

The CLP(R) Programmer's ManualVersion 1.2
Nevin C. Heintze yJoxan Jaffar zSpiro Mihaylov �Peter J. Stukey xRoland H.C. Yap {x

z IBM Thomas J Watson Researh CenterPO Box 704Yorktown Heights, NY 10598, U.S.A.
y Shool of Computer SieneCarnegie Mellon UniversityPittsburgh, PA 15213, U.S.A.

� Department of Computer and Information SieneThe Ohio State UniversityColumbus, OH 43210-1277, U.S.A.
x Department of Computer SieneUniversity of MelbourneParkville, Vitoria 3052, Australia
{ Department of Computer SieneMonash UniversityClayton, Vitoria 3168, Australia

September 1992

Contents

1 Introdution 1
2 Syntax and Simple Examples 32.1 Terms and Constraints . 32.2 Some Simple Programs . 62.3 The Type Issue . 8
3 Programming in CLP(R) 103.1 Preliminaries . 103.2 Delay of Nonlinear Constraints . 123.3 The CLP(R) Operational Model . 133.4 Meta{programming . 153.4.1 quote/1 and eval/1 . 153.4.2 rule/2, retrat/1 and assert/1 183.5 Output . 203.5.1 Outline of Algorithm . 213.5.2 The dump System Prediates . 233.6 Some Programming Tehniques . 25

i

CONTENTS ii
4 Using the System 314.1 Command Line Arguments . 324.2 Filenames . 324.3 Queries . 334.4 Loading/onsulting and reonsulting programs 334.5 Style Cheking and Warnings . 344.6 Sample Session . 354.7 Organization of Consulted Files . 404.8 Stati and Dynami Code . 414.9 Debugging Support . 424.10 Notes on EÆieny . 434.11 Notes on Formal Corretness . 44
5 Built-In Failities 455.1 System Prediates . 455.1.1 Rulebase . 455.1.2 Control . 475.1.3 Meta Level . 485.1.4 Input/Output . 505.1.5 Unix-Related Failities . 525.1.6 Misellaneous Failities . 535.1.7 Speial Failities . 545.2 Nonlinear and Delayed Constraints . 565.3 Pre-De�ned Operators . 57

CONTENTS iii
6 Installation Guide 586.1 Portability . 586.1.1 Pre-de�ned Installation Options . 586.1.2 Customized Installation . 606.2 Basi Con�guration . 61
7 Bug Reports and Other Comments 62
A Di�erenes from the Monash Interpreter 69

Chapter 1
Introdution
This manual desribes CLP(R) version 1.2, and at a number of plaes throughout this texthangebars have been plaed either to indiate new features in version 1.2 from version 1.1 orsome hanges in the manual. The CLP(R) language is an instane of the Constraint LogiProgramming sheme de�ned by Ja�ar and Lassez [10℄. Its operational model is similarto that of PROLOG. A major di�erene is that uni�ation is replaed by a more generalmehanism: solving onstraints in the domain of uninterpreted funtors over real arithmetiterms. A working knowledge of PROLOG programming is assumed in this doument; thebook by Sterling and Shapiro [20℄ an serve as a suitable introdutory text. Further tehnialinformation on CLP(R) is available on language design and implementation [12, 13℄, meta-programming [7℄ and delay mehanisms [14℄. Additionally, muh has been written aboutappliations in eletrial engineering [6, 18℄, di�erential equations [5, 8℄, temporal reasoning[1, 2, 3℄, protool testing [4℄, strutural analysis and synthesis [15℄, mehanial engineering[21℄, user interfaes [23℄, model-based diagnosis [24℄, options trading [16℄, musi theory [9℄,moleular biology [22℄, et.This doument is both an introdutory tutorial and referene manual desribing theompiler-based implementation of CLP(R). The reader experiened with PROLOG orCLP(R) may wish to skip to Chapter 4, and in partiular, see the sample session in Setion4.6 to get started quikly. Compiled CLP(R) is an interative system that ompiles all pro-grams and goals into CLAM ode whih is interpreted by a byte-ode emulator that is partof the system. The system is portable in the sense that it will run on virtually all 32 bitUNIXTM mahines with a reasonably standard C ompiler, as well as many others.We would like to emphasize that this manual desribes a onstantly-evolving, experi-mental system. Hene muh of what is desribed is subjet to hange in future releases.Furthermore, the use of undoumented features is partiularly dangerous.Finally, we adopt some standard notational onventions, suh as the name/arity onven-

1

CHAPTER 1. INTRODUCTION 2
tion for desribing prediates and funtors, + for input arguments, - for output arguments,and ? for arguments that may be either input or output.

Chapter 2
Syntax and Simple Examples
A CLP(R) program is a olletion of rules. The de�nition of a rule is similar to that of aPROLOG lause, but it di�ers in two important ways: rules an ontain onstraints as wellas atoms in the body, and the de�nition of terms is more general. A goal is a rule withouta head, as usual.The body of a rule may ontain any number of arithmeti onstraints, separated byommas in the usual way. Constraints are equations or inequalities, built up from realonstants, variables, +, -, *, /, and =, >=, <=, >, < where all of these symbols have theusual meanings and parentheses may be used in the usual way to resolve ambiguity. Unaryarithmeti negation is also available, as are some speial interpreted funtion symbols whihwill be desribed later. Any variable that appears in an arithmeti onstraint is said to bean arithmeti variable, and annot take a non-arithmeti value. These onstraints may bethought of as built-in prediates written in�x, but they are really muh more powerful, aswe shall see later. Goals are also similar to those in PROLOG, and may ontain expliitonstraints as well.Comments in the program are either in the PROLOG style, beginning with a \%" andontinuing to the end of the line, or also in the form of C style omments, starting with \/*"and ending with */" (omments an ontain newlines). Unlike normal C omments, thesean be nested so that ode already ontaining omments an be ommented easily.
2.1 Terms and Constraints
Syntatially, a term is either a simple term or a ompound term onstruted from simpleterms. A term is then either an arithmeti term or a funtor term. The simple terms are:

3

CHAPTER 2. SYNTAX AND SIMPLE EXAMPLES 4
� Variable termsA variable is a sequene of alphanumeri haraters (inluding \ "), either begins withan upperase alphabeti harater or an undersore \ ". Variables onsisting of anundersore only are anonymous variables and always represent a new variable. Vari-ables that are longer than one harater and begin with an undersore are the sameas any other ordinary variable,1 exept that they are ignored for the purposes of styleheking.� Numeri onstant termsThis is a real number with an optional deimal point and optional integer exponentwhih may be positive or negative.� Symboli numeri onstantsThese denote speial onstant values, eg. � and have the syntax #< name > wherethe name is just an atomi funtor onstant. The following are the speial onstantsde�ned by default:#p � = 3:14159265358979323846#p 2 �=2 = 1:57079632679489661923#p 4 �=4 = 0:78539816339744830962#e e = 2:7182818284590452354#sqrt2 p2 = 1:41421356237309504880#sqrt1 2 1=p2 = 0:70710678118654752440# = 2:99792458 � 108 (speed of light in vaumn)#g g = 9:80665 (aeleration of gravity)#h h = 6:626176 � 10�34 (Plank's onstant)#e 1:6021892 � 10�19 (elementary harge)There are also some handy metri onversion ratios prede�ned:#m2in 0.393701 (entimeters to inhes)#km2mile 0.62137 (kilometers to miles)#gm2oz 0.03527 (grams to ounes)#kg2lb 2.20462 (kilograms to pounds)#l2gal 0.21998 (litres to imperial gallons)#l2usgal 0.26418 (litres to US gallons)(Note that new onstants an be reated by using new onstant/2.)� funtor onstant termsThese are either a sequene of alphanumeri haraters (inluding \ ", starting with alowerase letter; or a sequene of haraters from the set,n&*+-./:;<=>?�^~o1These are not anonymous variables.

CHAPTER 2. SYNTAX AND SIMPLE EXAMPLES 5
Also any sequene of haraters delimited by single quotes \'" is allowed, e.g. 'foo +bar' is a funtor onstant (atom) with that name inluding the blanks. The speialonstant \[℄" denotes the empty list or nil. Note also that the speial arithmetifuntion symbols, though having the same syntax, are arithmeti terms and not funtorterms.� String onstant termsThis is any sequene of haraters delimited by double quotes ("). NOTE: At presentthe interpretation of strings in the syntax has not been �nalized and all strings arebeing treated as funtor onstants (i.e. the single quote form). This di�ers from somePROLOG's whih use this syntax as an alternative notation for lists.

An arithmeti term is either a variable, numeri onstant or a ompound term built upfrom arithmeti terms in the usual way using the arithmeti funtion symbols: +, -, *, /,sin, arsin, os, aros, pow, abs, min and max. For example,X3.1415942e-8X + Ysin(X + 2.0)(X + Y) / 4are all valid arithmeti terms. However,f(a) + 5.0os(f(3))are not. The arithmeti terms are interpreted as having their usual meaning as arithmetiexpressions. Operator preedenes for the arithmeti funtion symbols follow the normalonvention2. Parentheses an be also used to esape the appliation of the default operatorpreedenes.Funtor terms are either variable or funtor onstant terms or ompound terms. A om-pound funtor term has the form f(t1; t2; � � � ; tN) where N � 0, f is an N -ary uninterpretedfuntor and t1; t2; � � � ; tN are (not neessarily funtor) terms. The funtor is uninterpreted,meaning that the funtor is simply to be treated as a symboli onstant, as opposed tothe arithmeti terms, whih are interpreted. The allowable syntax of the funtor symbol fis that of any funtor onstant term. The other ompound funtor terms are lists, whihare spei�ed using the usual PROLOG list notation ([L℄), for example \[a, b℄". A dotnotation for lists, as in \a.b.[℄", may also be used. For example, the following are valid2User de�ned unary or binary operators in the standard PROLOG fashion using op/3 are also supported.

CHAPTER 2. SYNTAX AND SIMPLE EXAMPLES 6
terms: [a, 1+X℄f([3.12, g(a)℄)f()f(X)f(3.14159)g(22, h(4))f(X + 3)A onstraint is either an arithmeti onstraint or a funtor onstraint. The former isde�ned to be of the the form t1 � t2 where t1 and t2 are arithmeti terms and � is one ofthe arithmeti relations =, >=, <=, >, and <. For example,X > 5.0X + Y + Z = 3X <= YX = V3 = sin(X)1.234 + X < Yare all valid arithmeti onstraints, while the following are not. > YX = 3.0 < Ypow(X = Y, 3)4 < X < 5A funtor onstraint is of the form t1 = t2 where eah of t1 and t2 is either a variable or afuntor term. We shall sometimes refer to a funtor onstraint as a funtor equation below.
2.2 Some Simple Programs
Now we will look at some example programs without onsidering the details of their exeu-tion. The �rst example is a program expressing the relation fib(N, X) where X is the NthFibonai number.

CHAPTER 2. SYNTAX AND SIMPLE EXAMPLES 7
fib(0, 1).fib(1, 1).fib(N, X1 + X2) :-N > 1,fib(N - 1, X1),fib(N - 2, X2).To ompute the 10th Fibonai number, we an use the goal?- fib(10, Z).while to �nd out whih Fibonai number is 89, we an use the goal?- fib(X, 89).The next program desribes the relationship between two omplex numbers and their prod-ut. We will represent the omplex number X + iY as the term (X, Y).zmul((R1, I1), (R2, I2), (R3, I3)) :-R3 = R1 * R2 - I1 * I2 ,I3 = R1 * I2 + R2 * I1 .Any of the following goals will return a unique answer. The �rst goal asks for the produtof two omplex numbers, while the other two ask for the result when one omplex numberis divided by another.?- zmul((1, 1), (2, 2), Z).?- zmul((1, 1), Y, (0, 4)).?- zmul(X, (2, 2), (0, 4)).Notie how both operations are desribed using the de�nition of omplex multipliation,rather than writing a separate rule that divides omplex numbers by �rst realizing thedivisor and then multiplying. This delarative aspet will be an important feature of manyof the programs we look at. Also notie that both of the programs we have seen so far havebeen invertible in the sense that it did not matter whih terms in the goals were ground andwhih were not. This is a property that we will try to obtain as often as possible when wede�ne programs or parts of programs. As a further example, the speial pow funtion anbe used to ompute powers, roots and logarithms of an arbitrary base. The rules below forsquare root,sqroot(X, pow(X, 0.5)):-X >= 0.sqroot(X, -pow(X, 0.5)) :-X >= 0.

CHAPTER 2. SYNTAX AND SIMPLE EXAMPLES 8
state that a non-negative number has a positive and negative square root. Finally onsiderthe following program, whih relates the key parameters in a mortgage.mortgage(P, Time, IntRate, Bal, MP) :-Time > 0, Time <= 1,Bal = P * (1 + Time * IntRate/1200) - Time * MP.mortgage(P, Time, IntRate, Bal, MP) :-Time > 1,mortgage(P*(1 + IntRate/1200) - MP, Time-1, IntRate, Bal, MP).The parameters above are prinipal, life of the mortgage (in months), annual interest rate (%)whih is ompounded monthly, the monthly payment, and �nally, the outstanding balane.The goal?- mortgage(100000, 180, 12, 0, MP).asks the straightforward query as to how muh it would ost to �nane a $100,000 mortgageat 12 perent for 15 years, and the answer obtained is MP = 1200.17. We an ask thequestion bakwards:?- mortgage(P, 180, 12, 0, 1200.17).to obtain the expeted answer P = 100000, or ask for how long a mortgage is needed:?- mortgage(100000, Time, 12, Bal, 1300).Here we get the answer Time = 147.365. The main point of this example, however, is thatwe an ask, not for the values of, but for the relationship between P, MP and Bal. For example,?- mortgage(P, 180, 12, Bal, MP).gives the answerP = 0.166783 * Bal + 83.3217 * MPThis partiular example illustrates how answer onstraints may be viewed as a partial eval-uation of the program. In this ase, the equation above is the result of partially evaluatingthe program with respet to Time = 180 and I = 12.
2.3 The Type Issue
Informally, one of the two types in CLP(R) is given by the real numbers, and the other bythe remaining ground (variable-free) terms. Stritly speaking, CLP(R) is a statially typed

CHAPTER 2. SYNTAX AND SIMPLE EXAMPLES 9
language in the sense that variables, uninterpreted funtors and prediates in a programmust be used in a onsistent way with respet to their type. That is, eah variable andeah argument of every prediate and uninterpreted funtor is �rst aknowledged to be ofa ertain type. The program is then onsidered to be ill-typed if, for example, a variableappears both in a funtor onstraint and an arithmeti onstraint; similarly, the program isill-typed if one ourrene of a prediate or uninterpreted funtor has a number in the �rstargument while, in another ourrene, it has a funtor term in the �rst argument.For programming onveniene, however, CLP(R) does not perform suh type-heking atompile time. This deision is based on the fat that it is often useful to overload a symbol;for example, one may want a database p of both numbers and letters:p(1).p(2).p(a).p(b).and one may run a goal ontaining p(X) and some onstraints used for seletion within thedatabase. Note that by not performing type-heking, one an have a runtime type error.That is, an exeution sequene whih fails beause of a \type lash". Often suh failuresindiate that there is an error in the program. The CLP(R) system will not distinguish suhfailures from failures obtained from well-typed onstraints.A straightforward way of thinking about the type issue when writing CLP(R) programsis that whenever an arithmeti term appears in a rule, for eah variable X therein, we animpliitly add a orresponding atom real(X) to the body of the rule. The system prediatereal/1 is true just in ase there is a real solution for X in the ontext of the urrent olletionof onstraints.

Chapter 3
Programming in CLP(R)
3.1 Preliminaries
Before we an look at more advaned programming examples, it is neessary to have someidea of how the programs are exeuted. This is similar in avor to the way PROLOGprograms are exeuted, but the basi operational step of unifying an atom with the head ofa rule is replaed by something more general. In this preliminary setion, we assume thatall arithmeti onstraints are linear; the general ase is disussed in a later setion.The omputation begins with a goal and an initially empty set of olleted onstraints.The usual left-right atom seletion rule is used to selet either an arithmeti onstraint oran atom at eah stage. When a onstraint is seleted, it is added to the set of olletedonstraints, and it is determined whether the resulting set has a solution. If there is nosolution, baktraking takes plae in the usual way. On the other hand, when an atom isseleted, the set of rules is searhed in the usual top-down fashion, eah time mathing thatatom with the head of some rule. Suh a math is realized by an equation between thesetwo atoms; suh an equation is treated like any equation between terms.As before, it is required that the system of onstraints olleted so far has a solution. Ingeneral, solving this equation proeeds at �rst by unifying the syntati parts of the termsin the usual way. However, these terms may ontain arithmeti terms. As arithmeti termshave a speial meaning, they are not uni�ed syntatially, but rather an equation betweenthem is solved in the domain of real arithmeti.Let us onsider some examples. We start with a program that has no expliit onstraintsor arithmeti terms, e�etively written in PROLOG.

10

CHAPTER 3. PROGRAMMING IN CLP(R) 11
p(f()).q(g(X)) :-p(f(X)).?- q(Y).As the omputation proeeds, the olleted onstraint set and urrent goal are as follows:fg ?- q(Y).fq(Y) = q(g(X)) g ?- p(f(X)).fq(Y) = q(g(X)), p(f(X)) = p(f()) g ?- .Note that only one suessful path is shown here. Also, as we will disuss in more detaillater, the \answer" to this query is just the set of onstraints olleted, but \projeted" ontothe goal variables, in this ase Y. So the answer to the above query isY = g().Now onsider a program that inludes both arithmeti terms and expliit onstraints:p(10, 10).q(W, (U, V)) :-W - U + V = 10,p(U, V).?- q(Z, (X + Y, X - Y)).and again we only look at one suessful path of the exeution:fg ?- q(Z, (X + Y, X - Y)).fq(Z, (X + Y, X - Y)) = q(W, (U, V)) g ?- W - U + V = 10, p(U, V).fq(Z, (X + Y, X - Y)) = q(W, (U, V)), W - U + V = 10 g ?- p(U, V).f� � � , p(U,V) = p(10, 10) g ?- .

The answer for this derivation isY = 0, X = 10, Z = 10.and we should notie that, as expeted, it does not ontain any mention of the variables U,V, and W. Also note that, in general, the answers need not give values to variables, and itis possible to get an answer onstraint likeX + Y + Z = 0, X > Y.This faility is a very important and useful feature of CLP(R) as we will illustrate later.

CHAPTER 3. PROGRAMMING IN CLP(R) 12
3.2 Delay of Nonlinear Constraints
In the above disussion of the operational model, we saw how eah operational step resultsin one or more onstraints being added to the olleted onstraint set, and the new setbeing heked for satis�ability. Beause of eÆieny requirements, there is a limit to howsophistiated the deision algorithm for onstraints an be, and onsequently the olletedonstraint set may get too ompliated for the deision algorithm. In partiular, onsidera ase when the olleted onstraint set is solvable, but one onstraint is added that makesthe set so ompliated that it is not pratial to deide whether it has remained solvable.A naive approah to dealing with this problem is simply to disallow expressions thatan result in suh omplexity. This is tantamount to disallowing all nonlinear onstraints.The loss in expressive power is, however, unaeptable. Instead, CLP(R) allows nonlinearonstraints but keeps them in a delayed onstraint set. More preisely, at eah operationalstep, instead of blindly adding eah onstraint to the olleted onstraint set and inurringthe ost of performing a satis�ability test, we remove ertain onstraints that would makethe set too ompliated. We keep these removed onstraints in the delayed onstraint set.Additionally, at eah step it is possible that some onstraint in the delayed onstraint setneed no longer be delayed beause of new information. In this ase it should be moved fromthe delayed onstraint set to the olleted onstraint set and the usual solvability hek made.Note that, in general, the notion of whih expressions are \too ompliated" is dependenton the implementation. In CLP(R) only the nonlinear onstraints are delayed.Now let us onsider an example where the olleted onstraint set is initially empty; thensuppose we obtain the onstraintV = I * R.This is plaed in the delayed onstraint set. Continuing, if the next onstraint isV = 10it may be added to the olleted onstraint set, but note that it is still not easy to deidewhether the two onstraints together are solvable Now onsider what happens if the nextonstraint isR = 5.This gives us enough information to make the delayed onstraint linear, so we simply removethis onstraint from the delayed onstraint set, plae it in the olleted onstraint set, andhek that it is solvable, whih of ourse it is. Note that the delayed onstraint set mayhave ontained other onstraints, whih may have to remain there until muh later. Alsonote that beause of this delay mehanism, we may ontinue through a ertain omputation

CHAPTER 3. PROGRAMMING IN CLP(R) 13
sequene even though the olleted and delayed onstraint sets together are not solvable.In the worst ase it an result in an in�nite loop. This is the prie we pay for an eÆientdeision algorithm.As we have already stated, in the CLP(R) system a linear equation or inequality is alwaysonsidered to be suÆiently simple to be solved immediately, but nonlinear onstraints aredelayed until they beome linear. This inludes the funtions sin/1, arsin/1, os/1,aros/1, pow/2, max/2, min/2 and abs/1 whih are delayed until they beome simpleevaluations in one diretion or another. This means that sin and os require the input tobe ground, while pow requires at least two out of three arguments to be ground, exept inases suh asX = pow(Y, Z)where Z = 0. The reason is that Y 0 is de�ned to be 1 for all values of Y. Note that while thisis suÆient to determine the value of X, Y remains non-ground. There are similar speialases when Z is 1, and when Y is 0 or 1. The funtions arsin and aros are delayed untileither the input is ground or the result of the funtion is ground. They are also di�erentin that they are funtions and the input domain for arsin ranges from ��=2 to �=2 andaros from 0 to � whereas sin and os are de�ned for any number in radians. Thussin and os behave as relations whih is non-invertible while arsin and aros are truefuntions whih are invertible. See Setion 5.2 for a more preise de�nition of the delayingonditions for the di�erent nonlinear funtions.As a �nal example, onsider the mortgage program in Chapter 2, and onsider the goal:?- mortgage(120, 2, IR, 0, 80).This will give rise to nonlinear onstraints, and the system returns a quadrati equation asthe answer onstraint:80 = (0.1*IR + 40) * (0.000833333*IR + 1)and indiates that this is an unsolved answer. Note that while CLP(R) annot determinewhether this equation is solvable, the equation indeed desribes the orret answer.
3.3 The CLP(R) Operational Model
We now preisely but informally de�ne the operational model of CLP(R). A goal G is writ-ten in the form C, D ?- E where C is a satis�able olletion of onstraints, D a olletionof nonlinear onstraints alled the delayed onstraints, and E a sequene of atoms and on-straints. In what follows, we de�ne how suh a goal is redued into another in the ontext

CHAPTER 3. PROGRAMMING IN CLP(R) 14
of an ongoing derivation.In reduing a goal C, D ?- E, CLP(R) either selets an element from E, all this aforward redution, or selets a onstraint from D, all this a wakeup redution. Initially, Cand D are empty, and CLP(R) attempts to make a forward redution.Forward redutionsIf E is empty, then we say that the goal is terminal, and no more redution of the goalis possible. If D is also empty, then the derivation is suessful; otherwise, the derivation isonditionally suessful (depending on the nonlinear onstraints).Now onsider the ase where E is nonempty; let E0 denote the �rst element of E and letE2 denote the remaining subsequene of E.If E0 is an atom, then E0 will be seleted for atom redution in the manner desribedabove. First, an appropriate program rule will be seleted. The atom and rule head willthen be mathed, giving rise to a olletion of onstraints, whih we will write as M1 & M2where M1 onsists only of linear onstraints and M2 only of nonlinear ones. The new goalonsists of (a) C & M1 in its �rst omponent; (b) D & M2 in its seond omponent, and ()the body of the rule and E2, sequened in this order, in its third omponent.If E0 is a linear onstraint, then the redued goal is C & E0, D ?- E2 providing C & E0is satis�able; otherwise there is no redued goal and the derivation is �nitely failed.Finally, if E0 is a nonlinear onstraint, then the redued goal is C, D & E0 ?- E2. Thatis, the onstraint E0 is simply delayed.Wakeup redutionsLet the goal at hand be C, D ?- E. This redution step starts by onsidering whetherthere is a delayed onstraint D0 in D whih is in fat linear. That is, C implies that D0 isequivalent to a linear onstraint. If there is no suh delayed onstraint, then no redution isperformed.Otherwise, onsider the ase in whih C is inonsistent with this linear onstraint. Hereredution is not possible and a �nitely failed derivation is obtained. However, if C is onsistentwith the linear onstraint, then the redued goal is C & D0, D2 ?- E where D2 is result ofdeleting D0 from D.

CHAPTER 3. PROGRAMMING IN CLP(R) 15
3.4 Meta{programming
In the ontext of Prolog, meta{programming refers to the destrution and onstrution ofrules and terms, and the examination and modi�ation of the rulebase. All of the sameissues arise in CLP(R). However, some extra failities are needed beause of the speialnature of arithmeti terms and onstraints. Furthermore, some of the remaining ones mustbe modi�ed. For example, without suh extra failities and modi�ations, there is no waythat a CLP(R) program an distinguish the two terms p(3 - 1) and p(1 + 1) sine theyare semantially idential.More spei�ally, the extra failities and modi�ations are needed to:

� make arithmeti terms be interpreted syntatially, by introduing a oded form;� onvert oded forms of arithmeti terms into the appropriate arithmeti terms;� obtain a oded form of [some projetion of℄ the urrent onstraint set;� add appropriate onstraints to asserted rules;� examine the rulebase ompletely syntatially.
3.4.1 quote/1 and eval/1
First we introdue the maro-like operator quote/1. This is expanded in an outer-most �rstfashion when expressions are �rst read. The argument of the quote operator is translatedto a version in whih all arithmeti operators are translated to a speial oded form, whihis not otherwise diretly aessible to the programmer. This oded form an then be treatedlike a funtor term. In this disussion, suh oded forms of arithmeti funtion symbols willbe be represented with a aret over them. For example, the rulep(X, Y, quote(X + Y)).would be read in asp(X, Y, X b+ Y).and so on. Furthermore, the quote operator passes through all other funtion symbols,onstants, variables et. without hanging them. Thus for example, the ruleq(X,Y) :- X = quote(f(g(Y), 2 * Y)).beomes

CHAPTER 3. PROGRAMMING IN CLP(R) 16
q(X,Y) :- X = f(g(Y), 2 b* Y).Of ourse, the original form of the rule is always shown when listing the database, et., butwhen printing a term, oded funtion symbols are printed preeded by a aret1. For example,the query ?- q(X, 5). to the above rule would yield the answer X = f(g(5), 2 ^* 5).Note that that the aret form of oded terms annot be input diretly, but only throughthe use of quote. Additionally, to failitate manipulating programs whih themselves usemeta-programming failities, we need oded forms of the quote operator itself, as well as thenew eval interpreted funtion symbol, whih will be desribed below. This is why quote isexpanded outer-most �rst. For example,P = quote(p(quote(X + Y), X + Y)) expands toP = p(dquote (X b+ Y), X b+ Y)).Thus an ourrene of quote that appears within the sope of another quote will be trans-lated to dquote , and will not be quote-expanded. The eval interpreted funtion an beoded by using quote as well, for example,X = quote(eval(1 + 2)) givesX = deval (1 b+ 2).Now, the major linguisti feature for meta{programming with onstraints is the inter-preted funtion symbol eval whih onverts a oded term to the term it odes. It passesthrough uninterpreted funtion symbols, other than those that are oded forms of interpretedones, without hanging them. Likewise for onstants and interpreted funtion symbols. Someexamples:X = 1 b+ 2, U = eval(X) impliesU = 3.X = Y b+ Z, U = eval(X) impliesU = eval(Y) + eval(Z).X = Y b+ Z, U = eval(X), Y = 1, Z = 2 impliesU = 3.The funtion eval has no e�et on uninterpreted funtors. For example, the goal?- X = f(a, g()), U = eval(X).results in both U and X being f(a, g()). However,?- X = f(Y, g()), U = eval(X).results in U being f(eval(Y), g()), as the \best" representation of terms ontaining eval1In this manual, we take the liberty of plaing the aret as an aent for readability

CHAPTER 3. PROGRAMMING IN CLP(R) 17
is that with eval pushed inwards as far as possible.Formally, the meaning of quote and eval are given by the axioms:

eval(bf (t1; � � � ; tn)) = f(eval(t1); � � � ; eval(tn)); n � 0eval(g(t1; � � � ; tn)) = g(eval(t1); � � � ; eval(tn)); n � 0eval(dquote(t)) = t
where f ranges over all arithmeti funtion symbols, g ranges over all unoded funtionsymbols di�erent from eval, and t, t1; � � � ; tn range over terms.In general, deiding the satis�ability of onstraints involving quote and eval is a non-trivial problem. Consider for example the two equations:

f(eval2(x); eval2(y)) = f(dquote(eval4(y)); dquote(eval3(x)))f(eval3(x); eval4(y)) = f(dquote(eval2(y)); dquote(eval2(x)))
The �rst of these onstraints is solvable, while the seond is not. There is in fat an algorithmto deal with suh onstraints in their full generality. However, for eÆieny reasons, CLP(R)implements a partial algorithm: maintaining onstraints so that eval appears only in theform X = eval(Y), these equations are delayed until the argument of eval is onstruted.In fat, the delay of suh eval equations is implemented in muh the same way as nonlinearequations.For example, onsider the goal?- X = quote(U + 1), eval(X) = 5, Y = eval(U) - 5.After the �rst onstraint, X is equal to U b+ 1, but after the seond onstraint, eval goesas far through X as it an, so we obtain the simpli�ed onstraint eval(U) + 1 = 5, whihis further simpli�ed to eval(U) = 4. Hene the third onstraint results in Y being -1.However, if the goal were permuted to?- eval(X) = 5, Y = eval(U) - 5, X = quote(U + 1).the �rst and seond onstraints both result in delayed eval onstraints. The third onstraintwakes the �rst delayed eval sine X is now onstruted, resulting in the onstraint eval(U)+ 1 = 5 again, whih, together with the seond delayed eval onstraint | whih is notawakened | results in Y being grounded to -1 again.As a �nal example, onsider the goal

CHAPTER 3. PROGRAMMING IN CLP(R) 18
?- eval(X) + eval(Y) = 4, eval(X) - eval(Y) = 1.whih is rather silly in isolation, but ould arise as the result of a longer omputation. Inthis ase, the answer onstraints are eval(X) = 2.5, eval(Y) = 1.5 although the valuesof X and Y annot be determined uniquely. For example, X might be 2.5, or 1 b+ 1.5,et. It should be noted that the eval mehanism desribed here is an approximation to thatproposed in [7℄.

3.4.2 rule/2, retrat/1 and assert/1
Next we onsider how these basi failities may be used for reasoning about programs (seealso Setion 4.8 whih desribes how to use the dynami ode failities). The anonialappliation for suh reasoning is the meta-irular interpreter, disussed in detail in [7℄. Likethe lause/2 prediate of Prolog, we require a system prediate rule/2 suh that the goal ?-rule(H, B) behaves as if there were fats rule(E, F) for eah rule E :- F in the program(and of ourse rule(A, true) for eah fat A).There is, however, one aspet of rule whih has no analog in lause: arithmeti fun-tion symbols will beome oded. More preisely, the system prediate rule behaves asif there were fats rule(quote(E), quote(F)) for eah rule E :- F in the rulebase (andrule(quote(A), true) for eah fat A). We note that a diret analog to lause an bewritten in terms of rule:analog to lause(H, B) :-funtor(H, Name, Arity),funtor(H1, Name, Arity), % rule needs a onstruted headeval(H) = eval(H1),rule(H1, eval(B)).In a similar fashion, the CLP(R) system prediate retrat/1 is like that in PROLOG butdi�ers in that one mathes arithmeti funtion symbols with their oded forms. As before,a diret analog to the PROLOG's retrat an be written as follows:analog to retrat(eval(R)) :-funtor(R, Name, Arity),funtor(R1, Name, Arity), % retrat needs a onstruted argumenteval(R) = eval(R1),retrat(R1).Now onsider the following example program:

CHAPTER 3. PROGRAMMING IN CLP(R) 19
(a) p(1, 1.5).(b) p(X, Y) :- Y = 2 * X.() p(X, 2 * X).(d) p(X, 2 + X).The goal ?- retrat(quote(p(X, 2*X))) removes only the rule (). The goal?- analog to retrat(p(X, 2*X))on the other hand, should remove rules () and (d).As explained in [7℄, assert/1 in CLP(R) di�ers from that in PROLOG not just beauseof term odings; additional onstraints may have to be added to the asserted rule. Forexample,?- X + Y > 2, assert(p(X, Y)).results in the rulep(X, Y) :- X + Y > 2.As another example, the goal:?- X + Y = 2, X >= 0, Y - 2*X <= 2, X > W, Y - X >= 1,assert(p(X, Y)).asserts the rule:p(X, Y) :- Y = -X + 2, X <= 0.5, -X <= 0.Note that a onsiderable simpli�ation of the initial onstraints has ourred. More gener-ally, this supports a tehnique of onstraint partial evaluation. This tehnique onsists ofexeuting a query, and then using the simpli�ed form of the answer onstraints to onstrutnew rules. These new rules represent a speialization of the program with respet to thatquery. For example:resistor(V, I, R) :- V = I * R.?- resistor(V, I1, R1), resistor(V, I2, R2),I = I1 + I2,assert(parallel resistors(V, I, R1, R2)).results in the assertion of a rule desribing the equivalent voltage-urrent relationship of apair of resistors onneted in parallel2:2The atual names of variables in the rule being asserted will be internally onstruted names but we willuse the original ones for larity

CHAPTER 3. PROGRAMMING IN CLP(R) 20
parallel resistors(V, I, R1, R2) :-V = I2 * R2,V = (I - I2) * R1.The failities we have disussed for adding rules to the database have provided no ontrolover the exat syntax of the rule added. For example onstraints may be simpli�ed and/orrearranged before the rule is added. It is partiularly important in some appliations to haveomplete ontrol over the syntax of rules added to the database. This ontrol is provided byusing a oded form of the rule to be asserted, where assert of a oded rule is de�ned toadd the rule that is oded. For example, the goal?- assert(quote(p(X, X + X) :- X - 3 > 0)).asserts the rulep(X, X + X) :- X - 3 > 0.In ontrast, the goal?- assert(p(X, X + X) :- X - 3 > 0).ould, for example, add the (semantially equivalent) rule:p(X, Y) :- Y = 2*X, Z = X - 3, Z > 0.

3.5 Output
An important feature of the CLP(R) system is its ability to output the olleted onstraintsof a suessful derivation in a simpler form. In a typial derivation, thousands of onstraintsmay be olleted, and printing them out without simpli�ation would lead to an unusableanswer. When a derivation sueeds the output module of CLP(R) is invoked to print theonstraints relating the variables in the goal. The module an also be invoked using thesystem prediate dump([X,Y,...,Z℄), disussed later.The CLP(R) system attempts to simplify the onstraints in two ways: by projeting theonstraints onto a set of target variables (those appearing in the original goal or given by theuser in the argument of dump), and by eliminating redundany in the onstraints. Ideallythe output onstraints will only involve target variables and be free of redundany, but thiswill not always be possible.Reall that there are onstraints of four di�erent forms:

CHAPTER 3. PROGRAMMING IN CLP(R) 21
� funtor onstraints, e.g. X = f(Y, a, g(Y))� linear equations, e.g. 3*X + 4*Y = 6� linear inequalities, e.g. 3*X > 4 + Y� non-linear equations, e.g. X = Y * Z, T = pow(U, V), U = eval(V)3

Eah of these onstraint types is handled di�erently and in turn.
3.5.1 Outline of Algorithm
In this setion, we outline how the output is obtained to give a avor of the kinds of simpli-�ations and redutions that are possible in the answer onstraints.Funtor equations are handled �rst, and in muh the same way as in PROLOG. Theonstraints are stored in solved form using bindings, and printing the simplest form of eahtarget variable simply involves printing their term representation. For example?- X = f(Y, Z), Z = g(a, Y), dump([X, Y℄).results in the outputX = f(Y, g(a, Y)).Note that there is no equation for Y sine it is its own term representation. With funtorequations, it is not always possible to present the output in terms of target variables alone,and some non-target variables are printed out using an internal name. For example,?- X = f(Y, Z), Z = g(a, Y), dump([X℄).results in an output suh asX = f(h6, g(a, h6)).Linear equations are used to substitute out non-target variables in the following manner. If Eis a linear equation ontaining non-target variable X, then we rewrite E into the form X = tand substitute t for X in all the other onstraints (inluding funtor equations, inequalitiesand non-linear equations). Consider, for example?- T = 3 + Y, X = 2 * Y + U, Z = 3 * U + Y, dump([X, T, Z℄).3Delayed onstraints involving eval are treated like nonlinears.

CHAPTER 3. PROGRAMMING IN CLP(R) 22
First, we eliminate Y using the �rst equation Y = 3� T and obtainX = 2 * T - 6 + U, Z = 3 * U + T - 3.Then we eliminate U using the the �rst equation and obtainZ = 3*X - 5*T + 15.This is the �nal answer sine only the variables X, T and Z remain.Linear inequalities are more diÆult to handle than linear equations. We will not go intothe details of how variables an be eliminated from inequalities exept to mention that avariation of Fourier-Motzkin elimination [19℄ with some improvements is used (see [11℄ formore details). In general, eliminating variables from inequalities an be expensive and theprojetion an ontain an exponential number of inequalities.We �nally deal with the nonlinear equations. In general, the algorithm here simplyoutputs eah nonlinear equation unless it has been used as a substitution. We will not de�neformally what exatly onstitutes a substitution, but will disuss some examples. Reallthat eah non-linear onstraint takes the form X = Y � Z; X = sin(Y); X = os(Y); X =pow(Y; Z); X = max(Y; Z); X = min(Y; Z) or X = abs(Y). Eah of these equations anbe used to substitute for X if X is a non-target variable. For example,?- Y = sin(X), Y = os(Z), dump([X,Z℄).leads to the outputsin(X) = os(Z).As in the ase for funtor equations, we annot in pratie eliminate all non-target variablesappearing in non-linear onstraints. As before, we display any non-target variable using aninternal name.A Complete ExampleConsider the goal?- X = f(V, M), V = a, N = 2 * T, Y = 4 * T, Z = R + T, M = N * R,Y + Z >= U, U > T, U >= R + N,dump([X, Y, Z℄).First we eliminate V by substitution obtainingX = f(a, M), N = 2 * T, Y = 4 * T, Z = R + T, M = N * R,Y + Z >= U, U > T, U >= R + N

CHAPTER 3. PROGRAMMING IN CLP(R) 23
Next we eliminate N using the seond onstraint obtainingX = f(a, M), Y = 4 * T, Z = R + T, M = (2 * T) * R,Y + Z >= U, U > T, U >= R + 2 * TNext we eliminate T using the seond onstraint obtainingX = f(a, M), Z = R + 0.25 * Y, M = (0.5 * Y) * R,Y + Z >= U, U > 0.25 * Y, U >= R + 0.5 * YNext we eliminate R using the seond onstraint obtainingX = f(a, M), M = (0.5 * Y) * (Z - 0.25 * Y),Y + Z >= U, U > 0.25 * Y, U >= Z + 0.25 * YNext we eliminate U from the inequalities (and here the individual steps taken may not beso obvious), obtainingX = f(a, M), M = (0.5 * Y) * (Z - 0.25 * Y),0.75 * Y + Z > 0, 0.75 * Y >= 0Finally, we eliminate M using the seond onstraint, and as output we obtain (after per-forming some straightforward saling) the onstraintsX = f(a, (0.5 * Y) * (Z - 0.25 * Y)),0 < Z + 0.75 * Y,0 <= YWe �nally remark that we an obtain an empty output using the algorithm just outlined.This indiates that there are no restritions on the values that the target variables an take.For example,?- T = 3 + Y, X = 2 * Y + U, Z = 3 * U + Y, dump([X, Z℄).results in no onstraints at all. In suh ases, the distinguished prediate real/1 is thenused to indiate that ertain variables are arithmeti, and that no further onstraints areupon them. In this example, we will output the onstraintsreal(X), real(Z).
3.5.2 The dump System Prediates
The basi faility for output in CLP(R) is the system prediate dump/1, mentioned above,whose argument is a list of target variables. Note that, to use this prediate, the target

CHAPTER 3. PROGRAMMING IN CLP(R) 24
variables must appear expliitly in the argument (as in dump([A, B℄)) and not be passed in(as in X = [A, B℄, dump(X)). This is beause the names of the target variables are atuallyused in the output. The ordering of variables in the list is used to speify a priority on thevariables with the later variables having a higher priority. Sine dump outputs onstraints,there are many equivalent forms of the same set of onstraints and the priority ordering isused to express higher priority variables in terms of the lower ones. This gives one form ofontrol over the output from dump. For example, the goal?- X = 2 * Y + 4, dump([X, Y℄)gives Y = 0.5 * X - 2whereas the reverse order would give bak the original onstraint.The prediate dump/2 is a re�nement of dump/1, and is designed to be far more exible.Its �rst argument is, as before, a list of target variables. Its seond argument is a list ofonstants to be used in plae of the original target variables in the output. For example,?- Names = [a, b℄, Targets = [X, Y℄, X > Y, dump(Targets, Names).results in the output a > b. This prediate is useful when the names of target variablesare known only at runtime. More preisely, the operation of dump/2 is as follows: let the�rst and seond arguments be the lists [t1; � � � ; tn℄ and [u1; � � � ; un℄, where the ti and ui arearbitrary terms. Construt new variables T1; � � � ; Tn, and add to the urrent olletion ofonstraints the equations T1 = t1; � � � ; Tn = tn. Now obtain a projetion of the augmentedonstraints w.r.t. T1; � � � ; Tn. Finally, output this projetion renaming eah target variable Tiby its new name ui.In meta-programming it an be useful to obtain the oded form of the onstraints withrespet to given target variables. This faility is provided by the system prediate dump/3.There are three arguments beause it is not suÆient to simply provide the variables to beprojeted upon (1st argument) and the variable that reeives the oded form (3rd argument).The 2nd argument is a list of terms that are to replae the original variables in the odedform, and hene the lengths of the two lists must be the same. For example,?- NewVars = [A, B, C℄, Targets = [X, Y, Z℄, X > Y + Z,dump(Targets, NewVars, Answer).results in the binding Answer = [b- A b+ B b+ C < 0℄.There are two reasons for having suh a seond argument. First, it is very inonvenient tomanipulate a oded form ontaining variables that have the original arithmeti onstraintsstill imposed on them | in partiular, printing suh a term leads to highly ounter-intuitiveresults. Seond, in many ases it is more onvenient to manipulate ground representationsof the oded forms. That is, with syntati onstants replaing the variables. The terms

CHAPTER 3. PROGRAMMING IN CLP(R) 25
resulting from manipulation an then have the original (or other) variables substituted intoplae easily.We onlude with a larger example. We will assume that the prediate p/2 sets up aonstraint suh that the �rst argument is a (polynomial) funtion of the seond, and thatdiff/2 implements symboli di�erentiation on oded forms of arithmeti onstraints. Then,to �nd the turning point of the funtional relationship established by p/2, we an use thefollowing goal:solve(DYDX,X) :- eval(DYDX) = 0.p(Y, X) :-T = X + 1,Y = T * T.?- p(Y, X), % ollet a funtion Y(X)dump([Y, X℄, [V, U℄, Z), % get oded form of Y(X)Z = [C℄, C =.. ['=', V, RHS℄, % assume Z of the form [V = f(U)℄diff(RHS, DVDU), % symboli di�erentiationsolve(DVDU, U), % �nd extremumprintf("Turning point: X = %, Y = %nn", [U, V℄).
3.6 Some Programming Tehniques
Here we ollet a number of small programs that serve to illustrate some interesting pro-gramming tehniques.A Crypto-arithmeti PuzzleConsider one of the standard rypto-arithmeti puzzles. We require an injetive assign-ment of digits 0; 1; � � � ; 9 to the letters S, E, N, D, M, O, R, Y suh that the equation

S E N D+ M O R E---------M O N E Y
holds. The program �rst imposes ertain onstraints on the values. Then it tries to assignpossible values to the letters. The problem is ombinatorially explosive and so a naive gen-erate and test solution would be very ineÆient. In ontrast, the straightforward programbelow runs quikly in CLP(R).

CHAPTER 3. PROGRAMMING IN CLP(R) 26
The program illustrates how CLP(R) an be used to advantage in solving problems overinteger domains. Beause the unsolvability of onstraints in R implies their unsolvabilityover the integers, CLP(R) an prune the searh spae signi�antly without the expense ofinvoking an integer solver. For CLP programs in general, the key issue is the trade-o� betweenthe power and the speed of the onstraint-solver: powerful solvers entail smaller searh spaesbut are ostlier to run. For CLP(R) in partiular, the use of a real-number-based solver toapproximate onstraint-solving over a disrete or �nite domain is one important realizationof this trade-o�.

solve([S, E, N, D, M, O, R, Y℄) :-onstraints([S, E, N, D, M, O, R, Y℄),gen_diff_digits([S, E, N, D, M, O, R, Y℄).onstraints([S, E, N, D, M, O, R, Y℄) :-S >= 0, E >= 0, N >= 0, D >= 0, M >= 0, O >= 0, R >= 0, Y >= 0,S <= 9, E <= 9, N <= 9, D <= 9, M <= 9, O <= 9, R <= 9, Y <= 9,S >= 1, M >= 1,C1 >= 0, C2 >= 0, C3 >= 0, C4 >= 0,C1 <= 1, C2 <= 1, C3 <= 1, C4 <= 1,M = C1,C2 + S + M = O + C1 * 10,C3 + E + O = N + 10 * C2,C4 + N + R = E + 10 * C3,D + E = Y + 10*C4,bit(C1), bit(C2), bit(C3), bit(C4).bit(0).bit(1).gen_diff_digits(L) :-gen_diff_digits(L, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9℄).gen_diff_digits([℄, _).gen_diff_digits([H | T℄, L) :-selet(H, L, L2), gen_diff_digits(T, L2).selet(H, [H | T℄, T).selet(H, [H2 | T℄, [H2 | T2℄) :-selet(H, T, T2).?- solve(S, E, N, D, M, O, R, Y).
Critial Path Analysis

CHAPTER 3. PROGRAMMING IN CLP(R) 27
This program uses loal propagation to ompute start, ompletion and oat times for aprojet network. Signi�antly, the onstraint paradigm allows the program to ompute thesevalues by making only one pass of the projet network, as opposed to the three passes thatwould be needed using a onventional programming language.Most of the program is basially parsing the input and building an adjaeny graph outof the network. Then the latest ompletion time and earliest starting time for every node issimply the minimum of the time required for the outgoing events and maximum of the timeof the inoming events.

pm(Network, Graph, Latest) :-build(Network, Graph),early_late(Graph, Graph, End, Latest),Latest >= End,analyse(Graph, Graph).pm(Network, Graph) :-build(Network, Graph),early_late(Graph, Graph, End),analyse(Graph, Graph).% Build adjaeny graph out of the network ... build([℄, Graph) :- ...% Get early start times and latest ompletion times% early/4 is used when a ending time is given% otherwise early/3 assumes that the early start time% for the end node is equal to the latest ompletion timeearly_late([℄, _, _, _).early_late([ad(I, Es, L, To, From) | T℄, G, End, Latest) :-setearly(From, To, G, End, Es),setlate(To, G, Latest, L),early_late(T, G, End, Latest).early_late([℄, _, _).early_late([ad(I, Es, L, To, From) | T℄, G, End) :-setearly(From, To, G, End, Es),setlate(To, G, End, L),early_late(T, G, End).setearly([℄, _, _, _, 0).setearly([ed(V, C, _, _, _, _) | T℄,[℄, G, Es, Es) :-

CHAPTER 3. PROGRAMMING IN CLP(R) 28
!,getnode(V, G, Es1, _),setmax(T, G, Es1 + C, Es).setearly([ed(V, C, _, _, _, _) | T℄, _, G, End, Es) :-getnode(V, G, Es1, _),setmax(T, G, Es1+C, Es).setmax([℄, _, Max, Max).setmax([ed(V, C, _, _, _, _) | T℄, G, Max0, Max) :-getnode(V, G, Es1, _),setmax(T, G, max(Max0, Es1 + C), Max).setlate([℄, _, Last, Last).setlate([ed(V, C, _, _, _, _) | T℄, G, Last, L) :-getnode(V, G, _, L1),setmin(T, G, L1-C, L).setmin([℄, _, Min, Min).setmin([ed(V, C, _, _, _, _) | T℄, G, Min0, Min) :-getnode(V, G, _, L1),setmin(T, G, min(Min0, L1 - C), Min).% Searh graph for the early & late times for a nodegetnode(I,[ad(I, Es, L, _, _) | T℄, Es, L).getnode(I,[H | T℄, Es, L) :-getnode(I, T, Es, L).% Compute the other times:% Ls - latest start time% E - earliest ompletion time% Tf - total float time% Ff - free float timeanalyse([℄, G).analyse([ad(I, Es, L, To, _) | T℄, G) :-analyse_times(To, Es, L, G),analyse(T, G).analyse_times([℄, _, _, _).analyse_times([ed(V, C, Ls, E, Tf, Ff) | T℄, Esi, Li, G) :-getnode(V, G, Esj, Lj),X = Esi + C,

CHAPTER 3. PROGRAMMING IN CLP(R) 29
Ls = Lj - C,E = Esi + C,Tf = Lj - X,Ff = Esj - X,analyse_times(T, Esi, Li, G).print_analysis(G) :- ...

A goal might be
?- pm([[n1, n2, 4℄, [n1, n3, 3℄, [n1, n4, 4℄, [n2, n5, 7℄,[n2, n3, 1℄, [n2, n7, 8℄, [n3, n5, 4℄, [n4, n6, 2℄,[n5, n6, 1℄, [n5, n7, 3℄, [n6, n7, 4℄℄, G),print_analysis(G).
A Simple Ciruit SolverThe following program performs DC analysis on iruits ontaining resistors, voltagesoures and diodes. The iruit analysis is deomposed in a hierarhial fashion. The in-dividual omponents are modelled diretly by onstraints suh as Ohm's law. Then theomponents are onneted together and the global iruit onstraints on the urrents andvoltages, as spei�ed by Kirho�'s laws, are used to de�ne the whole iruit.
solve_d(C, L) :-solve(C, [℄, L),solve_urrent(L).% solve for every iruit omponentsolve([℄, L, L).solve([[Comp, Name, Par, Nodes℄ | T℄, In, Out) :-onnet(Name, Nodes, Volts, Amps, In, Tmp),omponent(Comp, Par, Volts, Amps),solve(T, Tmp, Out).% sum of urrents at eah node are zerosolve_urrent([℄).solve_urrent([n(N, V, IList) | T℄) :-kl(IList, 0),

CHAPTER 3. PROGRAMMING IN CLP(R) 30
solve_urrent(T).kl([℄, 0).kl([(Name, I) | T℄, X) :-kl(T, I + X).% onnet the ars whih meet at a nodeonnet(Name, [℄, [℄, [℄, L, L).onnet(Name, [N | T℄, [V | VR℄, [I | IR℄, In, Out) :-add_ar(Name, N, V, I, In, Tmp),onneting(Name, T, VR, IR, Tmp, Out).% reate the voltage and urrentsadd_ar(Name, N, V, I, [℄, [n(N, V, [(Name, I)℄)℄).add_ar(Name, N, V, I, [n(N, V, IList) | T℄,[n(N, V, [(Name, I) | IList℄) | T℄).add_ar(Name, N, V, I, [X | T℄, [X | T1℄) :-add_ar(Name, N, V, I, T, T1).omponent(resistor, R, [V1, V2℄, [I, -I℄) :-V1 - V2 = I*R.omponent(voltage_soure, V, [V, 0℄, [I, -I℄).omponent(diode, in914, [V1, V2℄, [I, -I℄) :-diode(in914, [V1, V2℄, [I, -I℄).diode(in914, [V1, V2℄, [I1, I2℄) :-V = V1 - V2, V < -100, DV = V+100, I1 = 10*DV - 0.1.diode(in914, [V1, V2℄, [I1, I2℄) :-V = V1 - V2, V >= -100, V < 0.6, I1 = 0.001*V.diode(in914, [V1, V2℄, [I1, I2℄) :-V = V1 - V2, V >= 0.6, DV = V - 0.6, I1 = 100*DV - 0.0006.

A sample query whih returns the urrents and voltages in L
?- R1 = 100, R2 = 50, V = 20,solve_d([[voltage_soure, v1, V, [n1, ground℄℄,[resistor, r1, R1, [n1, n2℄℄,[resistor, r2, R2, [n2, ground℄℄,[diode, d1, in914, [n2, ground℄℄℄, L).

Chapter 4
Using the System
The user interfae of ompiled CLP(R) is very muh like that of a usual Edinburgh-style Pro-log interpreter. In other words, it is quite possible to use this system while almost ompletelyignoring the fat that it is ompiler-based. In fat, there is no suh thing as an interpretedmode and all ode (stati and dynami) is ompiled. All goals are ompiled (quikly) beforebeing exeuted, and any onsulted �le is immediately ompiled. The rulebase is availablefor inspetion (exept for proteted rules) and an be modi�ed dynamially as long as therelevant relations have been delared to be dynami as desribed below. Normally the userwill �nd that onsulted �les take a little longer than usual to be read in (beause they arebeing ompiled) and that programs will usually run muh more quikly and use less spaethan in an interpreter. Symboli debugging is still possible, as are all other aspets of inter-ative programming. However, the user may also take speial advantage of the ompiler byreating lam �les that ontain ompiled CLP(R) ode that an be loaded extremely quiklyand do not inlude the overhead of the original program text, although this rules out ertainoperations. In short, the system is intended to get the best of both worlds by ombining theexibility of an interpreter with the eÆieny of a ompiler. The experiened PROLOG usermay want to skip diretly to Setion 4.6 whih illustrates many of the features, syntax anduser interfae of CLP(R) using an example session.
Note: Creation of CLAM �les has not yet been implemented.However, ompilation in CLP(R) is relatively quik.The �rst operation CLP(R) performs is to load the distinguished library �le init.lpr.This �le must either be in the urrent working diretory, or in a diretory whose path name isde�ned via the environment variable CLPRLIB, or in a diretory whose path name is spei�edduring installation. This last alternative is explained in Chapter 6.

31

CHAPTER 4. USING THE SYSTEM 32
4.1 Command Line Arguments
The syntax of a ommand-line islpr [options℄ [�lename℄where �lename ontains a CLP(R) program. The following explains the various optionsavailable:
-s <n>Speify size of ode spae (default 128,000).-hs <n>Speify size of heap (default 200,000).-ls <n>Speify size of loal stak (default 100,000).-ss <n>Speify maximum number of solver variables (default 128,000).-ts <n>Speify size of trail (default 100,000).-z <r>Set internal notion of zero to this small number. Numbers between �r are taken to beequivalent to zero.-r <int>Speify a random number seed.
4.2 Filenames
Filenames onsulted or read as an input stream may have an optional impliit suÆx added tothe �lename. The default suÆx is usually \.lpr" (\.lp" for MS/DOS or OS/2) depending onthe installation. This may be hanged by the use of the environment variable CLPRSUFFIX,whih an be set to a list of suÆxes separated by olons, e.g. ".lpr:.lp". First, the original�lename is tried and if that annot be read then a suÆx is added in the order spei�ed by thelist of suÆxes. (Note that in version 1.1 and earlier of CLP(R), only the spei�ed �lenamewas used without any impliit suÆxes, but the behavior here is ompatible).

CHAPTER 4. USING THE SYSTEM 33
4.3 Queries
After the system has been initialized, it will prompt the user for a query. It will ontinuallyaept user goals and solving for them until the session is terminated with a halt/0 or ifit enounters the end of �le (eg: ^D on UNIX or ^Z on MSDOS). This again is similar tothe style of most PROLOG systems. If the user goal failed then the *** No" message isoutput, otherwise the query is suessful and the resulting answer onstraints (the onstraintson variables in the query) are output. A suessful query will also display a *** Yes"message, but if there are other alternatives to try for the query then the *** Retry?"message is displayed and the user is prompted to either press arriage return or enter \."(or \n") to aept the answers, or \;" (or \y") to ause baktraking. A di�erent promptis displayed if delayed (nonlinear) remain at the end of the exeution. The message ***Maybe" replaes *** Yes" and *** (Maybe) Retry?" replaes *** Retry?" to indiatethat the satis�ability of the nonlinear onstraints remaining has not been deided by CLP(R).Exeution of a query an be interrupted at any time by using the interrupt keyode (^Cusually).1 A bu�er of the last 50 goals is kept, and may be examined by the history/0 (orh/0) prediate. An old query may be re-exeuted by just entering its history number as agoal (eg: ?- 5.).For every top-level query. There is also an impliit dump on the variables in the goal,i.e. the set of answer onstraints using those variables are printed, with the exeption thatanonymous variables and also other variables beginning with an \ " are ignored. No impliitdump is performed for goals embedded in a �le. (Note that the output onstraints di�ersfrom many PROLOG systems whih display the variable bindings produed from exeution.)
4.4 Loading/onsulting and reonsulting programs
A CLP(R) soure program an be loaded using the onsult/1 prediate or the more onve-nient notation[<list of �lenames>℄, e.g. [myprog, mytest℄ at the top level prompt loadsthose two �les. Loading a program ompiles all the rules in that �le, makes the new prediatesin it available for use and also exeutes any embedded goals. Unlike some PROLOG systemswhere onsulted �les are interpreted and ompilation is done using a di�erent method, allonsulted prediates in CLP(R) are ompiled (usually fairly quikly). Note that �lenamesmay have an impliit suÆx added as in Setion 4.2. Filenames whih are spei�ed diretlyshould onsist entirely of lowerase haraters and any other kind of �lename, eg. a path-name, should be surrounded by single quotes.Reonsulting a �le with reonsult/1 or the notation [`<list of �lenames>℄ will if it1It is however not absolutely safe to interrupt at any time, and oasionally at ritial stages an interruptmay ause the system to be internally inonsistent

CHAPTER 4. USING THE SYSTEM 34
enounters previous de�nitions, erase them and replae them by the new de�nitions. Bydefault, a prediate whih is rede�ned will generate a warning. This may be turned o� byexeuting the system prediate warning(redefine off). Some PROLOG systems use an al-ternative notation [-�lename℄ but in CLP(R) this onits with unary minus. Also in somesystems, onsulting and reonsulting are ombined together. In CLP(R) onsulting a previ-ously onsulted �le with ative de�nitions will result in warning messages and rede�nitionswill be ignored.The speial �lename user denotes that the �le to be onsulted or reonsulted is readfrom standard input. This allows diret entry of rules whih is handy for quik modi�ationsfrom the top query level. More on the organization of onsulted �les is ontained in Setion4.7.
4.5 Style Cheking and Warnings
CLP(R) programs an be optionally heked against some stylisti onventions, also alledstyle heking. The purpose of the style heking is to give a warning that the program maypotentially ontain some ommon \bugs" when the style rules are not followed. It is impor-tant to remember that these are merely warnings and a program may be perfetly orretotherwise. There are three di�erent kinds of style heking that an be applied| single var,disontiguous, name overload.2 The option all overs all three styles. By default, styleheking is on and individual style heking an be turned on (o�) with style hek/1(no style hek/1), e.g. no style hek(all) turns o� all style heking.The di�erent style onventions are as follows:
single var | This warns if a variable is used only one within a rule and may possiblyindiate that a variable has been mispelled. Anonymous variables () and also variablespre�xed with an undersore are ignored. An example error is the rule \p(X, Y)" givesthe following warning message:Warning: Style hek, singleton variables, rule 1 of q/2+++ X, Ydisontiguous| This style hek assumes that all the di�erent rules de�ning a prediateour ontiguously within a �le and warns if there is another intervening rule. Commonbugs whih an result when this style hek is not followed an be mispelling the nameof a rule, or substituting a \." to end a rule when a \," was meant to ontinue the rule,2The �rst two options are similar to that in Quintus Prolog. The last is di�erent.

CHAPTER 4. USING THE SYSTEM 35
e.g. the program \p(X) :- X > 0. q(X). p(0) :- r(X)." where there the intent isfor a omma to be before q/1 gives the following warning message:Warning, <stdin>:1: Style hek, p/1 is not ontiguousname overload | This heks whether the same prediate name is de�ned with di�erentarities. While it is not unommon to have di�erent prediates of di�erent arities withthe same name, it may also be indiative of an inorret number of arguments, e.g. theprogram \p(0,0). p(1). p(2,2)." gives the following warning message:Warning: rule overloading, same name, different arity:+++ p/1, p/2

(Note that when this option has been disabled and then re-enabled, then rules whih were de-�ned before style heking was enabled will also generate warnings. The additional warningsan be disabled by using the speial system prediate $lear style hek/0. style hek(all reset)also does this, learing all previous warnings and turns on style heking.)Another kind of warning is given when a rule is de�ned in more than one �le. The basiunit of ompilation is a single �le and all the ourenes of rules for a prediate have to bede�ned within the same �le. The exeption is that when a �le is being reonsulted, thenthe new de�nitions replae the old ones. The ompiler will simply ignore all additions to anexisting previously ompiled prediate and by default a warning is given. See also warning/1to ontrol whether warnings are given.
4.6 Sample Session
This is a sample session with the CLP(R) system. Some extra information is given usingomments after the % harater.
% lprCLP(R) Version 1.2() Copyright International Business Mahines Corporation1989 (1991) All Rights Reserved1 ?- f(X,Y) = f(g(A),B). % some simple ``unifiation''B = Y

CHAPTER 4. USING THE SYSTEM 36
X = g(A)*** Yes2 ?- X = Y + 4 , Y = Z - 3, Z = 2. % simple arithmeti evaluationZ = 2Y = -1X = 3*** Yes3 ?- X + Y < Z, 3 * X - 4 * Y = 4, 3 * X + 2 * Y = 1.Y = -0.5X = 0.6666670.166667 < Z*** Yes4 ?- X + Y < Z, 3 * X - 4 * Y = 4, 2 * X + 3 * Z = 1.Y = -1.125*Z - 0.625X = -1.5*Z + 0.5-0.0344828 < Z*** Yes5 ?- history.1 f(X, Y) = f(g(A), B).2 X = Y + 4, Y = Z - 3, Z = 2.3 X + Y < Z, 3 * X - 4 * Y = 4, 3 * X + 2 * Y = 1.4 X + Y < Z, 3 * X - 4 * Y = 4, 2 * X + 3 * Z = 1.*** Yes6 ?- 2. % run seond goal againX = Y + 4, Y = Z - 3, Z = 2.Z = 2Y = -1X = 3

CHAPTER 4. USING THE SYSTEM 37
*** Yes7 ?- ['examples/fib'℄. % onsult (load) a program>>> Sample goal: go/0*** Yes8 ?- ls fib. % look at the programfib(0, 1).fib(1, 1).fib(N, X1 + X2):-N > 1,fib(N - 1, X1),fib(N - 2, X2).*** Yes9 ?- fib(5,F). % only one answer to thisF = 8*** Retry?;*** No10 ?- F > 7, F < 9, fib(N,F). % only ask for the first answerN = 5F = 8*** Retry?11 ?- [`'examples/mortgage'℄. % use "`" to reonsult>>> Sample goals: go1/0, go2/0*** Yes12 ?- ls. % look at the entire rulebase

CHAPTER 4. USING THE SYSTEM 38
h:- history.fib(0, 1).fib(1, 1).fib(N, X1 + X2):-N > 1,fib(N - 1, X1),fib(N - 2, X2).go:- printf(\nFib(14) = , [℄),ztime,fib(14, X),time(T1),printf(% (Time = %)\n, [X, T1℄),printf(Fib-1(610) = , [℄),ztime,fib(Y, 610),time(T2),printf(% (Time = %)\n, [Y, T2℄).mg(P, T, I, B, MP):-T = 1,B = P + P * I - MP.mg(P, T, I, B, MP):-T > 1,mg(P * (1 + I) - MP, T - 1, I, B, MP).go1:- ztime,mg(999999, 360, 0.01, 0, M),time(T),printf(Time = %, M = %\n, [T, M℄).go2:- ztime,mg(P, 720, 0.01, B, M),time(T),printf(Time = %\n, [T℄),dump([P, B, M℄).

CHAPTER 4. USING THE SYSTEM 39
*** Yes13 ?- [`'examples/mortgage'℄.Warning: mg/5 has been redefined>>> Sample goals: go1/0, go2/0*** Yes14 ?- ls.h:- history.fib(0, 1).fib(1, 1).fib(N, X1 + X2):-N > 1,fib(N - 1, X1),fib(N - 2, X2).go:- printf(\nFib(14) = , [℄),ztime,fib(14, X),time(T1),printf(% (Time = %)\n, [X, T1℄),printf(Fib-1(610) = , [℄),ztime,fib(Y, 610),time(T2),printf(% (Time = %)\n, [Y, T2℄).mg(P, T, I, B, MP):-T = 1,B = P + P * I - MP.mg(P, T, I, B, MP):-T > 1,mg(P * (1 + I) - MP, T - 1, I, B, MP).go1:- ztime,

CHAPTER 4. USING THE SYSTEM 40
mg(999999, 360, 0.01, 0, M),time(T),printf(Time = %, M = %\n, [T, M℄).go2:- ztime,mg(P, 720, 0.01, B, M),time(T),printf(Time = %\n, [T℄),dump([P, B, M℄).*** Yes15 ?- go2.Time = 0.25M = -7.74367e-06*B + 0.0100077*P*** Retry?16 ?- [user℄.p(X) :- writeln(X).^D*** Yes17 ?- p(hello).hello*** Yes

4.7 Organization of Consulted Files
Slightly more are than usual must be taken in organizing program �les in ompiled CLP(R).A �le onsists of a number of hunks. Eah hunk onsists of a zero or more rules (de�nedin the usual way) possibly followed by a goal. That is, a goal always loses o� a hunk, andthe end of the �le loses o� the last hunk if a goal has not done so. A relation may notspan more than one hunk unless it has been delared to be dynami (see below) before the�rst rule de�ning it. De�ning a relation statially in more than one hunk will generate awarning message stating that the new de�nitions will be ignored is given. However if one

CHAPTER 4. USING THE SYSTEM 41
is reonsulting then the new de�nitions will replae the ones de�ned in the previous hunk.A warning message that the rede�nition has taken plae is also given. However, if suh arede�nition during a reonsult is not possible when the earlier de�nition has been proteted(using the prot/2 prediate), in whih ase a warning is printed and the new de�nition isignored. The motivation for this restrition is that the state of the rulebase needs to be wellde�ned whenever a goal is enountered in the onsulted �le.There may be three kinds of goals in any onsulted �le. All three kinds are onsideredto be idential (and behave in the usual way) when they are enountered in a soure �lethat is being onsulted. However, they are di�erent when a soure �le is �rst ompiled andwhen the .lam �le is onsulted. All goals of the form :- goal are only exeuted during theompilation stage. Those of the form ::- goal are only exeuted during the onsultation ofthe ompiled ode, and the goals of the traditional form ?- goal are exeuted twie: oneduring ompilation and one during onsultation. In summary::- goal.is exeuted during ompilation of the soure �le.::- goal.is exeuted during onsultation of the .lam �le.?- goal.is exeuted during ompilation and at runtime.The �rst kind of goal might be used for ompiler diretives and messages to whoever iswathing while some ode is being ompiled. The seond kind might be used for makinga program run itself straight after it is loaded. Finally, the third kind of goal is useful forthings like operator delarations whih need to be present for the remainder of a programto parse orretly and also when the program is running so that terms will print orretly,et. An embedded goal that fails during exeution will generate a warning message (see alsowarning/1).
4.8 Stati and Dynami Code
A CLP(R) program is divided into stati rules, whih do not hange, and dynami rules,whih allow the rulebase to be modi�ed via assert/1 and retrat/1 as well as by onsulting.As mentioned above, stati rules/ode annot span more than one hunk. Dynami odeon the other hand an be de�ned anywhere and dynami rules an be added by assertingthem during exeution or by onsulting a program �le, whih behaves as if those de�nitionswere asserted. The only requirement for rules intended to be dynami is that the partiularprediate name has to be pre-delared using dynami/2 whih ensures that all uses of thisprediate are now dynami, e.g. ?- dynami(foo, 2). The �rst argument is the name of

CHAPTER 4. USING THE SYSTEM 42
the prediate and the seond is its arity3. Every dynami delaration has to our beforeany use of a dynami prediate is made (inluding rule, assert and retrat), otherwise anerror is generated with any of the preeeding system prediates and any use of that prediateis assumed to be stati. Delaring a prediate to be dynami allows the use of rule/2 toinspet the rulebase, assert/1 to add new rules and retrat/1 to delete rules.The operational semantis of the assert, rule and retrat family of system prediates isthat any modi�ations to the rulebase our immediately and are immediately available foruse4. This is alled the immediate update view [17℄. Consider the following example:?- dynami(p,0).p :- assert(p), fail.

This will ause the goal \?- p." to sueed. Apart from the dynami delaration andthe immediate update semantis, there is no di�erene between stati and dynami ode andthey may be used interhangeably, e.g. both an be listed with ls/1. Dynami ode is alsoompiled but is generally not as eÆient as stati ode and also less deterministi. Also notethat the semantis of assert, rule and retrat are an enhanement of that in PROLOG(see Setion 3.4.2).
4.9 Debugging Support
The debugging failities in this version of CLP(R) are rudimentary.
odegen debugThis is a ompiler diretive, whih inludes debugging instrutions in subsequentlygenerated ode. It should be ative before the �le to be debugged is onsulted.odegen nodebugThis is a ompiler diretive that turns o� the generation of debugging ode in subse-quent ompilation.spy This swith makes all relations ompiled under odegen debug visible to the debugger.Proteted rules are never visible.3Most PROLOG's use the name/arity onvention to speify this but this ould be onfused with division,hene the two argument form is used4The operational semantis of dynami ode may vary onsiderably between di�erent PROLOG systemshene one should not plae undue reliane on it.

CHAPTER 4. USING THE SYSTEM 43
spy(+P, +A)This swith makes the relation for prediate P with arity A visible to the debugger ifit was ompiled under odegen debug. It annot be applied to proteted relations.spy([P1(+A1),...,Pn(+An)℄)Like spy/2, exept a list is supplied of the prediates to be spied on where the Pi'sare the prediate names and the Ai's their arity.nospyMakes all relations invisible to the debugger.nospy(+P, +A)Makes the relation for prediate P with arity A invisible to the debugger.nospy([P1(+A1),...,Pn(+An)℄)Like nospy/2, exept a list is supplied of the prediates to be spied on where the Pi'sare the prediate names and the Ai's their arity.traeAtivates printing. All subsequent attempts to searh a relation visible to the debuggerwill result in a message being printed. The message is the same regardless of whetherthis is a �rst or subsequent attempt to satisfy a goal.notraeDe-ativate printing.
4.10 Notes on EÆieny
Here we indiate some key features that an signi�antly a�et eÆieny. Some of themare unsound in general, and hene extreme are should be taken when using them. Novieprogrammers may (and probably should) skip this setion entirely.

� IndexingCLP(R) employs �rst argument indexing for onstruted funtor terms as well as realnumbers. Using indexing an result in signi�ant speedups.� Tail reursionLast all optimization is employed, and hene proedures that are tail-reursive willnot inrease loal stak usage.� Logial disjuntion \;/2" and if-then-else \->/2"These are implemented at the meta-level and hene are not partiularly eÆient.

CHAPTER 4. USING THE SYSTEM 44
� Dynami odeDynami ode is slower than stati ode and is also less deterministi. Cuts an beused to make it more deterministi. Also, sine dynami ode is ompiled, assertinglarge terms may not be very fast.� Garbage olletionNot implemented as yet.� Impliit equalitiesThe solving of inequalities that imply some impliit equations an be ontrolled usingimpliit/0, noimpliit/0, partial impliit/0 (see Setion 5.1.7).� Asserting a ruleThe prediate assert/1 involves inorporating the onstraints that relate the vari-ables in that rule (see Setion 3.4.2). This is less eÆient than if the onstraints werenot taken into aount. The fassert family of speial prediates (\fast assert") per-forms assertion without inorporating arithmeti onstraints (see Setion 5.1.7), as inPROLOG.

4.11 Notes on Formal Corretness
The following identi�es the main reasons why the CLP(R) implementation does not perfetlyonform to the idealized CLP sheme.

� No ours hek during (funtor) uni�ation;� Depth-�rst searh (loss of ompleteness);� Floating point: beause this implementation of CLP(R) makes use of double preisionoating point arithmeti, some problems may be aused by artifats suh as roundo�.The most ommon problem is that a onstraint used as a test (in that all variablesare ground) unexpetedly fails beause of round-o�. This is dealt with by adjustingthe amount of slak that the system allows in numerial omparisons, using the -zommand line option.� Nonlinear and meta-level onstraints are delayed.

Chapter 5
Built-In Failities
5.1 System Prediates
5.1.1 Rulebaseop(+P, +T, +S)Delares the atom S to be an operator of type T with preedene P. The type anbe used to speify pre�x, post�x and binary operators using the positional notation:fy, fx, yf, xf, yfy, xfy, yfx, xfx; where the \f" spei�es the operator and the\y" and \x" the arguments. A \y" spei�es that the topmost funtor/operator inthe subexpression be of the same or lower preedene than the operator \f", and \x"spei�es that it is to be stritly lower. The preedenes must range between f0 : : : 1200g.where a 0 preedene removes the operator.(See also Setion 5.3 for some examples.)listingls List the rules of the entire rulebase that are urrently visible.listing +Pls +P List the urrently visible rules for the prediate P, of all arities.onsult(+F)[+F℄ Read the �le F and add rules that it ontains to the database. Goals in the �le arehandled in a way that is desribed in Setion 4.7. If the �lename is spei�ed as user

45

CHAPTER 5. BUILT-IN FACILITIES 46
then the standard input is used instead of a �le. The form [F℄ takes a list of �lenameswhile onsult/1 takes only a single �le. When the �le F annot be read then a possiblelist of �le suÆxes is added using the CLPRSUFFIX environment variable (see Setion4.2). By default, a \.lpr" �le extension is used. (Not urrently implemented: If the �lehas a .lam extension it is expeted to be lam ode and is loaded appropriately. If ithas no extension and a version with a .lam extension exists it is given preferene.)reonsult(+F)[`+F℄ Same as onsult, but if a prediate already has rules de�ning it from before, theyare deleted before the new ones are added, and a warning message is printed. Notethat [-F℄, whih is a ommon synonym for reonsult in PROLOG systems, annotbe used (sine it means negative F).retratallDelete entire unproteted portion of the rulebase.retratall(+H)Delete all urrently visible rules with heads mathing H. Stati ode annot be deletedwith retratall/1.asserta(+R)Add rule R to the rulebase before all others de�ning the same prediate. Note thatoded terms beome unoded in the rulebase. See Setion 3.4.2 for more informationon meta-oding of rules and di�erenes with the usual PROLOG semantis.assertz(+R)assert(+R)Add rule R to the rulebase after all others de�ning the same prediate. Note thatoded terms beome unoded in the rulebase. See Setion 3.4.2 for more informationon meta-oding of rules and di�erenes with the usual PROLOG semantis.rule(+H,?B)True if the rule H:-B is in the urrently visible part of the rulebase. Finds the nextmathing rule on baktraking. Note that the rules in the rulebase are oded beforemathing is done. See Setion 3.4.2 for more information on meta-oding of rules anddi�erenes with the usual PROLOG semantis.deny(+H,?B)Delete rule mathing H :- B from the urrently visible part of the rulebase. Also triesagain on baktraking. It is similar to retrat/1 and both H and B are oded terms.See Setion 3.4.2 for more information on meta-oding of rules and di�erenes withthe usual PROLOG semantis.

CHAPTER 5. BUILT-IN FACILITIES 47
retrat(+R)Delete rule mathing R from the urrently visible part of the rulebase. Like rule/2,this has a \oded view" of the rulebase. See Setion 3.4.2 for more information onmeta-oding of rules and di�erenes with the usual PROLOG semantis.prot(+P,+A)Protet all rules for prediate P with arity A in the rulebase. This makes them looklike system prediates to the user. In partiular, they annot be listed, asserted orretrated.prot([P1(+A1),...,Pn(+An)℄)Same e�et as prot/2 desribed above, but takes a list of prediate names Pi witharities Ai in parentheses.
5.1.2 Control! The dreaded ut. As usual, its use is not reommended. It is often more appropriateto use one/1.fail Always fails.true Always sueeds.repeatAlways sueeds, even on baktraking.+B1 , +B2Logial onjuntion.+B1 ; +B2Logial disjuntion. A ut inside one of these will behave very strangely. That is,it will behave as if the two sides of the \;" are separate rules. (Note that beause;/2 is urrently implemented as a meta all it may sometimes not behave as if it wasde�ned using an auxiliary prediate. This an our if there is an arithmeti term thatauses failure. The following short example illustrates the di�erene between try/3and try1/3 for the goal ?- try(X, 1, 0),try(X, Y, Z) :- X=Y/Z ; X=1.try1(Y/Z,Y,Z). try1(1,Y,Z).This may possibly hange to be the same in some future version.)

CHAPTER 5. BUILT-IN FACILITIES 48
+C -> +B1 ; +B2If C then all B1 otherwise all B2. Uses unsafe negation. IneÆient, sine it usesall/1. A ut inside one of these will behave very strangely.
5.1.3 Meta Levelall(+X)Usual meta level all, behaving as if the prediate X appeared diretly in the body ofa rule or goal. Note that this form must be used { it is not permissible to simply put avariable in the body of a rule. Both stati and dynami ode an be used with all. Inthis version, a ut inside a all is ignored. Also, printf/2 and dump/1 annot be usedinside all. Both these restritions an be avoided by simply rede�ning them using asubsidiary rule.not(+X)Unsafe negation. It is implemented using all/1, so it is also likely to be rather slow.dump(+L1, ?L2, ?L3)Similar to dump/2 (see Setion 3.5.2); the �rst argument L1 represents the targetvariables and the seond argument L2 represents new variables. The di�erene withdump/2 is that (a) the projetion is meta-oded (f. Setion 3.4), and (b) this projetionis not output but rather onstruted as the third argument L3 (f. Setion 3.5.2). Notethat dump/3 does hange the urrent olletion of onstraints.one(+X)This is equivalent to all(X), ! and unfortunately right now it is implemented thatway as well. Only the �rst answer to the query X is onsidered.nonground(?X)True if X is not a ground term.ground(?X)True if X is a ground term.nonvar(?X)True if X is not a variable: i.e, it has been onstruted or grounded.var(?X)True if X is a variable. It may have been involved in an arithmeti onstraint, but hasnot been grounded or onstruted.?X == ?YTrue if X and Y are bound to exatly the same term. In partiular, variables in equiv-alent positions must be idential. For example ?- X == Y fails while ?- X = Y, X ==Y sueeds.

CHAPTER 5. BUILT-IN FACILITIES 49
atom(?X)True if X is an atom | that is, a funtor onstant (inluding the empty list).atomi(?X)True if X is an atom or real number.funtor(?X)True if X is onstruted with a funtor.real(?X)Enfores a onstraint that X an take real values; it is equivalent to any tautologousarithmeti onstraint involving X, eg: X + 0 = X.arithmeti(?X)True if X is onstrained to have a real value. Note that this is just a passive test, asopposed to real/1.?T =.. ?LT is a term and L is the term expanded as a list. (Also known as univ/2). Thisprediate an be used to both deompose and onstrut terms. For its use either the�rst argument must be onstruted (a nonvar), or the seond argument must be a listof �xed length whose �rst element is a funtor onstant.funtor(?T, ?F, ?A)T is a term, F and A are the name and arity of the priniple funtor of T. Either Tmust be onstruted or F must be a funtor onstant (not a real number) and A mustbe a nonnegative integer.arg(+N, +T, ?A)A is the Nth argument of term T. N must be a positive integer and T a ompound term.If N is out of range the all fails.ours(-V,?T)V is a variable ourring in term T.floor(+R, -I)R must be a real number, and I is the largest integer smaller than or equal to R.dynami(+P,+A)Delares the prediate P with arity A to be dynami, so that rules an be added anddeleted at will.

CHAPTER 5. BUILT-IN FACILITIES 50
5.1.4 Input/Output
In this setion, non-ground variables will either be printed with a spei�ed name (like thatin the argument of dump/1), or if one is not spei�ed they are printed in one of the followingformats:
h%d Heap variable.s%d Loal stak variable.t%d Parametri variable in solver.S%d Slak variable in solver.
Input/Output failities are as follows.

dump(+L)List the olletion of urrent onstraints on the urrent output stream, projeted withrespet to the target variables in the list L. The list L must be expliitly supplied, thatis, it is written syntatially as the argument of dump. The ordering of variables in thelist is used to represent the priority of the target variables (see Setion 3.5.2).dump(+L1, +L2)A more exible version of dump/1, without its syntati restrition. Its �rst argumentL1 represents the target variables, and its seond argument L2, whih must be ground,represents the new names to be used in the output. The elements of these two lists anbe arbitrary terms. (See Setion 3.5.2 for further explanation.) Note that dump/2 doesnot hange the urrent olletion of onstraints.nl Send a newline harater to the urrent output stream.print(?T)write(?T)Print the term T, aording to op delarations, on the urrent output stream.writeln(?T)The same as write(T), nl.

CHAPTER 5. BUILT-IN FACILITIES 51
printf(+F,+L)Print the terms in the list L on the urrent output stream in the format given by thestring F. The behavior is similar to the printf library funtion in C. Every haraterexept for the speial esape or argument patterns will be printed unhanged on theoutput. The speial esape haraters begin with a \n" and are:

nXXX the harater represented by the otal number XXXnn a new linenr arriage returnnb bakspaenf form feednX any other harater X appears unhanged
The argument patterns all begin with \%" and are used to denote the formatting foreah of orresponding terms in the list L. A \%%" denotes a single perent. Otherwisethe format takes the form of an optional �eld width and optional preision followed byone of the C printf onversion haraters. More preisely this an be desribed withthe regular expression:%[[-℄[0-9℄*℄[n.[0-9℄*℄[fegdoxus%℄The integral spei�ers will print the real number, whih has been rounded to an integerusing the \even" rounding rule. An empty list is needed if no variables are to be printed.As a onveniene, a single \%" may be used instead of a spei� argument format anda default format appropriate to that partiular argument will be used (with numbersthe default is printf format \%g"). For example,printf("X = % Y =%3.2gnn", [X, Y℄).printf to atom(?A, +F, +L)Like printf/2 exept that instead of being printed A is equated with an atom whosestring is the same as what would otherwise be printed.read(-X)Read a term from the urrent input and bind the variable X to it. Any variables in theinput term are deemed to be disjoint from variables appearing in the rule. If an endof �le is read, the term ?-(end) is returned. Finally, the term obtained is in quotedform. That is, any arithmeti operators are treated syntatially.see(+F)Make F the urrent input �le.seeing(?F)True when F is the urrent input �le.

CHAPTER 5. BUILT-IN FACILITIES 52
seen Close urrent input �le. Revert to \user" (standard input).tell(+F)Make F the urrent output �le.telling(?F)True when F is the urrent output �le.told Close urrent output �le. Revert to \user" (standard output).flushFlush the bu�er assoiated with the urrent output �le.
5.1.5 Unix-Related Failitiesfork Split the urrent proess. Fails in one hild and sueeds in the other. Not availableunder MS/DOS1 and OS/2. 2pipe(+X)Create a pipe named X. For use with see, tell, et. Not available under MS/DOS orOS/2.edit(+F)Invoke the default editor on �le F, and then reonsult the �le. Under UNIX3 the defaultis \vi", under MS/DOS and OS/2 it is \edit". If the environment variable EDITORis set then that is used instead.more(+F)Run the �le F through the \more" utility or what the environment variable PAGERhas been set to.halt Exit from the CLP(R) system.lpr True. Used to test if the program is exeuting in the CLP(R) system.abortAbort exeution of the urrent goal.1MS/DOS is a trademark of Mirosoft Corporation2OS/2 is a trademark of IBM orporation3UNIX is a trademark of Bell Laboratories.

CHAPTER 5. BUILT-IN FACILITIES 53
sh Invoke an image of \sh" on UNIX systems. On MS/DOS or OS/2, starts a sub-shellof \ommand.om" or what the environment variable COMPSEC as been set to.sh Invoke an image of \sh" under UNIX systems. On MS/DOS or OS/2 behaves thesame as sh/0.orale(+F,+P1,+P2)Run the exeutable binary �le F and set up a pipe P1 for writing to the proess anda pipe P2 for reading from the proess. These pipes will be attahed to the proessesstandard input and standard output respetively. Not available on MS/DOS or OS/2.
5.1.6 Misellaneous FailitieshistoryPrint last 50 ommand line goals.history +NPrint last N ommand line goals.h Short for history/0.N Run the ommand line goal at position N in the history list. This may only be used astoplevel ommand.new onstant(+A, +N)Sets the numeri symboli onstant A to the value N. The onstant name is spei-�ed without a \#", e.g. ?- new onstant(my onstant, 5). A warning is printed ifthe value of a known onstant is hanged and the warning an be turned o� withwarning(warning off).srand(+X)Set random number seed to the real number X.rand(-X)Generate uniformly distributed random number 0 and 1 inlusive and bind it to X.The quality of the routine used is not guaranteed.ztime Zero the CPU time ounter.

CHAPTER 5. BUILT-IN FACILITIES 54
time(-T)Binds T to the elapsed CPU time sine the ounter was last zeroed. T should havebeen uninstantiated.style hek(+A)Style heking warns about possible program errors. It is to be used with A beingone of single var, disontiguous, name overload and all. A warning is given whenthe style hek rule is violated. The option all turns on both the heks. The speialoption reset all lears all previous pending warnings whih may have aumulatedif style heking was o� and turns on full style heking. See Setion 4.5 for details.no style hek(+A)The reverse of style hek/1 and turns o� the orresponding options single var,disontiguous, name overload and all.$lear style hekClears any pending old style hek warnings that may our when style heking isturned from o� to on. Usually it is reasonable not to need to use this and this is moremeant for speial uses.warning(+A)The behavior when an error ours an be modi�ed with warning/1. By default,when an error ours a warning error message is printed and exeution is aborted bakto the top level. The various options for warning hange this behavior. The optionsfor A must be one of abort, ontinue, warning on, warning off, redefine on andredefine off. The options ontinue or abort ontrol whether or not exeution isaborted bak to the top level on an error. The printing of warning messages is on-trolled by warning on and warning off, while redefine on and redefine off ontrolwhether or not rede�nitions of prediates during a reonsult issue a warning. The op-tion abort overrides warning on and warning messages are displayed when abort isative. Otherwise the paired options here behave indepently.
5.1.7 Speial Failities
These are unsupported failities whih may be used to gain more eÆieny under ertainirumstanes or are experimental in nature. They should be used with are and may hangeor disappear.
fassert(+R)Like assert/1 but it does not take into aount meta-level onstraints or arithmetionstraints and is like assert in PROLOG. Consequently it is faster than assert/1

CHAPTER 5. BUILT-IN FACILITIES 55
but makes less sense when there are onstraints involved. When the rules are ground,fassert behaves the same as assert.fasserta(+R)fassertz(+R)Ditto for asserta/1 and assertz/1.$all(+X)Meta level all on a single user-de�ned prediate only. No ompound goals or systemprediates are allowed.impliitImpliit equalities are deteted. This is the default. A set of inequalities an sometimesbe equivalent to some equations; and these are known as impliit equalities. A trivialexample of an impliit equation is the following:X >= 0, X <= 0 is equivalent to X = 0.The impliit/0 ag ontrols whether these impliit equations are deteted by theonstraint solver. One aveat to note with the use of these ags is that swithing themon or o� should be applied betweem di�erent goal exeutions and not during an a-tual exeution. Another important point is that, when there are nonlinear onstraints,turning o� impliit equations may lead to delayed onstraints not being awakened.noimpliitTurns o� detetion of impliit equalities. These are equations whih are implied by theolletion of inequality onstraints. The impliation of this is that delayed onstraintswhih would otherwise be awakened may ontinue to be delayed instead. Constraintsolving may or may not be faster with noimpliit.partial impliitDetets only some impliit equalities. This may be faster than impliit.set ounter(+C, +V)This is a global ounter whih is not hanged by baktraking. Sets the ounter withthe atomi name C to the real number value V. The ounter name an be any atominame.ounter value(+C, ?V)V is equated with the value of ounter C.add ounter(+C, +V)The ounter C is inremented by V.

CHAPTER 5. BUILT-IN FACILITIES 56
5.2 Nonlinear and Delayed Constraints
This setion desribes the form of the delaying onditions for examples of the various non-linear onstraints given below. In some of the funtions below, sin, arsin, os, aros,there will be values of X and Z whih fall outside the range of that funtion. Suh invalidvalues will ause the onstraint to fail and by default a \Out of range" value is generated.See warning/1.
Z = X * YDelays until X or Y is ground.Z = sin(X)Delays until X is ground.Z = arsin(X)Delays until X or Z is ground.Z = os(X)Delays until X is ground.Z = aros(X)Delays until X or Z is ground.Z = pow(X, Y)Delays until (a) X and Y are ground, or (b) X and Z are ground,or () X = 1, or (d) Y = 0, or (e) Y = 1.Z = abs(X)Delays until (a) X is ground, or (b) Z = 0, or () Z is ground and negative.Z = min(X, Y)Delays until X and Y are ground.(A proper implementation, delaying until X � Y or X � Y, may ome later.)Z = max(X, Y)Similar to the above.Z = eval(X)Delays until X is onstruted.

CHAPTER 5. BUILT-IN FACILITIES 57
5.3 Pre-De�ned Operators
::- op(21, fy, '-').::- op(21, yfx, *).::- op(21, yfx, /).::- op(31, yfx, (-)).::- op(31, yfy, +).::- op(37, xfx, <).::- op(37, xfx, <=).::- op(37, xfx, >).::- op(37, xfx, >=).::- op(40, xfx, =).::- op(40, xfx, =..).::- op(40, xfx, is).::- op(50, fx, `).::- op(51, xfy, (.)).::- op(60, fx, alisting).::- op(60, fx, als).::- op(60, fx, h).::- op(60, fx, history).::- op(60, fx, lib).::- op(60, fx, libdir).::- op(60, fx, listing).::- op(60, fx, ls).::- op(60, fx, not).::- op(60, fx, one).::- op(252, xfy, ',').::- op(253, xfy, ;).::- op(254, xfy, (->)).::- op(255, fx, (:-)).::- op(255, fx, (::-)).::- op(255, fx, (?-)).::- op(255, xfx, (:-)).

Chapter 6
Installation Guide
Here we disuss how CLP(R) an be made to run on a partiular omputer system. Forinstallation details on MS/DOS or OS/2, please refer to the appropriate README in theDOS diretory.
6.1 Portability
This version of ompiled CLP(R) should be easily portable to 32-bit omputers running somereasonable variant of the UNIX operating system. In most ases, all that will be neessary isfor the installer to edit the Makefile to speify the mahine and operating system, hoosethe C ompiler, optimization level and name of the CLP(R) exeutable �le, and run make.
6.1.1 Pre-de�ned Installation Options
The Makefile for CLP(R) ontains de�nitions of the environment variables CC, CFLAGS,EXEC and OPTIONS. They should be heked before installation and adjusted as follows.

� CC is just the name of the C ompiler to be used to ompile the CLP(R) system. Itis almost always reasonable to leave this as , although many mahines now havemore eÆient (and more orret) C ompilers available. Information about these anbe obtained from your system administrator.� CFLAGS spei�es swithes of the above C ompiler that need to be used. While variousC ompilers have their own range of swithes that might have to be used to make
58

CHAPTER 6. INSTALLATION GUIDE 59
suh a large program ompile and run, in most ases only the optimization level willbe needed here. This will almost always be -O but higher optimization levels may beavailable. Also speial ags may sometimes be neessary to utilize the full performaneof the native oating point hardware. However, it is important to realize that manyoptimizing C ompilers have bugs that are only triggered by ompiling a large programat a high optimization level. For this reason, the �rst attempt to install CLP(R) shouldbe made without invoking the C ompiler's global optimizer. This usually involves justleaving the CFLAGS �eld blank.� EXEC spei�es the name of the CLP(R) binary to be generated. We reommend lpr.� LIBPATH spei�es the default diretory for the startup �le init.lpr. It should be setto the diretory in whih CLP(R) is installed.� OPTIONS is used to speify the hardware and operating system. A number of prede�nedoptions are available, whih often need to be used in ombinations.BSD Always set if system is running Berkeley Unix, or MACH, or Ultrix. This is alsoto be set for NEXT mahines.AIX Always set if system is running IBM's AIX operating system.SYS5 This broadly indiates that some version of System V Unix is being used. Shouldalso be used in ombination with AIX ag and if the operating system is Hewlett-Pakard's HP/UX.IBMRT This indiates that the system is an IBM RT/PC.RS6000 This indiates that the system is an IBM RS/6000.HP835 This is needed for the Hewlett-Pakard RISC workstations { espeially the 9000series model 835. Note that it is not appropriate for those HP workstations basedon Motorola proessors.MIPS Needed for mahines with MIPS CPU, suh as SGI mahines and the DECStation3100.MSDOS Set for 386 or 486 PC's running MS/DOS. See the �le \DOS/README.DOS"for details.OS2V2 Set for 386 or 486 PC's running OS/2 2.0 (IMPORTANT NOTE: CLP(R) version1.2 will not work on OS/2 1.x beause that only supports 16-bit addressing). Seethe �le \DOS/README.OS2" for details.So, for example an IBM RS/6000 running AIX would need the de�nitionOPTIONS = -DAIX -DSYS5 -DRS6000

CHAPTER 6. INSTALLATION GUIDE 60
One parameter whih may have to be hanged to ensure that the CPU timing is orreton mahines running System V Unix is the Hertz rate whih determines the unit of timemeasured. Typially this value of HZ is either 60 or 100. The default value is 60 and otherwiseit should be added to the OPTIONS line in the Make�le, eg. -DHZ=100, (on the RS/6000the default is 100hz).

6.1.2 Customized Installation
When CLP(R) starts up it performs some onsisteny heks on some of the default valuesin the startup. In partiular, on failure to startup it may reommend that the de�nitionof PMASK be hanged in emul.h. If that does not work or if a fatal installation error wasreported then you may have an unusual operating system problem whih annot be easily�xed by the installer, and it may be best to ontat the authors.While there are various system limits, these are mostly parameterized and an be hangedeither diretly on the ommand line or by reompiling with new values for the limits. Mostof the limits are ontained in the �le onfig.h, and some of them will be desribed below.The parameters whih are not listed below may be more dangerous to hange arbitrarily.
Pre-de�ned onstant MeaningDEF CLP SUFFIX default suÆx for CLP(R) program �lesINITFNAME default bootstrap �leDOS TMP FILE name of temporary �le used only under MSDOS or OS2DEFAULT EPS default value of for zeroDEF CODE SZ default maximum size of ode spaeMAX GOAL CODE default maximum size of ode for a top-level goalDEF LSTACK SZ default maximum stak sizeDEF HEAP SZ default maximum heap sizeDEF TRAIL SZ default maximum trail sizeDEF SOLVER SZ default maximum number of solver variablesMAX DUMP VAR maximum number of variables for dumpMAX PROJ NUM maximum number of real onstants in dumpMAX IMPLICIT maximum number of impliit equations deteted by a onstraint
The stak, ode, heap and trail sizes; value of zero; and the number of solver variables anall be hanged from the ommand line (see Setion 4.1).

CHAPTER 6. INSTALLATION GUIDE 61
6.2 Basi Con�guration
The only �le CLP(R) system needs to read on startup is init.lpr. It always looks for this�le in the diretory spei�ed at runtime by the environment variable CLPRLIB, defaulting toeither the urrent working diretory or what LIBPATH has been spei�ed as in the Makefile.

The only other environment variable whih one may want to hange is to add your ownlist of �le suÆxes with the environment variable CLPRSUFFIX. The format is in the style ofthe UNIX sh PATH variable.

Chapter 7
Bug Reports and Other Comments
Please address all orrespondene to

Joxan Ja�ar, H1-D48IBM Thomas J. Watson Researh CenterP.O. Box 704Yorktown Heights, NY 10598U.S.A.(joxan�watson.ibm.om, joxan�yktvmh.bitnet)

62

Bibliography
[1℄ Tod Amon and Gaetano Borriello. An approah to symboli timing veri�ation. In Tau'92: 2nd International Workshop on Timing Issues in the Spei�ation and Synthesis ofDigital Systems, Prineton, NJ, Marh 1992.[2℄ Tod Amon and Gaetano Borriello. An approah to symboli timing veri�ation. InPro. 29th ACM/IEEE Design Automation Conferene, pages 410{413, Anaheim, CA,USA, June 1992.[3℄ Christoph Brzoska. Temporal logi programming and its relation to onstraint logiprogramming. In Logi Programming: Proeedings of the 1991 International Symposium,pages 661{677, Otober 1991.[4℄ Mihael M. Gorlik, Carl F. Kesselman, and Daniel A. Marottaand D. Stott Parker.Mokingbird: A logial methodology for testing. Journal of Logi Programming, 8(1 &2):95{119, January/Marh 1990.[5℄ James A. Harland and Spiro Mihaylov. Implementing an ODE solver: a CLP approah.Tehnial Report 87/92, Department of Computer Siene, Monash University, Vitoria,Australia, June 1987.[6℄ Nevin Heintze, Spiro Mihaylov, and Peter Stukey. CLP(R) and some eletrial en-gineering problems. In Jean-Louis Lassez, editor, Logi Programming: Proeedings ofthe 4th International Conferene, pages 675{703, Melbourne, Vitoria, Australia, May1987. MIT Press. Also to appear in Journal of Automated Reasoning.[7℄ Nevin Heintze, Spiro Mihaylov, Peter Stukey, and Roland Yap. On meta-programmingin CLP(R). In Ewing Lusk and Ross Overbeek, editors, Logi Programming: Proeedingsof the North Amerian Conferene, 1989, pages 52{68. MIT Press, Otober 1989.[8℄ D. S. Homiak. A onstraint logi programming system for solving partial di�erentialequations with appliations in options valuation. Master's projet, DePaul University,1991.

63

BIBLIOGRAPHY 64
[9℄ Joseph C. Tobias II. Knowledge representation in the Harmony intelligent tutoringsys-tem. Master's thesis, Department of Computer Siene, University of California at LosAngeles, 1988.[10℄ Joxan Ja�ar and Jean-Louis Lassez. Constraint logi programming. In Proeedings ofthe 14th ACM Symposium on Priniples of Programming Languages, Munih, Germany,pages 111{119. ACM, January 1987.[11℄ Joxan Ja�ar, Mihael Maher, Peter Stukey, and Roland Yap. Output in CLP(R).In Proeedings of the 1992 Conferene on Fifth Generation Computer Systems, Tokyo,1992.[12℄ Joxan Ja�ar and Spiro Mihaylov. Methodology and implementation of a CLP system.In Jean-Louis Lassez, editor, Logi Programming: Proeedings of the 4th InternationalConferene, pages 196{218, Melbourne, Australia, May 1987. MIT Press. Revised ver-sion of Monash University tehnial report number 86/75, November 1986.[13℄ Joxan Ja�ar, Spiro Mihaylov, Peter J. Stukey, and Roland H. C. Yap. The CLP(R)language and system. ACM Transations on Programming Languages and Systems(TOPLAS), 14(3):339{395, July 1992.[14℄ Joxan Ja�ar, Spiro Mihaylov, and Roland Yap. A methodology for managing hardonstraints in CLP systems. In Proeedings of the ACM SIGPLAN Symposium onProgramming Language Design and Implementation, pages 306{316, Toronto, Canada,June 1991.[15℄ Sivand Lakmazaheri and William J. Rasdorf. Constraint logi programming for theanalysis and partial synthesis of truss strutures. Arti�ial Intelligene for EngineeringDesign, Analysis, and Manufaturing, 3(3):157{173, 1989.[16℄ Catherine Lassez, Ken MAloon, and Roland Yap. Constraint logi programming andoptions trading. IEEE Expert, Speial Issue on Finanial Software, 2(3):42{50, August1987.[17℄ T.G. Lindholm and R. A. O'Keefe. EÆient implementation of a defensible semantisfor dynami prolog ode. In Logi Programming: Proeedings of the 4th InternationalConferene, pages 21{39. MIT Press, May 1987.[18℄ Igor Mozeti� and Christian Holzbaur. Integrating numerial and qualitative modelswithin onstraint logi programming. In Logi Programming: Proeedings of the 1991International Symposium, pages 678{693, Otober 1991.[19℄ A. Shrijver. Theory of Linear and Integer Programming. Wiley and Sons, 1986.[20℄ L. Sterling and E. Y. Shapiro. The Art of Prolog. MIT Press, 1986.

BIBLIOGRAPHY 65
[21℄ T. Sthanusubramonian. A transformational approah to on�guration design. Master'sthesis, Engineering Design Researh Center, Carnegie Mellon University, 1991.[22℄ Roland Yap Hok Chuan. Restrition site mapping in CLP(R). In Koihi Furukawa,editor, Proeedings of the Eighth International Conferene on Logi Programming, pages521{534, Paris, Frane, June 1991. MIT Press.[23℄ Riky Yeung. Mpl - a graphial programming environment for matrix proessing basedon logi and onstraints. In IEEE Workshop of Visual Languages, pages 137{143. IEEEComputer Soiety Press, Otober 1988.[24℄ Edward K. Yu. MODIC: A program for model-based diagnosis that uses onstraint logiprogramming. Master's thesis, Department of Computer Siene, University of SouthCarolina (Columbia), 1991.

Index
*/2, 55,/2, 47->;/3, 47;/2, 47=../2, 49==/2, 48[`� � �℄, 46[� � �℄, 45$all/1, 54$lear style hek, 54abort/0, 52abs/1, 13, 55add ounter/2, 55aros/1, 13, 55arsin/1, 13, 55arg/3, 49arithmeti/1, 49assert/1, 18, 41, 46asserta/1, 46assertz/1, 46atom/1, 48atomi/1, 49all/1, 48lpr/0, 52odegen debug/0, 42odegen nodebug/0, 42onsult/1, 45os/1, 13, 55ounter value/2, 55sh/0, 52time/0, 53deny/2, 46disontiguous, 53, 54dump/1, 23, 50dump/2, 23, 50

dump/3, 23, 48dynami/2, 49edit/1, 52eval/1, 15fail/0, 47fassert/1, 54fasserta/1, 54fassertz/1, 54floor/2, 49flush/0, 52fork/0, 52funtor/1, 49funtor/3, 49ground/1, 48h/0, 53halt/0, 52history/0, 53history/1, 53impliit/0, 55listing/0, 45listing/1, 45ls/0, 45ls/1, 45max/2, 13, 55min/2, 13, 55more/1, 52name overload, 53, 54new onstant, 53nl/0, 50no style hek/1, 54noimpliit/0, 55nonground/1, 48nonvar/1, 48nospy/0, 43nospy/1, 43
66

INDEX 67
nospy/2, 43notrae/0, 43ours/2, 49one/1, 48op/3, 45orale/3, 53partial impliit/0, 55pipe/1, 52pow/2, 13, 55print/1, 50printf/2, 50printf to atom/3, 51prot/1, 47prot/2, 47quote/1, 15rand/1, 53read/1, 51real/1, 49reonsult/1, 46repeat/0, 47reset all, 54retrat/1, 18, 41, 46retratall/0, 46retratall/1, 46rule/2, 18, 46see/1, 51seeing/1, 51seen/0, 51set ounter/2, 55sh/0, 52sin/1, 13, 55single var, 53, 54spy/0, 42spy/1, 43spy/2, 42srand/1, 53style hek/1, 53symboli onstants, 53tell/1, 51telling/1, 51told/0, 52trae/0, 43

true/0, 47var/1, 48warning/1, 54write/1, 50writeln/1, 50ztime/0, 53!/0, 47abort, 54analog to lause, 18analog to retrat, 18answer onstraints, 33arithmeti onstraint, 6arithmeti term, 5assert, 42, 44bootstrap, 60bug reports, 62lam �les, 31lause, 18CLPRLIB, 31, 61CLPRSUFFIX, 32ode spae, 32ommand line arguments, 32omments, 3onstraint, 6onsulted �les, 40ontiguous, 53, 54ontinue, 54ounter, 55debugging, 42delayed onstraint, 12, 13, 33, 55disjuntion, 43dump, 20, 23dynami ode, 41, 43Environment variables, 31, 32errors, 54eval, 16, 17fassert, 44�le names, 32

INDEX 68
funtor onstraint, 6funtor term, 5garbage olletion, 44goal, 3goals, 33, 41heap, 32if-then-else, 43impliit dump, 33impliit equalities, 44indexing, 43init.lpr, 31, 60, 61installation guide, 58installation options, 58LIBPATH, 61loal stak, 32meta-programming, 15Monash interpreter, 69nonlinear onstraint, 12, 33, 55notation onventions, 2operational model, 13operators, 56Out of range errors, 55output, 20portability, 58pre-de�ned operators, 56program, 3projetion, 20prot, 41queries, 33quote, 15, 17random number seed, 32rede�ne o�, 54rede�ne on, 54retrat, 42rule, 3, 42

sample session, 35singleton variable, 53, 54solver variables, 32stati ode, 41statistis, 53style heking, 34suÆx, 32, 60system parameters, 60tail reursion, 43target variables, 20, 23trail, 32type, 8warning, 34, 54warning o�, 54warning on, 54zero, 32, 60

Appendix A
Di�erenes from the MonashInterpreter
Here we only list those failities from the Monash interpreter that are not supported.

� The issue of string handling has not yet been settled.� Prediate de�nitions annot be indisriminately spread over a number of �les.� There is no automati variable generation for answer projetion; there is no dump/0prediate.� Goals result in a prompt for alternate solutions whenever there is a hoie point,regardless of whether there are variables in the goal.� No pro�ling; the prediates prof/0 and noprof/0 are not available.� Sytem warnings are ontrolled di�erently using warning/1.� Linear inequalities are always deided immediately rather than delayed; the prediatesineq/0 and noineq/0 are not available.� Statistis are now available through speial system prediates, so the stats/0 systemprediate, while may exist, is not supported.� There is no is/2 prediate.

69

