
Quantum Circuits, Polynomials, and Entanglement Measures
Working Draft

Kenneth Regan
University at Buffalo (SUNY)

Amlan Chakrabarti
University of Calcutta

July 8, 2012

Abstract

We extend the polynomial construction of Dawson et al. [DHH+04] so that, besides
working for any “balanced” set of quantum gates, it produces a single polynomial over
any sufficiently structured field or ring. We give polynomials that like theirs treat the
phases additively in modular rings, and others that treat them multiplicatively over any
ring with enough roots of unity. The former appear best for practical algebraic simulation
of quantum computations, along lines of Gerdt and Severyanov [GS06]. The latter may
have nicer theoretical properties, which we explore with focus on the wide-open problem
of quantifying the power of quantum circuits to effect multi-partite entanglements.

1 Quantum Circuits and Polynomials

A quantum circuit C has some number n of qubits pictured as “lines” running from left to
right, and some number s of gates. Each gate g takes some m-subset S of the lines for its
inputs, and has the same m-subset S as its outputs. It can be defined by a sequence g1

S1
, . . . , gmSs

specifying the type and attached set of lines for each gate. Every gate computes a unitary linear
transformation of its inputs, making the whole circuit representable by a unitary transformation
U on C2n . A binary string a of length n is encoded by the n-qubit state |a〉, which is completely
separable as the tensor product |a1〉⊗|a2〉⊗· · ·⊗|an〉, and thus is a canonical basis vector in C2n .
The output of the circuit is determined by applying a measurement M to Cn |a〉, which can be
regarded as having probabilistic outcomes 0 or 1. A family of circuits Cn can be said to recognize
a language L with bounded error if for all n and a ∈ { 0, 1 }n, Pr[M(Cn |a〉) = L(a)] > 2/3.
We model this measurement directly, but note as in [DHH+04] that it can also be deduced from
value(s) of the triple product 〈a| Cn |b〉 for a modified Cn and suitably chosen basis vector(s) b.
Initially we model 〈a| Cn |b〉.

Dawson et al. [DHH+04] translated quantum circuits of Hadamard, cnot, and Toffoli gates,
and with a final measurement in the canonical basis, into systems of polynomial equations over
the finite field F2. Their construction yields a clear simulation of BQP by so-called GapP
functions and containment of BQP in the complexity class PP. For rotation gates typified by
R1/8, however, they gave only a sketch using addition modulo 8 and multiplication (perhaps
unnecessarily) stated as being modulo 2.

We present variants of their construction that work over any field or ring that contains an
image of the kth roots of unity, provided all phase angles in the gates are multiples of 2π/k.
Ours build a single polynomial p with parameters a1, . . . , an standing for the input lines at the
left, b1, . . . , bn standing for the measurement target at the right, and variables zji for the interior

1



of the circuit. For our “additive” construction extending that of [DHH+04] for a kind of gate
Gj not considered there and k = 2r, we also employ extra variables wj` , 1 ≤ ` ≤ r. Here i runs
from 1 to n and j runs from 1 to s− 1. If we want to think of the input and output parameters
as variables, we rename ai to z0

i and bi to zsi . Later we show how to reduce the interior variable
set to zji where line i comes out of an Hadamard or other “splitting” gate. Given any basis
vector |a〉 as input and possible measurement outcome |b〉, the polynomial pa,b is obtained by
substituting the corresponding classical string values a, b ∈ { 0, 1 }n for the parameters ai and
bi into p.

Our simulation theorems in Section 2 calculate 〈a| C |b〉 in terms of the numbers of 0-1
solutions to pa,b(~zi,j) = e`, where e` ranges over the embedding of the kth roots of unity. The
numbers of such solutions may be exponential, and for general polynomials p computing such
numbers is #P-complete, hence NP-hard. This is not to say that the task is NP-hard for the
particular polynomials p constructed from the quantum circuits, and certainly not that the
languages accepted by the circuits can be NP-hard: it is commonly believed that BQP does
not contain any NP-complete languages. However, it does say—as treated at further length in
[DHH+04]—that the polynomial construction does not imply an asymptotically feasible classical
simulation of quantum circuits. Whether it facilitates simulation of moderately small interesting
quantum circuits is the concrete practical question. Sections 3 and 4 give a catalog of gate
polynomials and examples of simulating circuits.

On the upside, the different structure of our polynomials p may raise the hope in [DHH+04]
of shedding new analytical light on the complexity of quantum circuits. Moreover, we adduce
that the translation into polynomial algebra will enable other important properties of quantum
circuits to be characterized in classical mathematics. The most important property we seek
to quantify is the circuit’s capacity to produce entanglements. This appears to entail defining
a measure of entanglement for n-partite quantum systems, and we note that for n ≥ 3 there
is yet no agreement in the literature on such a measure (see [HH08] and references therein).
Our aim in Section 6 is to find a salient mathematical invariant E of our circuit polynomials
pC , show that E(pC) satisfies natural axioms of an entanglement measure, and argue that E
is compelling enough to be the unique victor. The ulterior motive is to position such an E as
a complexity measure, perhaps reflecting the degree of physical effort that would be needed to
combat decoherence in any physical implementation of C. Finally Section 7 gives conclusions
and further tasks.

2 Simulation Theorems

Following [DHH+04], say a quantum gate gj is balanced if all nonzero entries in its 2m × 2m

unitary matrix have the same magnitude rj. Note that the same applies to the 2n × 2n matrix
Uj of the operation that acts as the identity on the other n − m qubit lines, with the same
rj. The Hadamard, cnot, Toffoli, and rotation gates described in Section 1 are all balanced.
Automatically every unitary matrix with one nonzero entry per row is balanced, with r = 1,
so the condition is meaningful only for gates such as Hadamard that intuitively “split” the
incoming quantum signal. A quantum circuit is balanced if all of its gates are balanced. This
is not a great restriction—in fact, it is hard to find examples of useful quantum circuits int he
literature that aren’t balanced, and the universality theorems mentioned above imply that they
can be efficiently simulated by balanced circuits anyway. Define R = R(C) to be the product
of rj over all gates in C.

Also define k = k(C) to be the least integer such that all angles θ in entries reiθ of gates

2



in C are integer multiples of 2π/k. For example if C has only Hadamard, cnot, and Toffoli
gates then k(C) = 2; if it adds the T gate which has an entry eπi/4, then k(C) = 8. Then
say a ring is (multiplicatively) adequate for C if it admits a 1-1 mapping e from the complex
k-th roots of unity such that for all such roots a, b, e(ab) = e(a)e(b). In the additive case
we will limit attention to rings extending Zk, which have an additive embedding e+ such that
e+(ab) = e+(a) + e+(b). In the multiplicative case we also define e(0) = 0, but for the additive
case we will map 0 to a set of variables.

For a polynomial p in variables ai, bi, z
j
i (1 ≤ i ≤ n; 1 ≤ j ≤ s − 1), and arguments a, b ∈

{ 0, 1 }n, pa,b denotes the polynomial in variables zji resulting from substituting the arguments.
Then NB[pa,b(z

j
i ) = v] denotes the number of binary solutions to the equation, i.e. with an

assignment from { 0, 1 }n(s−1) to the zji variables. We state and prove the “multiplicative”
version of our simulation first.

Theorem 2.1 There is an efficient uniform procedure that transforms any balanced n-qubit
quantum circuit C with s gates into a polynomial p such that for all a, b ∈ { 0, 1 }n:

〈a| C |b〉 = R

k−1∑
`=0

ω`NB[pa,b(z
j
i ) = e(ω`)] (1)

over any adequate ring. The size of p as a product-of-sums-of-products of zji and (1 − zji ) is
O(22mms) where m is the maximum arity of a gate in C, and the time to write p down is the
same ignoring factors of log n and log s for variable labels.

When C is a circuit of Hadamard and Toffoli gates, and any other gates with real entries,
we can take ` = 2, and all we need in the target field or ring F is that −1 is different from +1.
Equation 1 then simplifies to

〈a| C |b〉 = R(NB[pa,b(z) = 1]−NB[pa,b(z) = −1]).

Dawson et al. [DHH+04] achieve the same effect with an additive embedding of { −1, 1 } into
{ 0, 1 }, with the polynomial(s) over Z2, and their p is a simple sum of products of similarly-
bounded degree. To model gates with complex entries such as eπi/4, however, they resort to
arithmetic with addition modulo a different base (here, 8) than multiplication. We find, however,
that the multiplicative theorem better streamlines the issues in its proof, which is then “re-
usable” for our generalized additive theorem below.
Proof: Let c0 = a, c1, . . . , cs−1, cs = b stand for basis elements in { 0, 1 }n. For each j,
let Uj(c

j−1, cj) stand for the entry of the 2n × 2n operator matrix with row indexed by cj−1

and column indexed by cj. By assumption this entry is either 0 or has the form rje
iθ where rj

depends only on j and θ is an integer multiple of 2π/k. In either case we may write uj(c
j−1, cj) =

3



Uj(c
j−1, cj)/rj. Then:

〈a| C |b〉 =
∑

c1,...,cs−1

〈a| U1 |c1〉 〈c1| U2 |c2〉 · · · 〈cs−1| Us |b〉

=
∑

c1,...,cs−1

s∏
j=1

Uj(c
j−1, cj)

= r1r2 · · · rs
∑

c1,...,cs−1

s∏
j=1

uj(c
j−1, cj)

= R

k−1∑
`=0

P`, where

P` =
∑

~c:
∏
j uj(c

j−1,cj)=ω`

ω`.

We first construct a huge polynomial p̂ such that for each `, and any a, b, the 0-1 solutions
to p̂a,b(z

j
i ) = e(ω`) are precisely the values of c1

i , . . . , c
s−1
i (1 ≤ i ≤ n) under the sum in the

definition of P`. Then we show how to simplify p̂ to a polynomial p of the desired size without
changing the number of solutions. For each j and each c ∈ { 0, 1 }n define the “indicator” of c
by

Ijc =
n∏
i=1

(ciz
j
i + (1− ci)(1− zji )),

which becomes a product of zji or (1−zji ) according to the bits of c. Then Ijc (~z) = 1 if zj1, . . . , z
j
n

are assigned the respective bits of c, and 0 otherwise. Now define p̂ =
∏s

j=1 Pj, where

Pj =
∑

c,d∈{ 0,1 }n
Ij−1
c Ijde(uj(c, d)).

For any assignment cj−1 to the zj−1
i variables and cj to the zji , all terms in this sum are 0 except

the one for c = cj−1 and d = cj, which has value e(uj(c
j−1, cj)). Thus the only nonzero values

of p̂a,b(~z), indeed of p̂(z0
1 , . . . , z

0
n, z

1
1 , . . . , z

s
n), are products of the form

s∏
j=1

e(uj(c
j−1, cj)) = e(ω

∑
j u
′
j(c

j−1,cj) mod k)

where (since the value is nonzero) we may write u′j(c, d) for the integer by which uj(c, d) is a
multiple of ω. It is now clear that terms under the sum defining P` are in 1-1 correspondence
with solutions to p̂a,b(~z) = e(ω`), for each `, from which (1) follows.

It remains to reduce p̂ down to a polynomial p of the stated size, without changing the
number of solutions. Consider any qubit line i that is not involved in gate gj, so that Uj acts as
the identity on i. The product terms in Pj divide into four groups with zj−1

i zji , (1−zj−1
i )(1−zji ),

zj−1
i (1− zji ), and (1− zj−1

i )zji , respectively. Because Uj acts as the identity on line i, the latter
two groups occur only for entries uj(c, d) that are 0, so they vanish. Since having zj−1

i = 0 while
zji = 1 or vice-versa zeroes out the former two groups as well, any 0-1 solution to p̂a,b(~z) = e(ω`)
must have zji = zj−1

i . Hence without changing the number of binary solutions, we may for each
such i substitute zji = zj−1

i , delete the terms for the vanishing groups, and make the factors on

4



the surviving groups just zj−1
i and (1 − zj−1

i ), respectively. Doing so cuts the size of Pj down
by a factor of 2n−m. But since Pj is a sum of 22n terms, each a product of 2n-many z or (1− z)
factors, this is not yet good enough.

Again focusing on qubit line i, the remaining terms have the forms

zj−1
i H1 and (1− zj−1

i )H2.

Because Uj acts as the identity on qubit i, every entry U(c, d) where ci = di = 1 equals the
entry U(c′, d′) where c′i = d′i = 0 with the other bits the same as in c and d. Hence terms in H1

pair off with equal terms in H2. We claim that we can replace the remaining terms in Pj by just
H1 (= H2). Doing this does not add any new solutions, because if a solution makes zj−1

i = 1
then the original Pj got the same contribution from H1 as it gets now (with H2 being zeroed),
and similarly for zj−1

i = 0. Nor does doing this remove any solutions—nor does it remove all
dependence on zj−1

i because zji for which it was substituted may be involved in U j+1. Applying
this second process cuts the number of terms in Pj down by another factor of (at least) 2n−m,
and also cuts the degrees of terms down from n to m. The polynomial p obtained by doing this
for all j thus has size O(s2mm) as claimed. 2

Variations: Given any ring R, we can adjoin an element u with minimum polynomial uk−1,
and make this work over the extension R[u]. We can also treat u as a variable, writing u` in
place of e(ω`), and add uk = 1 as a second equation. For gates such as cnot and Toffoli that
do not involve splitting, we can also do substitution on the lines that are involved in the gate,
exactly as in [DHH+04]. We prefer, however, to define “the” circuit polynomial pC as p above
without doing so, reserving p′C , p

′′
C , . . . for versions that do substitution and/or reduction modulo

the “Boolean ideal” generated by { (zji )
2 − zji }.

2.1 Additive representations

Here we take a 1-1 mapping e from the kth roots of unity that satisfies e(ω`ωm) = e(ω`+m) =
e(ω`) + e(ωm). This entails e(1) = 0, and we may suppose that the target ring is Zk, as in
[DHH+04]. The intent is to employ the same phase-indicator terms Pj as above and write

q(~z) =
s∑
j=1

Pj.

The problem is the handling of cases where Pj evaluates to 0 for reasons other than U(c, d) = 1.
These are covered by substitution for mismatches between di and ci and cases like cnot and
Toffoli and tensor products with Hadamard gates where the number of non-zero entries in each
row is a power of 2. However, we do not know how to apply substitution cleanly or implement
the suggestions in [DHH+04] to handle multi-qubit gates like the following:

A =
1√
3


1 0 −1 1
0 1 1 1
1 −1 1 0
1 1 0 −1

 .
To solve the problem—and optionally handle the other cases when substitution is undesired, we
can employ variables that take values in the range of e. When k is a power of 2, i.e. k = 2r, and

5



the embedding is into Zk, we can employ variables wj0, . . . , w
j
r−1 with 0-1 arguments. Then we

define

Ej(0) =
r−1∑
m=0

2swjm; Ej(ω`) = e(ω`) = `.

It is important to have distinct variables wjm for each gate gj that needs them. The revised
phase-indicator term now becomes

Qj =
∑

c,d∈{ 0,1 }n
Ij−1
c IjdE

j(uj(c, d)).

Theorem 2.2 There is an efficient uniform procedure that transforms any balanced n-qubit
quantum circuit C with s gates, whose nonzero entries have phase a multiple of 2π/k for k a

power 2r, into a polynomial q(~a,~b, ~z, ~w) over Zk such that for all a, b ∈ { 0, 1 }n:

〈a| C |b〉 = Rk−s
k−1∑
`=0

ω`NB[qa,b(z
j
i , w

j
s) = e(ω`)], (2)

with R and the size of q the same as for p in Theorem 2.1.

Proof: Instead of a product, this time the huge polynomial analogous to p̂ is

q̂(z0
0 , . . . , z

s
n, w

1
1, . . . , w

s
r) =

s∑
j=1

Qj (mod k).

The reductions by substitution to the final polynomial q = qC are the same, and the extra
contribution to size from the wjm variables is ignorable. It remains to verify (2) after the changes.

We call a 0-1 assignment α to the zji variables “novel” if it makes Ij−1
c Ijd nonzero for some

j, c, d for which Uj(c, d) = 0. We denote by jα the least such j. All novel assignments make the
corresponding term Pj =

∑
c,d I

j−1
c Ijde(uj(c, d)) in the proof of Theorem 2.1 zero, since there can

be only one possible c, d making Ij−1
c (α)Ijd(α) 6= 0 and uj(c, d) = 0 for that pair. Hence they

zero out the product over Pj, and so are not solutions to pa,b(~z) = e(ω`) for any `. Thus all
solutions counted in Theorem 2.1 are not novel, and in particular have no dependence on the wjm
variables, for any j. Each such solution thus corresponds to ks solutions to qa,b(~z, ~w) = e(ω`),
and the factor of k−s in (2) restores the original count. Now it remains to argue that the novel
solutions, when extended to the wjm variables, make a net-zero contribution to the expression
for 〈a| C |b〉.

We do this by exhibiting 1-1 correspondences between the novel solutions to qa,b(~z, ~w) =
e(ω`) and qa,b(~z, ~w) = e(ω`+1) for any `. Namely, given a solution α to the former, let α′ be
obtained by incrementing the binary string amam−1 · · · a1 obtained from the respective assigned
values a1, . . . , am of wjα1 , . . . , w

jα
m in α, wrapping 1m to 0m. Doing so makes Ejα(0)(a′1, . . . , a

′
m) =

Ejα(0)(a1, . . . , am) + 1 (mod k). It also makes qa,b(α
′) = qa,b(α) + 1 (mod k) because α makes

only one indicator term in Qj nonzero, while α′ makes the same term nonzero and has no effect
on terms Qj′ for j′ 6= j. Hence α′ is a solution to qa,b(~z, ~w) = e(ω`+1). Moreover jα′ = jα, and
by the way this is defined, there is no other assignment β whose incrementing yields α′. Hence

6



the numbers N ′` of novel solutions to qa,b(~z, ~w) = e(ω`) are all equal. This makes

Rk−s
k−1∑
`=0

ω`NB[qa,b(z
j
i , w

j
s) = e(ω`)]

=
k−1∑
`=0

ω`NB[pa,b(z
j
i ) = e(ω`)] +

k−1∑
`=0

ω`N ′`

= 〈a| C |b〉+ 0

because the sum of the complex kth roots of unity cancels to zero. This proves (2) and hence
the theorem. 2

Variations: When k is not a power of 2, we could extend (and simplify) the proof by having
single variables wj that range over Zk rather than { 0, 1 }. We could also extend the zji variables
to Zk by adding the equations (zji )

2−zji = 0 to the system, or retain a single polynomial equation
by working over the quotient ring by the ideal generated by the (zji )

2 − zji .

2.2 Measurements and conjugation

First we observe that for both kinds of representations, substitution for ai and/or bi equals taking
an inner product with a standard basis vector, and undoing such a substitution corresponds to
summing. In particular,

∑
b

〈a| C |b〉 = R
k−1∑
`=0

ω`
∑
b

NB[pa,b(z
j
i ) = e(ω`)]

= R
k−1∑
`=0

ω`NB[pa(z
j
i ) = e(ω`)]

However, it is not the case that summing NB[p . . . ] over all b = 0c that begin with 0 gives
the amplitude of measuring 0 on the first qubit line. Instead, writing αc = 〈a| C |0c〉 and
βc = 〈a| C |1b〉 gives us a formula for the classical probability:

∑
c |αc|2 =

∑
c

αcᾱc =
∑
c

R2

(
k−1∑
`=0

ω`NB[pa,0c(z
j
i ) = e(ω`)]

)
·

(
k−1∑
m=0

ωk−mNB[pa,0c(z
j
i ) = e(ωm)]

)

= R2

k−1∑
`,m=0

ω`−m
∑
c

NB[pa,0c(z
j
i ) = e(ω`)] ·NB[pa,0c(z

j
i ) = e(ωm)]

with `−m taken modulo k. To process this further, we first want to find a polynomial p̄ such
that for each m,

NB[p̄a,0c(z
j
i ) = e(ω−m)] = NB[pa,0c(z

j
i ) = e(ωm)]. (3)

We call p̄ the classical conjugate of p. The property (3) is multiplicative for multiplicative
representations and additive for additive ones, so we may focus on conjugating the individual
phase terms for each gate. This can be done on a case-by-case basis. Thus for the multiplicative

7



representations,

Pr(0) = R2

k−1∑
`,m=0

ω`−m
∑
c

NB[pa,0c(z
j
i ) = e(ω`)] ·NB[p̄a,0c(z

′j
i ) = e(ω−m)]

= R2
∑
c

k−1∑
r=0

ωr
∑

`,m:`−m=r

NB[pa,0c(z
j
i ) = e(ω`)] ·NB[p̄a,0c(z

′j
i ) = e(ω−m)]

= R2
∑
c

k−1∑
r=0

ωrNB[pa,0c(z
j
i )p̄a,0c(z

′j
i ) = e(ωr)]

= R2

k−1∑
r=0

ωr
∑
c

NB[(p · p̄)a,0c(zji , z′
j
i ) = e(ωr)]

= R2

k−1∑
r=0

ωrNB[(p · p̄)a,0(zji , z
′j
i ) = e(ωr)]

= R2(NB[(p · p̄)a,0(zji , z
′j
i ) = 1]−NB[(p · p̄)a,0(zji , z

′j
i ) = −1]).

Here the z′ji are independent copies of the zji variables; if p̄ could use the same variables as
p then BQP ⊆ ∆p

2 would follow—see discussion later in Section 5. Also pa,0 means that the
classical value 0 is substituted for b1, i.e. for zs1, and (p · p̄)a,0 means that 0 is also substituted
for z′s1. The last line follows because Pr(0) is a real number and so the values for other ωr must
cancel. Thus in fact we obtain a probability of acceptance by measuring a single qubit line as a
difference of two #P functions, regardless of the phases of the intervening gates.

Representing the state of the remaining lines 2, . . . , n after such a measurement may be
more cumbersome. If the measurement outcome is 0, then the remaining lines have state√

1/Pr(0)
∑
c

αc |c〉 =
√

1/Pr(0)
∑
c

〈a| C |0c〉 |c〉

=
√

1/Pr(0)R
∑
c

k−1∑
`=0

ω`NB[pa,0c(z
j
i ) = e(ω`)] |c〉

= R′
∑
c

k−1∑
`=0

ω`NB[p′a,c(z
j
i ) = e(ω`)] |c〉

where p′ = p[zs1 := 0] and i runs from 2 to n. It does not seem possible or useful to try to
simplify this further, but we do obtain for any b′ ∈ { 0, 1 }n−1:

〈
∑

c αcc| b′ 〉 = αb′ = 〈a| C |0b′〉

= R
k−1∑
`=0

ω`NB[pa,0b′(z
j
i ) = e(ω`)]

= R

k−1∑
`=0

ω`NB[p′a,c(z
j
i ) = e(ω`)]

This at least shows that the polynomial p′ obtained by substituting the classical result of the
measurement into p becomes the operative one, though one must still keep track of the difference
between R and R′ = R/

√
Pr(0).

8



2.3 Circuit manipulations

First we note a consequence of the bi-directional symmetry in the definitions of pC and qC ,
whereby no substitutions have been performed. C∗ denotes the mirror image of C with the
former outputs b1, . . . bn now being designated the inputs a1, . . . , an, and with each gate G
reversed by substituting its adjoint G∗.

Corollary 2.3 For every quantum circuit C, pC∗ = pC and qC∗ = qC (up to renaming of
variables).

Proof: Since the adjoint of a “bra” is a “ket,” 〈a| C∗ |b〉 = 〈b| C |a〉, so we may picture the
original C running right-to-left or with a and b interchanged. Since the construction in the proof
of Theorem 2.1 is symmetrical for each gate until the substitution step, and the only substitution
is to equate two variables, the resulting pC∗ is the same polynomial, up to interchanging the
substituted variables and a with b (i.e., each z0

i with zsi ). The same goes for qC . 2

Before treating tensor products, we need to emphasize points about equivalence of gate
polynomials and finding distinguished representatives. Suppose we have a circuit C composed
of two gates, say H (Hadamard) on line 1 followed by cnot on 1, 2 (meaning 1 is the control).
Under the above notation, pC and qC employ interior variables z1

1 and z1
2 , and while z1

2 can be
substituted by a2 (= z0

2) since the H gate does not involve line 2, no substitution is prescribed
for z1

1 . Likewise [DHH+04] introduces the same new variable. However, we can combine the
gates into one by multiplying the matrices for H ⊗ I and cnot, call this U . Then we obtain
equivalent polynomials pU and qU that do not involve z1

1 .
Moreover, note that the cnot gate offers the substitution z1

1 + a2 − 2z1
1a2 on the second

line, as we compute expressly for pC in the next section. Were it followed by a third gate, we
could use this expression in place of z2

2 . However the terms of our theorems do not allow such
“zapping” of b2—rather what happens in the proof is that b2 gets substituted for the nominal
variable “zs2” = z2

2 . As also observed in [DHH+04], we can mitigate this issue by appending two
more Hadamard gates on the second line. This produces an equivalent circuit C ′, but by both
our rules and theirs, produces a variable z4

2 that has no indicated substitution, and that can
then be “cleanly” identified with b2. (Note that our constructions above already eliminate the n
equations collectively called “B” in [DHH+04].) Moreover, the two extra Hadamard gates make
the constant R′ for C ′ equal to R/2. The polynomial pC′ thus is overtly different from pC , and
gives different raw numbers of solutions, though they scale by R′ to give the same amplitudes.
Absent an immediate way to recognize the ostensible equivalence of such pC , pU , pC′ , we resort
to verbs like “represents” and “can be taken as.”

That said, our tensor-product theorem holds for any of the polynomial forms, after sub-
stitution as well as reduction. Given two quantum circuits C1, C2 on n1 and n2 qubit lines,
respectively, C1 ⊗ C2 is representable as a circuit on n1 + n2 lines that puts the gates of C2

“below” those for C1. Any merge of the ordered lists of gates in C1, respectively C2, is fine—or
one may pair up gates into tensor products. Hence the need for our language about equivalence,
in what is otherwise a short-and-sweet statement:

Theorem 2.4 For any quantum circuits C1 and C2, pC1⊗C2 can be taken as pC1 · pC2, and
qC1⊗C2 can be taken as qC1 + qC2 (mod k).

9



Proof: For any a = a1 ⊗ a2 and b = b1 ⊗ b2 on the same respective indices,

〈a| C1 ⊗ C2 |b〉 = 〈a1| C1 |b1〉 · 〈a2| C2 |b2〉

=

(
R1

∑
`

ω`NB[p1
a1,b1(~z1) = e(ω`)]

)(
R2

∑
m

ωmNB[p2
a2,b2(~z2) = e(ωm)]

)
= R1R2

∑
`,m

ω`+mNB[p1
a1,b1(~z1) = e(ω`)] ·NB[p2

a2,b2(~z2) = e(ωm)]

= R1R2

∑
λ

ωλNB[p1
a1,b1(~z1)p2

a2,b2(~z2) = e(ωλ)].

The last line follows because any 0-1 assignment u = (u1, u2) that makes p1p2 evaluate to
e(ωλ) must (given that the values of the polynomials are always units) make p1(u1) = ω` and
p2(u2) = ωm such that ` + m = λ (mod k). By the same token, writing S1, S2 for the extra
scaling factors in Theorem 2.2, we have

〈a| C1 ⊗ C2 |b〉 = R1S1R2S2

∑
`,m

ω`+mNB[q1
a1,b1(~z1, ~w1) = e(ω`)] ·NB[q2

a2,b2(~z2, ~w2) = e(ωm)]

= R1R2

∑
λ

ωλNB[q1
a1,b1(~z1, ~w1) + q2

a2,b2(~z2, ~w2) = e(ωλ)]

because here e(ωλ) = e(ω`) + e(ωm) (mod k), and the same 1-1 breakdown of solutions applies.
2

Indeed, when the circuits are single gates F and G, the polynomial pF⊗G winds up being
expressly defined as the product of the phase-indicator terms PF and PG. Multiplying out this
product gives indicator factors of the form I(c1)I(c2)I(d1)I(d2) that are formally identical to the
post-tensoring factors I(c)I(d), and the entries e((F ⊗G)(c, d)) are just e(F (c1, d1))e(G(c2, d2)).
However, taking the product of qF and qG, while giving the correct indicator factors, fails because
now we need E((F⊗G)(c, d)) = E(F (c1, d1))+E(G(c2, d2)) (mod k). It is interesting that taking
the sum yields correct results without yielding indicator factors of degree n1 + n2. This nice
behavior is ultimately a feature of the algebra of indicator factors and reflects the way that
the indices decompose. The degree savings also help computer algebra systems. Still, the lack
of immediate correspondence to the directly-defined qF⊗G is part of our general suspicion that
certain algebraic properties of quantum circuits will emerge more readily from the multiplicative
representations.

2.4 Controlled Gates

For any m-qubit gate G, C-G is a gate on m + 1 lines that behaves like G on the m “target”
lines for the 〈1| value of the new “control” line, and behaves like the identity on all lines for the
〈0| value. It is always the identity on the control line. Letting y, z stand for the before- and
after- variables on the control line, with the substitution z := y, we have the identities:

PC-G = (1− y)(1− z)PI⊗m + yzPG

P ′C-G = (1− y)P ′I⊗m + yP ′G
QC-G = w[(1− y)z + y(1− z)] + yzQG

Q′C-G = yQ′G

10



3 Gate Polynomials

We use the capitalized labels P,Q for the phase terms Pj, Qj obtained for single gates, and
P ′, Q′ when the gates allow substitution for involved qubit lines. For all gates except the T -
gate, P ′′ denotes P ′ over Z2[u] where the adjoined element u is supposed only to satisfy u4 = 1.
The symbol 7→ denotes the further reduction of P ′ modulo the Boolean ideal. Overbars denote
conjugate polynomials, when different. For an m-qubit gate, we rename the “zj−1

i ” variables on
its input lines to y1, . . . , ym, and its output lines to z1, . . . , zm. For single-qubit gates, we just
write y and z. All examples have dyadic phases, so k is always a power of 2.

3.1 Multiplicative polynomials P

In the multiplicative representations, we write simply 1 and −1 in place of e(1) and e(−1), and
when the target ring R has two more fourth roots of unity, we name one of them i and the other
−i, and so on. We begin with single-qubit gates.

Identity Gate

I =

[
1 0
0 1

]

PI = (1− y)(1− z) + yz = 2yz − y − z + 1

P ′I = PI [z := y] = 2y2 − 2y + 1

7→ 1

P ′′I = 1

Not Gate—Pauli X

X =

[
0 1
1 0

]

PX = (1− y)z + y(1− z) = y + z − 2yz

P ′X = PX [z := (1− y)] = 2y2 − 2y + 1

7→ 1

P ′′X = 1

Note that P ′ is the same for I and X even before the reduction—the substitution handles the
entire difference between the two gates.

Pauli Y Gate—half phase

Y0 =

[
0 −1
1 0

]

PY0 = y(1− z)− (1− y)z = (y − z)

P ′Y0
= PY [z := (1− y)] = 2y − 1

P ′′Y0
= y2 + u2(1− y)2 = (1 + u2)y2 − 2u2y + u2

7→ u2 + u2y + y

11



Pauli Y Gate—standard phase

Y =

[
0 −i
i 0

]
PY = iy(1− z)− i(1− y)z = i(y − z)

P̄Y = i(z − y)

P ′Y = PY [z := (1− y)] = i(2y − 1)

P̄ ′Y = i(1− 2y)

P ′′Y = uy(1− z) + u3(1− y)z[z := 1− y]

= uy2 + u3(1− y)2 = (u+ u3)y2 − 2u3y + u3

7→ u3 + u3y + uy

P̄ ′′Y = u+ u3y + uy

Note that for P ′′ we are not allowed to assume u + u3 = 0. Compared to Y0, the global phase
multiplies the polynomials by i and u, respectively. The multiplier of u can be pulled all the
way outside the circuit polynomial, but still shows up in the value of 〈a| C |b〉, so we do not
ignore it.

Pauli Z Gate

Z =

[
1 0
0 −1

]
PZ = (1− y)(1− z)− yz = 1− y − z
P ′Z = PZ [z := y] = 1− 2y

P ′′Z = (1− y)2 + u2y2 = 1− 2y + (1 + u2)y2

7→ 1 + y + u2y

With u4 = 1, note that P ′′Z = u2P ′′Y0
even though the gates are not phase translates of each other—

the nub is that they use different subsitutions. Also note that one cannot assume u2 = −1 when
defining P ′′Z , since with coefficients modulo 2 that would make u2 = 1, violating injectivity of
the embedding.

Phase Gate

S =

[
1 0
0 i

]
PS = (1− y)(1− z) + iyz = (1 + i)yz − y − z + 1

P̄S = (1− i)yz − y − z + 1

P ′S = PS[z := y] = (1 + i)y2 − 2y + 1

P̄ ′S = (1− i)y2 − 2y + 1

7→ iy − y + 1 =
√

2ω3y + 1

P ′′S = (1− y)2 + y2u = 1− 2y + y2(1 + u)

7→ 1 + y(1 + u)

P̄ ′′S = 1 + y + yu3

12



T Gate With ω = eπi/4 = +
√
i,

T =

[
1 0
0 ω

]

PT = (1− y)(1− z) + ωyz = (1 + ω)yz − y − z + 1

P̄T = (1 + ω7)yz − y − z + 1

P ′T = PT [z := y] = (1 + ω)y2 − 2y + 1

P̄ ′T = (1 + ω7)y2 − 2y + 1

7→ ωy − y + 1

P ′′T = P ′T/n.a.

Hadamard Gate

H =
1√
2

[
1 1
1 −1

]

PH = (1− y)(1− z) + (1− y)z + y(1− z)− yz = 1− 2yz

P ′H = PH

P ′′H = 1− yz + yzu2 (no substitution)

√
not Gate

V =
1

2

[
1 + i 1− i
1− i 1 + i

]
=

1√
2

[
ω ω−1

ω−1 ω

]

PV = (1− y)(1− z)ω + (1− y)zω−1 + y(1− z)ω−1 + yzω

= (1− y − z + 2yz)ω + (y + z − 2yz)ω−1

= ω − y(ω3 + ω)− z(ω3 + ω) + 2yz(ω3 + ω)

= ω − (y + z)i
√

2 + 2yzi
√

2

P̄V = ω7 + (y + z)i
√

2− 2yzi
√

2

P ′V = PV

It is also OK to do the calculation without first dividing out by
√

2, provided one remembers it
at the end. Thus

PV = [(1− y)(1− z)(1 + i) + (1− y)z(1− i) + y(1− z)(1− i) + yz(1 + i)]/sqrt2

= [1 + i− 2iy − 2iz + 4iyz]/
√

2

which agrees with the above. However, it is not allowed to create P ′′V over Z2[u] by cancelling
the corresponding terms 4uyz, −2uy, and −2uz.

cnot Gate

cnot =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


13



Pcnot = (1− y1)(1− z1)PI(y2, z2) + y1z1Pnot(y2, z2)

= −2y1y2z2 + y1y2 + y1z1 + y1z2 − y1 − 2y2z1z2 + y2z1 + 2y2z2 − y2

+z1z2 − z1 − z2 + 1

P ′cnot = Pcnot[z1 := y1, z2 := y1 + y2 − 2y1y2]

= 8y2
1y

2
2 − 8y2

1y2 + 3y2
1 − 8y1y

2
2 + 8y1y2 − 3y1 + 2y2

2 − 2y2 + 1

7→ 1

P ′′cnot = 1

Alternately, Pcnot = (1− y1)(1− y2)(1− z1)(1− z2) + (1− y1)y2(1− z1)z2 + y1(1− y2)z1z2 +
y1y2z1(1− z2) and P ′cnot = (1− y1)PI(y2) + y1P

′
not(y2) = 1− y1 + y1 = 1. If one substitutes

for z1 but not for z2, one obtains

Pcnot[z1 := y1] 7→ 1− y1 − y2 − z2 + 2y1y2 + 2y1z2 + 2y2z2 − 4y1y2z2.

Controlled-Z Gate

cnot =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


PCZ = (1− y1)(1− z1)PI(y2, z2) + y1z1PZ(y2, z2)

= 2y1y2z1z2 − 2y1y2z1 − 2y1y2z2 − 2y1z1z2 − 2y2z1z2 + y1y2 + 2y1z1

+y2z1 + y1z2 + 2y2z2 + z1z2 − y1 − y2 − z1 − z2 + 1

P ′CZ = PCZ [z1 := y1, z2 := y2]

= 2y2
1y

2
2 − 4y2

1y2 − 4y1y
2
2 + 2y2

1 + 4y1y2 + 2y2
2 − 2y1 − 2y2 + 1

7→ 1− 2y1y2

P ′′CZ = 1− y1y2 + u2y1y2

The polynomial PCZ is invariant under swapping y1, z1 with y2, z2 respectively. The other two
polynomials more obviously reflect the indifference under which qubit line is the “control” and
which the “target.”

Swap Gate

swap =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


Pswap = (1− y1)(1− y2)(1− z1)(1− z2) + (1− y1)y2z1(1− z2) + y1(1− y2)(1− z1)z2

+y1y2z1z2

= 4y1y2z1z2 − 2y1y2z1 − 2y1y2z2 + y1y2 − 2y1z1z2 + y1z1

+2y1z2 − y1 − 2y2z1z2 + 2y2z1 + y2z2 − y2 + z1z2 − z1 − z2 + 1

P ′swap = Pswap[z1 := y2, z2 := y1]

= 4y2
1y

2
2 − 4y2

1y2 + 2y2
1 − 4y1y

2
2 + 4y1y2 − 2y1 + 2y2

2 − 2y2 + 1

7→ 1

P ′′swap = 1

14



Shor Gate

Shor =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ω


where ω = eiπ/2

k−j
with the gate acting on qubits j and k of a designated quantum register.

P
Shor

= (1− y1)(1− y2)(1− z1)(1− z2) + (1− y1)y2(1− z1)z2 + y1(1− y2)z1(1 = z2)

+y1y2z1z2ω

= ωy1y2z1z2 + 3y1y2z1z2 − 2y1y2z1 − 2y1y2z2 + y1y2 − 2y1z1z2

+2y1z1 + y1z2 − y1 − 2y2z1z2 + y2z1 + 2y2z2 − y2 + z1z2 − z1 − z2 + 1

P ′
Shor

= P
Shor

[z1 := y1, z2 := y2]

= ωy2
1y

2
2 + 3y2

1y
2
2 − 4y2

1y2 + 2y2
1 − 4y1y

2
2 + 4y1y2 − 2y1 + 2y2

2 − 2y2 + 1

7→ ωy1y2 − y1y2 + 1

P ′′
Shor

= P ′
Shor

/n.a.

The conjugates are obtained by conjugating ω. Note that when k − j approaches n, expo-
nentially many tiny phases are summed over in (2.1), removing all question of its becoming a
polynomial-sized formula. Shor’s algorithm proper aprpoximates the effect of the tiny phases via
standard gates. We wonder whether translating the proper circuits into polynomials will involve
effects shown for the V -gate above, but where the magnitudes of (changes to) the normalization
constants themselves become an issue.

A Gate

A =
1√
3


1 0 −1 1
0 1 1 1
1 −1 1 0
1 1 0 −1


PA = 2y1y2z1z2 − 4y1y2z1 + y1y2 − 2y1z1z2 + 2y1z1 − y1z2 − 4y2z1z2

+3y2z1 + 2y2z2 − y2 + 3z1z2 − 2z1 − z2 + 1

P ′A = PA

P ′′A = y1y2 + y1z2 + y2z1 + z1z2 + y2 + z2 + 1

In contrast to P ′′V , it is OK to cancel the multiples of 2 in the coefficients because the
√

3 factor
does not interact with the normalization of individual entries to be units.

Toffoli Gate

Tof =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


15



P
Tof

= (1− y1)(1− z1)PI⊗2 + y1z1Pcnot(y2, y3, z2, z3)

= 4y1y2y3z1z2z3 − 2y1y2y3z1z2 − 4y1y2y3z1z3

+2y1y2y3z1 − 4y1y2y3z2z3 + 2y1y2y3z2 + 2y1y2y3z3

−y1y2y3 − 2y1y2z1z2z3 + 3y1y2z1z2 + 2y1y2z1z3 − 2y1y2z1

+2y1y2z2z3 − 2y1y2z2 − y1y2z3 + y1y2 − 4y1y3z1z2z3

+2y1y3z1z2 + 4y1y3z1z3 − 2y1y3z1 + 2y1y3z2z3 − y1y3z2 − 2y1y3z3

+y1y3 + 2y1z1z2z3 − 2y1z1z2 − 2y1z1z3 + 2y1z1 − y1z2z3

+y1z2 + y1z3 − y1 − 4y2y3z1z2z3 + 2y2y3z1z2 + 2y2y3z1z3

−y2y3z1 + 4y2y3z2z3 − 2y2y3z2 − 2y2y3z3 + y2y3 + 2y2z1z2z3

−2y2z1z2 − y2z1z3 + y2z1 − 2y2z2z3 + 2y2z2 + y2z3 − y2 + 2y3z1z2z3

−y3z1z2 − 2y3z1z3 + y3z1 − 2y3z2z3 + y3z2 + 2y3z3 − y3 − z1z2z3

+z1z2 + z1z3 − z1 + z2z3 − z2 − z3 + 1

P ′
Tof

= (1− y1) + y1P
′
cnot(y2, y3, z2, z3) = 1

P ′′
Tof

= P
Tof

[z1 := y1, z2 := y2 z3 := y1y2 + y3] = 1

Writing P ′
Tof

= P
Tof

[z1 := y1, z2 := y2, z3 := y1y2 + y3 − 2y1y2y3] reduces to the above, and

importantly, shows the required substitutions. Note that even over Z2[u], the substitution for
z3 is non-linear.

3.2 Additive representations

Rather than take the minimum k for a particular gate, we leave k general, thus writing k/2 for
the additively-embedded value e(−1), rather than 1 assuming k = 2. Likewise we write k/4 for
e(i) and k/8 for e(

√
i).

Recall w stands for the new variable for each gate. Q′ stands for the substitution version
of Q, while Q′′ is Q or Q′ for k = 4 provided it is invariant under its arguments being 2 versus
0, and 3 versus 1. Conjugation of the value of Q′′ is still an issue, so conjugates for all three
polynomials are shown when they differ from the respective originals.

Identity Gate

I =

[
1 0
0 1

]

QI = (1− y)zw + y(1− z)w = w(y + z − 2yz)

Q′I = QI [z := y] = w(2y − 2y2)

7→ 0

Q′′I = 0

To justify the last line, we need to note that 2y − 2y2 is 0 modulo 4 not only when y = 0, 1 but
also when y = 2, 3.

Not Gate—Pauli X

X =

[
0 1
1 0

]

16



QX = (1− y)(1− z)w + yzw = w(1− y − z + 2yz)

Q′X = QX [z := (1− y)] = w(2y − 2y2)

7→ 0

Q′′X = 0

Again the substitution handles the entire difference between I and X.

Pauli Y Gate—half phase

Y0 =

[
0 −1
1 0

]

QY0 = (1− y)(1− z)w + (1− y)z(k/2) + yzw

= w(1− y − z + 2yz) + zk/2− yzk/2
Q′Y0

= QY0 [z := (1− y)] = 0w + k/2− yk − y2k/2

7→ k/2− (k/2)y

= 2y + 2 (mod 4)

= 4y + 4 (mod 8)

Q′′Y0
= 2y + 2

The substitution z := (1− y) leaves w multiplied by 2y − 2y2, which as we have seen is 0 mod
4 even when y = 2 or y = 3.

Pauli Y Gate

Y =

[
0 −i
i 0

]

QY = (1− y)(1− z)w + (1− y)z(3k/4) + y(1− z)(k/4) + yzw

= w(1− y − z + 2yz) + (3k/4)z + (k/4)y

Q̄Y = w(1− y − z + 2yz) + (k/4)z + (3k/4)y

Q′Y = QY [z := (1− y)] = 2w(y − y2) + (3k/4)− (k/2)y

7→ 3k/4− (k/2)y = (k/4) +Q′Y0

= 2y + 3 (mod 4)

= 4y + 6 (mod 8)

Q̄′Y = k/4− (k/2)y = k/4 + (k/2)y

Q′′Y = 2y + 3

Q̄′′Y = 2y + 1

As expected, the extra factor of i corresponds to adding 1 to the representations modulo 4, or
adding k/4 in general.

Pauli Z Gate

Z =

[
1 0
0 −1

]

17



QZ = (1− y)zw + y(1− z)w + yz(k/2)

= w(y + z − 2yz) + (k/2)yz

Q′Z = QZ [z := y] = w(2y − 2y2) + (k/2)y2

7→ (k/2)y

= y (mod 2)

= 2y (mod 4)

= 4y (mod 8)

Q′′Z = 2y

Phase Gate

S =

[
1 0
0 i

]
QS = (1− y)zw + y(1− z)w + yz(k/4)

= w(y + z − 2yz) + (k/4)yz

Q̄S = w(y + z − 2yz) + (3k/4)yz

Q′S = QS[z := y] = w(2y − 2y2) + (k/4)y2

7→ (k/4)y

= y (mod 4)

= 2y (mod 8)

Q̄′S = (3k/4)y

Q′′S = y2

Q̄′′S = 3y2

Note that for Q′′S we do not reduce modulo the Boolean ideal, because we envision values y = 2, 3
as well as 0, 1 modulo 4. That 22 = 0 and 32 = 1 modulo 4 is the point.

T Gate With ω = eπi/4 = +
√
i,

T =

[
1 0
0 ω

]
QT = (1− y)zw + y(1− z)w + yz(k/8)

= w(y + z − 2yz) + (k/8)yz

Q̄T = w(y + z − 2yz) + (7k/8)yz

Q′T = QT [z := y] = w(2y − 2y2) + (k/8)y2

7→ (k/8)y

= y (mod 8)

Q̄′T = (7k/8)y

Q′′T = n.a.?

The odd values all square to 1 modulo 8, but the even values 2 and 6 square to 4 rather than 0.
It is not clear whether this promotes or inhibits applications for circuits with T -gates and k = 8
similar to what we show for stabilizer circuits with k = 4.

18



Hadamard Gate

H =
1√
2

[
1 1
1 −1

]

QH = yz(k/2)

Q′H = n.a.

Q′′H = 2yz

Even though we do not have a substitution, the coefficient of 2 makes Q′′H depend only on the
parity of its arguments modulo 4.

√
not Gate

V =
1

2

[
1 + i 1− i
1− i 1 + i

]
=

1√
2

[
ω ω−1

ω−1 ω

]

QV = (k/8)[(1− y)(1− z) + yz] + (7k/8)[(1− y)z + y(1− z)]

= (k/8)[1− y − z + 2yz + 7z + 7y − 14yz] = (k/8)[1 + 6y + 6z + 12yz]

=
k

8
+

3k

4
(y + z)− k

2
yz

Q̄V =
7k

8
+
k

4
(y + z)− k

2
yz

Q′V = n.a.

Q′′V = n.a.

cnot Gate

cnot =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Qcnot = w[2y1y2z2 − y1y2 − y1z1 − y1z2 + y1 + 2y2z1z2 − y2z1 − 2y2z2

+y2 − z1z2 + z1 + z2]

Q′cnot = Qcnot[z1 := y1, z2 := y1 + y2 − 2y1y2]

= w[−8y2
1y

2
2 + 8y2

1y2 − 3y2
1 + 8y1y

2
2 − 8y1y2 + 3y1 − 2y2

2 + 2y2]

7→ 0

Q′′cnot = 0

Besides “substituting away” the cnot gate, it may be important to compare the two substitu-
tions that result from z2 := y1 + y2 versus z2 := y1 + y2 − 2y1y2, modulo 4. Namely:

Qcnot[z1 := y1, z2 := y1 + y2] = w[4y2
1y2 − 3y2

1 + 4y1y
2
2 − 6y1y2 + 3y1 − 2y2

2 + 2y2]

= w[−3y2
1 − 6y1y2 + 3y1 + 2y2

2 + 2y2]

= w[y2
1 − y1 + 2y1y2];

Q′cnot = w[−3y2
1 + 3y1 + 2y2

2 + 2y2]

= w[y2
1 − y1]

19



That these terms are multiplied by w may make the difference immaterial. Also, substituting
just the first variable gives

Qcnot[z1 := y1] 7→ w[2y1y2z2 − 2y1y2 − 2y1z2 − 2y2z2 + y1 + y2 + z2].

Controlled-Z Gate

cnot =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


QCZ = w[1− ((1− y1)(1− y2)(1− z1)(1− z2) + (1− y1)y2(1− z1)z2 + y1(1− y2)z1(1− z2)

+y1y2z1z2)] + (k/2)y1y2z1z2

= (k/2)y1y2z1z2 − 4y1y2z1z2w + 2y1y2z1w + 2y1y2z2w

+2y1z1z2w + 2y2z1z2w − y1y2w − 2y1z1w − y2z1w − y1z2w

−2y2z2w − z1z2w + y1w + y2w + z1w + z2w

Q′CZ = QCZ [z1 := y1, z2 := y2]

= w[−4y2
1y

2
2 + 4y2

1y2 + 4y1y
2
2 − 2y2

1 − 4y1y2 − 2y2
2 + 2y1 + 2y2]

+(k/2)y2
1y

2
2

7→ (k/2)y1y2

Q′′CZ = 2y1y2

As with the other stabilizer gates, Q′′CZ does not care whether an argument is 0 vs. 2, or 1 vs.
3.

Swap Gate

swap =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


Qswap = w[−4y1y2z1z2 + 2y1y2z1 + 2y1y2z2 − y1y2 + 2y1z1z2

−y1z1 − 2y1z2 + y1 + 2y2z1z2 − 2y2z1 − y2z2 + y2 − z1z2 + z1 + z2]

Q′swap = Qswap[z1 := y2, z2 := y1]

= w[−4y2
1y

2
2 + 4y2

1y2 − 2y2
1 + 4y1y

2
2 − 4y1y2 + 2y1 − 2y2

2 + 2y2]

7→ 0

Q′′swap = w[2y2
1 + 2y1 + 2y2

2 + 2y2] = 0

Shor Gate

Shor =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ω



20



where ω = eiπ/2
`−j

with the gate acting on qubits j and ` of a designated quantum register.
Here we assume k = 2n−1 and put a = k/2`−j so that e+(ω) = k/a.

Q
Shor

= w[−4y1y2z1z2 + 2y1y2z1 + 2y1y2z2 − y1y2 + 2y1z1z2 − 2y1z1

−y1z2 + y1 + 2y2z1z2 − y2z1 − 2y2z2 + y2 − z1z2 + z1 + z2] + (k/a)y1y2z1z2

Q′
Shor

= Q
Shor

[z1 := y1, z2 := y2]

= w[−4y2
1y

2
2 + 4y2

1y2 − 2y2
1 + 4y1y

2
2 − 4y1y2 + 2y1 − 2y2

2 + 2y2] + (k/a)y2
1y

2
2

7→ (k/a)y1y2

Q′′
Shor

= n.a.

Conjugates replace (k/a) by k(1− 1/a).

A Gate

A =
1√
3


1 0 −1 1
0 1 1 1
1 −1 1 0
1 1 0 −1


QA = w[(1− y1)y2(1− z1)(1− z2) + (1− y1)(1− y2)(1− z1)z2

+y1y2z1(1− z2) + y1(1− y2)z1z2]

+(k/2)[(1− y1)(1− y2)z1(1− z2) + y1(1− y2)(1− z1)z2 + y1y2z1z2]

Q′A = QA

Q′′A = n.a.

Modulo 4, the non-‘w’ portion of QA multiplies out to

6y1y2z1z2 − 2y1y2z2 − 4y1z1z2 + 2y1z2 − 2y2z1z2 + 2z1z2

= 2y1y2z1z2 − 2y1y2z2 + 2y1z2 − 2y2z1z2 + 2z1z2

which owing to the factors of 2 is odd/even invariant, but the portion multiplied by w is

−4y1y2z1z2 + 2y1y2z1 + 2y1y2z2 − y1y2 + 2y1z1z2 − y1z2 + 2y2z1z2 − y2z1 − 2y2z2

+y2 − z1z2 + z2

= 2y1y2z1 + 2y1y2z2 + 2y1z1z2 + 2y2z1z2 − 2y2z2

+y2 + z2 − y1y2 − y1z2 − y2z1 − z1z2

The last line is not odd/even invariant, but the fact that it multiplies w may make this imma-
terial.

Toffoli Gate

Tof =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


21



Q
Tof

= w[−3y1y2y3z1z2z3 + y1y2y3z1z2 + 3y1y2y3z1z3 − y1y2y3z1

+3y1y2y3z2z3 − y1y2y3z2 − y1y2y3z3 + y1y2y3 + y1y2z1z2z3

−2y1y2z1z2 − y1y2z1z3 + y1y2z1 − y1y2z2z3 + y1y2z2 − y1y2

+3y1y3z1z2z3 − y1y3z1z2 − 3y1y3z1z3 + y1y3z1 − y1y3z2z3

+y1y3z3 − y1y3 − y1z1z2z3 + y1z1z2 + y1z1z3 − y1z1 + y1

+3y2y3z1z2z3 − y2y3z1z2 − y2y3z1z3 − 3y2y3z2z3 + y2y3z2

+y2y3z3 − y2y3 − y2z1z2z3 + y2z1z2 + y2z2z3 − y2z2 + y2 − y3z1z2z3

+y3z1z3 + y3z2z3 − y3z3 + y3]

Q′
Tof

= Q
Tof

[z1 := y1, z2 := y2, z3 := y1y2 + y3 − 2y1y2y3]

= w[6y3
1y

3
2y

2
3 − 5y3

1y
3
2y3 + y3

1y
3
2 − 12y3

1y
2
2y

2
3 + 10y3

1y
2
2y3

−2y3
1y

2
2 + 6y3

1y2y
2
3 − 5y3

1y2y3 + y3
1y2 − 12y2

1y
3
2y

2
3

+10y2
1y

3
2y3 − 2y2

1y
3
2 + 5y2

1y
2
2y

2
3 − 2y2

1y
2
2y3 − 2y2

1y
2
2

+2y2
1y2y

2
3 − 2y2

1y2y3 + 2y2
1y2 − 3y2

1y
2
3 + 2y2

1y3 − y2
1

+6y1y
3
2y

2
3 − 5y1y

3
2y3 + y1y

3
2 + 2y1y

2
2y

2
3 − 2y1y

2
2y3

+2y1y
2
2 − 2y1y2y

2
3 − y1y2 + 2y1y

2
3 − y1y3 + y1 − 3y2

2y
2
3

+2y2
2y3 − y2

2 + 2y2y
2
3 − y2y3 + y2 − y2

3 + y3]

7→ 0

Q′′
Tof

= n.a.?

As with Q′′cnot, the polynomial multiplied by w does not vanish modulo 4 for all arguments
in { 0, 1, 2, 3 }, but this fact may be immaterial. Of more import is that the substitution
z3 := y1y2 + y3 − 2y1y2y3 does not have the same parity as any linear substitution.

4 Circuit Simulations and Equivalence

A classical annotation of a quantum circuit is an assignment of occurrences of variables or terms
to the wires of the circuit diagram. The minimum annotation is the assignment zji for 1 ≤ i ≤ n
and 0 ≤ j ≤ s, possibly renaming z0

i to ai and zsi to bi. All other legal annotations are obtained
from the minimum one by substituting a term t for some zji , 1 ≤ j ≤ s − 1 in a way allowed
by the gate immediately to its left . When no gate is there, the single-qubit identity gate is
assumed. Note that we do not allow substitution for bi—instead we prescribe inserting an extra
identity gate. (Dawson et al. suggest inserting two consecutive Hadamard gates for a similar
purpose.) There is always a unique maximum annotation which applies all legal substitutions.

Given a representation scheme, meaning choice of coefficient ring and additive-or-
multiplicative, every annotation A gives rise a unique phase polynomial PA (or additively, QA)
obtained via the prescribed terms for each gate, and further a unique reduction P ′A of PA (or
Q′A of QA) modulo the Boolean ideal. In the catalog above, the gate polynomials P give PA for
the minimum annotation A, while P ′ give P ′A′ for the maximum A′, and similarly for Q,Q′.

Definition. Two polynomials are equivalent if they arise from annotations of two equivalent
quantum circuits.

The polynomials must have the same variables a1, . . . , an and b1, . . . , bn (or their z0
i , z

s
i namings),

but there is no requirement on any other variables, which we call interior variables . It is

22



interesting to ask whether there is a simple algebraic characterization of this equivalence relation.
Now we give some examples.

Two consecutive Hadamard gates on the same qubit line give the identity, but show some
subtleties of the polynomials.

a
H

y
H

b

The multiplicative polynomial is

PC = (1− 2ay)(1− 2yb) 7→ 1− 2ay − 2yb+ 4ayb,

with a background factor of R = 1/2 from the two Hadamard gates. Why is this equivalent to
the identity-gate polynomial? The latter is

PI = 1− a− b+ 2ab.

A clue is to look at what happens to PC under the “illegal” substitution b = 1 − a, when it
becomes

1− 2ay − 2y + 2ay + 4ay − 4a2y 7→ 1− 2y.

A multiplicative term (1−2y) where this is the only occurrence of the interior variable y behaves
much like “w” in the additive representations. It sets up a 1-1 correspondence between solutions
for each e(ω) and e(−ω), which cancels everything to zero. Thus all assignments into PC that
make a 6= b contribute a net of zero to the complex amplitude. Substituting a = b makes both
polynomials reduce to 1. Interestingly, substituting y = 1/2 into PC yields PI , but this is not a
“legal” substitution.

We diagram the next circuit in a way that makes the distinguished role of the ai and bi
variables clearer:

a1 H
y
• b1

a2 ��������y + a2 − 2ya2
b2

PA = (1− 2a1y)(1− y − b1 + 2yb1)(1− y − a2 + 2ya2 − b2 + 2yb2 + 2a2b2 − 4ya2b2)

Here we have implemented a pair of I-gates at the far right, but not shown them in the diagram.
It is legal to substitute b1 for y, but not to wipe out b2. We may, however, dispense with the
substitution for the second cnot line and annotate this way:

a1 H
b1

• b1

a2 �������� b2

P = (1− 2a1b1)(1− a2 − b1 − b2 + 2b1b2 + 2a2b2 + 2a2b1 − 4a2b1b2)

Note that in the second term, we substituted b1 for both y1 and z1 in Pcnot as given in the
catalog, then reduced modulo the Boolean ideal—but we did not use P ′cnot because we did not
substitute on the second qubit line. To execute the circuit on input 〈00|, now substitute a1 = 0
and a2 = 0 to get

(1− b1 − b2 + 2b1b2)

23



This gives 1 when b2 = b1, but 0 otherwise. Hence inner product with |01〉 and |10〉 give 0, while
recalling R = 1/

√
2 from the Hadamard gate, the inner products with |00〉 and |11〉 give 1/

√
2.

Hence the final state is (1/
√

2)(|00〉+ |11〉). Execution on 〈01| gives:

(1)(1− 1− b1 − b2 + 2b1b2 + 2b2 + 2b1 − 4b1b2) = b1 + b2 − 2b1b2

This is 0 when b1 = b2, so we obtain the similarly-entangled state (1/
√

2)(|01〉+ |10〉). Finally,
multiplying the matrices for H ⊗ I and cnot gives:

1 0 0 1
0 1 1 0
1 0 0 −1
0 1 −1 0


P = −4a1a2b1b2 + 2a1a2b1 + 2a1b1b2 + 4a2b1b2 − 2a1b1 − 2a2b1 − 2a2b2 − 2b1b2 + a2 + b1 + b2

This equals the reduction of PA above modulo the Boolean ideal. Thus this reduction will be
part of any algebraic characterization of the polynomial equivalence relation.

Putting the Hadamard gate on line 2 instead gives:

a1 • b1

a2 H
y ��������a1 + y − 2a1y

b2

P = (1− 2a2y)PI(a1, b1)PI(a1 + y − 2a1y, b2)

On input 〈00| this simplifies to

PI(0, b1)PI(y, b2) = (1− b1)(1− y − b2 + 2yb2)

This forces b1 = 0. When b2 = 0 we have 1 − y, which gives NB[1] = 1, NB[−1] = 0. When
b2 = 1 we have y, which also gives NB[1] = 1, NB[−1] = 0. Either way NB[1] − NB[−1] =
1, so remembering the

√
2 from the Hadamard gate, we get the non-entangled output state

(1/
√

2)(|00〉 + |01〉). Our ultimate purpose beginning with these examples is to ask, what can
the classical polynomial algebra tell us about the capacity of the circuits to produce—or undo—
entanglements?

The simulation of cnot by CZ and Hadamards shows another vicissitude of equivalence,
this time with annotations (a1 ⊕ a2 means a1 + a2 − 2a1a2) and different constants R.

a1 • b1 = a1

a2 H
y

Z
y

H b2

≡ a1 • b1 = a1

a2 �������� b2

≡ a1 • b1 = a1

a2 �������� a1 ⊕ a2

(1− 2a2y)(1− 2a1y)(1− 2b2y); R× 2 vs. 1− a2 − b2 + 2a2b2 vs. 1

Even using the middle form with the cnot polynomial that substitutes only on the first qubit
line, the equivalence is not immediate to see, because the polynomial on the left is for a higher
value of R. And with full substitution, when the circuit continues on the right, the cnot

annotation propagates a1 + a2 − 2a1a2 on the second qubit line, but the Hadamard plus CZ
representation perforce propagates a single fresh variable.

24



Our last example is the circuit illustrated in [DHH+04]. Our annotation is the same except
for including the term with −2 to make the Toffoli substitution work over all rings, and renaming
their “x2” and “x4” to “b2” and “b3.” Also bear in mind the implicit I at the end of line 1. P ′′

and Q′′ use k = 2.

a1 H
x1

• H
x3 �������� b2b3 + x3 − 2b2b3x3

b1

a2 H
b2

• • b2

a3 �������� x1b2 + a3 − 2x1b2a3
H

b3
• b3

P ′ = (1− 2a1x1)(1− 2a2b2)(1− 2x1x3)(1− 2b3(x1b2 + a3 − 2x1b2a3))

·(1− b1 + (2b1 − 1)(b2b3 + x3 − 2b2b3x3))

P ′′ = (1− a1x1(1 + u2))(1− a2b2(1 + u2))(1− x1x3(1 + u2))(1− b3(x1b2 + a3)(1 + u2))

·(1− b1 − b2b3 − x3)

Q′′ = a1x1 + a2b2 + x1x3 + b3x1b2 + b3a3 + w(b1 + b2b3 + x3)

Note that Q′′ is the most compact, but uses w. If to Q′′ we adjoin the equation b1 = b2b3 + x3

(and restore x2, x4 with b2 = x2, b3 = x4) to avoid the w term, then we get the system in
[DHH+04]. Note that the w variables do not contribute to the denominator over which the
numbers of solutions are placed. Here the denominator is 4 from the four Hadamard gates, and
there are four variables x1, x2, x3, x4 Substituting a1 = a2 = a3 = 0 to run on 〈000| gives

b2b3x1 + x1x3 + w(b2b3 + b1 + x3)

= x1(b2b3 + x3) + w(b1 + b2b3 + x3).

If b1 = 1, then the values of b2b3 +x3 that make the w-term vanish leave x1 ·1 in the other term.
Since x2 and x4 are out of the picture, and since the arguments x1 = 0, 1 give opposite parity,
the algebra represents an interference effect that creates zero amplitude for b1 = 1. With b1 = 0,
both terms vanish so the two assignments to x1 create amplitude 2/4 = 1/2 for each of the four
basis combinations of b2 and b3. Thus the final state is a separable one, viz.

1

2
(|000〉+ |001〉+ |010〉+ |011〉 = |0〉 ⊗ (|0〉+ |1〉)⊗2

2

Running on a = |101〉, however, gives

x1(1 + b2b3 + x3) + b3 + w(b1 + b2b3 + x3).

This now interferes with b1 = 0. When b1 = 1, the only non-cancelling/non-cancelled term is
b3. This contributes to the sign of 〈a| C |b〉, but does not matter to the amplitude as there is
no dependence on x1 or x3, so the final state is |1〉⊗ the equal superposition of the other two
qubits.

5 Applications

Two central theoretical problems are:

25



(1) Which subsets of quantum gates can be simulated efficiently with classical computation
alone?

(2) What (classical) upper and lower bounds can be given for BQP?

An important subclass for (1) is the collection of stabilizer circuits , formed from the single-
qubit Pauli, Hadamard, and S gates, and the cnot and/or CZ gate. (With the latter, the
Pauli gates can be removed to make a minimal set.) The original O(s3)-time algorithm for
simulating stabilizer circuits with s gates has since been improved to O(s2), O(s log s), and
Jozsa [Joz08] sketched an O(s)-time algorithm. Can we give an O(s)-time algorithm without
needing overhead for data structures such as the graph-state representation? As itemized above,
the Q′′ polynomials for these gates mod k = 4 have especially simple forms and are invariant
under adding 2 mod 4 to any argument. It is enough to treat the Hadamard, S, and cnot

and/or CZ gates:

1. Hadamard: 2yz, with no substitution; and

2. S: y2, substituting z := y; and

3. CZ : 2y1y2, substituting z1 := y1, z2 := y2; or

4. cnot: 0, substituting z1 := y1, z2 := y1 + y2, with the latter being sound in place of the
proper z2 := y1 + y2 − 2y1y2 owing to the invariance under adding 2.

Is there an easy inductive argument here? One can complete squares so that (with the CZ
option), every term is y2 or (y + z)2. By invariance we can replace the former by y, but can we
massage the latter further?

Generally, the task here is to identify subsets of polynomials for which the associated
solution-counting problems are solvable in classical polynomial time. Reductions by polyno-
mial equivalence may also contribute to the algorithms.

For (2), an immediate problem is whether BQP is contained in the polynomial hierarchy.
The reason this does not follow immediately from the approximate counting results of Stock-
meyer [Sto83] is that approximations to f(x)/2m and g(x)/2m may not help with (f(x)−g(x))/2h

when h is about m/2, as needed when a circuit has m Hadamard gates. If the denominator
were 2m, e.g. if the expression for the probability Pr(0) of measuring 0 on the first qubit line did
not need m extra variables, then simulating BQP would only require distinguishing the cases
of f(x) being near 2m versus being near 2m−1, which a ∆p

2 algorithm can do (deterministically)
without needing the fill ∆p

3 power of Stockmeyer’s approximate counting [Sto83]. No such sim-
ple demonstration appears to be forthcoming. However, we can still hope to seize on particular
properties of some of the representations and refine Stockmeyer’s proof techniques for them.

We may also explore the algebraic barriers to doing classical simulations of sets of gates
known to be universal. Josza and Miyake [JM08, Joz08] have shown some fine distinctions
involving Valiant’s matchgates :

General Matchgate

M = R


p 0 0 q
0 a b 0
0 c d 0
r 0 0 s

 , [
p q
r s

]
,

[
a b
c d

]
unitary, ps− rq = ad− cb

26



There are some nice properties here. For one, the entries are nonzero only when z2 has the
same parity as y1 +y2 +z1, so we can substitute z2 := y1 +y2 +z1−2y1y2−2y1z1−2y2z1 +4y1y2z1

for P ′M over any ring, which becomes the simple linear substitution z2 := y1 + y2 + z1 over Z2[u].
The conditions on p, q, r, s and a, b, c, d may yield something similar for z1. However, Josza’s
paper includes a case where the nearest-neighbor restriction yields a classical simulation, but
the next-nearest case is universal! It remains to see how the nearest-neighbor restriction will
show up in the algebra.

6 Algebra, Entanglement, and Complexity

Above, we recognized the entangled Bell state arising from the polynomial 1−b1−b2+2b1b2 under
multiplicative representation. The question is, can we give a general algebraic characterization
of entanglement—more properly, of a quantum circuit’s capacity to produce entanglements—via
the “classical” polynomials? It is famously difficult even to choose among candidate entangle-
ment measures for n-qubit states (see [PV05]), much less for circuits that might produce them.
More generally, we suspect that certain algebraic invariants of polynomials and associated poly-
nomial ideals should have physical significance in quantum circuits.

[More To Come]

7 Conclusions

Acknowledgments Most of this work was done while the first author was a sabbatical visitor
to the Universitié de Montreal, partly supported by the UdeM Département d’informatique et
de recherche opérationnelle, and by the University at Buffalo Computer Science Department.
We thank especially Professors Pierre McKenzie and Alain Tapp for helpful discussions. More
recently we thank John Sidles and Michael Nielsen for quick reactions, and the readers of Gödel’s
Lost Letter and P=NP for. . .

References

[DHH+04] C. Dawson, H. Haselgrove, A. Hines, D. Mortimer, M. Nielsen, and T. Osborne.
Quantum computing and polynomial equations over the finite field Z2. Quantum
Information and Computation, 5:102–112, 2004.

[GS06] V. Gerdt and V. Severyanov. A software package to construct polynomial sets over
Z2 for determining the output of quantum computations. Nuclear Instruments and
Methods in Physics Research A, 59:260–264, 2006.

[HH08] B. Hiesmayr and M. Huber. Multipartite entanglement measure for all discrete
systems. Phys. Rev. A, 78:012342 1–7, 2008.

[JM08] R. Jozsa and A. Miyake. Matchgates and classical simulation of quantum circuits,
April 2008.

[Joz08] R. Jozsa. Embedding classical into quantum computation, Dec. 2008.

27



[PV05] M. Plenio and S. Virmani. An introduction to entanglement measures, April 2005.
rev. 6/10/06.

[Sto83] L. Stockmeyer. The complexity of approximate counting. In Proc. 15th Annual ACM
Symposium on the Theory of Computing, pages 118–126, Baltimore, USA, April 1983.
ACM Press.

28


