
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 45, 285-295 (1992)

Minimum-Complexity Pairing Functions*

KENNETH W. REGAN

Department of Computer Science,
State University of New York at Buffalo, 226 Bell Hall, Buffalo, New York 14260

Received September 28, 1988; revised August 28, 1990

Pairing functions are bijections from N x N to N, and they are important in logic, com-
puting, and mathematics on the whole. We exhibit the first known pairing function (.,)
which is computable in linear time and constant space. In fact, both (.,) and its inverse are
computable by finite-state transducers which run in real time. By contrast, the familiar
examples of pairing functions in the literature are computable in linear time if and only if
integer multiplication can be accomplished in linear time, which is considered doubtful by
many. We also present two kinds of monotone pairing functions which are computable on-line
in linear time and log space; the first is also computable off-line in zero space. We conjecture
that every monotone pairing function requires log space to compute on-line. (13 1992 Academic

Press, Inc.

1. INTRODUCTION

What is the easiest way to compute a bijection (., .) from N x N to IV?
Pictorially put, what is the most efficient rule for numbering the cells of an ox o
chessboard? Tracing with pencil and paper, one might choose one of the following
patterns:

What matters, however, is the ease or difficulty of computing (x, y) given x and y.
Each of the above rules has the possible drawback of being hard for the problem
of multiplying two given integers, because (i) this reduces to squaring in linear time
via the identity a. b = :[(a + b)2 - a2 - b2], and (ii) given z, one can compute z2 via
calls to (z, 1), (z, z >, and/or (z - 1, 1). It is a major open question whether
multiplication can be accomplished in linear time on the Turing machine model, at

* Part of this research was conducted at Cornell University, supported by the U.S. Army Research
Oflice through the Cornell Mathematical Sciences Institute, Contract DAAG 29-85-C-0018.

285
0022~0000/92 $5.00

Copyright 0 1992 by Academx Press, Inc.
All rights oi reproduction in any form reserved.

286 KENNETH W. REGAN

least when x and y are given their standard representations as binary strings. The
familiar grade-school algorithm takes time O(n’), while the best known upper
bound is O(n ‘log n . log log n) (see [ScSt71 I). Every pairing function we have seen
in the literature, spanning [Rog67, BJ74, MY78, Cu80, LP81, and Rose841, is
integer-multiplication-hard in this sense. Subject to a negative answer to this ques-
tion, a linear-time computable pairing function (‘, .) must distribute not only the
squares, but every set SC N which forms a linear-time oracle for multiplication so
irregularly that the appropriate arguments X, y for (., . > cannot be found from a, h
in linear time.

Nevertheless, here is a linear-time pairing function which ought to be considered
“folklore,” though we know of no reference for it: Think of a natural number y1> 0
as the string str(n) E ,Z*, where .Z := (0, l), obtained by writing n in base-two nota-
tion and deleting the leading “1.” E.g., str(1) = 2, the empty string. Given x, y E Z*,
write xy for the concatenation of x and y (not multiplication), and (x(for the
length of x in bits (not absolute value). Then define

H(x, y) := wxy, where M: := str(2 1x1 + I yl - 1). (1.1)

The numerical graph of H(., .) is intuitively an “exponential stretching” of the first
pattern above, proceeding along diagonal lines of constant 1x1 +] y/ rather than
constant x + y. Patching around the three undefined values for x = 1, and (y[< 1
then yields a linear-time computable pairing function. Defining H’(x, y) := ,‘cyw
instead and doing the same patch yields the pairing function called (.,), in
Section 4.

However, these functions are still not the most efficient. For instance, no TM T
computing H(x, y) can start writing the output value wxy until it has read virtually
all of the input x, y. If T runs on-line (meaning: without a reversal of the input
head), then T needs linear space to store x and y. By contrast, H’ (and hence
(., .)[) is computable in log space on-line. However, H’ then requires linear space
on-line to invert. (We leave the interested reader to verify these two assertions,
which are not used later.)

It would be best for T to operate in real time, so that a bit is read and some bits
are output at each step, with zero storage requirement. Seeking this amounts to
asking: can a pairing function be computed by a finite-state transducer? The main
point of this paper is that the answer is yes. Moreover, and unlike (1, .),, the
pairing function (.,)0 we construct can be inverted as easily as it can be
computed. Except for quibbles, (., .). and (., .);’ use the absolute minimum in
each of time, space, and reversals.

However, (., .). fails to be monotone in its second argument and increases rather
rapidly (quadratically) in its first argument. We also construct a related linear-
time/zero-space pairing function (., .), which is monotone in both arguments, but
computing (., . >, requires one input tape head reversal. We conjecture that any
TM which computes a monotone pairing function while running on-line must use

PAIRING FUNCTIONS 287

logarithmic space. Any refutation of this conjecture would be a mathematically
interesting construction.

Section 2 presents background information, especially on finite-state transducers.
Section 3 constructs (., .). and verifies the properties claimed for it. Section 4
shows that several other pairing functions cannot be computed as easily as (., .)o,
and gives a few open problems. Section 5 raises some possible applications for this
work.

2. PRELIMINARIES

From now on we consider natural numbers to be strings over the alphabet
C := (0, l} under the correspondence srr defined in Section 1. This induces the
sequence 1, 0, 1, 00, 01, 10, 11, 000, which is often called the standard ordering
of c*.

A pairing function (., .) is a bijection from C* x C* to E*. We also consider
(., .) to be a bijection from Z;* # .Z* to C*, where “#” is a special separator sym-
bol. The associated projection functions 7cl and 7r2 are defined for all x, YEL’:* by:
~L~((x, y)) =x, n,((x, y))= y. The function is monotone (with respect to the
standard ordering of ,Z*, and in both arguments) if x1 <x2 A y, < y, => (x,, y,) <
(x1, yz> for all x1, x2, Y,, Y,E~*.

Our model of a (multitape) deterministic Turing machine T is the standard one
of [HU79], whereby T has a single read-only input tape, a single write-only one-
way output tape, and an arbitrary finite number of worktapes. We consider TMs
which have input alphabet C, := (0, 1, # }, output alphabet C, := (0, l}, and a
worktape alphabet which contains C, and the blank ,I, but is otherwise arbitrary.
All tapes are semi-infinite, extending to the right. To represent the arguments x, y
of (., .) it might be more realistic to have two input tapes, but we shall not be hurt
by abiding with the single-tape constraint and regarding “x # y” as the input to T.
It would also be realistic to suppose that the first cells of the input and work tapes
have a special endmarker symbol which is detectable by the machine. However, we
allow the common convention that if a TM attempts to move a head past the left
end of a tape, the head stays where it is, and we remark on this following
Theorem 4.1.

We consider machines T which obey a second convention from [HU79], namely,
that a TM computation may only halt in a special halting state qh with the input
head scanning the blank cell to the right of the input. Note that any halting com-
putation of T on an input x takes at least 1x1 + 1 transitions. It is easy to place a
given TM into this form.

The time used in a computation of T equals the total number of transitions. The
space used is the total number of worktape cells written to; that is, it includes
neither the input tape nor the output tape cells. The reversal count is the number
of times that a worktape or input tape head moves left when its previous moue has
been right, or right when its previous move has been left. If its input head never

288 KENNETHW.REGAN

moves left in any computation, then T is said to run on-line. For k 2 1, a TM T
runs in delay k if it runs on-line, and in any k consecutive transitions in any com-
putation there is one in which the input head moves right. T runs in real time iff
T runs in delay 1. Without loss of generality we may suppose that (the finite control
of) an on-line TM has no transitions calling for the input head to move left, and
that a real-time TM has only transitions calling for it to move right.

For any TM S which runs in constant space, we can find an equivalent TM T
which never moves or writes with its worktape head(s) at all, by coding the tinitely-
many different possible worktape configurations of S into the finite control of T.
The following specification for T is more general than various formalizations of a
“finite-state transducer” which have appeared in the literature. We distinguish
between the blank ,I as an input character and the empty string I as output, and
read “L,” “ R,” and ‘3” respectively as left, right, or stationary.

DEFINITION 2.1. A zero-space transducer (ZST) T consists of an input tape, an
output tape, and state transitions of the form (q, a; IO, d, r), where

qE Q\k,> is the current state

aECIu {%} is an input character

WE2,U in> is an output character or the empty string

ds {L, R, S 1 denotes the movement of the input head, and

reQ is the next state.

T is a generalized zero-space transducer (GZST) if we allow u’ to be any string in
,C$.

We restrict attention to GZSTs which are deterministic, and write T(x) = y iff the
computation of T on input x reaches state qh with y on the output tape.

DEFINITION 2.2. (a) A GZST T is prompt if every tuple (q, f; w, d, r) has r = qh
and w = 2, and nonerasing if for every tuple (q, a; w, d, r), a #A * w # A.

(b) The lag of an on-line TM M is the maximum number of symbols which
M can print when started in any state on blank input.

The extra powers of a GZST T over a ZST are that T can move its input head
left or keep it stationary, and that T can produce output and continue operation
after reading the blank cell which marks the end of the input. Two more-familiar
notions of finite transductions (see [HU79, DDQ78]) come from the following
restrictions: A MeaZy machine equals a realtime, prompt, nonerasing ZST (and so
produces output of length equal to that of its input). A deterministic generalized
sequential transducer (GST) equals a realtime, prompt GZST.

The ability of a GZST to output any string in one step allows us to use a “nor-
mal form” for on-line GZSTs T, in which all tuples (q, f; w, d, r) either have r = qh

PAIRING FUNCXONS 289

and d=” R,” or lead to a special infinite-looping state. This normal form is com-
puted by looking ahead to all transitions on J which follow any tuple of the form
(q, A; v, d, r), u E zo u {A}. Then the lag of T equals max{ JwI) (q, f; w, R, qh) is a
tuple of T in this normal form >, and T is prompt iff T has lag 0. Furthermore, if
a GZST T runs on-line and computes a total function, then T runs in delay k,
where k d IQ\. These observations are the gist of the following elementary result,
which ties together the various models for our purposes and justities our claim to
have a real-time computable pairing function.

PROPOSITION 2.1. The following are equivalent for any totalfunction f: CJ+ --) L$:

(a) f is computed by an on-line GZST T.

(b) f is computed by an on-line ZST T’.

(c) f is computed by a real-time GZST T”.

Moreover, the simulations among T, T’, and T” preserve promptness and nonerasure.
In particular, any total function f which is computable on-line by a prompt ZST is
computable by a GST.

The proof is left to the reader. We remark that the equivalence of on-line and off-
line finite-state acceptors (see [HU79]) does not extend to prompt (G)ZSTs:
consider a machine which on any input x notices the first occurrence of “00” if any,
advances to the next occurrence of “00,” and copies the intervening string to the
output while moving left to the first “00.” We may now state the main theorem in
full detail.

MAIN THEOREM 2.2. There is a bijection (., .),,: C* x Z* -_) .Z* which, when
represented as a function from C* #C* to .P, is computable by a prompt, real-time
GZST which outputs at most two bits per step, In addition, its inverse (., . >; ‘:
E* -+ 27 #C* is computable by a ZST in real time. In particular, rt, is computed by
a real-time ZST which is prompt, while n2 is computed by a real-time ZST with lag 1.

COROLLARY 2.3. (., .)0 is computable by a prompt ZST which runs in delay 2.

The automata for (., .). can be made to run with equal efliciency when x and
y are placed on separate tapes (and then become non-erasing), but no better.
Hence our result for the “x# y” representation is a strength, not a restriction. We
give the proof, plus additional technical observations, in the next section.

3. A PAIRING FUNCTION (., .)O OF MINIMUM COMPLEXITY

The basic idea is to pair strings x and y by doubling each bit of x and appending
y. The difficulty is that y may itself begin with a doubled bit. To mark the dividing

290 KENNETH W. REGAN

point, we insert an “opposite bit” either before or after the first bit of _V (if y #E.);
e.g., taking x := “101” and y := “000” gives “1100111000” under the former and
“1100110100” under the latter. Neither rule gives a bijection, however; e.g.,
“1100110” is not in the range of either. The two strings y = “0” and 4’ = “1” cause
the problem. We “patch around them” by taking z to be the second predecessor of
y (in some ordering of Z*) when (y(2 2 and apply the insertion to z instead. First
we define inductively:

DEFINITION 3.1. Component functions for pairing functions and their inverses:

d(x): d(A) := A, d(Ox) := OOd(x), d(lx) := 1 Id(x).

i, [x]: il[Ox] := 10x, i, [lx] := 01x; i, [;I] is undefined.

i,[x]: i2[Ox] :=01x, &[lx] := 10x; &[A] is undefined.

j, [xl: j, [Ox] := x, j, [lx] := x; j, [A] is undefined.

_&Cd: j,[OOx] :=0x, j,[Olx] :=Ox,j,[lOx] := lx, j,[llx] := lx;

j,[y] is undefined for YE (A, 0, 1).

Descriptive names are respectively “double bits,” “insert in the first place,” “insert
in the second place, ” “jettison the first bit,” and “jettison the second bit.” The last
function we need is a bijection h(.) from strings of length 32 to strings of length
21.

LEMMA 3.1. Let b(.) be a bijection from Z*\{A, 0, 1) to Z*\(l), and let i[.]
be either of the functions i,, i, above. Then the mapping

if YE {AR l>
otherwise (3.1)

defines a bijection from C* x C* to C*.

ProoJ: Clearly P(x, y) is well defined for all x, y E ,Z’*. If i = i, then let j [.] be
the function j, defined above; else if i= i, then j := j,. Define the functions 7c,, IZ,:
Z* --t .Z* for all z E Z* by:

X,(Z) := the longest x such that for some w, z = d(x) w; (3.2)

n,(z) := w_ if wE(R,O, l}

b ‘(jCw1) otherwise.
(3.3)

(Note. Here w in (3.3) comes from (3.2), and capital letters denote quantities which
depend on the choice of b(.) and i[.I,) For any z, z,(z) is computed by removing
all adjacent pairs of like bits from the left side of z, and then w is well defined as
the string left over. Then Z*\(& 0, 1 > c Dam(j) (even when j :=j,); and because

PAIRING FUNCTIONS 291

Ran(j) = c*\{A> = Dom(b-‘), Z7,(z is well defined. Now the reader may verify)
that P(., .) is both injective and surjective, with inverse (7ci, Z7,). 1

It is readily apparent that d(.), its quasi-inverse n,(.), and the simple bit-
inserting and deleting operations i [.] and j [.] are all computable by zero-space
transducers in delay 2. Hence it remains to optimize b(-) and make sure that its
composition with i[.] loses no efficiency. Simply taking b(y) to be y - 2 (that is,
str(str - ‘(y) - 2)) yields the pairing function (., .), in the next section, but we
show that this requires a head reversal to compute in zero space, intuitively because
the “carries” proceed in the wrong direction.

To eliminate the reversal, let 4: C* -+ C* be the function which reverses the
string given as argument; e.g., c$[101 lo] = 01101. Then define “backward subtraction
by 2” for all XEC* by b-2(x) :=d[d[x] -21; undefined for x = i or x = “0.” This
clearly yields a bijection from C* \{A, 0, 1 > to C* \ { A}, and its inverse b +2 is
defined for all x by b+*(x) := qS[qS[x] + 21.

DEFINITION 3.2. For all x, y, z E ,Y* define

if YE (AO, l},
otherwise, (3.4)

n,(z) :=max(xEX* ((ZlwEC*)[z=d(x)w]}, (3.5)

712(z) :=
W if wE(A,O, 1)

b+h’~Cwl) otherwise. (3.6)

Here again, w in (3.6) is the unique string such that z=x,(z)w, and the max in
(3.5) is taken with respect to length. For some examples: (x, A) = d(x) for all
XEC*; in particular, (A, ,?),=A. (A, 111),=i,[b_,(111)] =i,[lOl]= 1001, and
(lOl,lOOO),= 110011 .i,[lll]= 1100111011. For the inverses, n,(Ol)=A, rc,(Ol)=
b+2(‘V”) = 00, and ~,(0000111010101) = b+,(j,[1010101]) = b+,(llOlOl) =
101101.

Proof of the Main Theorem 2.2. By Lemma 3.1, the function (., .). is a bijec-
tion from C* x C* to C*, and n,, n2 are the associated projection functions. We
can program a real-time GZST T to operate as follows on input x# y : First print
each bit of x twice until reading the “#” symbol. If y is empty then halt; else print
and remember the first bit of y. If there is no second bit of y then halt; else print
the opposite bit to the one remembered-and-if the current bit of y is a “1,” then
also print “0” to accomplish the subtraction, move right, and enter a “copy” state
which prints the remaining bits of y until the end of y is reached. Else, if the current
bit is “0,” then move right and enter a “carry” state. In the carry state, T halts if
it reads the blank at the end of y, prints “10” and enters the copy state if the
current bit of y is “1,” and prints “1” and remains in the carry state if the bit is “0.”

From this description, T moves its input head right at each step, and is prompt.

292 KENNETHW.REGAN

The constructions of a prompt real-time ZST computing 7c,, and a real-time ZST
computing rc2 with lag 1, are immediate from the above descriptions. 1

Some Technical Notes. The lag of 1 for 7c2 is best possible, since n,(OO) = A while
~~(0) # ;1. We do not know of a real-time, lag-free pairing function, both of whose
inverses are likewise lag-free. The state used to remember that the first bit of J was
“0” is actually equivalent to the “carry” state, and so T requires only five states.
Both T and the equivalent delay-2 ZST T’ produced by Proposition 2.1 also output
at least one bit every two steps. In fact, T and T’ only output A when reading the
“#” symbol; this justifies a remark following Corollary 2.3.

To set up the motivation for the next section we list some additional properties
of the pairing function (., .)o. The proof is by inspection.

PROPOSITION 3.2. For all x, y, ZEP,

(a) 1x1 + Iy/ <1(x, JJ),~, with equality iff x=1 and ye (A, 0, 1).

(b) 2Ixl+Iyl6l~x,y~,l62Ixl+Iyl+~.
(c) Ifx,<z (in the standard ordering of L’*), then (x, y),d (z, Y>~.

4. MONOTONE PAIRING FUNCTIONS AND LOG-SPACE REQUIREMENTS

We use the tools in Section 3 to construct several more linear-time pairing func-
tions, which have both advantages and disadvantages relative to (., .),,. Given
x, y E L’*, define w(x, y) := str(2 1x1 + / yl - 1) as in (1.1). It is interesting that
~(2, y) is undefined for the same three cases y E { 1,0, 11 that require the subtract-2
patch in the definition of (., .)o.

DEFINITION 4.1. For all x, yeZ'* define:

if ye {A 0, I},
otherwise, (4.1)

(xy y),:= ;&.y.w(x, y))

if x=;landyE(A,O, l},
otherwise, (4.2)

‘x’ ‘jr’=
d(x) y if y~(L0, 11,
d(x)i,[b_,(y)] otherwise. (4.3 1

THEOREM 4.1. (a) (., ’), is a monotone pairing function which is computable by
a zero-space transducer in linear time, with one input head reversal. However, any
TM which computes (‘, . >, on-line requires log space.

(b) (., ’ >, is monotone and computable on-line in linear time and log space.
However, any TM which computes (., >(on-line does require log space and runs with
unbounded lag.

PAIRING FUNCTIONS 293

(c) (., .), is monotone with respect to the reverse standard ordering ofC*, and
enjoys the same minimum complexity as (., .)o.

Proof. The bijectivity of these functions and the upper bounds on their com-
plexity follows from the results in Section 3. The on-line log-space lower bounds are
obtainable by straightforwardly extending arguments of [HLS65, HU69] SO that
they work for transducers. (The modification is to show that a function f: CT -+ Cz
can be computed on-line in o(log n) space only if there is some k Gz 0 such that for
all strings z and prefixes y of z, deleting the last k bits off(y) yields a prefix of f(z).
Then one can show that neither (., .), nor (., .), has this property.) The function
(., .),. is obtained merely by substituting i, for i2 in the definition of (., .)O. 1

Some Technical Remarks. Here, the ability to compute the i,[y - 2) com-
ponent of (., .), off-line in zero space depends critically on the presence of the
“#” sign on the input tape as an endmarker. A finite-state transducer T’ with
separate input tapes for x and y cannot compute (.,), unless one replaces the
convention adopted in Section 2 by one allowing T’ to detect the left end of a tape.
The projection functions for (., .), and (., .), are just as easy to compute as the
corresponding pairing function, but those for (.,), appear to require linear space
to compute on-line, as asserted in Section 1. (., .). itself is not monotone under the
reverse ordering of E*. Substituting i, for i, in (.,), rather than (., .). yields the
pairing function originally given in [Reg86a].

Taken together, Theorem 4.1(a)-(c) say that the right-to-left bias in the standard
ordering of C* and the left-to-right movement of Turing machines are to blame for
the apparent lack of a monotone real-time pairing function. J. Case and J. Royer
[CaRo86] have constructed a monotone GZST-computable pairing function using
a “bit-interlacing” scheme, but like (.,), it is not computable on-line in less than
log space. The right-left conflict comes down to whether the least or most signifi-
cant bits of a natural number should be written first. It is natural to ask whether
this conflict can be overcome.

Open Question. With reference to the standard ordering of C*, is it possible to
compute a monotone pairing function on-line in zero space?

We consider Theorem 4.1 to be evidence that the answer is “no,” but have been
unable to extend the arguments on TM computations based on [HLS65, HU69] to
prove so general a statement. On the other hand, a construction giving a “yes”
answer would be interesting even for purely numerical reasons.

Taking m := 1x1 + 1 yl, Proposition 3.2(b) gives the bound 1 (x, Y)~] d 2m + 1 for
all x, y~z*, and the same applies to (., .), and (., .),. On the other hand, for
any pairing function (., .) and function f: N -+ N such that 1(x, y)(<m+f(m)
for all x, yEC*, elementary counting arguments show that f must be bounded
below a.e. by 1 + log, m. This lower bound is achieved by (., .),, which intuitively
packs in strings of the least possible lengths over each bound n > 0 for 1x1 + 1 yJ.
This suggests the

294 KENNETH W. REGAN

Open Question. Is there a zero-space computable pairing function (., .) which
satisfies ((x, ,v)[<m + O(log m) for all X, y E X*, where m := 1x1 + (vj?

5. CONCLUSION AND PROSPECTS

Many papers in the literature of complexity theory contain a line to the effect of,
“Let (., . > be a pairing function which is polynomial-time computable.” This can
now be changed to “which is linear-time computable.” Some applications for the
savings in complexity are indicated in [Reg86a, Reg86bJ In parallel complexity
one may be able to use the fact that these pairing functions are #Z?“-computable.

The schemes used to define the pairing functions in this paper have enough
freedom to construct others, and some of these may yield interesting results. Some
may serve as tools for proving that certain functions f: N + N are integer-multi-
plication-hard to compute, via showing that the set of values { (n, f(n)), 1 y1 E N }
is an oracle for multiplication. They may also yield better schemes for allocating
and accessing storage of two (and higher) dimensional arrays, drawing on criteria
for functions from N x N to N which have been formulated by A. Rosenberg and
others (see [Ros77, RoSt77]).

Pairing functions have several applications in logic, notably in defining single
Giidel numbers for sequences of objects in a formal system. One might expect that
the lower the complexity of the pairing function, the better one may use it to
analyze weak formal systems, such as those obtained by restricting induction in
Peano arithmetic. Pending, however, is the development of closer connections
between classes of functions defined machine-theoretically and classes of functions
defined from low-level formal systems. Chapter 5 of [Rose841 presents some
examples and pertinent open problems.

Last, say that a discretely-ordered ring R = (S, + , 9, . <) is linear-time computable
if the addition, multiplication, and ordering relation are linear-time computable.
(We do not hold it necessary that S itself be accepted in linear time as a subset of
C*.) Not only is it open whether (B, + , ., ,<) is linear-time computable, it is not
known whether any such ring R exists. Even though the translation from Z to R
would likely take more than linear time to compute, there might still be savings in
some long runs of numerical calculations because it would only need to be applied
at the beginning and end. We inquire whether certain restrictions of these pairing
functions to some set S can be combined into an efficient substitute for integer
multiplication.

ACKNOWLEDGMENTS

I especially thank the anonymous referee, for suggestions on greatly tightening the paper, and
Professors John Case, Arnold Rosenberg, and James Royer, for information on their own work
involving pairing functions and suggestions for further research.

PAIRING FUNCTIONS 295

Note added in proof: For any k r 1, the bound 1(x, y)@l< 2 1x1 + Jy] + 1 in Proposition 3.2(b) can
be improved to 1(x, Y)~\ <(l+ l/k) (xl + (yl +k: Write x=x~x~...x,,,x’ where each x, has length k
and Ix’1 <: k. Then one can construct a function h,(x’, y) such that (x, y)k :=Ox,Ox,~~~Ox,~h,(x’, y)
is a delay-2 prompt ZST pairing function which achieves the bound. The author thanks Yenjo Han of
Rochester for a suggestion which prompted this realization, and for other comments on the paper. An
on-line GZST is essentially the same as a subsequential machine; for this and related models, see
C. Reutenauer and M. P. Schutzenberger, Minimization of rational word functions, SIAM J. Compur.
20 (1991), 669-685.

REFERENCES

[BJ74] G. Booms AND R. JEFFREY, “Computability and Logic,” Cambridge University Press,
Cambridge, 1974.

[CaRo86] J. CASE AND J. ROYER, “Progressions of Relatively Succinct Programs in Subrecursive
Hierarchies,” Technical Report 86-007, Computer Science Department, The University of
Chicago, 1986.

[Cu80] N. CUTLAND, “Computability,” Cambridge University Press, Cambridge, 1980.
[DDQ78] P. DENNING, J. DENNIS, AND J. QUALITZ, “Machines, Languages, and Computation,”

Prentice-Hall, Englewood Cliffs, NJ, 1978.
[HLS65] J. HARTMANIS, P. LEWIS, AND R. STEARNS, Hierarchies of memory-limited computation, in

“Proceedings, IEEE Conference Record on Switching Circuit Theory and Logical Design,
1965” (now FOCS), pp. 179-190.

[HU69] J. HOPCROFT AND J. ULLMAN, Some results on tape-bounded Turing machines, J. ASSOC.
Comput. Mach. 16 (1969), 168-177.

[HU79] J. HOPCROFT AND J. ULLMAN, “Introduction to Automata Theory, Languages, and
Computation,” Addison-Wesley, Reading, MA, 1979.

[LPSl] H. LEWIS AND C. PAPADIMITRIOU, “Elements of the Theory of Computation,” Prentice-Hall,
New York, 1981.

[MY781 M. MACHTEY AND P. YOUNG, “An Introduction to the General Theory of Algorithms,”
North-Holland, New York, 1978.

[Reg86a] K. REGAN, The topology of provability in complexity theory, in “Proceedings, 2nd Annu.
Conf. on Structure in Complexity Theory, Ithaca, NY, June 1986,” Lect. Notes in Comput.
Sci., Vol. 223, pp. 291-310, Springer-Verlag, Berlin, 1986.

[Reg86b] K. REGAN, “On the Separation of Complexity Classes,” Doctoral dissertation, Oxford

[Rog67]
University, 1986.
H. ROGERS, “Theory of Recursive Functions and Effective Computability,” McGraw-Hill,
New York, 1967.

[Rose841 H. ROSE, “Subrecursion: Functions and Hierarchies,” Oxford Logic Guides, No. 9,
Clarendon Press, Oxford, 1984.

[Ros67] A. ROSENBERG, Real time definable languages, J. ASSOC. Compur. Mach. 14, NO. 4 (1967),
645-662.

[Ros77] A. ROSENBERG, On storing concatenable arrays, J. Comput. System Sci. 14, No. 2 (1977),
157-174.

[RoSt77] A. ROSENBERG AND L. STOCKMEYER, Storage schemes for boundedly extensible arrays, Acta
Inform. I (1977), 289-303.

[ScSt71] A. SCH~~NHAGE AND V. STRASSEN, Schnelle Multiplikation grosser Zahlen, Computing (Arch.
Elektron. Rechnen) 7 (1971), 281-292.

