
Structured Programming and Recursive Functions

Notes by William J. Rapaport
(based on lectures by John Case)

Department of Computer Science & Engineering,
Department of Philosophy, Department of Linguistics, and Center for Cognitive Science

State University of New York at Buffalo, Buffalo, NY 14260-2000
rapaport@cse.buffalo.edu , http://www.cse.buffalo.edu/ ∼rapaport

Last Update: 6 February 2007
Note: NEW or UPDATED material is highlighted

1. Structured Programming:

(a) Classification of structured programs:

i. Basic programs:

A. the empty program =defbegin end.
B. the 1-operation program =defbeginF end.

(where ‘F’ is some primitive operation, e.g., an assignment statement).

ii. Program constructors:

Let π, π′ be programs with 1endeach.
Then new programs can be constructed by:

A. linear concatenation =defbegin π; π′ end.
B. conditional branching =def

begin
if P

then π
elseπ′

end.
(where ‘P’ is a Boolean test, i.e., a predicate; e.g., “x> 0”).

C. count looping (or “for-loop”, or “bounded loop”):

begin
while y> 0 do

begin
π;
y← y−1

end
end.

D. while-looping (or “free” loop):

begin
while P do π

end.

1



(b) Categories of structured programs (based on above classifications):

i. π is a count-program
(or a “for-program”, or a “Bounded LOOP program”) =def

A. π is a basic program, OR

B. π is constructed from count-programs by:

• linear concatenation, OR

• conditional branching, OR

• count looping

C. Nothing else is a count-program.

ii. π is a while-program
(or a “Free LOOP program”) =def

A. π is a basic program, OR

B. π is constructed from while-programs by:

• linear concatenation, OR

• conditional branching, OR

• count-looping, OR

• while-looping

C. Nothing else is a while-program.

2



2. Recursive Functions

(a) Classification of functions:

i. Basic functions:

A. successor: S(x) = x+1

B. predecessor: P(x) = x−̇1

(wherea−̇b =def

{
a−b, if a≥ b
0, otherwise

)

C. projection: Pj
k(x1, . . . ,x j , . . . ,xk) = x j

ii. Function constructors:

A. f is defined from g,h1, . . . ,hm by generalized composition=def
f (x1, . . . ,xk) = g(h1(x1, . . . ,xk), . . . ,hm(x1, . . . ,xk))
• Cf. linear concatenation (e.g., first computeh; then computeg)

B. f is defined from g,h, i by conditional definition=def

f (x1, . . . ,xk) =
{

g(x1, . . . ,xk), if xi = 0
h(x1, . . . ,xk), if xi > 0

• Cf. conditional branch

C. f is defined from g,h1, . . . ,hk, i by while-recursion=def

f (x1, . . . ,xk) =
{

g(x1, . . . ,xk), if xi = 0
f (h1(x1, . . . ,xk), . . . ,hk(x1, . . . ,xk)), if xi > 0

• Cf. while-loop (e.g., whilexi > 0, computef )

(b) Categories of functions:

i. f is a while-recursive function=def

A. f is a basic function, OR

B. f is defined from while-recursive functions by:

• generalized composition, OR

• conditional definition, OR

• while-recursion

C. Nothing else is while-recursive.

ii. A. f is defined from g,h by primitive recursion=def

f (x1, . . . ,xk,y) =
{

g(x1, . . . ,xk), if y = 0
h(x1, . . . ,xk, f (x1, . . . ,xk,y−1)), if y> 0

• Cf. count-loop (e.g., whiley> 0, decrementy & compute f )

B. f is a primitive-recursive function=def

• f is a basic function, OR

• f is defined from primitive-recursive functions by:

– generalized composition, OR

– primitive recursion

• Nothing else is primitive-recursive.

3



iii. A. f is defined from h by the µ-operator[pronounced: “mu”-operator] =def
f (x1, . . . ,xk) = µz[h(x1, . . . ,xk,z) = 0],
where:

µz[h(x1, . . . ,xk,z) = 0] =def


min{z :

 h(x1, . . . ,xk,z) = 0
and
(∀y< z)[h(x1, . . . ,xk,y) has a value]

}, if suchzexists

undefined, if no suchz exists

B. f is a partial-recursive function=def

• f is a basic function, OR

• f is defined from partial-recursive functions by:

– generalized composition, OR

– primitive recursion, OR

– theµ-operator

• Nothing else is partial-recursive.

C. f is a recursive function=def

• f is partial-recursive, AND

• f is a total function
(i.e., defined∀ elements of its domain)

3. The Connections:

f is primitive-recursive ⇔ f is count-program–computable
⇓ ⇓

f is partial-recursive ⇔ f is while-program–computable
m m

f is Turing-machine–computable
m

f is λ-definable, etc.

file:584/S07/strdprogg.pdf c©2004–2007, William J. Rapaport rapaport@cse.buffalo.edu

4


