Structured Programming and Recursive Functions

Notes by William J. Rapaport
(based on lectures by John Case)
Department of Computer Science \& Engineering, Department of Philosophy, Department of Linguistics, and Center for Cognitive Science

State University of New York at Buffalo, Buffalo, NY 14260-2000
rapaport@cse.buffalo.edu, http://www.cse.buffalo.edu/~rapaport
Last Update: 6 February 2007
Note: NEW or UPDATED material is highlighted

1. Structured Programming:
(a) Classification of structured programs:
i. Basic programs:
A. the empty program = def begin end.
B. the 1 -operation program $=\operatorname{def}$ begin F end.
(where ' F ' is some primitive operation, e.g., an assignment statement).
ii. Program constructors:

Let π, π^{\prime} be programs with 1 end each.
Then new programs can be constructed by:
A. linear concatenation $=$ def begin $\pi ; \pi^{\prime}$ end.
B. conditional branching $=$ def
begin
if P
then π
else π^{\prime}
end.
(where ' P ' is a Boolean test, i.e., a predicate; e.g., " $x>0$ ").
C. count looping (or "for-loop", or "bounded loop"):
begin
while $y>0$ do
begin
π;
$y \leftarrow y-1$
end
end.
D. while-looping (or "free" loop):
begin
while P do π
end.
(b) Categories of structured programs (based on above classifications):
i. π is a count-program
(or a "for-program", or a "Bounded LOOP program") =def
A. π is a basic program, OR
B. π is constructed from count-programs by:

- linear concatenation, OR
- conditional branching, OR
- count looping
C. Nothing else is a count-program.
ii. π is a while-program
(or a "Free LOOP program") = def
A. π is a basic program, OR
B. π is constructed from while-programs by:
- linear concatenation, OR
- conditional branching, OR
- count-looping, OR
- while-looping
C. Nothing else is a while-program.

2. Recursive Functions

(a) Classification of functions:
i. Basic functions:
A. successor: $\quad S(x)=x+1$
B. predecessor: $P(x)=x-1$
(where $a \dot{-} b=\operatorname{def}\left\{\begin{array}{ll}a-b, & \text { if } a \geq b \\ 0, & \text { otherwise }\end{array}\right.$)
C. projection: $P_{k}^{j}\left(x_{1}, \ldots, x_{j}, \ldots, x_{k}\right)=x_{j}$
ii. Function constructors:
A. f is defined from g, h_{1}, \ldots, h_{m} by generalized composition $=\operatorname{def}$ $f\left(x_{1}, \ldots, x_{k}\right)=g\left(h_{1}\left(x_{1}, \ldots, x_{k}\right), \ldots, h_{m}\left(x_{1}, \ldots, x_{k}\right)\right)$

- Cf. linear concatenation (e.g., first compute h; then compute g)
B. f is defined from g, h, i by conditional definition $=\mathrm{def}$ $f\left(x_{1}, \ldots, x_{k}\right)= \begin{cases}g\left(x_{1}, \ldots, x_{k}\right), & \text { if } x_{i}=0 \\ h\left(x_{1}, \ldots, x_{k}\right), & \text { if } x_{i}>0\end{cases}$
- Cf. conditional branch
C. f is defined from $g, h_{1}, \ldots, h_{k}, i$ by while-recursion $=\operatorname{def}$
$f\left(x_{1}, \ldots, x_{k}\right)= \begin{cases}g\left(x_{1}, \ldots, x_{k}\right), & \text { if } x_{i}=0 \\ f\left(h_{1}\left(x_{1}, \ldots, x_{k}\right), \ldots, h_{k}\left(x_{1}, \ldots, x_{k}\right)\right), & \text { if } x_{i}>0\end{cases}$
- Cf. while-loop (e.g., while $x_{i}>0$, compute f)
(b) Categories of functions:
i. f is a while-recursive function $=\operatorname{def}$
A. f is a basic function, OR
B. f is defined from while-recursive functions by:
- generalized composition, OR
- conditional definition, OR
- while-recursion
C. Nothing else is while-recursive.
ii. A. f is defined from g, h by primitive recursion $=\mathrm{def}$

$$
f\left(x_{1}, \ldots, x_{k}, y\right)= \begin{cases}g\left(x_{1}, \ldots, x_{k}\right), & \text { if } y=0 \\ h\left(x_{1}, \ldots, x_{k}, f\left(x_{1}, \ldots, x_{k}, y-1\right)\right), & \text { if } y>0\end{cases}
$$

- Cf. count-loop (e.g., while $y>0$, decrement $y \&$ compute f)
B. f is a primitive-recursive function $=$ def
- f is a basic function, OR
- f is defined from primitive-recursive functions by:
- generalized composition, OR
- primitive recursion
- Nothing else is primitive-recursive.
iii. A. f is defined from h by the μ-operator [pronounced: "mu"-operator] =def $f\left(x_{1}, \ldots, x_{k}\right)=\mu z\left[h\left(x_{1}, \ldots, x_{k}, z\right)=0\right]$, where:

$$
\mu z\left[h\left(x_{1}, \ldots, x_{k}, z\right)=0\right]=\operatorname{def} \begin{cases}\min \left\{z:\left\{\begin{array}{ll}
h\left(x_{1}, \ldots, x_{k}, z\right)=0 \\
\text { and } \\
(\forall y<z)\left[h\left(x_{1}, \ldots, x_{k}, y\right) \text { has a value }\right]
\end{array}\right\},\right. & \text { if such } z \text { exists } \\
\text { undefined, } & \text { if no such } z \text { exists }\end{cases}
$$

B. f is a partial-recursive function $=\operatorname{def}$

- f is a basic function, OR
- f is defined from partial-recursive functions by:
- generalized composition, OR
- primitive recursion, OR
- the μ-operator
- Nothing else is partial-recursive.
C. f is a recursive function $=\operatorname{def}$
- f is partial-recursive, AND
- f is a total function
(i.e., defined \forall elements of its domain)

3. The Connections:
```
f is primitive-recursive }\Leftrightarrowf\mathrm{ is count-program-computable
    \Downarrow}
f is partial-recursive }\Leftrightarrowf\mathrm{ is while-program-computable
    |
        f is Turing-machine-computable
            |
```

 \(f\) is \(\lambda\)-definable, etc.