi = Li(x)Ri(y), where Li(x) and Ri(y) are homogeneous linear forms. Take
OG = {1, 2, . . . , p} to be the set of outputs of the circuit. Let δ > 0 and β > 0 be small enough
constants to be determined later. Let ε = δ

400d . Trivially G has at least p vertices. Suppose that G
has strictly fewer than εpλd(p) edges. Lemma 2.4 applies, and we obtain sets I ⊂ IG, O ⊂ OG and
V ⊂ VG such that

1. |I|, |O| ≤ 5εdp = 5δ
400p,

2. |V | = k, with
√
p ≤ k ≤ βp, and

3. PG[IG\I,OG\O, V ] ≤ εp
2

k .

For each output node i ∈ OG\O, define P (i) to be the number of multiplication gates in IG\I
for which there exists a directed path that bypasses V and reaches node i. Let R be a set of r = 10k
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output gates with lowest P (i) values. This restricts 10β ≤ 1− 5δ
400 . By averaging we get that

∑
i∈R

P (i) ≤ r

|OG\O|
∑

i∈OG\O
P (i) ≤ r

p− 5εdp
· εp

2

k
=

10εp
1− 5εd

.

Let I ′ be the set of all multiplication gates in IG\I for which there exist directed paths to nodes in
R that bypass V . We can conclude that

|I ′| ≤ 10εp
1− 5εd

= p
10δ

400d− 5δ
.

Define a linear subspace W by the set of equations

Ri(y) = 0 for all i ∈ I ∪ I ′.

For any fixed substitution for y ∈ W , the resulting circuit has all of the gates computing linear
function in the x variables. Relative to a fixed choice for y, define linear subspace Wy by equations
gv(x) = 0 for all v ∈ V , where gv(x) denotes the linear form computed at gate v. Note that

dim(W ) ≥ p(1− 5δ
400
− 10δ

400d− 5δ
), (1)

and, for each y,
dim(Wy) ≥ p− k ≥ p(1− β).

For small enough δ and β, both dim(W ) > 0 and dim(Wy) > 0. Now we have arranged that for each
y ∈W , and each x ∈Wy,

(F ∗p diag(y)x)i = 0, (2)

for each i ∈ R. In order to reach a contradiction, we will now argue that it is possible to select
y ∈W and x ∈Wy such that some output in R is non-zero.

First of all, fix a vector y ∈ W that has at most p( 5δ
400 + 10δ

400d−5δ ) zeroes. This can be done
because of Equation (1). Let A be the set of indices i for which yi = 0. Let m = |A|. Let W ′y be a
subspace of Wy of dimension 1 obtained by adding equations to a defining set S of equations of Wy

in two steps as follows:

1. Add xi = 0 to S, for each i ∈ A.

2. One-by-one, for each i /∈ A, add the equation xi = 0 to S, as long as the dimension of the
solution space of (S) is bigger than one.

Observe that, since the starting space Wy has dimension at least p− k ≥ p(1− β), at the end of
the first stage, the dimension will be cut down to at most p − k −m, provided m ≤ p(1 − β). The
latter holds provided 1−β ≥ 5δ

400 + 10δ
400d−5δ . This can easily be arranged for absolute constants δ and

β close enough to zero. Hence we will be able to add the equation xi = 0 in the second stage for at
least p− k −m− 1 many i with i /∈ A, and still have the final solution space W ′y to be of dimension
at least one.

Select an arbitrary non-zero vector x from W ′y. Observe that of the p −m indices i not in A,
xi is non-zero for at most k + 1 entries, and that xi is zero for all i ∈ A. So xi is zero for each i for
which yi = 0. Since x itself is a nonzero vector there must be some place i where xi and yi are both
nonzero. Let f = diag(y)x and f̂ = F ∗P f . We thus conclude that f is a non-zero vector, but that
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|supp(f)| ≤ k + 1. By the discrete uncertainty principle for cyclic groups of prime order [Tao05],
stated in Theorem 2.3, we have that

supp(f) + supp(f̂) ≥ p+ 1.

Hence the output vector of the circuit f̂ is non-zero in at least p+ 1− (k + 1) = p− k places. Since
R is of size 10k, by the pigeonhole principle, there must be some output in R that is non-zero. This
is in contradiction with Equation (2).

Theorem 3.2 extends to non-prime lengths, as pointed out by an anonymous referee of our
original draft.

Corollary 3.3 There exists δ > 0, so that for any d, for any large enough n, any leveled bilinear
arithmetical circuit over variables {x0, x1, . . . , xn−1} and {y0, y1, . . . , yn−1} of depth d computing
Circ(y)x requires size at least δ 1

dnλd(n).

Proof. By Chebyshev’s proof of Bertrand’s Postulate, for all n ≥ 6 there exists a prime p with
bn/4c < p < bn/2c. Given p-vectors x and y, extend them to n-vectors x′ and y′ by setting x′i = 0
and y′i = yi mod p for p ≤ i < n. Then x ◦ y is given by the first p places of x′ ◦ y′, and since
this reduction does not change the depth of the underlying circuits, the statement follows from
Theorem 3.2.

Applying the observation ascribed to Pitassi and Wigderson in [RS03], also noted to us by the
referees, these tradeoffs extend to families of polynomials that compute a single scalar output, over
fields of characteristic zero. This follows because the construction in the Baur-Strassen Derivative
Lemma [BS82] can be performed while maintaining constant bounded depth. For example, it can be
concluded the polynomial f = zTCirc(y)x does not have linear size bounded depth circuits over the
complex numbers. It is also worth remarking that a similar combination of Theorem 2.3 and Lemma
2.4 yields lower bounds for linear circuits, in the case of DFT :

Theorem 3.4 (case of [Pud94]) There exists δ > 0, such that for any d ≥ 1, for any large enough
prime number p, any leveled linear circuit of depth d with inputs x = (x0, x1, . . . , xp−1)T computing
the linear transformation λx.DFTpx has size s(C) ≥ δ 1

dpλd(p).

Theorem 3.4 likewise extends to arbitrary n, with the same application of Bertand’s Postulate,
albeit weakening the constants involved. This follows via Rader’s FFT algorithm [Rad68] and some
padding, reducing DFTp to two applications of DFTn at the cost of doubling the depth. Of course
this result is already known via the lower bounds for superconcentrators given in [Pud94] (and also
[DDPW83] for even d), and the well-known correspondence between superconcentrators and linear
circuits computing the map of a totally regular matrix.

4 Conclusion

We have demonstrated that the discrete uncertainty principle, in its strongest form at least, can
be used as a convenient tool to prove circuit lower bounds for bounded depth linear and bilinear
arithmetical circuits. In this area the central open problem still is to obtain any kind of non-linear
lower bound for unrestricted linear circuits. This problem has remained elusive for over 35 years.

Acknowledgments We thank the anonymous reviewers for comments on an earlier draft of this
paper, including improvements referenced at the end of Section 3.
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