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Chapter 1
Introdu
tion
This manual des
ribes CLP(R) version 1.2, and at a number of pla
es throughout this text
hangebars have been pla
ed either to indi
ate new features in version 1.2 from version 1.1 orsome 
hanges in the manual. The CLP(R) language is an instan
e of the Constraint Logi
Programming s
heme de�ned by Ja�ar and Lassez [10℄. Its operational model is similarto that of PROLOG. A major di�eren
e is that uni�
ation is repla
ed by a more generalme
hanism: solving 
onstraints in the domain of uninterpreted fun
tors over real arithmeti
terms. A working knowledge of PROLOG programming is assumed in this do
ument; thebook by Sterling and Shapiro [20℄ 
an serve as a suitable introdu
tory text. Further te
hni
alinformation on CLP(R) is available on language design and implementation [12, 13℄, meta-programming [7℄ and delay me
hanisms [14℄. Additionally, mu
h has been written aboutappli
ations in ele
tri
al engineering [6, 18℄, di�erential equations [5, 8℄, temporal reasoning[1, 2, 3℄, proto
ol testing [4℄, stru
tural analysis and synthesis [15℄, me
hani
al engineering[21℄, user interfa
es [23℄, model-based diagnosis [24℄, options trading [16℄, musi
 theory [9℄,mole
ular biology [22℄, et
.This do
ument is both an introdu
tory tutorial and referen
e manual des
ribing the
ompiler-based implementation of CLP(R). The reader experien
ed with PROLOG orCLP(R) may wish to skip to Chapter 4, and in parti
ular, see the sample session in Se
tion4.6 to get started qui
kly. Compiled CLP(R) is an intera
tive system that 
ompiles all pro-grams and goals into CLAM 
ode whi
h is interpreted by a byte-
ode emulator that is partof the system. The system is portable in the sense that it will run on virtually all 32 bitUNIXTM ma
hines with a reasonably standard C 
ompiler, as well as many others.We would like to emphasize that this manual des
ribes a 
onstantly-evolving, experi-mental system. Hen
e mu
h of what is des
ribed is subje
t to 
hange in future releases.Furthermore, the use of undo
umented features is parti
ularly dangerous.Finally, we adopt some standard notational 
onventions, su
h as the name/arity 
onven-

1



CHAPTER 1. INTRODUCTION 2
tion for des
ribing predi
ates and fun
tors, + for input arguments, - for output arguments,and ? for arguments that may be either input or output.



Chapter 2
Syntax and Simple Examples
A CLP(R) program is a 
olle
tion of rules. The de�nition of a rule is similar to that of aPROLOG 
lause, but it di�ers in two important ways: rules 
an 
ontain 
onstraints as wellas atoms in the body, and the de�nition of terms is more general. A goal is a rule withouta head, as usual.The body of a rule may 
ontain any number of arithmeti
 
onstraints, separated by
ommas in the usual way. Constraints are equations or inequalities, built up from real
onstants, variables, +, -, *, /, and =, >=, <=, >, < where all of these symbols have theusual meanings and parentheses may be used in the usual way to resolve ambiguity. Unaryarithmeti
 negation is also available, as are some spe
ial interpreted fun
tion symbols whi
hwill be des
ribed later. Any variable that appears in an arithmeti
 
onstraint is said to bean arithmeti
 variable, and 
annot take a non-arithmeti
 value. These 
onstraints may bethought of as built-in predi
ates written in�x, but they are really mu
h more powerful, aswe shall see later. Goals are also similar to those in PROLOG, and may 
ontain expli
it
onstraints as well.Comments in the program are either in the PROLOG style, beginning with a \%" and
ontinuing to the end of the line, or also in the form of C style 
omments, starting with \/*"and ending with \*/" (
omments 
an 
ontain newlines). Unlike normal C 
omments, these
an be nested so that 
ode already 
ontaining 
omments 
an be 
ommented easily.
2.1 Terms and Constraints
Synta
ti
ally, a term is either a simple term or a 
ompound term 
onstru
ted from simpleterms. A term is then either an arithmeti
 term or a fun
tor term. The simple terms are:

3



CHAPTER 2. SYNTAX AND SIMPLE EXAMPLES 4
� Variable termsA variable is a sequen
e of alphanumeri
 
hara
ters (in
luding \ "), either begins withan upper
ase alphabeti
 
hara
ter or an unders
ore \ ". Variables 
onsisting of anunders
ore only are anonymous variables and always represent a new variable. Vari-ables that are longer than one 
hara
ter and begin with an unders
ore are the sameas any other ordinary variable,1 ex
ept that they are ignored for the purposes of style
he
king.� Numeri
 
onstant termsThis is a real number with an optional de
imal point and optional integer exponentwhi
h may be positive or negative.� Symboli
 numeri
 
onstantsThese denote spe
ial 
onstant values, eg. � and have the syntax #< name > wherethe name is just an atomi
 fun
tor 
onstant. The following are the spe
ial 
onstantsde�ned by default:#p � = 3:14159265358979323846#p 2 �=2 = 1:57079632679489661923#p 4 �=4 = 0:78539816339744830962#e e = 2:7182818284590452354#sqrt2 p2 = 1:41421356237309504880#sqrt1 2 1=p2 = 0:70710678118654752440#
 
 = 2:99792458 � 108 (speed of light in va
umn)#g g = 9:80665 (a

eleration of gravity)#h h = 6:626176 � 10�34 (Plan
k's 
onstant)#e
 1:6021892 � 10�19 (elementary 
harge)There are also some handy metri
 
onversion ratios prede�ned:#
m2in 0.393701 (
entimeters to in
hes)#km2mile 0.62137 (kilometers to miles)#gm2oz 0.03527 (grams to oun
es)#kg2lb 2.20462 (kilograms to pounds)#l2gal 0.21998 (litres to imperial gallons)#l2usgal 0.26418 (litres to US gallons)(Note that new 
onstants 
an be 
reated by using new 
onstant/2.)� fun
tor 
onstant termsThese are either a sequen
e of alphanumeri
 
hara
ters (in
luding \ ", starting with alower
ase letter; or a sequen
e of 
hara
ters from the set,n&*+-./:;<=>?�^~o1These are not anonymous variables.
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Also any sequen
e of 
hara
ters delimited by single quotes \'" is allowed, e.g. 'foo +bar' is a fun
tor 
onstant (atom) with that name in
luding the blanks. The spe
ial
onstant \[℄" denotes the empty list or nil. Note also that the spe
ial arithmeti
fun
tion symbols, though having the same syntax, are arithmeti
 terms and not fun
torterms.� String 
onstant termsThis is any sequen
e of 
hara
ters delimited by double quotes ("). NOTE: At presentthe interpretation of strings in the syntax has not been �nalized and all strings arebeing treated as fun
tor 
onstants (i.e. the single quote form). This di�ers from somePROLOG's whi
h use this syntax as an alternative notation for lists.

An arithmeti
 term is either a variable, numeri
 
onstant or a 
ompound term built upfrom arithmeti
 terms in the usual way using the arithmeti
 fun
tion symbols: +, -, *, /,sin, ar
sin, 
os, ar

os, pow, abs, min and max. For example,X3.1415942e-8X + Ysin(X + 2.0)(X + Y) / 4are all valid arithmeti
 terms. However,f(a)
 + 5.0
os(f(3))are not. The arithmeti
 terms are interpreted as having their usual meaning as arithmeti
expressions. Operator pre
eden
es for the arithmeti
 fun
tion symbols follow the normal
onvention2. Parentheses 
an be also used to es
ape the appli
ation of the default operatorpre
eden
es.Fun
tor terms are either variable or fun
tor 
onstant terms or 
ompound terms. A 
om-pound fun
tor term has the form f(t1; t2; � � � ; tN ) where N � 0, f is an N -ary uninterpretedfun
tor and t1; t2; � � � ; tN are (not ne
essarily fun
tor) terms. The fun
tor is uninterpreted,meaning that the fun
tor is simply to be treated as a symboli
 
onstant, as opposed tothe arithmeti
 terms, whi
h are interpreted. The allowable syntax of the fun
tor symbol fis that of any fun
tor 
onstant term. The other 
ompound fun
tor terms are lists, whi
hare spe
i�ed using the usual PROLOG list notation ([L℄), for example \[a, b℄". A dotnotation for lists, as in \a.b.[℄", may also be used. For example, the following are valid2User de�ned unary or binary operators in the standard PROLOG fashion using op/3 are also supported.
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terms: [a, 1+X℄f([3.12, g(a)℄)f(
)f(X)f(3.14159)g(22, h(4))f(X + 3)A 
onstraint is either an arithmeti
 
onstraint or a fun
tor 
onstraint. The former isde�ned to be of the the form t1 � t2 where t1 and t2 are arithmeti
 terms and � is one ofthe arithmeti
 relations =, >=, <=, >, and <. For example,X > 5.0X + Y + Z = 3X <= YX = V3 = sin(X)1.234 + X < Yare all valid arithmeti
 
onstraints, while the following are not.
 > YX = 3.0 < Ypow(X = Y, 3)4 < X < 5A fun
tor 
onstraint is of the form t1 = t2 where ea
h of t1 and t2 is either a variable or afun
tor term. We shall sometimes refer to a fun
tor 
onstraint as a fun
tor equation below.
2.2 Some Simple Programs
Now we will look at some example programs without 
onsidering the details of their exe
u-tion. The �rst example is a program expressing the relation fib(N, X) where X is the NthFibona

i number.
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fib(0, 1).fib(1, 1).fib(N, X1 + X2) :-N > 1,fib(N - 1, X1),fib(N - 2, X2).To 
ompute the 10th Fibona

i number, we 
an use the goal?- fib(10, Z).while to �nd out whi
h Fibona

i number is 89, we 
an use the goal?- fib(X, 89).The next program des
ribes the relationship between two 
omplex numbers and their prod-u
t. We will represent the 
omplex number X + iY as the term 
(X, Y).zmul(
(R1, I1), 
(R2, I2), 
(R3, I3)) :-R3 = R1 * R2 - I1 * I2 ,I3 = R1 * I2 + R2 * I1 .Any of the following goals will return a unique answer. The �rst goal asks for the produ
tof two 
omplex numbers, while the other two ask for the result when one 
omplex numberis divided by another.?- zmul(
(1, 1), 
(2, 2), Z).?- zmul(
(1, 1), Y, 
(0, 4)).?- zmul(X, 
(2, 2), 
(0, 4)).Noti
e how both operations are des
ribed using the de�nition of 
omplex multipli
ation,rather than writing a separate rule that divides 
omplex numbers by �rst realizing thedivisor and then multiplying. This de
larative aspe
t will be an important feature of manyof the programs we look at. Also noti
e that both of the programs we have seen so far havebeen invertible in the sense that it did not matter whi
h terms in the goals were ground andwhi
h were not. This is a property that we will try to obtain as often as possible when wede�ne programs or parts of programs. As a further example, the spe
ial pow fun
tion 
anbe used to 
ompute powers, roots and logarithms of an arbitrary base. The rules below forsquare root,sqroot(X, pow(X, 0.5)):-X >= 0.sqroot(X, -pow(X, 0.5)) :-X >= 0.
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state that a non-negative number has a positive and negative square root. Finally 
onsiderthe following program, whi
h relates the key parameters in a mortgage.mortgage(P, Time, IntRate, Bal, MP) :-Time > 0, Time <= 1,Bal = P * (1 + Time * IntRate/1200) - Time * MP.mortgage(P, Time, IntRate, Bal, MP) :-Time > 1,mortgage(P*(1 + IntRate/1200) - MP, Time-1, IntRate, Bal, MP).The parameters above are prin
ipal, life of the mortgage (in months), annual interest rate (%)whi
h is 
ompounded monthly, the monthly payment, and �nally, the outstanding balan
e.The goal?- mortgage(100000, 180, 12, 0, MP).asks the straightforward query as to how mu
h it would 
ost to �nan
e a $100,000 mortgageat 12 per
ent for 15 years, and the answer obtained is MP = 1200.17. We 
an ask thequestion ba
kwards:?- mortgage(P, 180, 12, 0, 1200.17).to obtain the expe
ted answer P = 100000, or ask for how long a mortgage is needed:?- mortgage(100000, Time, 12, Bal, 1300).Here we get the answer Time = 147.365. The main point of this example, however, is thatwe 
an ask, not for the values of, but for the relationship between P, MP and Bal. For example,?- mortgage(P, 180, 12, Bal, MP).gives the answerP = 0.166783 * Bal + 83.3217 * MPThis parti
ular example illustrates how answer 
onstraints may be viewed as a partial eval-uation of the program. In this 
ase, the equation above is the result of partially evaluatingthe program with respe
t to Time = 180 and I = 12.
2.3 The Type Issue
Informally, one of the two types in CLP(R) is given by the real numbers, and the other bythe remaining ground (variable-free) terms. Stri
tly speaking, CLP(R) is a stati
ally typed
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language in the sense that variables, uninterpreted fun
tors and predi
ates in a programmust be used in a 
onsistent way with respe
t to their type. That is, ea
h variable andea
h argument of every predi
ate and uninterpreted fun
tor is �rst a
knowledged to be ofa 
ertain type. The program is then 
onsidered to be ill-typed if, for example, a variableappears both in a fun
tor 
onstraint and an arithmeti
 
onstraint; similarly, the program isill-typed if one o

urren
e of a predi
ate or uninterpreted fun
tor has a number in the �rstargument while, in another o

urren
e, it has a fun
tor term in the �rst argument.For programming 
onvenien
e, however, CLP(R) does not perform su
h type-
he
king at
ompile time. This de
ision is based on the fa
t that it is often useful to overload a symbol;for example, one may want a database p of both numbers and letters:p(1).p(2).p(a).p(b).and one may run a goal 
ontaining p(X) and some 
onstraints used for sele
tion within thedatabase. Note that by not performing type-
he
king, one 
an have a runtime type error.That is, an exe
ution sequen
e whi
h fails be
ause of a \type 
lash". Often su
h failuresindi
ate that there is an error in the program. The CLP(R) system will not distinguish su
hfailures from failures obtained from well-typed 
onstraints.A straightforward way of thinking about the type issue when writing CLP(R) programsis that whenever an arithmeti
 term appears in a rule, for ea
h variable X therein, we 
animpli
itly add a 
orresponding atom real(X) to the body of the rule. The system predi
atereal/1 is true just in 
ase there is a real solution for X in the 
ontext of the 
urrent 
olle
tionof 
onstraints.



Chapter 3
Programming in CLP(R)
3.1 Preliminaries
Before we 
an look at more advan
ed programming examples, it is ne
essary to have someidea of how the programs are exe
uted. This is similar in 
avor to the way PROLOGprograms are exe
uted, but the basi
 operational step of unifying an atom with the head ofa rule is repla
ed by something more general. In this preliminary se
tion, we assume thatall arithmeti
 
onstraints are linear; the general 
ase is dis
ussed in a later se
tion.The 
omputation begins with a goal and an initially empty set of 
olle
ted 
onstraints.The usual left-right atom sele
tion rule is used to sele
t either an arithmeti
 
onstraint oran atom at ea
h stage. When a 
onstraint is sele
ted, it is added to the set of 
olle
ted
onstraints, and it is determined whether the resulting set has a solution. If there is nosolution, ba
ktra
king takes pla
e in the usual way. On the other hand, when an atom issele
ted, the set of rules is sear
hed in the usual top-down fashion, ea
h time mat
hing thatatom with the head of some rule. Su
h a mat
h is realized by an equation between thesetwo atoms; su
h an equation is treated like any equation between terms.As before, it is required that the system of 
onstraints 
olle
ted so far has a solution. Ingeneral, solving this equation pro
eeds at �rst by unifying the synta
ti
 parts of the termsin the usual way. However, these terms may 
ontain arithmeti
 terms. As arithmeti
 termshave a spe
ial meaning, they are not uni�ed synta
ti
ally, but rather an equation betweenthem is solved in the domain of real arithmeti
.Let us 
onsider some examples. We start with a program that has no expli
it 
onstraintsor arithmeti
 terms, e�e
tively written in PROLOG.

10
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p(f(
)).q(g(X)) :-p(f(X)).?- q(Y).As the 
omputation pro
eeds, the 
olle
ted 
onstraint set and 
urrent goal are as follows:fg ?- q(Y).fq(Y) = q(g(X)) g ?- p(f(X)).fq(Y) = q(g(X)), p(f(X)) = p(f(
)) g ?- .Note that only one su

essful path is shown here. Also, as we will dis
uss in more detaillater, the \answer" to this query is just the set of 
onstraints 
olle
ted, but \proje
ted" ontothe goal variables, in this 
ase Y. So the answer to the above query isY = g(
).Now 
onsider a program that in
ludes both arithmeti
 terms and expli
it 
onstraints:p(10, 10).q(W, 
(U, V)) :-W - U + V = 10,p(U, V).?- q(Z, 
(X + Y, X - Y)).and again we only look at one su

essful path of the exe
ution:fg ?- q(Z, 
(X + Y, X - Y)).fq(Z, 
(X + Y, X - Y)) = q(W, 
(U, V)) g ?- W - U + V = 10, p(U, V).fq(Z, 
(X + Y, X - Y)) = q(W, 
(U, V)), W - U + V = 10 g ?- p(U, V).f� � � , p(U,V) = p(10, 10) g ?- .

The answer for this derivation isY = 0, X = 10, Z = 10.and we should noti
e that, as expe
ted, it does not 
ontain any mention of the variables U,V, and W. Also note that, in general, the answers need not give values to variables, and itis possible to get an answer 
onstraint likeX + Y + Z = 0, X > Y.This fa
ility is a very important and useful feature of CLP(R) as we will illustrate later.
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3.2 Delay of Nonlinear Constraints
In the above dis
ussion of the operational model, we saw how ea
h operational step resultsin one or more 
onstraints being added to the 
olle
ted 
onstraint set, and the new setbeing 
he
ked for satis�ability. Be
ause of eÆ
ien
y requirements, there is a limit to howsophisti
ated the de
ision algorithm for 
onstraints 
an be, and 
onsequently the 
olle
ted
onstraint set may get too 
ompli
ated for the de
ision algorithm. In parti
ular, 
onsidera 
ase when the 
olle
ted 
onstraint set is solvable, but one 
onstraint is added that makesthe set so 
ompli
ated that it is not pra
ti
al to de
ide whether it has remained solvable.A naive approa
h to dealing with this problem is simply to disallow expressions that
an result in su
h 
omplexity. This is tantamount to disallowing all nonlinear 
onstraints.The loss in expressive power is, however, una

eptable. Instead, CLP(R) allows nonlinear
onstraints but keeps them in a delayed 
onstraint set. More pre
isely, at ea
h operationalstep, instead of blindly adding ea
h 
onstraint to the 
olle
ted 
onstraint set and in
urringthe 
ost of performing a satis�ability test, we remove 
ertain 
onstraints that would makethe set too 
ompli
ated. We keep these removed 
onstraints in the delayed 
onstraint set.Additionally, at ea
h step it is possible that some 
onstraint in the delayed 
onstraint setneed no longer be delayed be
ause of new information. In this 
ase it should be moved fromthe delayed 
onstraint set to the 
olle
ted 
onstraint set and the usual solvability 
he
k made.Note that, in general, the notion of whi
h expressions are \too 
ompli
ated" is dependenton the implementation. In CLP(R) only the nonlinear 
onstraints are delayed.Now let us 
onsider an example where the 
olle
ted 
onstraint set is initially empty; thensuppose we obtain the 
onstraintV = I * R.This is pla
ed in the delayed 
onstraint set. Continuing, if the next 
onstraint isV = 10it may be added to the 
olle
ted 
onstraint set, but note that it is still not easy to de
idewhether the two 
onstraints together are solvable Now 
onsider what happens if the next
onstraint isR = 5.This gives us enough information to make the delayed 
onstraint linear, so we simply removethis 
onstraint from the delayed 
onstraint set, pla
e it in the 
olle
ted 
onstraint set, and
he
k that it is solvable, whi
h of 
ourse it is. Note that the delayed 
onstraint set mayhave 
ontained other 
onstraints, whi
h may have to remain there until mu
h later. Alsonote that be
ause of this delay me
hanism, we may 
ontinue through a 
ertain 
omputation
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sequen
e even though the 
olle
ted and delayed 
onstraint sets together are not solvable.In the worst 
ase it 
an result in an in�nite loop. This is the pri
e we pay for an eÆ
ientde
ision algorithm.As we have already stated, in the CLP(R) system a linear equation or inequality is always
onsidered to be suÆ
iently simple to be solved immediately, but nonlinear 
onstraints aredelayed until they be
ome linear. This in
ludes the fun
tions sin/1, ar
sin/1, 
os/1,ar

os/1, pow/2, max/2, min/2 and abs/1 whi
h are delayed until they be
ome simpleevaluations in one dire
tion or another. This means that sin and 
os require the input tobe ground, while pow requires at least two out of three arguments to be ground, ex
ept in
ases su
h asX = pow(Y, Z)where Z = 0. The reason is that Y 0 is de�ned to be 1 for all values of Y. Note that while thisis suÆ
ient to determine the value of X, Y remains non-ground. There are similar spe
ial
ases when Z is 1, and when Y is 0 or 1. The fun
tions ar
sin and ar

os are delayed untileither the input is ground or the result of the fun
tion is ground. They are also di�erentin that they are fun
tions and the input domain for ar
sin ranges from ��=2 to �=2 andar

os from 0 to � whereas sin and 
os are de�ned for any number in radians. Thussin and 
os behave as relations whi
h is non-invertible while ar
sin and ar

os are truefun
tions whi
h are invertible. See Se
tion 5.2 for a more pre
ise de�nition of the delaying
onditions for the di�erent nonlinear fun
tions.As a �nal example, 
onsider the mortgage program in Chapter 2, and 
onsider the goal:?- mortgage(120, 2, IR, 0, 80).This will give rise to nonlinear 
onstraints, and the system returns a quadrati
 equation asthe answer 
onstraint:80 = (0.1*IR + 40) * (0.000833333*IR + 1)and indi
ates that this is an unsolved answer. Note that while CLP(R) 
annot determinewhether this equation is solvable, the equation indeed des
ribes the 
orre
t answer.
3.3 The CLP(R) Operational Model
We now pre
isely but informally de�ne the operational model of CLP(R). A goal G is writ-ten in the form C, D ?- E where C is a satis�able 
olle
tion of 
onstraints, D a 
olle
tionof nonlinear 
onstraints 
alled the delayed 
onstraints, and E a sequen
e of atoms and 
on-straints. In what follows, we de�ne how su
h a goal is redu
ed into another in the 
ontext
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of an ongoing derivation.In redu
ing a goal C, D ?- E, CLP(R) either sele
ts an element from E, 
all this aforward redu
tion, or sele
ts a 
onstraint from D, 
all this a wakeup redu
tion. Initially, Cand D are empty, and CLP(R) attempts to make a forward redu
tion.Forward redu
tionsIf E is empty, then we say that the goal is terminal, and no more redu
tion of the goalis possible. If D is also empty, then the derivation is su

essful; otherwise, the derivation is
onditionally su

essful (depending on the nonlinear 
onstraints).Now 
onsider the 
ase where E is nonempty; let E0 denote the �rst element of E and letE2 denote the remaining subsequen
e of E.If E0 is an atom, then E0 will be sele
ted for atom redu
tion in the manner des
ribedabove. First, an appropriate program rule will be sele
ted. The atom and rule head willthen be mat
hed, giving rise to a 
olle
tion of 
onstraints, whi
h we will write as M1 & M2where M1 
onsists only of linear 
onstraints and M2 only of nonlinear ones. The new goal
onsists of (a) C & M1 in its �rst 
omponent; (b) D & M2 in its se
ond 
omponent, and (
)the body of the rule and E2, sequen
ed in this order, in its third 
omponent.If E0 is a linear 
onstraint, then the redu
ed goal is C & E0, D ?- E2 providing C & E0is satis�able; otherwise there is no redu
ed goal and the derivation is �nitely failed.Finally, if E0 is a nonlinear 
onstraint, then the redu
ed goal is C, D & E0 ?- E2. Thatis, the 
onstraint E0 is simply delayed.Wakeup redu
tionsLet the goal at hand be C, D ?- E. This redu
tion step starts by 
onsidering whetherthere is a delayed 
onstraint D0 in D whi
h is in fa
t linear. That is, C implies that D0 isequivalent to a linear 
onstraint. If there is no su
h delayed 
onstraint, then no redu
tion isperformed.Otherwise, 
onsider the 
ase in whi
h C is in
onsistent with this linear 
onstraint. Hereredu
tion is not possible and a �nitely failed derivation is obtained. However, if C is 
onsistentwith the linear 
onstraint, then the redu
ed goal is C & D0, D2 ?- E where D2 is result ofdeleting D0 from D.
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3.4 Meta{programming
In the 
ontext of Prolog, meta{programming refers to the destru
tion and 
onstru
tion ofrules and terms, and the examination and modi�
ation of the rulebase. All of the sameissues arise in CLP(R). However, some extra fa
ilities are needed be
ause of the spe
ialnature of arithmeti
 terms and 
onstraints. Furthermore, some of the remaining ones mustbe modi�ed. For example, without su
h extra fa
ilities and modi�
ations, there is no waythat a CLP(R) program 
an distinguish the two terms p(3 - 1) and p(1 + 1) sin
e theyare semanti
ally identi
al.More spe
i�
ally, the extra fa
ilities and modi�
ations are needed to:

� make arithmeti
 terms be interpreted synta
ti
ally, by introdu
ing a 
oded form;� 
onvert 
oded forms of arithmeti
 terms into the appropriate arithmeti
 terms;� obtain a 
oded form of [some proje
tion of℄ the 
urrent 
onstraint set;� add appropriate 
onstraints to asserted rules;� examine the rulebase 
ompletely synta
ti
ally.
3.4.1 quote/1 and eval/1
First we introdu
e the ma
ro-like operator quote/1. This is expanded in an outer-most �rstfashion when expressions are �rst read. The argument of the quote operator is translatedto a version in whi
h all arithmeti
 operators are translated to a spe
ial 
oded form, whi
his not otherwise dire
tly a

essible to the programmer. This 
oded form 
an then be treatedlike a fun
tor term. In this dis
ussion, su
h 
oded forms of arithmeti
 fun
tion symbols willbe be represented with a 
aret over them. For example, the rulep(X, Y, quote(X + Y)).would be read in asp(X, Y, X b+ Y).and so on. Furthermore, the quote operator passes through all other fun
tion symbols,
onstants, variables et
. without 
hanging them. Thus for example, the ruleq(X,Y) :- X = quote(f(g(Y), 2 * Y)).be
omes
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q(X,Y) :- X = f(g(Y), 2 b* Y).Of 
ourse, the original form of the rule is always shown when listing the database, et
., butwhen printing a term, 
oded fun
tion symbols are printed pre
eded by a 
aret1. For example,the query ?- q(X, 5). to the above rule would yield the answer X = f(g(5), 2 ^* 5).Note that that the 
aret form of 
oded terms 
annot be input dire
tly, but only throughthe use of quote. Additionally, to fa
ilitate manipulating programs whi
h themselves usemeta-programming fa
ilities, we need 
oded forms of the quote operator itself, as well as thenew eval interpreted fun
tion symbol, whi
h will be des
ribed below. This is why quote isexpanded outer-most �rst. For example,P = quote(p(quote(X + Y), X + Y)) expands toP = p( dquote (X b+ Y), X b+ Y)).Thus an o

urren
e of quote that appears within the s
ope of another quote will be trans-lated to dquote , and will not be quote-expanded. The eval interpreted fun
tion 
an be
oded by using quote as well, for example,X = quote(eval(1 + 2)) givesX = deval (1 b+ 2).Now, the major linguisti
 feature for meta{programming with 
onstraints is the inter-preted fun
tion symbol eval whi
h 
onverts a 
oded term to the term it 
odes. It passesthrough uninterpreted fun
tion symbols, other than those that are 
oded forms of interpretedones, without 
hanging them. Likewise for 
onstants and interpreted fun
tion symbols. Someexamples:X = 1 b+ 2, U = eval(X) impliesU = 3.X = Y b+ Z, U = eval(X) impliesU = eval(Y) + eval(Z).X = Y b+ Z, U = eval(X), Y = 1, Z = 2 impliesU = 3.The fun
tion eval has no e�e
t on uninterpreted fun
tors. For example, the goal?- X = f(a, g(
)), U = eval(X).results in both U and X being f(a, g(
)). However,?- X = f(Y, g(
)), U = eval(X).results in U being f(eval(Y), g(
)), as the \best" representation of terms 
ontaining eval1In this manual, we take the liberty of pla
ing the 
aret as an a

ent for readability
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is that with eval pushed inwards as far as possible.Formally, the meaning of quote and eval are given by the axioms:

eval( bf (t1; � � � ; tn)) = f(eval(t1); � � � ; eval(tn)); n � 0eval(g(t1; � � � ; tn)) = g(eval(t1); � � � ; eval(tn)); n � 0eval( dquote(t)) = t
where f ranges over all arithmeti
 fun
tion symbols, g ranges over all un
oded fun
tionsymbols di�erent from eval, and t, t1; � � � ; tn range over terms.In general, de
iding the satis�ability of 
onstraints involving quote and eval is a non-trivial problem. Consider for example the two equations:

f(eval2(x); eval2(y)) = f( dquote(eval4(y)); dquote(eval3(x)))f(eval3(x); eval4(y)) = f( dquote(eval2(y)); dquote(eval2(x)))
The �rst of these 
onstraints is solvable, while the se
ond is not. There is in fa
t an algorithmto deal with su
h 
onstraints in their full generality. However, for eÆ
ien
y reasons, CLP(R)implements a partial algorithm: maintaining 
onstraints so that eval appears only in theform X = eval(Y), these equations are delayed until the argument of eval is 
onstru
ted.In fa
t, the delay of su
h eval equations is implemented in mu
h the same way as nonlinearequations.For example, 
onsider the goal?- X = quote(U + 1), eval(X) = 5, Y = eval(U) - 5.After the �rst 
onstraint, X is equal to U b+ 1, but after the se
ond 
onstraint, eval goesas far through X as it 
an, so we obtain the simpli�ed 
onstraint eval(U) + 1 = 5, whi
his further simpli�ed to eval(U) = 4. Hen
e the third 
onstraint results in Y being -1.However, if the goal were permuted to?- eval(X) = 5, Y = eval(U) - 5, X = quote(U + 1).the �rst and se
ond 
onstraints both result in delayed eval 
onstraints. The third 
onstraintwakes the �rst delayed eval sin
e X is now 
onstru
ted, resulting in the 
onstraint eval(U)+ 1 = 5 again, whi
h, together with the se
ond delayed eval 
onstraint | whi
h is notawakened | results in Y being grounded to -1 again.As a �nal example, 
onsider the goal
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?- eval(X) + eval(Y) = 4, eval(X) - eval(Y) = 1.whi
h is rather silly in isolation, but 
ould arise as the result of a longer 
omputation. Inthis 
ase, the answer 
onstraints are eval(X) = 2.5, eval(Y) = 1.5 although the valuesof X and Y 
annot be determined uniquely. For example, X might be 2.5, or 1 b+ 1.5,et
. It should be noted that the eval me
hanism des
ribed here is an approximation to thatproposed in [7℄.

3.4.2 rule/2, retra
t/1 and assert/1
Next we 
onsider how these basi
 fa
ilities may be used for reasoning about programs (seealso Se
tion 4.8 whi
h des
ribes how to use the dynami
 
ode fa
ilities). The 
anoni
alappli
ation for su
h reasoning is the meta-
ir
ular interpreter, dis
ussed in detail in [7℄. Likethe 
lause/2 predi
ate of Prolog, we require a system predi
ate rule/2 su
h that the goal ?-rule(H, B) behaves as if there were fa
ts rule(E, F) for ea
h rule E :- F in the program(and of 
ourse rule(A, true) for ea
h fa
t A).There is, however, one aspe
t of rule whi
h has no analog in 
lause: arithmeti
 fun
-tion symbols will be
ome 
oded. More pre
isely, the system predi
ate rule behaves asif there were fa
ts rule(quote(E), quote(F)) for ea
h rule E :- F in the rulebase (andrule(quote(A), true) for ea
h fa
t A). We note that a dire
t analog to 
lause 
an bewritten in terms of rule:analog to 
lause(H, B) :-fun
tor(H, Name, Arity),fun
tor(H1, Name, Arity), % rule needs a 
onstru
ted headeval(H) = eval(H1),rule(H1, eval(B)).In a similar fashion, the CLP(R) system predi
ate retra
t/1 is like that in PROLOG butdi�ers in that one mat
hes arithmeti
 fun
tion symbols with their 
oded forms. As before,a dire
t analog to the PROLOG's retra
t 
an be written as follows:analog to retra
t(eval(R)) :-fun
tor(R, Name, Arity),fun
tor(R1, Name, Arity), % retra
t needs a 
onstru
ted argumenteval(R) = eval(R1),retra
t(R1).Now 
onsider the following example program:
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(a) p(1, 1.5).(b) p(X, Y) :- Y = 2 * X.(
) p(X, 2 * X).(d) p(X, 2 + X).The goal ?- retra
t(quote(p(X, 2*X))) removes only the rule (
). The goal?- analog to retra
t(p(X, 2*X))on the other hand, should remove rules (
) and (d).As explained in [7℄, assert/1 in CLP(R) di�ers from that in PROLOG not just be
auseof term 
odings; additional 
onstraints may have to be added to the asserted rule. Forexample,?- X + Y > 2, assert(p(X, Y)).results in the rulep(X, Y) :- X + Y > 2.As another example, the goal:?- X + Y = 2, X >= 0, Y - 2*X <= 2, X > W, Y - X >= 1,assert(p(X, Y)).asserts the rule:p(X, Y) :- Y = -X + 2, X <= 0.5, -X <= 0.Note that a 
onsiderable simpli�
ation of the initial 
onstraints has o

urred. More gener-ally, this supports a te
hnique of 
onstraint partial evaluation. This te
hnique 
onsists ofexe
uting a query, and then using the simpli�ed form of the answer 
onstraints to 
onstru
tnew rules. These new rules represent a spe
ialization of the program with respe
t to thatquery. For example:resistor(V, I, R) :- V = I * R.?- resistor(V, I1, R1), resistor(V, I2, R2),I = I1 + I2,assert( parallel resistors(V, I, R1, R2)).results in the assertion of a rule des
ribing the equivalent voltage-
urrent relationship of apair of resistors 
onne
ted in parallel2:2The a
tual names of variables in the rule being asserted will be internally 
onstru
ted names but we willuse the original ones for 
larity
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parallel resistors(V, I, R1, R2) :-V = I2 * R2,V = (I - I2) * R1.The fa
ilities we have dis
ussed for adding rules to the database have provided no 
ontrolover the exa
t syntax of the rule added. For example 
onstraints may be simpli�ed and/orrearranged before the rule is added. It is parti
ularly important in some appli
ations to have
omplete 
ontrol over the syntax of rules added to the database. This 
ontrol is provided byusing a 
oded form of the rule to be asserted, where assert of a 
oded rule is de�ned toadd the rule that is 
oded. For example, the goal?- assert(quote( p(X, X + X) :- X - 3 > 0 )).asserts the rulep(X, X + X) :- X - 3 > 0.In 
ontrast, the goal?- assert(p(X, X + X) :- X - 3 > 0).
ould, for example, add the (semanti
ally equivalent) rule:p(X, Y) :- Y = 2*X, Z = X - 3, Z > 0.

3.5 Output
An important feature of the CLP(R) system is its ability to output the 
olle
ted 
onstraintsof a su

essful derivation in a simpler form. In a typi
al derivation, thousands of 
onstraintsmay be 
olle
ted, and printing them out without simpli�
ation would lead to an unusableanswer. When a derivation su

eeds the output module of CLP(R) is invoked to print the
onstraints relating the variables in the goal. The module 
an also be invoked using thesystem predi
ate dump([X,Y,...,Z℄), dis
ussed later.The CLP(R) system attempts to simplify the 
onstraints in two ways: by proje
ting the
onstraints onto a set of target variables (those appearing in the original goal or given by theuser in the argument of dump), and by eliminating redundan
y in the 
onstraints. Ideallythe output 
onstraints will only involve target variables and be free of redundan
y, but thiswill not always be possible.Re
all that there are 
onstraints of four di�erent forms:
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� fun
tor 
onstraints, e.g. X = f(Y, a, g(Y))� linear equations, e.g. 3*X + 4*Y = 6� linear inequalities, e.g. 3*X > 4 + Y� non-linear equations, e.g. X = Y * Z, T = pow(U, V), U = eval(V)3

Ea
h of these 
onstraint types is handled di�erently and in turn.
3.5.1 Outline of Algorithm
In this se
tion, we outline how the output is obtained to give a 
avor of the kinds of simpli-�
ations and redu
tions that are possible in the answer 
onstraints.Fun
tor equations are handled �rst, and in mu
h the same way as in PROLOG. The
onstraints are stored in solved form using bindings, and printing the simplest form of ea
htarget variable simply involves printing their term representation. For example?- X = f(Y, Z), Z = g(a, Y), dump([X, Y℄).results in the outputX = f(Y, g(a, Y)).Note that there is no equation for Y sin
e it is its own term representation. With fun
torequations, it is not always possible to present the output in terms of target variables alone,and some non-target variables are printed out using an internal name. For example,?- X = f(Y, Z), Z = g(a, Y), dump([X℄).results in an output su
h asX = f( h6, g(a, h6)).Linear equations are used to substitute out non-target variables in the following manner. If Eis a linear equation 
ontaining non-target variable X, then we rewrite E into the form X = tand substitute t for X in all the other 
onstraints (in
luding fun
tor equations, inequalitiesand non-linear equations). Consider, for example?- T = 3 + Y, X = 2 * Y + U, Z = 3 * U + Y, dump([X, T, Z℄).3Delayed 
onstraints involving eval are treated like nonlinears.
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First, we eliminate Y using the �rst equation Y = 3� T and obtainX = 2 * T - 6 + U, Z = 3 * U + T - 3.Then we eliminate U using the the �rst equation and obtainZ = 3*X - 5*T + 15.This is the �nal answer sin
e only the variables X, T and Z remain.Linear inequalities are more diÆ
ult to handle than linear equations. We will not go intothe details of how variables 
an be eliminated from inequalities ex
ept to mention that avariation of Fourier-Motzkin elimination [19℄ with some improvements is used (see [11℄ formore details). In general, eliminating variables from inequalities 
an be expensive and theproje
tion 
an 
ontain an exponential number of inequalities.We �nally deal with the nonlinear equations. In general, the algorithm here simplyoutputs ea
h nonlinear equation unless it has been used as a substitution. We will not de�neformally what exa
tly 
onstitutes a substitution, but will dis
uss some examples. Re
allthat ea
h non-linear 
onstraint takes the form X = Y � Z; X = sin(Y ); X = 
os(Y ); X =pow(Y; Z); X = max(Y; Z); X = min(Y; Z) or X = abs(Y ). Ea
h of these equations 
anbe used to substitute for X if X is a non-target variable. For example,?- Y = sin(X), Y = 
os(Z), dump([X,Z℄).leads to the outputsin(X) = 
os(Z).As in the 
ase for fun
tor equations, we 
annot in pra
ti
e eliminate all non-target variablesappearing in non-linear 
onstraints. As before, we display any non-target variable using aninternal name.A Complete ExampleConsider the goal?- X = f(V, M), V = a, N = 2 * T, Y = 4 * T, Z = R + T, M = N * R,Y + Z >= U, U > T, U >= R + N,dump([X, Y, Z℄).First we eliminate V by substitution obtainingX = f(a, M), N = 2 * T, Y = 4 * T, Z = R + T, M = N * R,Y + Z >= U, U > T, U >= R + N
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Next we eliminate N using the se
ond 
onstraint obtainingX = f(a, M), Y = 4 * T, Z = R + T, M = (2 * T) * R,Y + Z >= U, U > T, U >= R + 2 * TNext we eliminate T using the se
ond 
onstraint obtainingX = f(a, M), Z = R + 0.25 * Y, M = (0.5 * Y) * R,Y + Z >= U, U > 0.25 * Y, U >= R + 0.5 * YNext we eliminate R using the se
ond 
onstraint obtainingX = f(a, M), M = (0.5 * Y) * (Z - 0.25 * Y),Y + Z >= U, U > 0.25 * Y, U >= Z + 0.25 * YNext we eliminate U from the inequalities (and here the individual steps taken may not beso obvious), obtainingX = f(a, M), M = (0.5 * Y) * (Z - 0.25 * Y),0.75 * Y + Z > 0, 0.75 * Y >= 0Finally, we eliminate M using the se
ond 
onstraint, and as output we obtain (after per-forming some straightforward s
aling) the 
onstraintsX = f(a, (0.5 * Y) * (Z - 0.25 * Y)),0 < Z + 0.75 * Y,0 <= YWe �nally remark that we 
an obtain an empty output using the algorithm just outlined.This indi
ates that there are no restri
tions on the values that the target variables 
an take.For example,?- T = 3 + Y, X = 2 * Y + U, Z = 3 * U + Y, dump([X, Z℄).results in no 
onstraints at all. In su
h 
ases, the distinguished predi
ate real/1 is thenused to indi
ate that 
ertain variables are arithmeti
, and that no further 
onstraints areupon them. In this example, we will output the 
onstraintsreal(X), real(Z).
3.5.2 The dump System Predi
ates
The basi
 fa
ility for output in CLP(R) is the system predi
ate dump/1, mentioned above,whose argument is a list of target variables. Note that, to use this predi
ate, the target
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variables must appear expli
itly in the argument (as in dump([A, B℄)) and not be passed in(as in X = [A, B℄, dump(X)). This is be
ause the names of the target variables are a
tuallyused in the output. The ordering of variables in the list is used to spe
ify a priority on thevariables with the later variables having a higher priority. Sin
e dump outputs 
onstraints,there are many equivalent forms of the same set of 
onstraints and the priority ordering isused to express higher priority variables in terms of the lower ones. This gives one form of
ontrol over the output from dump. For example, the goal?- X = 2 * Y + 4, dump([X, Y℄)gives Y = 0.5 * X - 2whereas the reverse order would give ba
k the original 
onstraint.The predi
ate dump/2 is a re�nement of dump/1, and is designed to be far more 
exible.Its �rst argument is, as before, a list of target variables. Its se
ond argument is a list of
onstants to be used in pla
e of the original target variables in the output. For example,?- Names = [a, b℄, Targets = [X, Y℄, X > Y, dump(Targets, Names).results in the output a > b. This predi
ate is useful when the names of target variablesare known only at runtime. More pre
isely, the operation of dump/2 is as follows: let the�rst and se
ond arguments be the lists [t1; � � � ; tn℄ and [u1; � � � ; un℄, where the ti and ui arearbitrary terms. Constru
t new variables T1; � � � ; Tn, and add to the 
urrent 
olle
tion of
onstraints the equations T1 = t1; � � � ; Tn = tn. Now obtain a proje
tion of the augmented
onstraints w.r.t. T1; � � � ; Tn. Finally, output this proje
tion renaming ea
h target variable Tiby its new name ui.In meta-programming it 
an be useful to obtain the 
oded form of the 
onstraints withrespe
t to given target variables. This fa
ility is provided by the system predi
ate dump/3.There are three arguments be
ause it is not suÆ
ient to simply provide the variables to beproje
ted upon (1st argument) and the variable that re
eives the 
oded form (3rd argument).The 2nd argument is a list of terms that are to repla
e the original variables in the 
odedform, and hen
e the lengths of the two lists must be the same. For example,?- NewVars = [A, B, C℄, Targets = [X, Y, Z℄, X > Y + Z,dump(Targets, NewVars, Answer).results in the binding Answer = [ b- A b+ B b+ C < 0℄.There are two reasons for having su
h a se
ond argument. First, it is very in
onvenient tomanipulate a 
oded form 
ontaining variables that have the original arithmeti
 
onstraintsstill imposed on them | in parti
ular, printing su
h a term leads to highly 
ounter-intuitiveresults. Se
ond, in many 
ases it is more 
onvenient to manipulate ground representationsof the 
oded forms. That is, with synta
ti
 
onstants repla
ing the variables. The terms
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resulting from manipulation 
an then have the original (or other) variables substituted intopla
e easily.We 
on
lude with a larger example. We will assume that the predi
ate p/2 sets up a
onstraint su
h that the �rst argument is a (polynomial) fun
tion of the se
ond, and thatdiff/2 implements symboli
 di�erentiation on 
oded forms of arithmeti
 
onstraints. Then,to �nd the turning point of the fun
tional relationship established by p/2, we 
an use thefollowing goal:solve(DYDX,X) :- eval(DYDX) = 0.p(Y, X) :-T = X + 1,Y = T * T.?- p(Y, X), % 
olle
t a fun
tion Y(X)dump([Y, X℄, [V, U℄, Z), % get 
oded form of Y(X)Z = [C℄, C =.. ['=', V, RHS℄, % assume Z of the form [V = f(U)℄diff(RHS, DVDU), % symboli
 di�erentiationsolve(DVDU, U), % �nd extremumprintf("Turning point: X = %, Y = %nn", [U, V℄).
3.6 Some Programming Te
hniques
Here we 
olle
t a number of small programs that serve to illustrate some interesting pro-gramming te
hniques.A Crypto-arithmeti
 PuzzleConsider one of the standard 
rypto-arithmeti
 puzzles. We require an inje
tive assign-ment of digits 0; 1; � � � ; 9 to the letters S, E, N, D, M, O, R, Y su
h that the equation

S E N D+ M O R E---------M O N E Y
holds. The program �rst imposes 
ertain 
onstraints on the values. Then it tries to assignpossible values to the letters. The problem is 
ombinatorially explosive and so a naive gen-erate and test solution would be very ineÆ
ient. In 
ontrast, the straightforward programbelow runs qui
kly in CLP(R).
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The program illustrates how CLP(R) 
an be used to advantage in solving problems overinteger domains. Be
ause the unsolvability of 
onstraints in R implies their unsolvabilityover the integers, CLP(R) 
an prune the sear
h spa
e signi�
antly without the expense ofinvoking an integer solver. For CLP programs in general, the key issue is the trade-o� betweenthe power and the speed of the 
onstraint-solver: powerful solvers entail smaller sear
h spa
esbut are 
ostlier to run. For CLP(R) in parti
ular, the use of a real-number-based solver toapproximate 
onstraint-solving over a dis
rete or �nite domain is one important realizationof this trade-o�.

solve([S, E, N, D, M, O, R, Y℄) :-
onstraints([S, E, N, D, M, O, R, Y℄),gen_diff_digits([S, E, N, D, M, O, R, Y℄).
onstraints([S, E, N, D, M, O, R, Y℄) :-S >= 0, E >= 0, N >= 0, D >= 0, M >= 0, O >= 0, R >= 0, Y >= 0,S <= 9, E <= 9, N <= 9, D <= 9, M <= 9, O <= 9, R <= 9, Y <= 9,S >= 1, M >= 1,C1 >= 0, C2 >= 0, C3 >= 0, C4 >= 0,C1 <= 1, C2 <= 1, C3 <= 1, C4 <= 1,M = C1,C2 + S + M = O + C1 * 10,C3 + E + O = N + 10 * C2,C4 + N + R = E + 10 * C3,D + E = Y + 10*C4,bit(C1), bit(C2), bit(C3), bit(C4).bit(0).bit(1).gen_diff_digits(L) :-gen_diff_digits(L, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9℄).gen_diff_digits([℄, _).gen_diff_digits([H | T℄, L) :-sele
t(H, L, L2), gen_diff_digits(T, L2).sele
t(H, [H | T℄, T).sele
t(H, [H2 | T℄, [H2 | T2℄) :-sele
t(H, T, T2).?- solve(S, E, N, D, M, O, R, Y).
Criti
al Path Analysis
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This program uses lo
al propagation to 
ompute start, 
ompletion and 
oat times for aproje
t network. Signi�
antly, the 
onstraint paradigm allows the program to 
ompute thesevalues by making only one pass of the proje
t network, as opposed to the three passes thatwould be needed using a 
onventional programming language.Most of the program is basi
ally parsing the input and building an adja
en
y graph outof the network. Then the latest 
ompletion time and earliest starting time for every node issimply the minimum of the time required for the outgoing events and maximum of the timeof the in
oming events.


pm(Network, Graph, Latest) :-build(Network, Graph),early_late(Graph, Graph, End, Latest),Latest >= End,analyse(Graph, Graph).
pm(Network, Graph) :-build(Network, Graph),early_late(Graph, Graph, End),analyse(Graph, Graph).% Build adja
en
y graph out of the network ... build([℄, Graph) :- ...% Get early start times and latest 
ompletion times% early/4 is used when a ending time is given% otherwise early/3 assumes that the early start time% for the end node is equal to the latest 
ompletion timeearly_late([℄, _, _, _).early_late([ad(I, Es, L
, To, From) | T℄, G, End, Latest) :-setearly(From, To, G, End, Es),setlate(To, G, Latest, L
),early_late(T, G, End, Latest).early_late([℄, _, _).early_late([ad(I, Es, L
, To, From) | T℄, G, End) :-setearly(From, To, G, End, Es),setlate(To, G, End, L
),early_late(T, G, End).setearly([℄, _, _, _, 0).setearly([ed(V, C, _, _, _, _) | T℄,[℄, G, Es, Es) :-
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!,getnode(V, G, Es1, _),setmax(T, G, Es1 + C, Es).setearly([ed(V, C, _, _, _, _) | T℄, _, G, End, Es) :-getnode(V, G, Es1, _),setmax(T, G, Es1+C, Es).setmax([℄, _, Max, Max).setmax([ed(V, C, _, _, _, _) | T℄, G, Max0, Max) :-getnode(V, G, Es1, _),setmax(T, G, max(Max0, Es1 + C), Max).setlate([℄, _, Last, Last).setlate([ed(V, C, _, _, _, _) | T℄, G, Last, L
) :-getnode(V, G, _, L
1),setmin(T, G, L
1-C, L
).setmin([℄, _, Min, Min).setmin([ed(V, C, _, _, _, _) | T℄, G, Min0, Min) :-getnode(V, G, _, L
1),setmin(T, G, min(Min0, L
1 - C), Min).% Sear
h graph for the early & late times for a nodegetnode(I,[ad(I, Es, L
, _, _) | T℄, Es, L
).getnode(I,[H | T℄, Es, L
) :-getnode(I, T, Es, L
).% Compute the other times:% Ls - latest start time% E
 - earliest 
ompletion time% Tf - total float time% Ff - free float timeanalyse([℄, G).analyse([ad(I, Es, L
, To, _) | T℄, G) :-analyse_times(To, Es, L
, G),analyse(T, G).analyse_times([℄, _, _, _).analyse_times([ed(V, C, Ls, E
, Tf, Ff) | T℄, Esi, L
i, G) :-getnode(V, G, Esj, L
j),X = Esi + C,
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Ls = L
j - C,E
 = Esi + C,Tf = L
j - X,Ff = Esj - X,analyse_times(T, Esi, L
i, G).print_analysis(G) :- ...

A goal might be
?- 
pm([ [n1, n2, 4℄, [n1, n3, 3℄, [n1, n4, 4℄, [n2, n5, 7℄,[n2, n3, 1℄, [n2, n7, 8℄, [n3, n5, 4℄, [n4, n6, 2℄,[n5, n6, 1℄, [n5, n7, 3℄, [n6, n7, 4℄℄, G),print_analysis(G).
A Simple Cir
uit SolverThe following program performs DC analysis on 
ir
uits 
ontaining resistors, voltagesour
es and diodes. The 
ir
uit analysis is de
omposed in a hierar
hi
al fashion. The in-dividual 
omponents are modelled dire
tly by 
onstraints su
h as Ohm's law. Then the
omponents are 
onne
ted together and the global 
ir
uit 
onstraints on the 
urrents andvoltages, as spe
i�ed by Kir
ho�'s laws, are used to de�ne the whole 
ir
uit.
solve_d
(C, L) :-solve(C, [℄, L),solve_
urrent(L).% solve for every 
ir
uit 
omponentsolve([℄, L, L).solve([[Comp, Name, Par, Nodes℄ | T℄, In, Out) :-
onne
t(Name, Nodes, Volts, Amps, In, Tmp),
omponent(Comp, Par, Volts, Amps),solve(T, Tmp, Out).% sum of 
urrents at ea
h node are zerosolve_
urrent([℄).solve_
urrent([n(N, V, IList) | T℄) :-k
l(IList, 0),
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solve_
urrent(T).k
l([℄, 0).k
l([(Name, I) | T℄, X) :-k
l(T, I + X).% 
onne
t the ar
s whi
h meet at a node
onne
t(Name, [℄, [℄, [℄, L, L).
onne
t(Name, [N | T℄, [V | VR℄, [I | IR℄, In, Out) :-add_ar
(Name, N, V, I, In, Tmp),
onne
ting(Name, T, VR, IR, Tmp, Out).% 
reate the voltage and 
urrentsadd_ar
(Name, N, V, I, [℄, [n(N, V, [(Name, I)℄)℄).add_ar
(Name, N, V, I, [n(N, V, IList) | T℄,[n(N, V, [(Name, I) | IList℄) | T℄).add_ar
(Name, N, V, I, [X | T℄, [X | T1℄) :-add_ar
(Name, N, V, I, T, T1).
omponent(resistor, R, [V1, V2℄, [I, -I℄) :-V1 - V2 = I*R.
omponent(voltage_sour
e, V, [V, 0℄, [I, -I℄).
omponent(diode, in914, [V1, V2℄, [I, -I℄) :-diode(in914, [V1, V2℄, [I, -I℄).diode(in914, [V1, V2℄, [I1, I2℄) :-V = V1 - V2, V < -100, DV = V+100, I1 = 10*DV - 0.1.diode(in914, [V1, V2℄, [I1, I2℄) :-V = V1 - V2, V >= -100, V < 0.6, I1 = 0.001*V.diode(in914, [V1, V2℄, [I1, I2℄) :-V = V1 - V2, V >= 0.6, DV = V - 0.6, I1 = 100*DV - 0.0006.

A sample query whi
h returns the 
urrents and voltages in L
?- R1 = 100, R2 = 50, V = 20,solve_d
([[voltage_sour
e, v1, V, [n1, ground℄℄,[resistor, r1, R1, [n1, n2℄℄,[resistor, r2, R2, [n2, ground℄℄,[diode, d1, in914, [n2, ground℄℄℄, L).
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Using the System
The user interfa
e of 
ompiled CLP(R) is very mu
h like that of a usual Edinburgh-style Pro-log interpreter. In other words, it is quite possible to use this system while almost 
ompletelyignoring the fa
t that it is 
ompiler-based. In fa
t, there is no su
h thing as an interpretedmode and all 
ode (stati
 and dynami
) is 
ompiled. All goals are 
ompiled (qui
kly) beforebeing exe
uted, and any 
onsulted �le is immediately 
ompiled. The rulebase is availablefor inspe
tion (ex
ept for prote
ted rules) and 
an be modi�ed dynami
ally as long as therelevant relations have been de
lared to be dynami
 as des
ribed below. Normally the userwill �nd that 
onsulted �les take a little longer than usual to be read in (be
ause they arebeing 
ompiled) and that programs will usually run mu
h more qui
kly and use less spa
ethan in an interpreter. Symboli
 debugging is still possible, as are all other aspe
ts of inter-a
tive programming. However, the user may also take spe
ial advantage of the 
ompiler by
reating 
lam �les that 
ontain 
ompiled CLP(R) 
ode that 
an be loaded extremely qui
klyand do not in
lude the overhead of the original program text, although this rules out 
ertainoperations. In short, the system is intended to get the best of both worlds by 
ombining the
exibility of an interpreter with the eÆ
ien
y of a 
ompiler. The experien
ed PROLOG usermay want to skip dire
tly to Se
tion 4.6 whi
h illustrates many of the features, syntax anduser interfa
e of CLP(R) using an example session.
Note: Creation of CLAM �les has not yet been implemented.However, 
ompilation in CLP(R) is relatively qui
k.The �rst operation CLP(R) performs is to load the distinguished library �le init.
lpr.This �le must either be in the 
urrent working dire
tory, or in a dire
tory whose path name isde�ned via the environment variable CLPRLIB, or in a dire
tory whose path name is spe
i�edduring installation. This last alternative is explained in Chapter 6.

31
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4.1 Command Line Arguments
The syntax of a 
ommand-line is
lpr [options℄ [�lename℄where �lename 
ontains a CLP(R) program. The following explains the various optionsavailable:
-
s <n>Spe
ify size of 
ode spa
e (default 128,000).-hs <n>Spe
ify size of heap (default 200,000).-ls <n>Spe
ify size of lo
al sta
k (default 100,000).-ss <n>Spe
ify maximum number of solver variables (default 128,000).-ts <n>Spe
ify size of trail (default 100,000).-z <r>Set internal notion of zero to this small number. Numbers between �r are taken to beequivalent to zero.-r <int>Spe
ify a random number seed.
4.2 Filenames
Filenames 
onsulted or read as an input stream may have an optional impli
it suÆx added tothe �lename. The default suÆx is usually \.
lpr" (\.
lp" for MS/DOS or OS/2) depending onthe installation. This may be 
hanged by the use of the environment variable CLPRSUFFIX,whi
h 
an be set to a list of suÆxes separated by 
olons, e.g. ".
lpr:.
lp". First, the original�lename is tried and if that 
annot be read then a suÆx is added in the order spe
i�ed by thelist of suÆxes. (Note that in version 1.1 and earlier of CLP(R), only the spe
i�ed �lenamewas used without any impli
it suÆxes, but the behavior here is 
ompatible).
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4.3 Queries
After the system has been initialized, it will prompt the user for a query. It will 
ontinuallya

ept user goals and solving for them until the session is terminated with a halt/0 or ifit en
ounters the end of �le (eg: ^D on UNIX or ^Z on MSDOS). This again is similar tothe style of most PROLOG systems. If the user goal failed then the \*** No" message isoutput, otherwise the query is su

essful and the resulting answer 
onstraints (the 
onstraintson variables in the query) are output. A su

essful query will also display a \*** Yes"message, but if there are other alternatives to try for the query then the \*** Retry?"message is displayed and the user is prompted to either press 
arriage return or enter \."(or \n") to a

ept the answers, or \;" (or \y") to 
ause ba
ktra
king. A di�erent promptis displayed if delayed (nonlinear) remain at the end of the exe
ution. The message \***Maybe" repla
es \*** Yes" and \*** (Maybe) Retry?" repla
es \*** Retry?" to indi
atethat the satis�ability of the nonlinear 
onstraints remaining has not been de
ided by CLP(R).Exe
ution of a query 
an be interrupted at any time by using the interrupt key
ode (^Cusually).1 A bu�er of the last 50 goals is kept, and may be examined by the history/0 (orh/0) predi
ate. An old query may be re-exe
uted by just entering its history number as agoal (eg: ?- 5.).For every top-level query. There is also an impli
it dump on the variables in the goal,i.e. the set of answer 
onstraints using those variables are printed, with the ex
eption thatanonymous variables and also other variables beginning with an \ " are ignored. No impli
itdump is performed for goals embedded in a �le. (Note that the output 
onstraints di�ersfrom many PROLOG systems whi
h display the variable bindings produ
ed from exe
ution.)
4.4 Loading/
onsulting and re
onsulting programs
A CLP(R) sour
e program 
an be loaded using the 
onsult/1 predi
ate or the more 
onve-nient notation[<list of �lenames>℄, e.g. [myprog, mytest℄ at the top level prompt loadsthose two �les. Loading a program 
ompiles all the rules in that �le, makes the new predi
atesin it available for use and also exe
utes any embedded goals. Unlike some PROLOG systemswhere 
onsulted �les are interpreted and 
ompilation is done using a di�erent method, all
onsulted predi
ates in CLP(R) are 
ompiled (usually fairly qui
kly). Note that �lenamesmay have an impli
it suÆx added as in Se
tion 4.2. Filenames whi
h are spe
i�ed dire
tlyshould 
onsist entirely of lower
ase 
hara
ters and any other kind of �lename, eg. a path-name, should be surrounded by single quotes.Re
onsulting a �le with re
onsult/1 or the notation [`<list of �lenames>℄ will if it1It is however not absolutely safe to interrupt at any time, and o

asionally at 
riti
al stages an interruptmay 
ause the system to be internally in
onsistent
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en
ounters previous de�nitions, erase them and repla
e them by the new de�nitions. Bydefault, a predi
ate whi
h is rede�ned will generate a warning. This may be turned o� byexe
uting the system predi
ate warning(redefine off). Some PROLOG systems use an al-ternative notation [-�lename℄ but in CLP(R) this 
on
i
ts with unary minus. Also in somesystems, 
onsulting and re
onsulting are 
ombined together. In CLP(R) 
onsulting a previ-ously 
onsulted �le with a
tive de�nitions will result in warning messages and rede�nitionswill be ignored.The spe
ial �lename user denotes that the �le to be 
onsulted or re
onsulted is readfrom standard input. This allows dire
t entry of rules whi
h is handy for qui
k modi�
ationsfrom the top query level. More on the organization of 
onsulted �les is 
ontained in Se
tion4.7.
4.5 Style Che
king and Warnings
CLP(R) programs 
an be optionally 
he
ked against some stylisti
 
onventions, also 
alledstyle 
he
king. The purpose of the style 
he
king is to give a warning that the program maypotentially 
ontain some 
ommon \bugs" when the style rules are not followed. It is impor-tant to remember that these are merely warnings and a program may be perfe
tly 
orre
totherwise. There are three di�erent kinds of style 
he
king that 
an be applied| single var,dis
ontiguous, name overload.2 The option all 
overs all three styles. By default, style
he
king is on and individual style 
he
king 
an be turned on (o�) with style 
he
k/1(no style 
he
k/1), e.g. no style 
he
k(all) turns o� all style 
he
king.The di�erent style 
onventions are as follows:
single var | This warns if a variable is used only on
e within a rule and may possiblyindi
ate that a variable has been mispelled. Anonymous variables ( ) and also variablespre�xed with an unders
ore are ignored. An example error is the rule \p(X, Y)" givesthe following warning message:Warning: Style 
he
k, singleton variables, rule 1 of q/2+++ X, Ydis
ontiguous| This style 
he
k assumes that all the di�erent rules de�ning a predi
ateo

ur 
ontiguously within a �le and warns if there is another intervening rule. Commonbugs whi
h 
an result when this style 
he
k is not followed 
an be mispelling the nameof a rule, or substituting a \." to end a rule when a \," was meant to 
ontinue the rule,2The �rst two options are similar to that in Quintus Prolog. The last is di�erent.
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e.g. the program \p(X) :- X > 0. q(X). p(0) :- r(X)." where there the intent isfor a 
omma to be before q/1 gives the following warning message:Warning, <stdin>:1: Style 
he
k, p/1 is not 
ontiguousname overload | This 
he
ks whether the same predi
ate name is de�ned with di�erentarities. While it is not un
ommon to have di�erent predi
ates of di�erent arities withthe same name, it may also be indi
ative of an in
orre
t number of arguments, e.g. theprogram \p(0,0). p(1). p(2,2)." gives the following warning message:Warning: rule overloading, same name, different arity:+++ p/1, p/2

(Note that when this option has been disabled and then re-enabled, then rules whi
h were de-�ned before style 
he
king was enabled will also generate warnings. The additional warnings
an be disabled by using the spe
ial system predi
ate $
lear style 
he
k/0. style 
he
k(all reset)also does this, 
learing all previous warnings and turns on style 
he
king.)Another kind of warning is given when a rule is de�ned in more than one �le. The basi
unit of 
ompilation is a single �le and all the o

uren
es of rules for a predi
ate have to bede�ned within the same �le. The ex
eption is that when a �le is being re
onsulted, thenthe new de�nitions repla
e the old ones. The 
ompiler will simply ignore all additions to anexisting previously 
ompiled predi
ate and by default a warning is given. See also warning/1to 
ontrol whether warnings are given.
4.6 Sample Session
This is a sample session with the CLP(R) system. Some extra information is given using
omments after the % 
hara
ter.
% 
lprCLP(R) Version 1.2(
) Copyright International Business Ma
hines Corporation1989 (1991) All Rights Reserved1 ?- f(X,Y) = f(g(A),B). % some simple ``unifi
ation''B = Y
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X = g(A)*** Yes2 ?- X = Y + 4 , Y = Z - 3, Z = 2. % simple arithmeti
 evaluationZ = 2Y = -1X = 3*** Yes3 ?- X + Y < Z, 3 * X - 4 * Y = 4, 3 * X + 2 * Y = 1.Y = -0.5X = 0.6666670.166667 < Z*** Yes4 ?- X + Y < Z, 3 * X - 4 * Y = 4, 2 * X + 3 * Z = 1.Y = -1.125*Z - 0.625X = -1.5*Z + 0.5-0.0344828 < Z*** Yes5 ?- history.1 f(X, Y) = f(g(A), B).2 X = Y + 4, Y = Z - 3, Z = 2.3 X + Y < Z, 3 * X - 4 * Y = 4, 3 * X + 2 * Y = 1.4 X + Y < Z, 3 * X - 4 * Y = 4, 2 * X + 3 * Z = 1.*** Yes6 ?- 2. % run se
ond goal againX = Y + 4, Y = Z - 3, Z = 2.Z = 2Y = -1X = 3
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*** Yes7 ?- ['examples/fib'℄. % 
onsult (load) a program>>> Sample goal: go/0*** Yes8 ?- ls fib. % look at the programfib(0, 1).fib(1, 1).fib(N, X1 + X2):-N > 1,fib(N - 1, X1),fib(N - 2, X2).*** Yes9 ?- fib(5,F). % only one answer to thisF = 8*** Retry?;*** No10 ?- F > 7, F < 9, fib(N,F). % only ask for the first answerN = 5F = 8*** Retry?11 ?- [`'examples/mortgage'℄. % use "`" to re
onsult>>> Sample goals: go1/0, go2/0*** Yes12 ?- ls. % look at the entire rulebase
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h:- history.fib(0, 1).fib(1, 1).fib(N, X1 + X2):-N > 1,fib(N - 1, X1),fib(N - 2, X2).go:- printf(\nFib(14) = , [℄),ztime,fib(14, X),
time(T1),printf(% (Time = %)\n, [X, T1℄),printf(Fib-1(610) = , [℄),ztime,fib(Y, 610),
time(T2),printf(% (Time = %)\n, [Y, T2℄).mg(P, T, I, B, MP):-T = 1,B = P + P * I - MP.mg(P, T, I, B, MP):-T > 1,mg(P * (1 + I) - MP, T - 1, I, B, MP).go1:- ztime,mg(999999, 360, 0.01, 0, M),
time(T),printf(Time = %, M = %\n, [T, M℄).go2:- ztime,mg(P, 720, 0.01, B, M),
time(T),printf(Time = %\n, [T℄),dump([P, B, M℄).
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*** Yes13 ?- [`'examples/mortgage'℄.Warning: mg/5 has been redefined>>> Sample goals: go1/0, go2/0*** Yes14 ?- ls.h:- history.fib(0, 1).fib(1, 1).fib(N, X1 + X2):-N > 1,fib(N - 1, X1),fib(N - 2, X2).go:- printf(\nFib(14) = , [℄),ztime,fib(14, X),
time(T1),printf(% (Time = %)\n, [X, T1℄),printf(Fib-1(610) = , [℄),ztime,fib(Y, 610),
time(T2),printf(% (Time = %)\n, [Y, T2℄).mg(P, T, I, B, MP):-T = 1,B = P + P * I - MP.mg(P, T, I, B, MP):-T > 1,mg(P * (1 + I) - MP, T - 1, I, B, MP).go1:- ztime,
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mg(999999, 360, 0.01, 0, M),
time(T),printf(Time = %, M = %\n, [T, M℄).go2:- ztime,mg(P, 720, 0.01, B, M),
time(T),printf(Time = %\n, [T℄),dump([P, B, M℄).*** Yes15 ?- go2.Time = 0.25M = -7.74367e-06*B + 0.0100077*P*** Retry?16 ?- [user℄.p(X) :- writeln(X).^D*** Yes17 ?- p(hello).hello*** Yes

4.7 Organization of Consulted Files
Slightly more 
are than usual must be taken in organizing program �les in 
ompiled CLP(R).A �le 
onsists of a number of 
hunks. Ea
h 
hunk 
onsists of a zero or more rules (de�nedin the usual way) possibly followed by a goal. That is, a goal always 
loses o� a 
hunk, andthe end of the �le 
loses o� the last 
hunk if a goal has not done so. A relation may notspan more than one 
hunk unless it has been de
lared to be dynami
 (see below) before the�rst rule de�ning it. De�ning a relation stati
ally in more than one 
hunk will generate awarning message stating that the new de�nitions will be ignored is given. However if one
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is re
onsulting then the new de�nitions will repla
e the ones de�ned in the previous 
hunk.A warning message that the rede�nition has taken pla
e is also given. However, if su
h arede�nition during a re
onsult is not possible when the earlier de�nition has been prote
ted(using the prot/2 predi
ate), in whi
h 
ase a warning is printed and the new de�nition isignored. The motivation for this restri
tion is that the state of the rulebase needs to be wellde�ned whenever a goal is en
ountered in the 
onsulted �le.There may be three kinds of goals in any 
onsulted �le. All three kinds are 
onsideredto be identi
al (and behave in the usual way) when they are en
ountered in a sour
e �lethat is being 
onsulted. However, they are di�erent when a sour
e �le is �rst 
ompiled andwhen the .
lam �le is 
onsulted. All goals of the form :- goal are only exe
uted during the
ompilation stage. Those of the form ::- goal are only exe
uted during the 
onsultation ofthe 
ompiled 
ode, and the goals of the traditional form ?- goal are exe
uted twi
e: on
eduring 
ompilation and on
e during 
onsultation. In summary::- goal.is exe
uted during 
ompilation of the sour
e �le.::- goal.is exe
uted during 
onsultation of the .
lam �le.?- goal.is exe
uted during 
ompilation and at runtime.The �rst kind of goal might be used for 
ompiler dire
tives and messages to whoever iswat
hing while some 
ode is being 
ompiled. The se
ond kind might be used for makinga program run itself straight after it is loaded. Finally, the third kind of goal is useful forthings like operator de
larations whi
h need to be present for the remainder of a programto parse 
orre
tly and also when the program is running so that terms will print 
orre
tly,et
. An embedded goal that fails during exe
ution will generate a warning message (see alsowarning/1).
4.8 Stati
 and Dynami
 Code
A CLP(R) program is divided into stati
 rules, whi
h do not 
hange, and dynami
 rules,whi
h allow the rulebase to be modi�ed via assert/1 and retra
t/1 as well as by 
onsulting.As mentioned above, stati
 rules/
ode 
annot span more than one 
hunk. Dynami
 
odeon the other hand 
an be de�ned anywhere and dynami
 rules 
an be added by assertingthem during exe
ution or by 
onsulting a program �le, whi
h behaves as if those de�nitionswere asserted. The only requirement for rules intended to be dynami
 is that the parti
ularpredi
ate name has to be pre-de
lared using dynami
/2 whi
h ensures that all uses of thispredi
ate are now dynami
, e.g. ?- dynami
(foo, 2). The �rst argument is the name of
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the predi
ate and the se
ond is its arity3. Every dynami
 de
laration has to o

ur beforeany use of a dynami
 predi
ate is made (in
luding rule, assert and retra
t), otherwise anerror is generated with any of the pre
eeding system predi
ates and any use of that predi
ateis assumed to be stati
. De
laring a predi
ate to be dynami
 allows the use of rule/2 toinspe
t the rulebase, assert/1 to add new rules and retra
t/1 to delete rules.The operational semanti
s of the assert, rule and retra
t family of system predi
ates isthat any modi�
ations to the rulebase o

ur immediately and are immediately available foruse4. This is 
alled the immediate update view [17℄. Consider the following example:?- dynami
(p,0).p :- assert(p), fail.

This will 
ause the goal \?- p." to su

eed. Apart from the dynami
 de
laration andthe immediate update semanti
s, there is no di�eren
e between stati
 and dynami
 
ode andthey may be used inter
hangeably, e.g. both 
an be listed with ls/1. Dynami
 
ode is also
ompiled but is generally not as eÆ
ient as stati
 
ode and also less deterministi
. Also notethat the semanti
s of assert, rule and retra
t are an enhan
ement of that in PROLOG(see Se
tion 3.4.2).
4.9 Debugging Support
The debugging fa
ilities in this version of CLP(R) are rudimentary.

odegen debugThis is a 
ompiler dire
tive, whi
h in
ludes debugging instru
tions in subsequentlygenerated 
ode. It should be a
tive before the �le to be debugged is 
onsulted.
odegen nodebugThis is a 
ompiler dire
tive that turns o� the generation of debugging 
ode in subse-quent 
ompilation.spy This swit
h makes all relations 
ompiled under 
odegen debug visible to the debugger.Prote
ted rules are never visible.3Most PROLOG's use the name/arity 
onvention to spe
ify this but this 
ould be 
onfused with division,hen
e the two argument form is used4The operational semanti
s of dynami
 
ode may vary 
onsiderably between di�erent PROLOG systemshen
e one should not pla
e undue relian
e on it.
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spy(+P, +A)This swit
h makes the relation for predi
ate P with arity A visible to the debugger ifit was 
ompiled under 
odegen debug. It 
annot be applied to prote
ted relations.spy([P1(+A1),...,Pn(+An)℄)Like spy/2, ex
ept a list is supplied of the predi
ates to be spied on where the Pi'sare the predi
ate names and the Ai's their arity.nospyMakes all relations invisible to the debugger.nospy(+P, +A)Makes the relation for predi
ate P with arity A invisible to the debugger.nospy([P1(+A1),...,Pn(+An)℄)Like nospy/2, ex
ept a list is supplied of the predi
ates to be spied on where the Pi'sare the predi
ate names and the Ai's their arity.tra
eA
tivates printing. All subsequent attempts to sear
h a relation visible to the debuggerwill result in a message being printed. The message is the same regardless of whetherthis is a �rst or subsequent attempt to satisfy a goal.notra
eDe-a
tivate printing.
4.10 Notes on EÆ
ien
y
Here we indi
ate some key features that 
an signi�
antly a�e
t eÆ
ien
y. Some of themare unsound in general, and hen
e extreme 
are should be taken when using them. Novi
eprogrammers may (and probably should) skip this se
tion entirely.

� IndexingCLP(R) employs �rst argument indexing for 
onstru
ted fun
tor terms as well as realnumbers. Using indexing 
an result in signi�
ant speedups.� Tail re
ursionLast 
all optimization is employed, and hen
e pro
edures that are tail-re
ursive willnot in
rease lo
al sta
k usage.� Logi
al disjun
tion \;/2" and if-then-else \->/2"These are implemented at the meta-level and hen
e are not parti
ularly eÆ
ient.
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� Dynami
 
odeDynami
 
ode is slower than stati
 
ode and is also less deterministi
. Cuts 
an beused to make it more deterministi
. Also, sin
e dynami
 
ode is 
ompiled, assertinglarge terms may not be very fast.� Garbage 
olle
tionNot implemented as yet.� Impli
it equalitiesThe solving of inequalities that imply some impli
it equations 
an be 
ontrolled usingimpli
it/0, noimpli
it/0, partial impli
it/0 (see Se
tion 5.1.7).� Asserting a ruleThe predi
ate assert/1 involves in
orporating the 
onstraints that relate the vari-ables in that rule (see Se
tion 3.4.2). This is less eÆ
ient than if the 
onstraints werenot taken into a

ount. The fassert family of spe
ial predi
ates (\fast assert") per-forms assertion without in
orporating arithmeti
 
onstraints (see Se
tion 5.1.7), as inPROLOG.

4.11 Notes on Formal Corre
tness
The following identi�es the main reasons why the CLP(R) implementation does not perfe
tly
onform to the idealized CLP s
heme.

� No o

urs 
he
k during (fun
tor) uni�
ation;� Depth-�rst sear
h (loss of 
ompleteness);� Floating point: be
ause this implementation of CLP(R) makes use of double pre
ision
oating point arithmeti
, some problems may be 
aused by artifa
ts su
h as roundo�.The most 
ommon problem is that a 
onstraint used as a test (in that all variablesare ground) unexpe
tedly fails be
ause of round-o�. This is dealt with by adjustingthe amount of sla
k that the system allows in numeri
al 
omparisons, using the -z
ommand line option.� Nonlinear and meta-level 
onstraints are delayed.
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Built-In Fa
ilities
5.1 System Predi
ates
5.1.1 Rulebaseop(+P, +T, +S)De
lares the atom S to be an operator of type T with pre
eden
e P. The type 
anbe used to spe
ify pre�x, post�x and binary operators using the positional notation:fy, fx, yf, xf, yfy, xfy, yfx, xfx; where the \f" spe
i�es the operator and the\y" and \x" the arguments. A \y" spe
i�es that the topmost fun
tor/operator inthe subexpression be of the same or lower pre
eden
e than the operator \f", and \x"spe
i�es that it is to be stri
tly lower. The pre
eden
es must range between f0 : : : 1200g.where a 0 pre
eden
e removes the operator.(See also Se
tion 5.3 for some examples.)listingls List the rules of the entire rulebase that are 
urrently visible.listing +Pls +P List the 
urrently visible rules for the predi
ate P, of all arities.
onsult(+F)[+F℄ Read the �le F and add rules that it 
ontains to the database. Goals in the �le arehandled in a way that is des
ribed in Se
tion 4.7. If the �lename is spe
i�ed as user

45
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then the standard input is used instead of a �le. The form [F℄ takes a list of �lenameswhile 
onsult/1 takes only a single �le. When the �le F 
annot be read then a possiblelist of �le suÆxes is added using the CLPRSUFFIX environment variable (see Se
tion4.2). By default, a \.
lpr" �le extension is used. (Not 
urrently implemented: If the �lehas a .
lam extension it is expe
ted to be 
lam 
ode and is loaded appropriately. If ithas no extension and a version with a .
lam extension exists it is given preferen
e.)re
onsult(+F)[`+F℄ Same as 
onsult, but if a predi
ate already has rules de�ning it from before, theyare deleted before the new ones are added, and a warning message is printed. Notethat [-F℄, whi
h is a 
ommon synonym for re
onsult in PROLOG systems, 
annotbe used (sin
e it means negative F).retra
tallDelete entire unprote
ted portion of the rulebase.retra
tall(+H)Delete all 
urrently visible rules with heads mat
hing H. Stati
 
ode 
annot be deletedwith retra
tall/1.asserta(+R)Add rule R to the rulebase before all others de�ning the same predi
ate. Note that
oded terms be
ome un
oded in the rulebase. See Se
tion 3.4.2 for more informationon meta-
oding of rules and di�eren
es with the usual PROLOG semanti
s.assertz(+R)assert(+R)Add rule R to the rulebase after all others de�ning the same predi
ate. Note that
oded terms be
ome un
oded in the rulebase. See Se
tion 3.4.2 for more informationon meta-
oding of rules and di�eren
es with the usual PROLOG semanti
s.rule(+H,?B)True if the rule H:-B is in the 
urrently visible part of the rulebase. Finds the nextmat
hing rule on ba
ktra
king. Note that the rules in the rulebase are 
oded beforemat
hing is done. See Se
tion 3.4.2 for more information on meta-
oding of rules anddi�eren
es with the usual PROLOG semanti
s.deny(+H,?B)Delete rule mat
hing H :- B from the 
urrently visible part of the rulebase. Also triesagain on ba
ktra
king. It is similar to retra
t/1 and both H and B are 
oded terms.See Se
tion 3.4.2 for more information on meta-
oding of rules and di�eren
es withthe usual PROLOG semanti
s.
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retra
t(+R)Delete rule mat
hing R from the 
urrently visible part of the rulebase. Like rule/2,this has a \
oded view" of the rulebase. See Se
tion 3.4.2 for more information onmeta-
oding of rules and di�eren
es with the usual PROLOG semanti
s.prot(+P,+A)Prote
t all rules for predi
ate P with arity A in the rulebase. This makes them looklike system predi
ates to the user. In parti
ular, they 
annot be listed, asserted orretra
ted.prot([P1(+A1),...,Pn(+An)℄)Same e�e
t as prot/2 des
ribed above, but takes a list of predi
ate names Pi witharities Ai in parentheses.
5.1.2 Control! The dreaded 
ut. As usual, its use is not re
ommended. It is often more appropriateto use on
e/1.fail Always fails.true Always su

eeds.repeatAlways su

eeds, even on ba
ktra
king.+B1 , +B2Logi
al 
onjun
tion.+B1 ; +B2Logi
al disjun
tion. A 
ut inside one of these will behave very strangely. That is,it will behave as if the two sides of the \;" are separate rules. (Note that be
ause;/2 is 
urrently implemented as a meta 
all it may sometimes not behave as if it wasde�ned using an auxiliary predi
ate. This 
an o

ur if there is an arithmeti
 term that
auses failure. The following short example illustrates the di�eren
e between try/3and try1/3 for the goal ?- try(X, 1, 0),try(X, Y, Z) :- X=Y/Z ; X=1.try1(Y/Z,Y,Z). try1(1,Y,Z).This may possibly 
hange to be the same in some future version.)
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+C -> +B1 ; +B2If C then 
all B1 otherwise 
all B2. Uses unsafe negation. IneÆ
ient, sin
e it uses
all/1. A 
ut inside one of these will behave very strangely.
5.1.3 Meta Level
all(+X)Usual meta level 
all, behaving as if the predi
ate X appeared dire
tly in the body ofa rule or goal. Note that this form must be used { it is not permissible to simply put avariable in the body of a rule. Both stati
 and dynami
 
ode 
an be used with 
all. Inthis version, a 
ut inside a 
all is ignored. Also, printf/2 and dump/1 
annot be usedinside 
all. Both these restri
tions 
an be avoided by simply rede�ning them using asubsidiary rule.not(+X)Unsafe negation. It is implemented using 
all/1, so it is also likely to be rather slow.dump(+L1, ?L2, ?L3)Similar to dump/2 (see Se
tion 3.5.2); the �rst argument L1 represents the targetvariables and the se
ond argument L2 represents new variables. The di�eren
e withdump/2 is that (a) the proje
tion is meta-
oded (
f. Se
tion 3.4), and (b) this proje
tionis not output but rather 
onstru
ted as the third argument L3 (
f. Se
tion 3.5.2). Notethat dump/3 does 
hange the 
urrent 
olle
tion of 
onstraints.on
e(+X)This is equivalent to 
all(X), ! and unfortunately right now it is implemented thatway as well. Only the �rst answer to the query X is 
onsidered.nonground(?X)True if X is not a ground term.ground(?X)True if X is a ground term.nonvar(?X)True if X is not a variable: i.e, it has been 
onstru
ted or grounded.var(?X)True if X is a variable. It may have been involved in an arithmeti
 
onstraint, but hasnot been grounded or 
onstru
ted.?X == ?YTrue if X and Y are bound to exa
tly the same term. In parti
ular, variables in equiv-alent positions must be identi
al. For example ?- X == Y fails while ?- X = Y, X ==Y su

eeds.
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atom(?X)True if X is an atom | that is, a fun
tor 
onstant (in
luding the empty list).atomi
(?X)True if X is an atom or real number.fun
tor(?X)True if X is 
onstru
ted with a fun
tor.real(?X)Enfor
es a 
onstraint that X 
an take real values; it is equivalent to any tautologousarithmeti
 
onstraint involving X, eg: X + 0 = X.arithmeti
(?X)True if X is 
onstrained to have a real value. Note that this is just a passive test, asopposed to real/1.?T =.. ?LT is a term and L is the term expanded as a list. (Also known as univ/2). Thispredi
ate 
an be used to both de
ompose and 
onstru
t terms. For its use either the�rst argument must be 
onstru
ted (a nonvar), or the se
ond argument must be a listof �xed length whose �rst element is a fun
tor 
onstant.fun
tor(?T, ?F, ?A)T is a term, F and A are the name and arity of the prin
iple fun
tor of T. Either Tmust be 
onstru
ted or F must be a fun
tor 
onstant (not a real number) and A mustbe a nonnegative integer.arg(+N, +T, ?A)A is the Nth argument of term T. N must be a positive integer and T a 
ompound term.If N is out of range the 
all fails.o

urs(-V,?T)V is a variable o

urring in term T.floor(+R, -I)R must be a real number, and I is the largest integer smaller than or equal to R.dynami
(+P,+A)De
lares the predi
ate P with arity A to be dynami
, so that rules 
an be added anddeleted at will.
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5.1.4 Input/Output
In this se
tion, non-ground variables will either be printed with a spe
i�ed name (like thatin the argument of dump/1), or if one is not spe
i�ed they are printed in one of the followingformats:
h%d Heap variable.s%d Lo
al sta
k variable.t%d Parametri
 variable in solver.S%d Sla
k variable in solver.
Input/Output fa
ilities are as follows.

dump(+L)List the 
olle
tion of 
urrent 
onstraints on the 
urrent output stream, proje
ted withrespe
t to the target variables in the list L. The list L must be expli
itly supplied, thatis, it is written synta
ti
ally as the argument of dump. The ordering of variables in thelist is used to represent the priority of the target variables (see Se
tion 3.5.2).dump(+L1, +L2)A more 
exible version of dump/1, without its synta
ti
 restri
tion. Its �rst argumentL1 represents the target variables, and its se
ond argument L2, whi
h must be ground,represents the new names to be used in the output. The elements of these two lists 
anbe arbitrary terms. (See Se
tion 3.5.2 for further explanation.) Note that dump/2 doesnot 
hange the 
urrent 
olle
tion of 
onstraints.nl Send a newline 
hara
ter to the 
urrent output stream.print(?T)write(?T)Print the term T, a

ording to op de
larations, on the 
urrent output stream.writeln(?T)The same as write(T), nl.
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printf(+F,+L)Print the terms in the list L on the 
urrent output stream in the format given by thestring F. The behavior is similar to the printf library fun
tion in C. Every 
hara
terex
ept for the spe
ial es
ape or argument patterns will be printed un
hanged on theoutput. The spe
ial es
ape 
hara
ters begin with a \n" and are:

nXXX the 
hara
ter represented by the o
tal number XXXnn a new linenr 
arriage returnnb ba
kspa
enf form feednX any other 
hara
ter X appears un
hanged
The argument patterns all begin with \%" and are used to denote the formatting forea
h of 
orresponding terms in the list L. A \%%" denotes a single per
ent. Otherwisethe format takes the form of an optional �eld width and optional pre
ision followed byone of the C printf 
onversion 
hara
ters. More pre
isely this 
an be des
ribed withthe regular expression:%[[-℄[0-9℄*℄[n.[0-9℄*℄[fegdox
us%℄The integral spe
i�ers will print the real number, whi
h has been rounded to an integerusing the \even" rounding rule. An empty list is needed if no variables are to be printed.As a 
onvenien
e, a single \%" may be used instead of a spe
i�
 argument format anda default format appropriate to that parti
ular argument will be used (with numbersthe default is printf format \%g"). For example,printf("X = % Y =%3.2gnn", [X, Y℄).printf to atom(?A, +F, +L)Like printf/2 ex
ept that instead of being printed A is equated with an atom whosestring is the same as what would otherwise be printed.read(-X)Read a term from the 
urrent input and bind the variable X to it. Any variables in theinput term are deemed to be disjoint from variables appearing in the rule. If an endof �le is read, the term ?-(end) is returned. Finally, the term obtained is in quotedform. That is, any arithmeti
 operators are treated synta
ti
ally.see(+F)Make F the 
urrent input �le.seeing(?F)True when F is the 
urrent input �le.
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seen Close 
urrent input �le. Revert to \user" (standard input).tell(+F)Make F the 
urrent output �le.telling(?F)True when F is the 
urrent output �le.told Close 
urrent output �le. Revert to \user" (standard output).flushFlush the bu�er asso
iated with the 
urrent output �le.
5.1.5 Unix-Related Fa
ilitiesfork Split the 
urrent pro
ess. Fails in one 
hild and su

eeds in the other. Not availableunder MS/DOS1 and OS/2. 2pipe(+X)Create a pipe named X. For use with see, tell, et
. Not available under MS/DOS orOS/2.edit(+F)Invoke the default editor on �le F, and then re
onsult the �le. Under UNIX3 the defaultis \vi", under MS/DOS and OS/2 it is \edit". If the environment variable EDITORis set then that is used instead.more(+F)Run the �le F through the \more" utility or what the environment variable PAGERhas been set to.halt Exit from the CLP(R) system.
lpr True. Used to test if the program is exe
uting in the CLP(R) system.abortAbort exe
ution of the 
urrent goal.1MS/DOS is a trademark of Mi
rosoft Corporation2OS/2 is a trademark of IBM 
orporation3UNIX is a trademark of Bell Laboratories.
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sh Invoke an image of \sh" on UNIX systems. On MS/DOS or OS/2, starts a sub-shellof \
ommand.
om" or what the environment variable COMPSEC as been set to.
sh Invoke an image of \
sh" under UNIX systems. On MS/DOS or OS/2 behaves thesame as sh/0.ora
le(+F,+P1,+P2)Run the exe
utable binary �le F and set up a pipe P1 for writing to the pro
ess anda pipe P2 for reading from the pro
ess. These pipes will be atta
hed to the pro
essesstandard input and standard output respe
tively. Not available on MS/DOS or OS/2.
5.1.6 Mis
ellaneous Fa
ilitieshistoryPrint last 50 
ommand line goals.history +NPrint last N 
ommand line goals.h Short for history/0.N Run the 
ommand line goal at position N in the history list. This may only be used astoplevel 
ommand.new 
onstant(+A, +N)Sets the numeri
 symboli
 
onstant A to the value N. The 
onstant name is spe
i-�ed without a \#", e.g. ?- new 
onstant(my 
onstant, 5). A warning is printed ifthe value of a known 
onstant is 
hanged and the warning 
an be turned o� withwarning(warning off).srand(+X)Set random number seed to the real number X.rand(-X)Generate uniformly distributed random number 0 and 1 in
lusive and bind it to X.The quality of the routine used is not guaranteed.ztime Zero the CPU time 
ounter.
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time(-T)Binds T to the elapsed CPU time sin
e the 
ounter was last zeroed. T should havebeen uninstantiated.style 
he
k(+A)Style 
he
king warns about possible program errors. It is to be used with A beingone of single var, dis
ontiguous, name overload and all. A warning is given whenthe style 
he
k rule is violated. The option all turns on both the 
he
ks. The spe
ialoption reset all 
lears all previous pending warnings whi
h may have a

umulatedif style 
he
king was o� and turns on full style 
he
king. See Se
tion 4.5 for details.no style 
he
k(+A)The reverse of style 
he
k/1 and turns o� the 
orresponding options single var,dis
ontiguous, name overload and all.$
lear style 
he
kClears any pending old style 
he
k warnings that may o

ur when style 
he
king isturned from o� to on. Usually it is reasonable not to need to use this and this is moremeant for spe
ial uses.warning(+A)The behavior when an error o

urs 
an be modi�ed with warning/1. By default,when an error o

urs a warning error message is printed and exe
ution is aborted ba
kto the top level. The various options for warning 
hange this behavior. The optionsfor A must be one of abort, 
ontinue, warning on, warning off, redefine on andredefine off. The options 
ontinue or abort 
ontrol whether or not exe
ution isaborted ba
k to the top level on an error. The printing of warning messages is 
on-trolled by warning on and warning off, while redefine on and redefine off 
ontrolwhether or not rede�nitions of predi
ates during a re
onsult issue a warning. The op-tion abort overrides warning on and warning messages are displayed when abort isa
tive. Otherwise the paired options here behave indepently.
5.1.7 Spe
ial Fa
ilities
These are unsupported fa
ilities whi
h may be used to gain more eÆ
ien
y under 
ertain
ir
umstan
es or are experimental in nature. They should be used with 
are and may 
hangeor disappear.
fassert(+R)Like assert/1 but it does not take into a

ount meta-level 
onstraints or arithmeti

onstraints and is like assert in PROLOG. Consequently it is faster than assert/1
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but makes less sense when there are 
onstraints involved. When the rules are ground,fassert behaves the same as assert.fasserta(+R)fassertz(+R)Ditto for asserta/1 and assertz/1.$
all(+X)Meta level 
all on a single user-de�ned predi
ate only. No 
ompound goals or systempredi
ates are allowed.impli
itImpli
it equalities are dete
ted. This is the default. A set of inequalities 
an sometimesbe equivalent to some equations; and these are known as impli
it equalities. A trivialexample of an impli
it equation is the following:X >= 0, X <= 0 is equivalent to X = 0.The impli
it/0 
ag 
ontrols whether these impli
it equations are dete
ted by the
onstraint solver. One 
aveat to note with the use of these 
ags is that swit
hing themon or o� should be applied betweem di�erent goal exe
utions and not during an a
-tual exe
ution. Another important point is that, when there are nonlinear 
onstraints,turning o� impli
it equations may lead to delayed 
onstraints not being awakened.noimpli
itTurns o� dete
tion of impli
it equalities. These are equations whi
h are implied by the
olle
tion of inequality 
onstraints. The impli
ation of this is that delayed 
onstraintswhi
h would otherwise be awakened may 
ontinue to be delayed instead. Constraintsolving may or may not be faster with noimpli
it.partial impli
itDete
ts only some impli
it equalities. This may be faster than impli
it.set 
ounter(+C, +V)This is a global 
ounter whi
h is not 
hanged by ba
ktra
king. Sets the 
ounter withthe atomi
 name C to the real number value V. The 
ounter name 
an be any atomi
name.
ounter value(+C, ?V)V is equated with the value of 
ounter C.add 
ounter(+C, +V)The 
ounter C is in
remented by V.



CHAPTER 5. BUILT-IN FACILITIES 56
5.2 Nonlinear and Delayed Constraints
This se
tion des
ribes the form of the delaying 
onditions for examples of the various non-linear 
onstraints given below. In some of the fun
tions below, sin, ar
sin, 
os, ar

os,there will be values of X and Z whi
h fall outside the range of that fun
tion. Su
h invalidvalues will 
ause the 
onstraint to fail and by default a \Out of range" value is generated.See warning/1.
Z = X * YDelays until X or Y is ground.Z = sin(X)Delays until X is ground.Z = ar
sin(X)Delays until X or Z is ground.Z = 
os(X)Delays until X is ground.Z = ar

os(X)Delays until X or Z is ground.Z = pow(X, Y)Delays until (a) X and Y are ground, or (b) X and Z are ground,or (
) X = 1, or (d) Y = 0, or (e) Y = 1.Z = abs(X)Delays until (a) X is ground, or (b) Z = 0, or (
) Z is ground and negative.Z = min(X, Y)Delays until X and Y are ground.(A proper implementation, delaying until X � Y or X � Y, may 
ome later.)Z = max(X, Y)Similar to the above.Z = eval(X)Delays until X is 
onstru
ted.
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5.3 Pre-De�ned Operators
::- op(21, fy, '-').::- op(21, yfx, *).::- op(21, yfx, /).::- op(31, yfx, (-)).::- op(31, yfy, +).::- op(37, xfx, <).::- op(37, xfx, <=).::- op(37, xfx, >).::- op(37, xfx, >=).::- op(40, xfx, =).::- op(40, xfx, =..).::- op(40, xfx, is).::- op(50, fx, `).::- op(51, xfy, (.)).::- op(60, fx, alisting).::- op(60, fx, als).::- op(60, fx, h).::- op(60, fx, history).::- op(60, fx, lib).::- op(60, fx, libdir).::- op(60, fx, listing).::- op(60, fx, ls).::- op(60, fx, not).::- op(60, fx, on
e).::- op(252, xfy, ',').::- op(253, xfy, ;).::- op(254, xfy, (->)).::- op(255, fx, (:-)).::- op(255, fx, (::-)).::- op(255, fx, (?-)).::- op(255, xfx, (:-)).



Chapter 6
Installation Guide
Here we dis
uss how CLP(R) 
an be made to run on a parti
ular 
omputer system. Forinstallation details on MS/DOS or OS/2, please refer to the appropriate README in theDOS dire
tory.
6.1 Portability
This version of 
ompiled CLP(R) should be easily portable to 32-bit 
omputers running somereasonable variant of the UNIX operating system. In most 
ases, all that will be ne
essary isfor the installer to edit the Makefile to spe
ify the ma
hine and operating system, 
hoosethe C 
ompiler, optimization level and name of the CLP(R) exe
utable �le, and run make.
6.1.1 Pre-de�ned Installation Options
The Makefile for CLP(R) 
ontains de�nitions of the environment variables CC, CFLAGS,EXEC and OPTIONS. They should be 
he
ked before installation and adjusted as follows.

� CC is just the name of the C 
ompiler to be used to 
ompile the CLP(R) system. Itis almost always reasonable to leave this as 

, although many ma
hines now havemore eÆ
ient (and more 
orre
t) C 
ompilers available. Information about these 
anbe obtained from your system administrator.� CFLAGS spe
i�es swit
hes of the above C 
ompiler that need to be used. While variousC 
ompilers have their own range of swit
hes that might have to be used to make
58
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su
h a large program 
ompile and run, in most 
ases only the optimization level willbe needed here. This will almost always be -O but higher optimization levels may beavailable. Also spe
ial 
ags may sometimes be ne
essary to utilize the full performan
eof the native 
oating point hardware. However, it is important to realize that manyoptimizing C 
ompilers have bugs that are only triggered by 
ompiling a large programat a high optimization level. For this reason, the �rst attempt to install CLP(R) shouldbe made without invoking the C 
ompiler's global optimizer. This usually involves justleaving the CFLAGS �eld blank.� EXEC spe
i�es the name of the CLP(R) binary to be generated. We re
ommend 
lpr.� LIBPATH spe
i�es the default dire
tory for the startup �le init.
lpr. It should be setto the dire
tory in whi
h CLP(R) is installed.� OPTIONS is used to spe
ify the hardware and operating system. A number of prede�nedoptions are available, whi
h often need to be used in 
ombinations.BSD Always set if system is running Berkeley Unix, or MACH, or Ultrix. This is alsoto be set for NEXT ma
hines.AIX Always set if system is running IBM's AIX operating system.SYS5 This broadly indi
ates that some version of System V Unix is being used. Shouldalso be used in 
ombination with AIX 
ag and if the operating system is Hewlett-Pa
kard's HP/UX.IBMRT This indi
ates that the system is an IBM RT/PC.RS6000 This indi
ates that the system is an IBM RS/6000.HP835 This is needed for the Hewlett-Pa
kard RISC workstations { espe
ially the 9000series model 835. Note that it is not appropriate for those HP workstations basedon Motorola pro
essors.MIPS Needed for ma
hines with MIPS CPU, su
h as SGI ma
hines and the DECStation3100.MSDOS Set for 386 or 486 PC's running MS/DOS. See the �le \DOS/README.DOS"for details.OS2V2 Set for 386 or 486 PC's running OS/2 2.0 (IMPORTANT NOTE: CLP(R) version1.2 will not work on OS/2 1.x be
ause that only supports 16-bit addressing). Seethe �le \DOS/README.OS2" for details.So, for example an IBM RS/6000 running AIX would need the de�nitionOPTIONS = -DAIX -DSYS5 -DRS6000
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One parameter whi
h may have to be 
hanged to ensure that the CPU timing is 
orre
ton ma
hines running System V Unix is the Hertz rate whi
h determines the unit of timemeasured. Typi
ally this value of HZ is either 60 or 100. The default value is 60 and otherwiseit should be added to the OPTIONS line in the Make�le, eg. -DHZ=100, (on the RS/6000the default is 100hz).

6.1.2 Customized Installation
When CLP(R) starts up it performs some 
onsisten
y 
he
ks on some of the default valuesin the startup. In parti
ular, on failure to startup it may re
ommend that the de�nitionof PMASK be 
hanged in emul.h. If that does not work or if a fatal installation error wasreported then you may have an unusual operating system problem whi
h 
annot be easily�xed by the installer, and it may be best to 
onta
t the authors.While there are various system limits, these are mostly parameterized and 
an be 
hangedeither dire
tly on the 
ommand line or by re
ompiling with new values for the limits. Mostof the limits are 
ontained in the �le 
onfig.h, and some of them will be des
ribed below.The parameters whi
h are not listed below may be more dangerous to 
hange arbitrarily.
Pre-de�ned 
onstant MeaningDEF CLP SUFFIX default suÆx for CLP(R) program �lesINITFNAME default bootstrap �leDOS TMP FILE name of temporary �le used only under MSDOS or OS2DEFAULT EPS default value of for zeroDEF CODE SZ default maximum size of 
ode spa
eMAX GOAL CODE default maximum size of 
ode for a top-level goalDEF LSTACK SZ default maximum sta
k sizeDEF HEAP SZ default maximum heap sizeDEF TRAIL SZ default maximum trail sizeDEF SOLVER SZ default maximum number of solver variablesMAX DUMP VAR maximum number of variables for dumpMAX PROJ NUM maximum number of real 
onstants in dumpMAX IMPLICIT maximum number of impli
it equations dete
ted by a 
onstraint
The sta
k, 
ode, heap and trail sizes; value of zero; and the number of solver variables 
anall be 
hanged from the 
ommand line (see Se
tion 4.1).
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6.2 Basi
 Con�guration
The only �le CLP(R) system needs to read on startup is init.
lpr. It always looks for this�le in the dire
tory spe
i�ed at runtime by the environment variable CLPRLIB, defaulting toeither the 
urrent working dire
tory or what LIBPATH has been spe
i�ed as in the Makefile.

The only other environment variable whi
h one may want to 
hange is to add your ownlist of �le suÆxes with the environment variable CLPRSUFFIX. The format is in the style ofthe UNIX sh PATH variable.



Chapter 7
Bug Reports and Other Comments
Please address all 
orresponden
e to

Joxan Ja�ar, H1-D48IBM Thomas J. Watson Resear
h CenterP.O. Box 704Yorktown Heights, NY 10598U.S.A.(joxan�watson.ibm.
om, joxan�yktvmh.bitnet)
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Appendix A
Di�eren
es from the MonashInterpreter
Here we only list those fa
ilities from the Monash interpreter that are not supported.

� The issue of string handling has not yet been settled.� Predi
ate de�nitions 
annot be indis
riminately spread over a number of �les.� There is no automati
 variable generation for answer proje
tion; there is no dump/0predi
ate.� Goals result in a prompt for alternate solutions whenever there is a 
hoi
e point,regardless of whether there are variables in the goal.� No pro�ling; the predi
ates prof/0 and noprof/0 are not available.� Sytem warnings are 
ontrolled di�erently using warning/1.� Linear inequalities are always de
ided immediately rather than delayed; the predi
atesineq/0 and noineq/0 are not available.� Statisti
s are now available through spe
ial system predi
ates, so the stats/0 systempredi
ate, while may exist, is not supported.� There is no is/2 predi
ate.
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