Structured Programming and Recursive Functions

Notes by William J. Rapaport (based on lectures by John Case)

Department of Computer Science & Engineering, Department of Philosophy, Department of Linguistics, and Center for Cognitive Science State University of New York at Buffalo, Buffalo, NY 14260-2000 rapaport@cse.buffalo.edu, http://www.cse.buffalo.edu/~rapaport

> Last Update: 6 February 2007 Note: NEW or UPDATED material is highlighted

1. Structured Programming:

- (a) Classification of structured programs:
 - i. Basic programs:
 - A. the empty program =def **begin end.**
 - B. the 1-operation program =def **begin** F **end.**
 - (where 'F' is some primitive operation, e.g., an assignment statement).
 - ii. Program constructors:

Let π , π' be programs with 1 end each.

Then new programs can be constructed by:

- A. linear concatenation =def **begin** π ; π ' **end.**
- B. conditional branching =def

```
begin
if P
then \pi
else \pi'
```

```
end.
```

- (where 'P' is a Boolean test, i.e., a predicate; e.g., "x > 0").
- C. count looping (or "for-loop", or "bounded loop"):

```
begin
```

```
while y > 0 do

begin

\pi;

y \leftarrow y - 1

end

end.

D. while-looping (or "free" loop):

begin

while P do \pi

end.
```

- (b) Categories of structured programs (based on above classifications):
 - i. π is a count-program
 - (or a "for-program", or a "Bounded LOOP program") =def
 - A. π is a basic program, OR
 - B. π is constructed from count-programs by:
 - linear concatenation, OR
 - conditional branching, OR
 - count looping
 - C. Nothing else is a count-program.
 - ii. π is a while-program
 - (or a "Free LOOP program") =def
 - A. π is a basic program, OR
 - B. π is constructed from while-programs by:
 - linear concatenation, OR
 - conditional branching, OR
 - count-looping, OR
 - while-looping
 - C. Nothing else is a while-program.

2. Recursive Functions

- (a) Classification of functions:
 - i. Basic functions:

A. successor:
$$S(x) = x + 1$$

B. predecessor: $P(x) = x - 1$
(where $a - b = \text{def} \begin{cases} a - b, & \text{if } a \ge b \\ 0, & \text{otherwise} \end{cases}$)

C. projection: $P_k^j(x_1, \ldots, x_j, \ldots, x_k) = x_j$

ii. Function constructors:

- A. *f* is defined from g, h_1, \ldots, h_m by generalized composition =def $f(x_1,\ldots,x_k)=g(h_1(x_1,\ldots,x_k),\ldots,h_m(x_1,\ldots,x_k))$
 - Cf. linear concatenation (e.g., first compute *h*; then compute *g*)

B. *f* is defined from *g*, *h*, *i* by conditional definition =def $\begin{cases} g(x_1, \dots, x_k) & \text{if } x_i = 0 \end{cases}$

$$f(x_1,...,x_k) = \begin{cases} g(x_1,...,x_k), & \text{if } x_i = 0\\ h(x_1,...,x_k), & \text{if } x_i > 0 \end{cases}$$

- Cf. conditional branch
- C. *f* is defined from g, h_1, \ldots, h_k, i by while-recursion =def $f(x_1,...,x_k) = \begin{cases} g(x_1,...,x_k), & \text{if } x_i = 0\\ f(h_1(x_1,...,x_k),...,h_k(x_1,...,x_k)), & \text{if } x_i > 0 \end{cases}$

 - Cf. while-loop (e.g., while $x_i > 0$, compute f)

(b) Categories of functions:

- i. *f* is a while-recursive function =def
 - A. *f* is a basic function, OR
 - B. *f* is defined from while-recursive functions by:
 - generalized composition, OR
 - conditional definition, OR
 - while-recursion
 - C. Nothing else is while-recursive.
- ii. A. f is defined from g,h by primitive recursion =def

$$f(x_1, \dots, x_k, y) = \begin{cases} g(x_1, \dots, x_k), & \text{if } y = 0\\ h(x_1, \dots, x_k, f(x_1, \dots, x_k, y - 1)), & \text{if } y > 0 \end{cases}$$

- Cf. count-loop (e.g., while y > 0, decrement y & compute f)
- B. *f* is a primitive-recursive function =def
 - *f* is a basic function, OR
 - *f* is defined from primitive-recursive functions by:
 - generalized composition, OR
 - primitive recursion
 - Nothing else is primitive-recursive.

- iii. A. f is defined from h by the μ -operator [pronounced: "mu"-operator] =def $f(x_1, \dots, x_k) = \mu z [h(x_1, \dots, x_k, z) = 0],$ where: $\mu z [h(x_1, \dots, x_k, z) = 0] = def \begin{cases} \min\{z : \begin{cases} h(x_1, \dots, x_k, z) = 0 \\ and \\ (\forall y < z) [h(x_1, \dots, x_k, y) \text{ has a value}] \end{cases}}, \text{ if such } z \text{ exists} \end{cases}$ $\mu undefined, \text{ if no such } z \text{ exists} \end{cases}$
 - B. *f* is a partial-recursive function =def
 - *f* is a basic function, OR
 - *f* is defined from partial-recursive functions by:
 - generalized composition, OR
 - primitive recursion, OR
 - the μ -operator
 - Nothing else is partial-recursive.
 - C. *f* is a recursive function =def
 - *f* is partial-recursive, AND
 - *f* is a total function (i.e., defined ∀ elements of its domain)
- 3. The Connections:

 $f \text{ is primitive-recursive } \Leftrightarrow f \text{ is count-program-computable} \\ \downarrow & \downarrow \\ f \text{ is partial-recursive } \Leftrightarrow f \text{ is while-program-computable} \\ \uparrow & \uparrow \\ f \text{ is Turing-machine-computable} \\ \uparrow \\ f \text{ is λ-definable, etc.} \end{cases}$

file:584/S07/strdprogg.pdf

©2004–2007, William J. Rapaport

rapaport@cse.buffalo.edu