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Abstract

This dissertation investigates the theory, design, implementation and application of a pro-

gramming language and modeling environment based on the concepts of objects, con-

straints and visualization. We focus on modeling complex systems that can be described

as an assembly of interconnected, interdependent components whose characteristics may

be governed by laws, or constraints. Often, a natural visual representation can be associ-

ated with each of the components and their assembly. Such complex systems occur in a

wide variety of domains such as engineering, biological sciences, ecology, etc. Modeling

such systems therefore involves the specification of their structure and behavior, and also

their visualization. In modeling structure, we can think of each component as an object,

with internal attributes that capture the relevant features. In modeling behavioral laws or

invariants, it is natural to express them as constraints over the attributes of an object. When

such objects are aggregated to form a complex object, their internal attributes might further

have to satisfy interface constraints. The resultant state of a complex object is deduced by

satisfying the internal and interface constraints of the constituent objects. This paradigm is

referred to as constrained objects.

We describe a principled approach to the design of a constrained object programming

language built on rigorous semantic foundations. Our proposed language, Cob, provides

a rich set of modeling features, including object-oriented concepts such as classes, inheri-

tance, aggregation and polymorphism, and also declarative constraints, such as symbolic,

arithmetic equations and inequalities, quantified and conditional constraints, and disequa-

tions. We define the semantics of constrained objects based upon a translation to constraint

logic programs (CLP). A Cob class is translated to a CLP predicate and the set-theoretic

semantics of the class are given in terms of the least model of the corresponding predicate.

Such semantics also pave the way for a novel implementation of constrained objects.

However, due to the limitations of CLP, such an implementation cannot handle con-

ditional constraints and may not give satisfactory performance for large-scale models. To

overcome these limitations, we have developed partial evaluation techniques for generating



optimized CLP code. These techniques also allow us to use our own handler for evaluating

conditional constraints, and employ a more powerful existing solver for handling complex

non-linear constraints. Based on partial evaluation, we have developed novel techniques

for interactive execution of Cob models and fault detection in over-constrained structures.

Often a constrained object model of a complex system may have more than one so-

lution. We allow the modeler to state preferences within a Cob class definition and the

resultant state of the system is obtained by constraint solving and optimization. The se-

mantics of Cob programs with preferences are based upon a translation to preference logic

programs (PLP). We also investigate different forms of relaxation of preferences to obtain

suboptimal solutions and propose a scheme for the operational semantics of relaxation that

accounts for recursively defined PLP predicates.

We give several examples from different domains to illustrate that the paradigm of

constrained objects provides a principled approach to modeling complex systems and is

amenable to efficient and interactive execution.

ii



Chapter 1

Introduction

1.1 Motivation and Significance

This dissertation investigates the theory, design, implementation and application of a pro-

gramming language and modeling environment based on the concepts of objects, con-

straints, and visualization. Our focus is on modeling systems that consist of an assembly

of interconnected, interdependent components that have the following characteristics:

1. They are compositional in nature, i.e., a complex structure is made of smaller struc-

tures or components which are further composed of smaller components and so on.

2. The behavior of a component by itself and in relation to other components is gener-

ally governed by some laws or rules.

3. There is a natural visual representation that can be associated with each component.

Examples of such systems occur in different domains: engineering, organizational en-

terprises, biological systems, ecosystems, business processes, information warehouses, and

program execution. One of the main goals of our research is to provide a modeling envi-

ronment that facilitates a principled approach to modeling such complex systems. Such an

environment should facilitate intuitive creation and manipulation of models that are easy to

understand, modify and debug. We also require that, where appropriate, a model should be

given a visual representation. Thus the modeling environment for complex systems should

1



facilitate compositional specification of structure, declarative specification of behavior, and

visual development and manipulation of models (where appropriate).

In modeling structure, it is natural to adopt a compositional approach since a complex

engineering entity is typically an assembly of many components. In programming language

terms, we may model each component as an object, with internal attributes that capture the

relevant features that are of interest to the model. The concepts of classes, hierarchies and

aggregation found in object-oriented (OO) languages, such as C++, Java, and Smalltalk,

are appropriate to model the categories of components and their assembly. However, in

modeling the behavior of complex engineering entities, the traditional OO approach of

using procedures (or methods) is inappropriate because it is more natural to think of each

component as being governed by certain laws, or invariants. Using methods to represent

behavioral laws places the responsibility of enforcing them on the programmer. Moreover,

these laws become implicit in the procedural code, instead of being explicitly declared.

From a programming language standpoint, it is more natural to express behavioral

laws as constraints. A constraint is a declarative specification of a relation between vari-

ables/attributes. Constraint programming languages are declarative in that the programmer

specifies what constraints define the problem without specifying how to solve them. The

constraints and their solving techniques are appropriate to model, test and enforce (solve)

the behavioral constraints of a system. Constraints thus facilitate a declarative specification

of the behavior of a complex system. However, a pure constraint programming language

does not provide an adequate representation for the structure of a system. It lacks the mod-

ularity of object-oriented languages, and a complex system appears as a large collection of

constraints with little correspondence to the structure of the system being modeled.

A more direct and intuitive approach to modeling is through a visual representation of

the system in the form of two or three dimensional drawings. A visual representation can be

easier to understand since it is less abstract and bears close physical resemblance to the real

system. For example, engineering drawing tools provide a convenient way for a modeler

to visualize and design a structure. Such visualization of a structure though proportional

and drawn to scale, is however a purely geometric representation. It captures the geometric

attributes of the structure and but does not have any correlation to the underlying semantics.

2



For example, one may draw a sketch of a bridge, but there is no way to infer its load bearing

capacity etc. from the drawing.

Thus, while the paradigms of objects, constraints, and visualization each offer features

suitable for modeling certain aspects of a complex system, they are individually inappro-

priate for modeling both the structural as well as behavioral aspects of the system. In

this dissertation we investigate the theory, design and implementation of a programming

language and modeling environment based on the notion of constrained objects. This ap-

proach combines the modular aspects of objects with the declarative nature of constraints,

and, together with visualization, provides a powerful modeling environment for complex

systems.

1.2 Objectives and Results

1.2.1 Technical Approach

A constrained object is an object whose attributes are governed by laws or declarative

constraints. When such objects are aggregated to form a complex object, their internal

attributes might further have to satisfy interface constraints. In general, the resultant state

of a complex object can be deduced only by satisfying both the internal and the interface

constraints of the constituent objects. This paradigm of objects and constraints is referred to

as constrained objects, and it may be regarded as a declarative approach to object-oriented

programming.

To illustrate the notion of constrained objects, consider a resistor in an electrical circuit.

Its state may be represented by three variables V, I, and R, which represent respectively its

voltage, current, and resistance. However, these state variables may not change indepen-

dently, but are governed by the constraint V = I * R. Hence, a resistor is a constrained

object. When two or more constrained objects are aggregated to form a complex object,

their internal states may be subject to one or more interface constraints. For example, if

two resistor objects are connected in series, their respective currents should be made equal.

Similarly, in the civil engineering domain, we can model the members and joints in a truss

as objects and we can express the laws of equilibrium as constraints over the various forces

3



acting on the truss. In the chemical engineering domain, constrained objects can be used

to model mixers and separators, and constraints can be written to express the law of mass

balance.

In the paradigm of constrained objects that we present, a complex object may also

have a visual representation, such as a diagram. This visual representation is composi-

tional in nature; that is, each component of the visual form can be traced back to some

specific object in the underlying constrained object model. An end-user, i.e., modeler, can

access and modify the underlying model using the visual representation. This capability

may be contrasted with currently available tools for engineering design such as AutoCAD,

Abaqus, etc., where the visual representation contains only geometric information but does

not provide access to the underlying logic or constraints. We expect to have different visual

interfaces for different domains but a common textual language (described in Section 3) for

defining the classes of constrained objects.

We expect a modeler to first define the classes of constrained objects, by specify-

ing their attributes and their internal and interface constraints. These classes may be or-

ganized into an inheritance hierarchy. Once these definitions have been completed, the

modeler can build a specific complex object, and execute (solve) it to observe its behav-

ior. This execution will involve a process of logical inference and constraint satisfaction

[32, 33, 40, 49, 59]. A modeler will then need to go through one or more iterations of

modifying the component objects followed by re-execution. Such modifications could in-

volve updating the internal states of the constituent objects, as well as adding new objects,

replacing existing objects, etc. The complex object can be queried to find the values of

attributes that will satisfy some given constraints in addition to the ones already present in

the constrained objects.

1.2.2 Scope of the Dissertation

We describe below the major areas of investigation along with a brief summary of our

contributions within these areas.
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Language Design. We develop a novel programming language, Cob, based on the notion

of constrained objects. The language facilitates declarative specification of a wide variety

of constraints including arithmetic and symbolic. We provide quantified constraints for

compact specification of a relation whose participants may range over enumerations, i.e.,

indices of an array or the elements of an explicitly specified set. Similarly, we also provide

a notation for iterative terms appearing in arithmetic constraints. Such a declarative syntax

brings the constraint specification closer to its mathematical equivalent. We also provide

conditional constraints, which are a powerful and expressive means of stating different

constraints depending on the state of a constrained object. We also allow user-defined

predicates within a constrained object class definition and give several examples illustrating

the use of these constructs and the application of Cob to modeling problems from various

domains.

Modeling Environment. We provide two types of visual interfaces for the creation of

constrained object models, their modification and execution. A domain independent visual

interface is provided for authoring constrained object class diagrams. The definition of a

constrained object class (i.e., its attributes, constraints, constructors etc.) and its relation

(e.g. inheritance, aggregation, etc.) to other classes can be specified through a graphical

user interface. The interface can be used to run (solve) the constrained object model and

query it for values of attributes. We also provide different domain dependent visual in-

terfaces for drawing constrained object models of engineering structures such as electrical

circuits and trusses. These diagrams of engineering structures can themselves be thought of

as programs since they can be created, modified and executed through this visual interface

which also displays answers (values of attributes) to queries.

Formal Semantics. We define formal declarative and operational semantics for con-

strained objects. The formal semantics of a programming language provide a mathematical

model for its programs and can be used for its analysis e.g. computability, verification, etc.

A constrained object can be understood as an abstract datatype whose characteristics are

described axiomatically through constraints. Informally, the meaning of a constrained ob-

ject is the set of values for its attributes that satisfy its constraints. We define a set-theoretic
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semantics of constrained objects that is based on a mapping between constrained objects

and constraint logic predicates [59, 60]. The operational semantics are given as rewrite

rules and serve as a basis for an implementation of the constrained object paradigm.

Execution Environment. We provide an implementation for constrained objects based

on a translation to the constraint logic programming language CLP(R). A class is mapped to

a CLP(R) predicate such that the constraints of the class form the body of the predicate. In

this way the predicate serves as a procedure that enforces the constraints. However, due to

the limitations of CLP(R), such a translation alone cannot satisfactorily handle conditional

and non-linear constraints and may also be inefficient for large models. Therefore, we have

developed techniques for partial evaluation of constrained object programs that generate

optimized code and facilitate handling of conditional constraints, and deployment of more

powerful constraint solvers for non-linear systems of constraints. Partial evaluation also

facilitates efficient re-solving when a model is modified. Using partial evaluation, we have

developed techniques for visual interactive execution and debugging of a constrained object

program based on its object structure. For a given instance of a complex constrained object,

its object structure represents the relation between the instances of its components.

Preferences and Relaxation. When a system of constraints has more than one solution,

there may be a preference for one solution over another. For such cases, we extend the syn-

tax and semantics of constrained objects to allow the specification of constraint optimiza-

tion problems. Two forms of optimization are provided: maximization (or minimization) of

an arithmetic function and the more general form of a preference clause [38]. The seman-

tics of constrained object programs with preferences are based on a mapping to preference

logic programs (PLP) [38]. When preferences are specified in a constrained object class

definition, we determine the set-theoretic semantics of the class from the set of preferential

consequences of the corresponding predicate.

Often, one may be interested in the optimal as well as suboptimal solutions to an op-

timization problem. This requires a relaxation of the preference criteria and we explore

different forms of relaxation: with respect to the underlying preference criterion or with re-

spect to an extra constraint. We address the computational problems arising from relaxation
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and provide an intuitive operational semantics for relaxation goals in PLP.

Applications. We present several examples throughout the dissertation to illustrate that

the paradigm of constrained object is appropriate for modeling complex systems from var-

ious domains. We present three case studies that describe the constrained object methodol-

ogy for modeling complex systems which gives a compositional specification of the struc-

ture and declarative specification of the behavior of the system. The ability to specify,

run, query, and debug partial models, textually as well as through graphical user interfaces,

makes the constrained object paradigm useful in general and also for pedagogical purposes

in the engineering domain.

This dissertation presents a novel programming language and modeling environment

called Cob based on the notion of constrained objects and their visualization that facilitates

a principled approach to the modeling of complex systems.

1.3 Summary of Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 gives an overview of

constraints and constraint programming techniques. The paradigms of constraint (logic)

programming and preference logic programming are described in detail along with several

examples. Chapter 3 gives the syntax of the constrained object programming language

named Cob, and describes its modeling environment. Several examples are given to illus-

trate the use and application of the various constructs of this language and environment.

Chapter 3 also gives a comparison with related work. Chapter 4 describes formal declara-

tive and operational semantics of constrained objects. Chapter 5 discusses implementation

techniques for constrained objects. This includes the translation to CLP(R) and a scheme

for partial evaluation. Chapter 6 gives a description of the extension of the constrained

object paradigm to handle optimization problems and discusses the computational issues

of relaxation in preference logic programs. Chapter 7 presents case studies illustrating the

development and application of constrained object models in different domains. Chapter 8

gives conclusions and our current and future research plans.
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Chapter 2

Background

This chapter presents an overview of some basic concepts and computational techniques

relating to constraints and constraint programming languages. Two constraint program-

ming paradigms are discussed: constraint logic programming and preference logic pro-

gramming. The work on constrained objects presented in this dissertation is closely related

to these two programming paradigms. The overview presented in this chapter provides the

necessary background for understanding the rest of the dissertation.

2.1 Constraint Programming

The overview of constraint programming presented in this section is summarized from [81,

8, 9, 70] and from [51] which gives a comprehensive survey of constraint programming.

2.1.1 Constraint

A constraint is a relation among variables and serves to specify the space of possible values

for these variables. For example, the equation X
�

Y � 0 is a constraint that restricts the

values of variables X and Y to add up to a positive number. A constraint may involve

arithmetic, relational, boolean and set operations. Following are the main characteristics of

constraints.

� A constraint is a declarative specification of a relation between variables, but does

not specify any algorithm or procedure to enforce the relation.
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� Constraints are non-directional, i.e., they do not have input/output variables. The

same constraint X � Y
�

Z may be used to compute both the constraints on X given

the constraints on Y and Z as well as the constraints on Z given the constraints on X

and Y .

� Due to their declarative and non-directional nature, the order of constraints does not

matter.

� A constraint may give partial information relating a variable to other variables or

values, or it may specify its exact value(s).

� Constraints are additive, i.e., a constraint may be added to an existing store of con-

straints, and the conjunction of all existing constraints is required to hold simulta-

neously. It is possible that the addition of a constraint makes the constraint store

inconsistent. This is referred to as an over-constrained system and is discussed later

in Section 2.1.3.

� A constraint domain refers to the data domain of each variable and the operations and

relations defined on these domains. Different variables can have different domains.

Problems in the areas of engineering modeling, operations research, combinatorics,

databases, information retrieval, user interface construction and document formatting are

often characterized by relations such as: laws of physics (e.g. balance of forces, conser-

vation of mass and energy), functional specifications (e.g. input-output torque, power),

performance requirements (e.g. efficiency, speed), scheduling restrictions (e.g. availability,

feasibility, preference), data integrity (e.g. an employee’s salary should be consistent with

his grade), etc. A declarative specification of constraints facilitates a natural and intuitive

description of such problems.

2.1.2 Constraint Satisfaction

A constraint satisfaction problem (CSP) consists of a finite set of variables, a domain

(of values) for each variable, and a finite set of constraints involving these variables. A
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solution to a CSP is a valuation, or mapping, of its variables to values in their respective

domains that satisfy all the constraints of the CSP.

The goal of a constraint satisfaction algorithm is to determine whether a solution exists,

and to find one or more or all solutions to the constraints. In the case of multiple solutions,

the goal might be to find an optimal solution with respect to a given objective (cost) func-

tion. Constraint satisfaction algorithms can be broadly divided into two categories based

on the domains of the variables.

Finite Domain CSP. Satisfaction techniques for CSP over finite domains are combina-

torial in nature and we describe some of these techniques here. The following description

is summarized from [51, 8, 9] and [70] which gives a comprehensive survey of constraint

satisfaction algorithms for finite domains. Algorithms for finite domain CSP include those

based on search, inconsistency detection or stochastic methods. A simplistic search al-

gorithm that can solve any finite domain CSP is the generate-and-test (GT) scheme. This

scheme generates combination of values for the variables, and tests the constraints for these

values. This scheme is inefficient since it may generate every possible combination. A rel-

atively efficient search technique uses backtracking (BT). Here, variables are sequentially

instantiated with values from their domain. Each time a variable is instantiated the perti-

nent constraints are tested. If a constraint fails, the system backtracks to pick an alternate

value for the most recently instantiated variable having alternatives. Thus, when a con-

straint fails, this scheme prevents the generation of a subset of combination of values that

are guaranteed to fail. Although more efficient that GT, for most non-trivial problems,

backtracking takes exponential time.

Constraint satisfaction algorithms based on inconsistency detection use the notion of

a constraint graph to reduce backtracking while searching for a solution. The nodes of

this graph represent distinct variables and there is an edge between two variables if they

appear in a single constraint. A unary constraint is represented as an edge from a node

to itself. Since any finite domain CSP can be mapped to an equivalent CSP in which

every constraint has at most two variables [94], it suffices to discuss only binary CSP.

Some basic consistency based algorithms use: (i) node consistency: remove those values

from a variable’s domain that violate any unary constraint involving the variable; (ii) arc
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consistency: remove those values from a variable’s domain that violate a constraint on that

variable; (iii) path consistency: remove pairs of values that satisfy a constraint (edge) but

do not satisfy a series of constraints that form a path between the variables. Neither node

nor arc consistency for a set of constraints however, implies their solvability.

A stronger notion of k-consistency, based on path consistency, has been defined which

ensures that any partial solution/instantiation of k � 1 variables which does not violate any

constraints can be extended by the instantiation of any kth variable such that the constraints

are still not violated. A constraint graph is strongly k-consistent if it is j-consistent for all

j
�

k [70]. Node consistency is equivalent to strong 1-consistency; arc consistency is equiv-

alent to strong 2-consistency; and path consistency is equivalent to strong 3-consistency.

Algorithms based on k-consistency take a partial solution and try to extend it to a full

solution. If a constraint graph with n variables is strongly n-consistent then it is solvable

without any backtracking. But making an n-node constraint graph strongly n-consistent can

take exponential time in the worst case. Hence, more practical approaches try to make the

constraint graph strongly k-consistent for k � n. The aim of these algorithms is to make the

search for a solution backtrack-free. These algorithms combine simple backtracking with

arc consistency, i.e., in every step of the backtracking algorithm, they try to make the graph

arc-consistent. Every time a variable is instantiated, consistency check is performed on

uninstantiated variables. There are different algorithms depending upon the extent of this

checking: forward checking (FC), partial lookahead (PL), full lookahead (FL) and really

full lookahead (RFL). These algorithms are called constraint propagation algorithms since

they propagate information about one constraint to another.

We have discussed only some of the interesting techniques for finite domain CSP above.

Other techniques include stochastic methods [86], algorithms that exploit the structure of

the problem [21], and identifying tractable classes of problems [31, 78, 22].

Non-finite Domain CSP. The solving techniques for CSP in which the variables may

have an infinite domain are usually mathematical or numeric-based, e.g., the Gauss-Jordan

elimination method, Newton method, Taylor series, Kachian and Karmarkar, Simplex al-

gorithm or automatic differentiation. Constraint solving techniques for infinite domain are

often specialized for a particular domain (e.g. real or rational numbers) as well as cate-
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gory of constraints (e.g. linear, non-linear or differential equalities or inequalities). The

generality of the solving algorithm is a tradeoff with its efficiency.

Typically, a constraint solving system keeps the constraints in a standard canonical form

,e.g., X � 0, X � 0 or ∑n
i � 1 ciXi � d. Equations are maintained in parametric solved form

such as Xi � bi
�

ci1 � Ti1
������� �

cin � Tin, where Xi is a non-parametric variable and Ti js are

parametric variables [62]. Common steps in a basic algorithm for solving linear equality

constraints such as Gaussian elimination involve substitution of parametric variables by

equivalent parametric expressions. When sufficient information about (parametric) vari-

ables is obtained, the values of the non-parametric variables can be computed. Inequality

solvers may also maintain constraints in a solved form and determine implied equalities

from the set of inequalities. When used in a constraint programming system such algo-

rithms are adapted to be incremental, performing substitution and pivoting operations to get

back the canonical form after constraints are added. Some constraint solving techniques

for linear equality and inequality constraints are described in [63, 75, 48, 56].

2.1.3 Programming with Constraints

Computing with constraints involves the specification, generation, manipulation, testing

and solving of constraints. A computational system based on constraints provides a syntax

for specifying, combining and manipulating constraints and its underlying computational

engine provides mechanisms for processing, testing and solving constraints. The computa-

tional engine may use inference, backtracking, search, constraint propagation, entailment

and/or optimization techniques for constraint satisfaction.

A majority of constraint programming (CP) systems are based on the syntax and control

mechanism of logic programming, e.g., constraint logic programming [59, 61] and concur-

rent constraint programming [99]. Other CP systems combine constraints with imperative

programming, functional programming and term rewriting. We give a brief overview of

these major categories of constraint programming languages which are described in [81].

Constraint Logic Programming. Constraint logic programming (CLP) merges constraints

into the framework of logic programming. A CLP system is characterized by its constraint
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domain and the solver for that domain. Unification between terms is generalized to con-

straint solving over the data domain. CLP languages can be used to model a wide variety

of problems including arithmetic, scheduling, as well as combinatorial problems and con-

straints can be used to prune the space of solutions. There are numerous constraint logic

programming languages for modeling problems and solving constraints over different do-

mains. For example, the CHIP [24] language provides boolean, linear constraints and

finite domain constraints. The clp(FD) solver [16] provides finite domain constraints and

is used for discrete optimization and verification problems like scheduling, planning, etc.

The CLP(R) [58] language provides constraints over real numbers but solves only linear

constraints. Our work on constrained objects is directly related to the CLP paradigm. In

Section 2.2, we describe the CLP paradigm and the CLP(R) language in some detail.

Concurrent Constraint Programming. Concurrent constraint programming merges con-

straints into the framework of concurrent logic programming [100]. A rule defines a “pro-

cess” and comprises of guard conditions, or constraints, and a body which is a sequence

of literals. A rule can be used to resolve a goal if its guard conditions are enabled. The

guard conditions can be of two kinds: ask and tell. The former checks for entailment while

the latter (checks for compatibility and) adds the constraint to the current constraint store.

The evaluation mechanism CCP programs differs from CLP programs in that if more than

one rule can be used to reduce the goal, then any one is picked randomly. The evaluation

scheme does not consider any other rules (enabled or not enabled) at any later stage. Con-

current constraint programming is used for modeling reactive systems, e.g. incremental

constraint solvers. Some concurrent constraint programming languages are cc(fd) [50], Oz

[105], AKL [65], CIAO [52].

Constraint Handling Rules. Constraint handling rules (CHR) [35, 36] are a high-level

language designed specifically for writing constraint solvers. They consist of multi-headed

guarded rules which are used to rewrite a constraint store (a set of constraints). Constraints

that match the left hand side of a rule can be replaced by the constraints on the right hand

side of the rule if the guard is implied by the constraint store. Applying a CHR can re-

sult in simplification of constraints or propagation. Simplification replaces constraints with
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simpler equivalent constraints while propagation adds a new redundant constraint that may

cause further simplification. The constraint store is manipulated by repeatedly applying

the constraint handling rules until further application does not change the constraint store.

CHRs can be used to build new constraint solvers, extend existing ones with new con-

straints, specialize constraint solvers for a particular domain or application or combine

constraint solvers. CHRs can be combined with a high-level host language (e.g. CLP) to

define user-defined constraints and constraint solvers.

Constraints + Object-Object Programming. Languages such as Kaleidoscope [76, 75],

Siri [55], ThingLab [10], Modelica [34] integrate constraint into an object-oriented frame-

work. In ThingLab, each constraint is accompanied by methods for solving it and the

system arrives at a constraint satisfaction plan using the appropriate method. Siri simulates

imperative constructs through “constraint patterns” [54]. In Modelica there is a clear sep-

aration between constraints and imperative constructs which can both exist in a class defi-

nition. Kaleidoscope simplifies user-defined constraints until a primitive constraint solver

can be used to solve them. We give a detailed comparison of our work with these languages

in Section 3.4.

Constraints + Term Rewriting. Term rewriting is a declarative paradigm that uses rewrite

rules along with pattern matching to simplify terms. If an expression matches the left hand

side of a rewrite rule, it can be replaced by the expression on the right hand side of the rule.

For example, one can define rewrite rules to express any Boolean formula in conjunctive

normal form. Augmented term rewriting in Bertrand [72] combines constraints with term

rewriting. Augmented term rewriting extends term rewriting by providing substitution of

a variable by an expression and the introduction of new local variables on the right hand

side of a rule. In an augmented term rewriting system, there is no global constraint store

or solver, since the rewrite rules themselves are used to define constraint solving. Another

approach to combining constraints with term rewriting provides conditional rules or rules

with guard conditions: rules that are applicable only when their constraint or guard con-

dition is true. Such systems are typically used to implement automatic theorem provers

[57, 6] and are considered closer to CCP than to CLP [81].
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Constraints + Functional Programming. There have been three major approaches to

combining constraints with functional programming [81]. A simple approach is to treat

constraints as functions that return answers. However, these are not constraints in the

declarative sense since the programmer must provide the functions for solving the con-

straints. Another approach is to embed functions in a constraint language like CLP. Al-

though built-in functions such as +, -, etc. are provided in CLP, the system should also

allow user-defined functions. Treating functions as relations with an extra argument rep-

resenting the result is not sufficient since the system does not have enough knowledge to

reason about such functions when they appear in constraints. By knowledge, we mean

properties like associativity, commutativity, etc. Also multi-directional evaluation of func-

tions might not always be possible. A third approach treats functions and constraints to be

at the same level and extends lambda calculus with a global constraint store. One such ap-

proach called constrained lambda calculus [79] uses the constraint store to determine value

of variables. Another approach in the language Oz [105] (which has constraint solvers for

tree constraints and finite domain constraints) associates guard constraints or conditions

with lambda expressions and variables may range over lambda expressions (functions).

Constraint Solving Toolkits and Symbolic Algebra Packages. Constraint solving toolk-

its such as JSolver (Java solver), ILOG solver [91] or 2LP [5] embed a solver into an im-

perative host language. The programmer can access the solver only through an interface.

Such toolkits are usually specialized for a particular domain of problems. Symbolic al-

gebra packages such as Matlab [109], Maple [112], MACSYMA [43], Mathematica [115]

are mathematical languages typically used by scientists and mathematicians to solve simul-

taneous linear, non-linear or differential, equations, inequalities, etc. These are powerful

tools that can solve or simplify a system of mathematical constraints. Some of them have

some programming facilities but little by way of controlling the solving.

Over-Constrained Systems. A system of unsatisfiable constraints is called an over-constrained

system. The study of over-constrained systems includes developing techniques for detect-

ing an over-constrained system, locating the cause of the error and relaxing some con-

straints in order to get a solution. Over-constrained systems are less likely to occur when a
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constraint may be tagged as a “soft” constraint [113], i.e., it is not required to be satisfied.

One approach to specifying a soft constraint is to associate a strength or weight with each

constraint and to specify an error function which associates an error with a constraint and

a valuation and can be used to compare alternate valuations [113]. Intelligent backtracking

in CLP detects independent subgoals in a query. These goals can be run in parallel [7]

because an error cannot be caused by their interaction. Among other reasons, the study

of over-constrained systems is motivated by problems of belief revision in artificial intelli-

gence, where a new belief may contradict an existing belief set [37, 83]. A technique for

detecting a contradictory set of constraints is given in [18]. This technique is for linear

equalities and inequalities, and it is based on introducing an extra error variables into con-

straints and then solving to minimize their sum. The constraint whose error variable gets a

non-zero value is removed because it is considered unsatisfiable and the process is redone.

In the end a minimal set of unsatisfiable constraints is obtained. A collection of articles on

over-constrained systems appears in [64].

Constraint Optimization. It is often the case that a set of constraints has more than one

solution. In such cases there may be a criterion based on which one solution can be declared

to be better than another. This criterion is referred to as the optimization or preference

criterion. The problem then is to determine the optimal solutions from a set of feasible

solutions based on this criterion. The preference criterion may be used to rank multiple

solutions in decreasing order of preference and the top ranking solutions are optimal. In

general, however, the preference criterion may not be able to place all the solutions in a

total order.

The most well-known optimization technique is linear programming. A set of linear

constraints over some variables is given which may include the range of the variables. Also

given is a mathematical function involving some or all of these variables. This function

is called the objective function, and the goal is to find a solution to the constraints that

minimizes or maximizes the objective function as the case may be.

Another way to state an optimization problem is to specify a set of constraints and in-

dicate which ones must be satisfied and which ones may be violated if it is not possible to

satisfy them all. The hierarchical constraint logic programming (HCLP) language [11, 113]
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incorporates the notion of constraint hierarchies into the CLP paradigm. Constraints can

be tagged required, strong, medium, weak, etc., and the computational engine

tries to first find a solution that satisfies all the required constraints, and then as many of

the strong constraints, and subsequently as many of the medium constraints, and so on

as possible. A more general language for expressing constraint hierarchies and constraint

optimization within the realm of constraint logic programming is the preference logic pro-

gramming (PLP) paradigm [38]. We discuss it in more detail in section 2.3.

2.2 Constraint Logic Programming

The Constraint logic programming (CLP) [59, 61] scheme is a merger of two declarative

paradigms: logic programming and constraint programming. Logic programming emerged

from research in resolution theorem proving and artificial intelligence. A basic logic pro-

gram is a set of Horn clauses (a subset of first order logic) and the goal or query to be proved

is also a special kind of Horn clause (headless). The observation that logic programming

is basically a kind of constraint programming where the constraints are equalities over

terms and constraint-solving is term-unification led to the development of constraint logic

programming. CLP extends logic programming with constraint solving capabilities and

generalizes unification to solvability over the constraint domain.

At the core of a CLP scheme lies a structure. Informally, a structure is a domain com-

prising a set of values along with functions and relations on this set. The relations can be

thought of as constraints. The structure must be solution compact, i.e., it should be pos-

sible to describe every value in the domain by a conjunction of a (possibly infinite) set of

constraints and the complement of every constraint should be definable as a disjunction of

a (possibly infinite) set of constraints [61]. Given the CLP scheme and a constraint do-

main, we get an instance of a CLP language. For example, clp(FD) represents constraint

logic programming over finite domain constraints; CLP(R) is the constraint logic program-

ming language over the real number domain; clp(B) is a constraint logic language with

boolean constraints. CLP(Term), where Term is the traditional logic terms with unifica-

tion, represents the Prolog-like logic programming paradigm. Our paradigm of constrained
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objects bears close relations with the CLP(R) scheme and hence we give an overview of

the CLP(R) language next.

2.2.1 The CLP(R) Language

The syntax and computational model of the CLP(R) language bear close resemblance to

those of traditional logic programming languages such as Prolog. We describe CLP(R) by

highlighting the generalizations it makes to logic programming. This description summa-

rizes a more detailed discussion given in [44, 63].

Syntax. We describe the syntax of CLP(R) terms, constraints and rules.

� Term. A term can be a variable, constant, or an arithmetic expression involving

variables, real number constants or functions such as sin, cos, etc. As in logic

programming, terms are built from constants and uninterpreted functors, i.e., if t1 � ����� tn
are terms and if f is an uninterpreted functor, then f

�
t1 � ����� tn � is a term.

� Explicit Constraint. The relational operators ( � � � � � � � � �
) over the real number

domain are used to form explicit constraints. Note that explicit constraints cannot

involve uninterpreted constants or functors. Equality between uninterpreted functor

terms is treated as unification.

� Goal. A goal is similar to a Prolog goal except that it can have explicit constraints.

Thus, a goal is a sequence of literals and explicit constraints. A literal is a positive or

a negative atom or explicit constraint. If p is an n-ary predicate symbol and t1 � ����� � tn
are terms then p(t1 � ����� � tn) is an atom [73].

� Rule. A rule is similar to a Prolog rule except that the atoms in the body of a rule

can be explicit constraints. Thus, a CLP(R) rule is of the form A :- B where A is an

atom and B is a goal. A fact is a rule with an empty goal as the body.

A CLP(R) program is a sequence of rules. A CLP(R) query is a goal and it is evaluated

with respect to a CLP(R) program. We describe goal evaluation next.
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Goal Evaluation. As mentioned earlier, unifiability amongst terms in logic programming

is generalized to solvability of constraints over R, the real number domain, in CLP(R).

The evaluation of a goal with respect to a CLP(R) program works along the lines of goal

resolution in a logic programming context. We provide an informal description here; a

formal description of a CLP(R) program, a query and resolution with the declarative and

operational semantics is given in Section 4.1.

The evaluation of a goal G0 with respect to a CLP(R) program P can be described in

terms of a derivation or a finite sequence of states S0 � ����� � Sn. A state Si is represented as
�
Gi ��� Ci � where Gi is a goal and Ci represents a collection of constraints or a constraint

store.

� Solution. A set of constraints is solvable if there exists a mapping from their

variables to values in R such that the constraints evaluate to true. The mapping is

called a solution to the constraints.

� Constraint Solver. A constraint solver tests whether a given set of constraints can

be solved. It may also find a solution to the constraints and/or simplify them. Typ-

ically, a constraint solver is built for a specific domain. In the CLP(R) context, the

constraint solver is used to solve the conjunction of arithmetic constraints present

in the constraint store over the real number domain. Typically such a constraint

solver will perform incremental constraint solving since the constraint store is ex-

pected to change (add or delete constraints). The properties of the domain (in this

case the real number domain R) are built into the constraint solver so that it does not

have to perform generate-and-test in order to solve/test constraints. For example, the

CLP(R) constraint solver can deduce that the conjunction of the constraints X � Y

and X � Y is false without testing the constraints for any particular values. In other

words, the solver has the ability to reason about one or more constraints using its

knowledge about the domain and the built-in operations on this domain. The solver

uses an adaptation of the Two-Phase Simplex algorithm and [103] for deciding linear

inequalities and Gaussian Elimination for linear equalities.

� Derivation. Given a query G0 and a CLP(R) program P, a derivation of G0 with
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respect to P is a sequence of states S0 � �
G0 ��� true � � S1 � S2 � ����� with the following

properties.

– Start State. The start state (S0) of a derivation consists of the goal G0 and an

empty constraint store.

– Derivation Step. A state Si � 1 � �
Gi � 1 ��� Ci � 1 � is derived from Si � �

Gi ��� Ci � if

the following holds. Let Gi � A1 � ����� Am and suppose A j ( j � 1
���
m � is selected

for resolving. There are three cases:

1. A j is an atom: Suppose it is of the form p(t1 � ����� � tn). If there is a rule in

P of the form p(t
�
1 � ����� � t �n) :- B then Gi � 1 � A1 � ����� A j � 1 � t1 � t

�
1 � ����� � tn �

t
�
n � B � A j � 1 � ����� � Am and Ci � 1 � Ci. Note that before this step is applied, the

variable of the pertinent rule of P are renamed to remove any common

variable names between the goal and the rule. If there does not exist such

a rule in P, then Si � 1 � �
φ ��� f alse � .

2. A j is an explicit constraint: It is added to the constraint store and hence

Gi � 1 � A1 � ����� A j � 1 � A j � 1 � ����� � Am and Ci � 1 � Ci
���

A j � .
3. A j is a unification constraint (term equality): Such equations are between

non-arithmetic terms and may or may not involve functors. This is simi-

lar to the term equality in standard logic programming and is handled by

a unification algorithm. Note that this may give rise to explicit (equality)

constraints if arithmetic subterms are present. Equality between an arith-

metic and non-arithmetic term results in the state Si � 1 � �
φ ��� f alse � .

– At every step of the derivation, the constraint store is checked for consistency.

If Si � �
Gi ��� Ci � and solv

�
Ci � � f alse, i.e., the constraint store is inconsistent,

then Si � 1 � �
φ ��� f alse � . If the constraint store is consistent, then the derivation

proceeds to the next step.

� Successful Derivation. A derivation is said to be successful if it is finite and its final

state consists of an empty goal and a consistent constraint store. There can be more

than one successful derivation.
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� Answer Constraint. The concept of answer substitution in logic programming is

generalized to an answer constraint in CLP(R). The constraints in the constraint store

at the end of a successful derivation form the solution to the goal. Specifically, the re-

striction of these constraints to those containing variables from the initial goal are the

answer constraints, or the computed answer. Multiple successful derivations could

give rise to multiple computed answers. Every instance of the answer constraint is a

solution.

� Finitely Failed. If all the derivations for a goal are finite and end in failure, then the

goal is said to have finitely failed, i.e., there is no computed solution.

CLP(R) System. We now give some practical details of a CLP(R) system [58].

� The literal selection strategy in the basic CLP computational model is impartial, mak-

ing solutions independent of goal ordering. However, a practical implementation

invariably deviates from this strategy in the following ways:

1. The atoms in a goal are selected in a left-to-right order. A programmer can

write more efficient programs by placing subgoals that test constraint satisfac-

tion before those that generate solutions. We explain this point later with an

example.

2. The goal selection between a parent subgoal and child subgoal follows a depth

first order, and a clause from a program is selected for matching in a top-to-

bottom order. These strategies may in general result in loss of completeness.

But this tradeoff is usually made in logic programming systems.

3. Constraint solvability of non-linear constraints is not tested. A delay mecha-

nism (explained later) is employed for handling non-linear constraints.

� Backtracking. When a derivation fails, the CLP(R) engine backtracks to find an

alternate rule to match the most recently resolved atom. As the system backtracks,

it undoes all the variable bindings and changes (addition of constraints) in the con-

straint store made after the most recent choice point. This backtracking mechanism

is similar to that of traditional logic programming systems.
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� Delay Constraints. The constraint solver for CLP(R) does not attempt to solve

non-linear constraints. It delays their solving until they become sufficiently linear,

i.e., until a sufficient number of their variables become ground. For example, solving

of the constraint sin(X) = Y is delayed until either X or Y becomes ground. The

constraint pow(X � Y) = Z (XY
� Z) is not tested for solvability by the constraint

solver until at least two of X, Y or Z become ground or X becomes 0 or Y becomes

0 or Z becomes 1 or X becomes 1.

Hence, if an answer constraint contains non-linear constraints, then it actually repre-

sents a solution only if the non-linear constraints can be satisfied.

As mentioned above, a limitation of the CLP(R) system is its inability to solve non-

linear constraints. In our constrained object paradigm which is based on the CLP(R) sys-

tem, we overcome this limitation by employing powerful solvers such as Maple [112] to

solve non-linear constraints. Chapter 5 describes our scheme for partial evaluation of con-

strained object programs that facilitates such handling of non-linear constraints.

2.2.2 Applications

Constraint logic programming finds use in a wide variety of computationally intensive ap-

plications, e.g., scheduling, mathematical modeling, engineering modeling, optimization.

We present examples drawn from [46, 81] to illustrate the syntax and application of the

CLP methodology.

Recursive Predicates with Constraints (Mortgage Example)

The CLP predicate mortgage below gives the relationship between a principal amount

(P), the duration of the loan in months (T), the rate of interest (I), the monthly installment

(MP) and the balance at the end of a period (B). The interest is compounded monthly.

mortgage(P, T, I, B, MP) :-
T = 1,
B = P + (P*I - MP).

mortgage(P, T, I, B, MP) :-
T > 1,
mortgage(P*(1 + I) - MP, T - 1, I, B, MP).
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There are two rules defining the mortgage predicate. The first one states that after

one monthly payment of MP, the outstanding balance B is obtained by first taking the sum

of the principal (P) and the interest for one period (P*I), and then subtracting the monthly

payment (MP). The second rule is recursive and relates the mortgage attributes between

successive time periods. The outstanding balance B on a principal P after T monthly pay-

ments of MP each, can be obtained as the outstanding balance for a principal of P + P*I

- MP at the same interest rate and monthly payments but after T-1 months. This relation

holds only if the life of the loan is more than one month (expressed as the constraint T �

1).

Suppose a sum of 1000000 is to be paid back in 30 years at a monthly interest rate of

0.01. The monthly payment can be computed by the goal G0 below.

?- mortgage(1000000, 360, 0.01, 0, M).

A 0 in the argument corresponding to the outstanding balance indicates that the loan is

to be fully repaid at the end of 30 years. The evaluation of goal G0 with respect to the

above mortgage program proceeds as follows. The goal matches the first clause or rule of

the program and results in the goal G1 which is a collection of explicit constraints shown

below:

P = 1000000, T = 360, I = .01, B = 0, MP = M,
T = 1, B = P + (P*I - MP).

Since each of the above subgoals is an explicit constraint, by multiple applications of the

second derivation step given in Section 2.2.1, they are added to the constraint store which

is tested for consistency by the solver. Clearly this constraint set is not satisfiable (is not

consistent), and the system backtracks and picks the second clause. Matching the goal to

its head and performing goal reduction results in goal G1 as follows:

P = 1000000, T = 360, I = .01, B = 0, MP = M,
T > 1, mortgage(P*(1+I) - MP, T-1, I, B, MP).

By multiple applications of the derivation steps described in the Section 2.2.1, we obtain

the goal Gn as follows:

mortgage(P*(1+I) - MP, T-1, I, B, MP)

and the constraint store Cn:
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P = 1000000, T = 360, I = .01, B = 0, MP = M, T > 1.

Since the constraint store C1 is consistent (solvable), the constraints are solved and the

goal Gn is simplified to

mortgage(1000000*(1+.01) - MP, 359, .01, 0, MP).

This goal is again matched with the first clause but fails and the computation backtracks

to pick the second clause. Resolving the goal using the second clause leads to the following

goal:

P’=1000000*(1+.01)-MP, T’=359, I’=.01, B’=0, MP’=MP, T’>1,
mortgage(P’*(1+I) - MP’, T’-1, I’, B’, MP’).

which on further derivation becomes

mortgage((1000000*(1+.01)-MP’)*(1+.01),358,.01,0,MP’).

and the constraint C3 P’=1000000*(1+.01)-MP, T’=359, I’=.01, B’=0, MP’=MP,

T’>1.

are added to the constraint store. Since the constraint store (C2
�

C3) is consistent, the

derivation proceeds to pick another atom from the goal. This process continues until a

goal is successfully resolved using the first clause. At that point sufficient information is

available to solve the constraints to obtain the answer constraint

M = 10286.1

As another query, suppose only the interest rate and the life of loan are known. The query

mortgage(P, 720, 0.01, B, M)

generates the answer constraint

M = -7.74367e-06*B + 0.0100077*P

which relates the principal, balance and monthly payments. This example illustrates the

expressive power of the CLP(R) language. There is no need to explicitly distinguish input

or output variables, as is expected in a true declarative constraint language.

As mentioned earlier, in the CLP scheme, the query itself can have constraints. Suppose

that an affordable monthly payment must lie between $1000 and $1200. Now, if the loan

is to be paid back in 30 years at a monthly interest rate of 1%, how much loan can be

borrowed? The following query represents this question

mortgage(P, 360, 0.01, 0, M), M > 1000, M < 1200.
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The answer is also in the form of a constraint:

P < 116662

97218.3 < P

The above program and queries illustrate several of the aspects of constraints mentioned

earlier in section 2.1: constraints are declarative, non-directional, additive and may give

partial information.

Test-then-Generate (Combinatorics). The next example illustrates the use of constraints

for a test-then-generate strategy (instead of the usual generate-then-test strategy) of search-

ing for a solution. Consider the classic crypt arithmetic puzzle:

S E N D
+ M O R E
-----------
= M O N E Y

The problem is to determine a unique digit between 0 to 9 for every letter in the above

formula so that when each letter is replaced by its corresponding digit, the formula holds

true. The CLP(R) program below models this problem [81] and the top level predicate is

solve.

solve([S, E, N, D, M, O, R, Y]) :-
constraints([S, E, N, D, M, O, R, Y]),
gen_diff_digits([S, E, N, D, M, O, R,Y]).

constraints([S, E, N, D, M, O, R, Y]) :-
S >= 0, S <= 9,
... similar constraints on variables
... E, N, D, M, O, R, Y ...
S >= 1, M >= 1,

1000*S + 100*E + 10*N + D
+ 1000*M + 100*O + 10*R + E

= 10000*M + 1000*O + 100*N + 10*E + Y.

The predicate gen diff digits iteratively goes through all permutations of as-

signment of different digits from 0 to 9 to the letters. The predicate constraints
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places constraints on the possible values for the letters and hence prunes the search for

a solution. Because of the constraints, the predicate gen diff digits does not iter-

ate over all the permutations. This is because the constraints are tested for every partial

assignment of values to variables. Any partial assignment that violates a constraint is

abandoned and the system backtracks to pick an alternative value for the most recently

instantiated variable (that still has alternatives). Thus a subset of assignments is elim-

inated each time a partial assignment fails a constraint. This scheme is the backtrack-

ing (BT) algorithm discussed in Section 2.1.2. The above program computes the answer

S � 9 � E � 5 � N � 6 � D � 7 � M � 1 � O � 0 � R � 8 � Y � 2.

Suppose now that instead of placing the constraints before generating the digits, we

were to switch the subgoals and define solve as:

solve([S, E, N, D, M, O, R, Y]) :-
gen_diff_digits([S, E, N, D, M, O, R,Y]),
constraints([S, E, N, D, M, O, R, Y]).

The new definition of solve will take a significantly longer time to evaluate than the

earlier definition. This is because every permutation of digits is generated and then tested to

check if it satisfies the constraints. This is the generate-then-test (GT) algorithm discussed

in Section 2.1.2.

Electrical Circuits. We show the CLP(R) formulation of a circuit problem given in [46].

This example illustrates the power of the CLP(R) system and also serves to compare against

our work in later chapters. We show the significant parts of the CLP(R) code for modeling

and analysis of steady state RLC circuits.

Suppose resistors R1 (100 Ohms) and R2 (50 Ohms) are connected in series with a

voltage source V1 (10 Volts). A diode D1 is connected in parallel with resistor R2. This

circuit is shown in Figure 2.1. The top level query for obtaining the voltages at various

points in such a circuit is:

?- W = 0, Vs = 10, R1 = 100, R2 = 50,
circuit_solve(W, [[voltage_source,v1,c(Vs,0),[n1,ground]],

[resistor,r1,R1,[n1,n2]],
[resistor,r2,R2,[n2,ground]],
[diode,d1,in914,[n2,ground]]],

[ground], [n2]).
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Figure 2.1: Simple Electrical Circuit

In the above query, v1, r1, r2, d1 are names or labels of the circuit components.

Various points or nodes in the circuit are labeled n1, n2, ground. The second ar-

gument to predicate circuit solve is a list of components of the circuit containing

information (e.g. current, voltage) about the component and the nodes to which it is con-

nected. Current and voltage are complex numbers represent as c(X,Y)where X is the real

part and Y the imaginary part. For example, resistor R1 is connected to nodes n1 and n2.

The third argument to circuit solve is a list of nodes that are grounded, and the fourth

argument is the list of nodes whose information (current and voltage) should be displayed

on the screen.

circuit_solve(W, L, G, Selection) :-
get_node_vars(L, NV),
solve(W, L, NV, Handles, G),
format_print(Handles, Selection).

The predicate get node vars extracts the nodes in the circuit (in the above circuit,

these are n1, n2, ground) and associates a distinct voltage variable and a current of

zero with each of them. Thus NV unifies with a list of 3 tuples: each tuple represents a node

and its voltage and current.

solve(W, [X|Xs], NV, [H|Hs], G) :-
addcomp(W, X, NV, NV1, H),
solve(W, Xs, NV1, Hs, G).

solve(W, [], NV, [], G) :-
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zero_currents(NV),
ground_nodes(NV, G).

The predicate solve iterates through the list of components in the circuit adding the

constraints associated with each to the constraint store.

addcomp(W,[Comp2,Num,X,[N1,N2]],NV,NV2,
[Comp2,Num,X,[N1,V1,I1],[N2,V2,I2]]) :-

c_neg(I1,I2),
iv_rein(Comp2,I1,V,X,W),
c_add(V,V2,V1),
subst([N1,V1,Iold1],[N1,V1,Inew1],NV,NV1),
subst([N2,V2,Iold2],[N2,V2,Inew2],NV1,NV2),
c_add(I1,Iold1,Inew1),
c_add(I2,Iold2,Inew2).

The predicate addcomp associates a voltage and current with each node of the compo-

nent. The predicates c neg and c add perform negation and addition of complex numbers

respectively. The current at one node is the negative of the current at the other node c neg.

The voltage across the component is the difference in the potential drop at the two nodes

c add. The list of nodes NV is updated by adding the currents I1, I2 to the current

computed so far at the nodes (subst and c add). The subst predicate ensures that the

voltage computed at a node for a component be equal to the voltage computed at the same

node via a different component.

The predicate zero currents equates the current at each node to zero. In ef-

fect this means that the sum of the currents at each node add up to zero. The predicate

ground nodes equates the voltage at each node (in its argument) to zero.

iv_rein(resistor, I, V, R, W) :-
c_mult(I,c(R,0),V).

iv_rein(diode, I, V, D, W) :-
diode(D,I,V).

diode(in914,c(I,0),c(V,0)) :-
(V < 0-100, DV = V + 100, I = 10*DV);
(V >= 0-100, V < 0.6, I = 0.001*V);
(V >= 0.6, DV = V - 0.6, I = 100*DV).

The predicate iv rein is defined as a case analysis on the type of component and

gives rise to the appropriate constraints associated with each component. There will be
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additional clauses for transistor, inductor, capacitor, etc. The syntax A ; B above denotes

the disjunction of goals A and B.

The above is a expressive and powerful CLP(R) program that can analyze RLC circuits

with different inputs, different known and unknown variables. The complete code for the

program is given in [46]. We would like to point out, however, that understanding the

code without the detailed explanation that we have given above is a non-trivial task. The

implementation of Kirchoff’s and Ohm’s law in the above code is very roundabout (via

subst) and non-intuitive. In section 3.2.4 we give a Cob model of RLC circuits which

uses a natural and intuitive representation of electrical components.

2.3 Preference Logic Programs

Constraint satisfaction problems often have more than one solution and there may be a

preference criterion based on which one solution is considered better than another. The goal

of constraint optimization is to use the preference criterion to determine optimal solution(s)

to a constraint satisfaction problem. Thus a constraint optimization problem consists of

a set of variables, a set of constraints over these variables, and one or more preference

criteria. In this section we describe a programming paradigm that facilitates a declarative

specification of constraint optimization problems whose computational engine computes

the optimal solutions.

Preference logic programming is an extension of constraint logic programming to han-

dle constraint optimization problems. A preference logic program can be thought of as a

logic program having two types of predicates: ordinary predicates and optimization predi-

cates. Optimization predicates have a preference clause that facilitates comparison between

solutions to the predicate. We give the syntax and some examples of PLP programs below.

This description is summarized from [38] which contains a thorough discussion of the PLP

paradigm.
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2.3.1 PLP Syntax

A preference logic program has two parts: a first-order theory and an arbiter [38]. The

first-order theory consists of clauses that can have one of two forms:

1. Definite clause: H � B1 � � � � � Bn, (n � 0). Each Bi is of the form p
�
t̄ � where p is a

predicate and t̄ is a sequence of terms. A predicate and term are the same as in CLP

context. In general, Bi could be a constraint as in CLP [59, 61].

2. Optimization clause: H � C1 � � � � � Cl � B1 � � � � � Bm, (l � m � 0). Each Ci is a constraint

as in CLP [59, 61] and C1 � � � � � Cl must be satisfied for this clause to be applicable to

a goal. The variables that appear only on the RHS of the � clause are existentially

quantified. The intended meaning of this clause is that the set of solutions to the head

is a subset of the set of solutions to the body.

Depending on the clauses used to define a predicate, it will belong to exactly one of the

following types:

1. C-predicates: These are defined using definite clauses and the bodies of their defini-

tion contain only other C-predicates (C stands for core).

2. O-predicates: These are defined using optimization clauses (O stands for optimiza-

tion). An instance of the O-predicate at the head of an optimization clause is a

candidate for an optimal solution if the corresponding instance of the body of the

clause is true.

3. D-predicates: These are defined using only definite clauses whose body contains one

or more O-predicate or D-predicate goals. (D stands for derived from O-predicates.)

The preference or arbiter clauses of a preference logic program specify the optimization

criterion for the O-predicates. They are of the form:

p
�
t̄ � �

p
�

ū � � L1 � � � � � Ln (n � 0)

where p is an O-predicate and each Li is a constraint as in CLP, or an atom formed from a

C-predicate. The intended meaning of such a clause is that p
�
t̄ � is less preferred than p

�
ū �

if L1 � � � � � Ln are true.
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A preference logic program is a collection of definitions of C-predicates, O-predicates

and D-predicates. Formally, a PLP program is a 3-tuple of the form
�
TC � TO � A � where

TC is the set of the definitions of the C-predicates, TO is the set of the definitions of the

O-predicates and D-predicates, and A is the set of preference clauses in the program.

2.3.2 Examples

Preference logic programming finds application in the areas of parsing [15, 66], databases

[19, 41], optimization [26, 27, 40], and default reasoning [14, 23, 80, 98]. We give below

some simple examples to illustrate the syntax and meaning of preference logic programs.

These examples are taken from [38].

Consider the problem of finding the shortest distance between two vertices of a graph.

Each edge of the graph is associated with a cost and the cost of a path is the sum of the

costs of its constituent edges. The graph is given as a set of facts for the edge predicate.

The predicate dist is defined as:

dist(X,Y,C) � edge(X,Y,C).

dist(X,Y,C) � edge(X,Z,C1),

dist(Z,Y,C2),

C = C1 + C2.

The shortest distance between two vertices is given by a path between the vertices

having the least cost. We show two different formulations of the shortest distance problem

from [38].

The first is a naive formulation of the problem that compares all possible paths be-

tween two vertices in order to compute the shortest distance between them as shown by the

naive sh dist predicate defined below.

naive sh dist(X,Y,C) � dist(X,Y,C).

naive sh dist(X,Y,C1)
�

naive sh dist(X,Y,C2) � C2 < C1.

The optimization clause states that a shortest distance is a distance. Thus the set of all

paths between X and Y are candidates (feasible solutions) for the shortest distance path.

The arbiter clause states that a path between X and Y having cost C1 is less preferred to a

path with cost C2 between the same vertices if C2 is less than C1. In the above definition,
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dist and edge are C-predicates while naive sh dist is an O-predicate.

Informally, the answer to a goal G � ?- naive sh dist(a,b,C) is computed by

first computing the solutions to the subgoal dist(a,b,C). This forms the set of feasible

solutions to G. Next, all those solutions Si for which there exists another solution S j such

that Si is less preferred to S j are eliminated from the set of feasible solutions. The remaining

feasible solutions form the set of optimal solutions to G.

We now give a more efficient formulation of the shortest distance problem [40]. The

goal sh dist(X,Y,N,C) computes the minimal cost (C) path from vertex X to vertex

Y of length N (involving N hops or edges). The predicate sh dist is defined recursively.

The cost of a feasible shortest distance path between X and Y involving N hops (where N

is more than 1) is the sum of the cost of the shortest distance (of 1 hop) from X to some

immediate neighbor vertex Z (other than Y) and the cost of the shortest distance between Z

and Y. If there are two feasible solutions of differing costs between the same vertices, then

the solution with less cost is preferred.

sh dist(X,X,N,0).

sh dist(X,Y,1,C) � X � � Y � edge(X,Y,C).
sh dist(X,Y,N+1,C1+C2) � N � 1, X � � Y �

sh dist(X,Z,1,C1), sh dist(Z,Y,N,C2).

sh dist(X,Y,N,C1)
�

sh dist(X,Y,N,C2) � C2 � C1.

The shortest distance problem has the optimal sub-problem property, viz., that the op-

timal solution to the problem is composed of optimal solutions to its sub-problems. In

the above formulation, this property is stated explicitly and the recursive definition of

sh dist obtains an optimal path of length n between X and Y by extending the short-

est paths of length n � 1 between an intermediate vertex and Y. Note that the variable Z that

appears only on the right of the second clause is existentially quantified. Thus the set of

feasible solutions to sh dist(a, b, 10, C) comprise of the shortest paths of length

9 between neighbors of a and b.

Goals in a PLP program must have certain variables instantiated. For example, in the

above program, the goal sh dist(a,b, N, C) will not return the correct answer since

N is not ground.
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2.4 Summary

In this chapter we gave an overview of some important constraint programming paradigms,

their basic concepts, their use in modeling constraint satisfaction problems and their ap-

plications to various domains. We described the CLP(R) language in detail with several

example programs from different application domains. Our work on constrained objects

is very closely related to the constraint logic programming paradigm. In later chapters (3

and 7) we will illustrate the expressiveness of constrained object programs and compare

them with the equivalent CLP(R) programs give in this chapter. In Chapter 5 we show how

our execution model for constrained objects handle non-linear constraints which CLP(R)

is unable to solve. Also, the declarative and operational semantics of constrained objects

defined in this dissertation (Chapter 4) are closely related to the semantics of constraint

logic programs.

In the next chapter we introduce a programming language and modeling environment

named Cob based on the concept of constrained objects and compare it to some of the

relevant paradigms described in this chapter. The paradigm of constrained objects is also

useful in expressing constraint optimization problems. We give examples of this in Chap-

ter 5 and describe the operational semantics of Cob programs with preferences in terms of

the operational semantics of preference logic programs. We also introduce the notion of

relaxation (sub-optimization) goals in PLP with respect to the underlying preference crite-

rion and describe their operational semantics in Chapter 7. The overview of CLP and PLP

given in this chapter thus forms a background to understand and compare with the material

presented in the rest of the dissertation.
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Chapter 3

A Constrained Object Language

This chapter informally presents the language Cob and describes its modeling environment.

Section 3.1 gives a detailed syntax of Cob programs including class definitions, attributes,

terms, different types of constraints and user-defined predicates. Section 3.2 shows sev-

eral examples illustrating the syntax of Cob, the use of the different types of constraints

with the different constructs and features of the language, and the application of the Cob

language to engineering modeling. Section 3.3 describes the Cob modeling environment

which includes a visual tool for authoring Cob class diagrams and different domain specific

visual interfaces for drawing constrained object models of engineering structures. Section

3.4 compares Cob with existing constrained object languages and other approaches to in-

tegrating constraints with object-oriented and logic programming. Section 3.5 summarizes

the contributions of the material presented in this chapter.

3.1 Syntax of Cob Programs

Cob Program. A Cob program is a sequence of class definitions, and each constrained

object is an instance of some class.

program :: � class definition �

Class. A class definition consists of attributes, constraints, predicates and constructors.

class definition :: � ���������
	���������������� class id ������������� class id � � body �
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body :: � ��� ��� 	 � ���
����� attributes �
����������� 	�� � �
� � constraints �
����	��� � � � ��� � pred clauses �
����������� 	�������� 	 � constructor clauses �

Each of these constituents is optional, and an empty class definition is permitted as a de-

generate case. Single inheritance of classes is permitted and the subclass inherits the con-

straints of its superclass. There can be more that one constructor for a class. An abstract

class is a class without any constructor, and hence cannot be instantiated. A class name

must begin with a lowercase letter, e.g. component, series, parallel.

Although multiple inheritance is conceptually allowed in the general notion of con-

strained objects, it is not supported by the current implementation. Conceptually, a class

inheriting from more than one classes will inherit the attributes and constraints of each of

its superclasses. The values of the attributes of such a class will be determined (partially)

by the conjunction of its own constraints with those of its superclasses (provided this set of

constraints is consistent). Since constraints are declarative and additive, such a semantics

for multiple inheritance does not have the difficulties that are associated with providing

multiple inheritance of procedural methods in traditional object-oriented programming.

3.1.1 Attributes and Terms

Attribute. An attribute is a typed identifier, where the type is either a primitive type or a

user-defined type (i.e., class name) or an array of primitive or user-defined types.

attributes ::= decl ; [ decl ; ] �
decl ::= type id list

type ::= primitive type id � class id � type []

primitive type id ::= real � int � bool � char � string
id list ::= attribute id [ , attribute id ] �

The size of an array may be constant or left unspecified, e.g.,

component [] [] Varsize2DArray;

component [3] FixedsizeArray;
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An attribute name must begin with an uppercase letter, e.g., V, I, R. There are two

internal variables used by the Cob compiler (Cob and cob), and these names must not

appear in a Cob program. For the same reason, the symbol must not appear as part of an

attribute name. All the attributes of a class must be declared at the beginning of the body

of the class following the keyword attributes.

Term. Terms can appear in constraints or as arguments to functions, predicates or con-

structors.

term ::= constant � var � complex id

� arithmetic expr � func id(terms)

� [terms] � (term)

� aggreg op var in enum : term

aggreg op ::= sum � prod � min � max
terms ::= term [, term ] �

A term may be an arithmetic or boolean expression involving attributes, constants from

the primitive types, and built-in functions (e.g. sin, cos, etc.). We also support lists as

a built-in type. A list is a comma separated sequence of terms enclosed within [ and ].

We provide a shorthand for ‘aggregation terms’, where the iteration is over indices or

elements of an array or elements of an explicitly specified set. This notation is similar to

its mathematical equivalent. For example, the term

sum X in PC: (X.V) stands for ∑n
i � 1 PC[i].V

prod Y in IntArray: Y stands for πm
i � 1 IntArray[i]

min X in RealArray: Xˆ2 stands for min
��� 2| X � RealArray �

where n = length of PC and m = length of IntArray.

Complex id. A complex identifier refers either to an array element or to an attribute of

an object. Attribute selection is specified by the usual dot (.) notation.

complex id :: � attribute id � � attribute id � �

� complex id � term �

For example, X.Y[3] is a complex id. It is understood that if X is of type t, then t must

have an attribute named Y whose type is an array of size at least 3.
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Scoping. A subclass may declare an attribute already declared by its super class. Suppose

class b is a subclass of a, and suppose both a and b declare an attribute V. Any use of

V within b refers to the attribute defined in b. Similarly, the variables occurring as for-

mal parameters of a constructor definition override their namesake in the class and/or its

superclass.

3.1.2 Constraints and Predicates

Constraint. A constraint specifies a relation over the attributes of one or more classes. A

class can have zero or more constraints. When the class is instantiated, the attributes of the

instance are subject to these constraints.

constraints :: � constraint ; � constraint ; � �

constraint :: � simple constraint � quantified constraint

� creational constraint

creational constraint :: � complex id � � ��� class id
�
terms �

quantified constraint :: �
�
��	����
� var

� � enum :
�
constraints �

� � � � ��� � var
� � enum :

�
constraints �

simple constraint :: � conditional constraint � constraint atom

conditional constraint :: � constraint atom : � literals

constraint atom :: � term relop term � constraint predicate id
�
terms �

relop :: � � � ! � � � � � � � � � � �

A constraint can be simple, quantified or creational. A simple constraint can either be a

constraint atom or a conditional constraint. These constraints are explained below.

Constraint Atom. A constraint atom is a relational expression of the form term relop

term, where term is composed of functions/operators from the data domain (e.g. integers,

reals, etc.) as well as constants and attributes. Examples:

V = I * R;

Theta � = 2* 3.141;

X = sin(Theta);
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The = symbol is a comparison operator and should not be mistaken as an assignment op-

erator. The � � symbol is also a comparison operator and has the usual mathematical

meaning.

The other form of a constraint atom is constraint predicate id(terms) where the con-

straint predicate is one whose properties are known to the underlying system.

Conditional Constraint. A conditional constraint is a constraint atom that is predicated

upon a conjunction of literals each of which is a (possibly negated) ordinary atom or a

constraint atom.

constraint atom :- literals

The conjunction of literals on the right hand side of the :- is referred to as the an-

tecedant and the constraint atom at the head of the conditional constraint (left hand side

of the :- symbol) is referred to as the consequent. Although we employ Prolog-like syn-

tax for defining conditional constraints the evaluation of a conditional constraint is very

different from that of a Prolog clause.

� If the constraint atom at the head of a conditional constraint is entailed by the current

state of the constrained object, then the conditional constraint is considered to be

satisfied.

� If the negation of the head of the conditional constraint is entailed by the current state

of the constrained object, then the antecedant must evaluate to false in order for the

conditional constraint to be satisfied.

� Similarly, if the antecedant is entailed by the state of the constrained object, then for

the conditional constraint to be satisfied, the consequent must evaluate to true.

� If the negation of the antecedant is entailed by the state of the constrained object,

then the conditional constraint is considered to be trivially satisfied.

A conditional constraint cannot be nested, i.e., it cannot be defined in terms of another

conditional constraint. There may be more than one (constraint) atom (possibly negated)

in the antecedant but the consequent has exactly one (non-negated) constraint atom or cre-

ational constraint. For the antecedant to be entailed by the state of the constrained object,
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every literal in it must be entailed by the state. For example consider the following condi-

tional constraint.

F = Sy * W * H :- F > 0;

If the value of F is non-positive, then the above conditional constraint is trivially satis-

fied. But if F is positive then its value must be equal to Sy * W * H in order for the

conditional constraint to be satisfied.

As another example, consider the relation between the day, month and year attributes

of a date shown below.

Day =< 29 :- Month = 2, leap(Year);

The above conditional constraint specifies that, for the month of February in a leap

year, the day must be less than or equal to 29. Another way of reading this constraint is as

follows: If the day is more than 29, then either the month is not February or it is not a leap

year. Note that the conditional constraint will be satisfied for a day of 30 in February for a

non-leap year. This is because this constraint alone does not capture the full behavior of a

date object. A complete definition of a date as a constrained object is given in Section 3.2.

Conditional constraints can be used to control object creation dynamically. For exam-

ple, consider the following conditional constraints over attributes X, Y, and Shape of a

certain class:

Shape = rectangle(X, Y) :- Input = 1

Shape = circle(X, Y) :- Input = 2

Together, they can be used to set a Shape attribute of, for example, a node of a binary tree.

In the above example, X and Y stand respectively for the width and height inputs of the

rectangle constructor; and they stand respectively for the center and radius attributes

of the circle constructor.

Although in certain cases the behavior of a conditional constraint may resemble an

if expr then expr statement, it is fundamentally different from an imperative if-then

statement. The consequent is enforced if at any point in the program the antecedant is

entailed by the state of the constrained object.

We can also consider an if-then-else form of conditional constraint having two conse-
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quents1. For such a constraint to be satisfied, the following must hold: When the antecedant

is entailed by the state of the constrained object, the ‘then consequent’ must evaluate to true;

and when the negation of the antecedant is entailed by the state of the constrained object,

the ‘else consequent’ must evaluate to true. As with the basic form of conditional constraint

this type of if-then-else constraint is different from the imperative if-then-else statement.

Quantified Constraint. A quantified constraint is a shorthand for stating a relation where

some participants of the relation range over enumerations (enum), i.e., the elements of a set.

A quantified constraint is defined in terms of a quantified variable, an enumeration, and the

constraint being quantified. The quantification can be either universal or existential. Ex-

amples:

forall C in Cmp: C.I = I;

exists N in Nodes: N.Value = 0;

For a universally quantified constraint to be satisfied, it must be satisfied by every member

of the enumeration. On the other hand, an existentially quantified constraint is satisfied if

it is satisfied by at least one of the members. The constraint in the body of a quantified

constraint can be a simple, quantified, creational or conditional constraint. Any number of

nesting of universally and existentially quantified constraints is permitted. The enumera-

tion may be a variable whose type is an array, or an explicitly specified array of integers.

We provide a shorthand M..N to represent the sequence of integers from M to N. The quan-

tification can thus range over the elements of an array or the indices of an array.

Creational Constraint. A creational constraint specifies the creation of an object of a

user-defined class and binds it to an attribute. It is of the form complex id = new class id(

terms ) where class id refers to the class being instantiated. A creational constraint is

satisfied by invoking the constructor of class id with terms as arguments. Therefore, the

class being instantiated must have a constructor with corresponding arity. For example,

R1 = new component(V1, I1, 10);

creates an instance of the component class and binds it to the attribute R1. The argument

to a constructor may be a constant or an attribute. It may also be the special symbol .
1This if-then-else form of conditional constraint will be provided in subsequent versions of the Cob lan-

guage
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This may be useful when creating a collection of instances whose attributes are unrelated.

A creational constraint may appear as the head of a conditional constraint, and thus object

creation can be predicated upon by a conjunction of literals.

Literal. A literal is an atom or the negation of an atom.

literals :: � literal � � literal � �

literal :: � � � ��� � atom

atom :: � predicate id
�
terms �

� constraint atom

If p is an n-ary predicate symbol and t1 � ����� � tn are terms then p(t1 � ����� � tn) is an atom. An

atom may also be a constraint atom which has been defined earlier. An atom may involve

a built-in predicate or a user-defined predicate defined below.

User-defined Predicate. A user-defined predicate stands for an n-ary relation over terms

and is defined using Prolog-like rules:

pred clauses :: � pred clause
� � pred clause

� � �

pred clause :: � clause head : � clause body

pred clause :: � clause head
�

clause head :: � predicate id
�
terms

�
�

clause body :: � goal � � goal � �

goal :: � � � ��� � predicate id
�
terms

�
�

terms
�

:: � term
� � � term

� � �

term
�

:: � constant � var
�

� function id
�
terms

�
�

Note that the only variables that may appear in a term are attributes or those that are in-

troduced in a quantification. These variables are generated by the non-terminal var. In the

above grammar, the variables that appear in a pred clause are the usual logic variables of

Prolog. These are referred to as var
�

in the above syntax. Note that when a predicate is

invoked in the constraints or constructor clause of a class, its arguments are terms. For the
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sake of keeping the description relatively simple, we do not present all the syntactic details

of user-defined predicates at this point. We keep to the above syntax for now and present

more details when required in Chapter 6 and in the case study in Section 7.3. The complete

syntax of Cob programs is given in Appendix A.

We distinguish between ordinary predicate id and constraint predicate id. The former

are defined by the user whereas the latter are a set of predefined predicates (as in CLP-like

languages) whose properties are known to the underlying constraint satisfaction system.

The declarative semantics of a user-defined predicate are identical to the predicates

found in logic programming languages, and their computation is based on resolution.

Constructor. A constructor is a means of creating an instance of a class. A class can have

one or more constructors and a class without a constructor must be declared abstract.

constructor clauses :: � constructor clause �

constructor clause :: � constructor id
�
formal pars � � constructor body �

constructor body :: � constraints

The constructor id must be identical to the name of the class. The body of a constructor

contains a sequence of ; separated constraints. These constraints hold throughout the life

of an instance of the class and should not be interpreted as one-time/initialization-only

constraints. When a creational constraint instantiates a class, its arguments are passed on

to a call on the constructor having appropriate arity. Hence the different constructors of a

class should differ by arity.

3.2 Examples

In this section we present examples of constrained object models to illustrate the syntax of

Cob and its application to engineering modeling.

3.2.1 Conditional Constraints (Date Object)

We model a date of the Gregorian calendar (the commonly used one) as a constrained ob-

ject. According to this calendar, the years are divided into two classes: common years and
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leap years. A common year is 365 days in length; a leap year is 366 days, with an inter-

calary day, designated February 29. Leap years are determined according to the following

rule: every year that is exactly divisible by 4 is a leap year, except for years that are exactly

divisible by 100; these centurial years are leap years only if they are exactly divisible by

400. The definition of the date class below captures the above description. This exam-

ple illustrates the use of the various constructs of the Cob language, including the use of

conditional constraints.

class date
�

attributes

int Day, Month, Year;

constraints

1 � � Year;

1 � � Month; Month � � 12;

1 � � Day; Day � � 31;

Day � � 30 :- member(Month, [4,6,9,11]);

Day � � 29 :- Month = 2, leap(Year);

Day � � 28 :- Month = 2, not leap(Year);

predicates

member(X, [X| ]).

member(X, [ |T]) :- member(X,T).

leap(Y) :- Y mod 4 = 0, Y mod 100 <> 0.

leap(Y) :- Y mod 400 = 0.

constructor date(D, M, Y)
�

Day = D;

Month = M;

Year = Y;

�
�
The conditional constraint

Day � � 29 :- Month = 2, leap(Year)
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requires Day � � 29 if the Month is February and the Year is a leap year. Computa-

tionally, an important difference between a conditional constraint and a Prolog rule is the

following: if the head of a conditional constraint evaluates to true, then the body need not

be evaluated; and, if the head evaluates to false, the body must fail in order for the condi-

tional constraint to be satisfied. In contrast, in Prolog, if the head of a rule unifies with a

goal, then the body of the rule must be evaluated; and, if the head does not unify, then the

body need not be evaluated.

As mentioned earlier in Section 3.1 under conditional constraints, the above constraint

alone is not sufficient to ensure that the month of February has at most 29 days. The

conditional constraint

Day � � 28 :- Month = 2, not leap(Year)

requires Day � � 28 if the Month is February and the Year is not a leap year. The

above two conditional constraints together ensure that the month of February, in any year,

has at most 29 days.

The above definition can be used to validate a given combination of Day, Month, and

Year values, and also be used to generate, for example, a range of Month values for a

given a combination of Day and Year. For example, if the Day is set to 31 and the Year

to 1999, the set of possible values for Month can be deduced to be any integer between 1

and 12 but not 4, 6, 9, 11, or 2. While 1 � � Month � � 12 is directly obtained from the

unconditional constraints for Month, it is possibly to deduce, by a process of constructive

negation of the goal member(Month, [4,6,9,11]), that Month is not 4, 6, 9, or 11.

And, it can deduce that Month is not equal to 2 from the conditional constraint Day � �

28 :- Month = 2, not leap(Year). A possible question can also be posed by

providing a range of days and years and asking for the range of months that would together

make a valid date.

The above representation of a date as a constrained object illustrates how the behavior

of an object can be stated declaratively through constraints. Conditional constraints pro-

vide a novel declarative means of expressing state dependent behavior. They can generate

new constraints or new instances of objects depending upon the state of the model. The

operational semantics of conditional constraints not only subsume the usual conditional
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statements (if-then) found in imperative languages, they also provide a truly declarative

means of reasoning about the conditional behavior of an object. The ‘date’ example also

illustrates the use of predicates within a constrained object class definition. The logic-based

definitions of relations or functions via predicates facilitates a declarative specification that

can be reasoned with in order to determine the state of the object.

3.2.2 Constraints over Arrays (Heat Plate Object)

We would like to model a heat plate in which the boundary temperatures are specified. The

temperature at any interior point is specified mathematically by a 2D Laplace Equation

( � 2φ �
∂2φ
∂x2

� ∂2φ
∂y2 ). This equation can be formulated in a discrete manner by a constraint

which states that the the temperature at a point in the interior of the plate is the average of

the temperature of its neighboring four points.

A Cob representation of this problem is shown below in a class called heatplate.

The constructor initializes the temperature of the border of an 11 x 11 plate. The nested

quantified constraint sets up the constraint relating the temperature of an interior node to

its neighbors. When creating an instance of the heatplate class we can initialize the tem-

perature at the border and the Cob computational engine will compute the heat at all the

interior points. A diagram of a heat plate is shown in Figure 3.1.

class heatplate
�

attributes

real [11][11] Plate;

constraints

forall I in 2..10:

forall J in 2..10:

Plate[I-1,J]+Plate[I+1,J]+Plate[I,J-1]+Plate[I,J+1] =

4*Plate[I,J];

constructor heatplate(A,B,C,D)
�

forall M in 1..11: Plate[1,M] = A;

forall N in 1..11: Plate[11,N] = B;

forall K in 2..10: Plate[K,1] = C;
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Figure 3.1: A Heat Plate

forall L in 2..10: Plate[L,11] = D;

�
�

The above example illustrates the expressiveness of quantified constraints. The nested

quantified constraint stated in the heatplate class iteratively places a constraint between

every interior point of the heatplate and its four neighbors. When an instance of the heat-

plate is created with the boundary temperatures passed as arguments to the constructor,

these constraints are solved as a set of simultaneous linear equations to obtain the values at

the interior points. If all the border points are not initialized, i.e., the constructor is passed

some constants and some variables as arguments, then the computational engine returns as

answer the value of the interior points in terms of these variables. In other words, a partial

model along with the simplified constraints is returned.

The above is a classic problem modeled in CLP(R). As a comparison, we show below

a CLP(R) representation of the heat plate given in [45]. The variables I, J in the code

below correspond to the indexing variable of the Cob code above, with I0 corresponding

to to I-1 above and I1 corresponding to I+1 above. Compared to this CLP(R) represen-
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tation, the Cob representation of the problem is easier to understand and very concise due

to the use of quantified constraints.

laplace([ , ]).

laplace([I0, I, I1|T]):-

laplace vec(I0, I, I1),

laplace([I, I1|T]).

laplace vec([ , ], [ , ], [ , ]).

laplace vec([ I0J0, I0J, I0J1|T1],

[ IJ0, IJ, IJ1|T2],

[ I1J0, I1J, I1J1|T3]):-

I0J + I1J + IJ0 + IJ1 = 4 * IJ,

laplace vec([I0J, I0J1|T1], [IJ, IJ1|T2], [I1J, I1J1|T3]).

main:- X =

[

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[100, , , , , , , , , , 100],

[100, , , , , , , , , , 100],

[100, , , , , , , , , , 100],

[100, , , , , , , , , , 100],

[100, , , , , , , , , , 100],

[100, , , , , , , , , , 100],

[100, , , , , , , , , , 100],

[100, , , , , , , , , , 100],

[100, , , , , , , , , , 100],

[100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100]

],

laplace(X).

It is clear that the Cob model of the problem is far more readable than the above CLP(R)

model. One reason is that the use of constrained objects allows a clear and separate state-

ment of an object, its components, and the constraints governing their state. The other
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reason is that quantified constraints provide a concise means for stating a large collection

of iterative constraints. Thus, while the CLP(R) program can provide a solution, it is diffi-

cult to see the constraints that influence it (having variable names in the CLP(R) program

correspond to the variable names in the Cob code does help). Also, how the constraints

relate to the structure of the heatplate is not clear in the CLP(R) model.

Apart from readability, there are several other advantages to modeling the problem in

Cob. In the above CLP(R) model of the problem, changing the size of the matrix or the

initial values of the border is a cumbersome process that must be done manually and hence

is likely to be error prone. In contrast changes to the size of the matrix or to its initialization

in the Cob model are easy and quick to incorporate. The same Cob model can be used to

create different instances of a heatplate with the border points set to different temperatures.

Later in section 5.2.2 we show a different way to model this problem in Cob, such that the

size of the matrix is an argument to the constructor, making it even easier to modify the

size at run-time.

3.2.3 Constraints over Aggregated Objects (Simple Truss)

To illustrate the use of constrained objects in engineering design, we define Cob classes

needed to model a simple truss structure, as shown in Figure 3.2. A truss consists of bars

placed together at joints. The constraints in the beam class express the standard relations

between its modulus of elasticity (E), yield strength (Sy), dimensions (L, W, H), moment

of inertia (I), stress (Sigma) and the force (F) acting on the beam. Depending upon the

direction of this force (inward or outward), it may act as either the buckling or tension

force and will accordingly be related to the other attributes by different constraints. These

relations are expressed as conditional constraints in the beam class. These conditions are

taken from the text by Mayne and Margolis [84].

class beam
�

attributes

real E, Sy, L, W, H, F, I, Sigma;

constraints
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Figure 3.2: A Simple Truss

Pi = 3.141 ;

L > 0; W > 0; H > 0; I > 0;

I = W * H * H * H / 12;

(I = - F * L *L /(Pi * Pi*E)) :- F < 0;

(F = Sy * W * H) :- F > 0;

constructor beam(E1,Sy1,L1,W1,H1,Sigma1,I1,F1)
�

E=E1; Sy=Sy1; L=L1; H=H1; W=W1;

Sigma=Sigma1; I=I1; F=F1;

�
�

The expressions on the left hand side of the two conditional constraints,
�
Pi2 � E � I � �

L3

and Sy � W � H, represent respectively, the maximum tension and compression forces that

can be applied to a bar without causing deformation. By equating them to an applied non-

zero force, these expressions can be used to compute the minimum height or width for a

bar required to support the applied force without the bar getting deformed. If the force is

zero, these equations are not applicable.

A bar is a beam placed at an angle (A), and a load is a force applied at a certain an-

gle. The two classes below model bars and loads. The two ends of a beam form a part of

two different joints and hence are associated with two different angles. Hence, the same

beam object can be used to form two different instances of a bar class. The joint class

aggregates an array of bars and and an array of loads (that are incident at the joint), and its

constraints state that the sum of the forces in the horizontal and vertical directions respec-
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tively must be 0. In this example, we restrict the law of balance of forces to two dimensions;

in practice, we may need to use three dimensions (x, y and z).

class bar
�

attributes

beam B; real A;

% beam B placed at angle A

constraints

0 <= A; A <= 360;

constructor bar(B1, A1)
�

B = B1; A = A1;

�
�

class load
�

attributes

real F; real A;

constraints

0 <= A; A <= 360;

constructor load(F1, A1)
�

F = F1; A = A1;

�
�

class joint
�

attributes

bar [] Bars; load [] Loads;

constraint

sum X in Bars: (X.B.F * sin(X.A)) +

sum L in Loads: (L.F * sin(L.A)) = 0;

sum Y in Bars: (Y.B.F * cos(Y.A)) +

sum M in Loads: (M.F * cos(M.A)) = 0;

constructor joint(B1, L1)
�

Bars = B1; Loads = L1;

�
�

The Cob classes defined above can be used to build a model of a truss on which loads

may be incident at different points. Instances of the load and bar class are aggregated

together to form various instances of joints, and the underlying computational engine tries
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to solve the constraints of each of the instances of joints, bars, beams, etc. to obtain the

forces playing in each member of the truss. If the incident loads are known, the model

returns the forces in each member in terms of the unknown loads. The above model can be

used to validate a design of a truss; test how much load it can bear; decide the material (e.g.

steel) for the beams; and decide the thickness of the beams for a given load. By adding

trigonometric constraints to the model, it is also possible to compute the length of each

beam given the angle it forms at each joint. The above model can be extended to compute

bending force in a bar when force is applied perpendicular to the bar. A bending force

causes tension and compression in the lower and upper surfaces of the bar respectively and

is related to the attributes of a bar by the equation F = (8*I*Sigma)/(H*L).

Constrained objects allow a modular representation of the truss built using subcompo-

nents. There is a direct correlation between classes/objects and the physical components

of the real structure, and hence the Cob model is easier to understand, use and manipulate

than a pure constraint representation, as in CLP(R). For example, in the Cob representation,

it is easy to use the same beam instance in different bar objects by simply using the same

instance name of the beam. In contrast, in a CLP(R) representation, one has to keep track of

the individual variables representing forces, angles, lengths etc. for every beam and reuse

them where appropriate. Such a representation is not only non-intuitive, it is also prone to

mistakes for large structures. The above constrained object model makes it easy to modify

the number of bars, their angle as well as the loads. Also note that this model involves

non-linear constraints. Such constraints cannot be solved in CLP(R). Our computational

engine described in Chapter 5 provides a means by which more powerful symbolic math

packages can be employed to solve such non-linear constraints.

3.2.4 Constraints with Inheritance and Aggregation (DC Circuits)

We model the well-known example of a series/parallel electrical circuit as a constrained

object. The electrical circuit in Figure 3.3 consists of a battery connected to a series/parallel

combination of resistors. We model the components and connections of such circuits as

objects, and their properties and relations as constraints on the attributes of these objects.

Given below is the code that defines these classes.
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The component class below models any electrical entity that is characterized by its

resistance and obeys Ohm’s law. The attributes of this class represent the voltage, current

and resistance and the constraint represents Ohm’s law.

class component
�

attributes
real V, I, R;

constraints
V = I * R;

constructors component(V1, I1, R1)
�

V = V1;
I = I1;
R = R1;

�
�

When a set of components are connected in series, the behavior of the resultant series

object is similar to a component in that it is characterized by its effective voltage, current

and resistance which are related by Ohm’s law. For this reason, the series class is

made a subclass of the component class and aggregates an array of components and

is thus a recursive class definition. The series class inherits the voltage, current and

resistance attributes and the Ohm’s law constraint from the component class and further

defines some constraints: its effective resistance and voltage is the sum of the resistances

and voltages of the components it aggregates respectively; its effective current is equal to

the currents through each of its constituent components. These relations are modeled as

constraints in the series class. The parallel class is similarly defined.

class series extends component
�

attributes
component [] Cmp;

constraints
forall C in Cmp: C.I = I;
sum C in Cmp: C.V = V;
sum C in Cmp: C.R = R;

constructors series(A)
�

Cmp = A;

�
�
class parallel extends component

�
attributes
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component [] PC;
constraints

forall X in PC: X.V = V;
sum X in PC: X.I = I;
sum X in PC: 1/X.R = 1/R;

constructors parallel(B)
�

PC = B;

�
�

The battery class represents a source of constant DC voltage (V). The connect

class models the connection of a battery across a component and equates their effective

voltages.

class battery
�

attributes
real V;

constructors battery(V1)
�

V = V1;

�
�
class connect

�
attributes

battery B;
component CC;

constraints
B.V = CC.V ;

constructors connect(B1, C1)
�

B = B1;
CC = C1 ;

�
�

The above Cob classes can be used to model any series/parallel combination of resis-

tors. Given initial values for some attributes, this model can be used to calculate values

of the remaining attributes. For example, the class samplecircuit below models the

circuit given in Figure 3.3. Given the battery voltage and resistances, this model can com-

pute the current through every component of the circuit. In general, any of the attributes of

a Cob model may be left unspecified and the underlying computational engine will return

as answer the constraints on these attributes that must be satisfied for the Cob model to be

valid.
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Figure 3.3: Simple Electrical Circuit

class samplecircuit
�

attributes
battery B;
connect C;
component R1, R2, R3, R4, P1, P2, S;
component[] R12, R34, P12;

constructors samplecircuit()
�

R1 = new component(V1, I1, 10);
R2 = new component(V2, I2, 20);
R3 = new component(V3, I3, 20);
R4 = new component(V4, I4, 20);
P1 = new parallel([R1,R2]);
P2 = new parallel([R3,R4]);
S = new series([P1,P2]);
B = new battery(30);
C = new connect(B, S);

�
�

The above Cob classes illustrate the use of quantified constraints where the quantifica-

tion ranges over the elements of an array. The attribute Cmp of the series class represents

an array of components and the quantified constraint forall C in Cmp: C.I = I

iterates over every element of Cmp. As shown in the code for samplecircuit, the ele-

ments of Cmp can bind with variables of type component or any of its subclasses (viz.,

series, parallel). This polymorphism allows a variable declared to be of type T to
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refer to an instance of any subclass of T. Such a variable can be used to access only those

attributes of the instance that are inherited from class T. The series class inherits from

component and also aggregates a set of components illustrating that a recursive class

definition can be meaningful in Cob.

3.3 Cob Modeling Environment

In addition to the text based development of Cob code, we provide two types of modeling

tools for developing Cob models. A domain-independent tool is provided for authoring Cob

class diagrams. This tool can be used to generate as well as run Cob programs that model

complex systems from any domain. The visual aspects of this tool were implemented by

Rachna Jotwani, a recent graduate student of the Department of Computer Science and

Engineering, University at Buffalo.

The process of building models of engineering structures is greatly aided if there is a

visual tool that allows engineers to assemble parts of a structure. We provide a collection of

domain dependent visual interfaces for drawing certain engineering structures. The com-

piler underlying each of these tools translates the drawings into Cob code which can then be

executed (to obtain answers) within this tool. Currently there are tools under development

for drawing analog as well as DC electrical circuits, trusses (civil engineering), and hydro-

logical surfaces. In Section 3.3.2 we describe the modeling tool for drawing trusses. The

visual aspects of this tool were implemented by Kapil Gajria, Abhilash Dev and Narayan

Menon, recent graduate students of the Department of Computer Science and Engineering,

University at Buffalo. We now describe these two types of modeling tools in more detail.

3.3.1 Domain Independent Interface

Consider the Cob classes defined for electrical circuits in Section 3.2.4. The Cob class

diagram that represents these classes and their relationships is shown in Figure 3.4. Every

node of the class diagram represents a class definition. The primitive attributes and con-

straints of the class are described inside the node. The aggregation relation A � � B indicates

that class A is composed of one or more constrained objects of the user-defined class B. In
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Σ ε1/R =     C   PC:  1/C.R

Figure 3.4: Class Diagram for Circuit Example

other words, class A has one or more attributes of type B. Since a constrained object class

can be composed of one or more different classes, there can be an aggregation relation from

A to B as well as from A to other classes. A label of 1..1 or 1..n on the aggregation

relation A � � B indicates that that the relation is one-one (class A aggregates one object of

type B) or one-many (class A aggregates n objects of type B) respectively. The subclass

relation C � D states that C is a subclass of D. This notation is similar to that of the Unified

Modeling Language (UML) [95].

Constraint-UML. We provide a domain-independent interface for drawing constrained

object class diagrams. This interface consists of a palette of buttons for creating and editing

the nodes and edges of a Cob class diagram (see Figure 3.5). The button for creating a node

(class definition) places a node on the canvas containing a default skeletal class definition.

By right-clicking on this node one can open the specifications of the node. This pops open

a window (shown in Figure 3.6) through which the modeler can define or edit the class

name and its primitive attributes, constraints, predicates and the constructors of the class.

There are buttons for defining relationships of inheritance and aggregation between
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Figure 3.5: Snapshot of CUML tool with Class Diagram for Circuit Example

Figure 3.6: Popup window for entering/editing constraints and other specifications of a

Class
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classes by drawing the appropriate edges between them. The tool includes buttons for

cutting, copying and pasting parts of the class diagram. The tool places the nodes in a de-

fault arrangement which can be modified by the user by dragging and dropping the nodes

onto any part of the main canvas. The diagrammatic notation used is similar to the Uni-

fied Modeling Language, with extensions to describe constraints, and we refer to it as the

Constraint-UML or CUML. Figure 3.5 shows a snapshot of this tool in which the class

diagram of Figure 3.4 has been drawn. The modeler can choose to see the class diagram

with full details of the attributes and constraints or, to reduce clutter, hide the details. In the

snapshot shown in Figure 3.5 the details of the classes have been hidden.

In addition to the classes shown in Figure 3.5, the CUML tool can be used to build the

class corresponding to a particular circuit, i.e., an assembly of components. For example,

consider the electrical circuit shown in Figure 3.3. The class samplecircuit of Section 3.2.4,

corresponding to this circuit, can be defined using the CUML tool. Figure 3.7 shows the

window through which the constructor of this class is specified.

Figure 3.7: Popup Window through which the constructor of a class can be defined/edited.

A constrained object class diagram stores sufficient information for automatic genera-

tion of Cob code. The CUML tool described above can generate the Cob code correspond-

ing to a class diagram. By clicking on the Tool button and selecting the create Cob
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Figure 3.8: Snapshot of CUML tool showing the Cob code generated from the Class Dia-

gram of Figure 3.5.

code option, the Cob code corresponding to the class diagram can be generated. This code

can be viewed by clicking on the Cob code tab (see Figure 3.8). Thus, an entire Cob pro-

gram can be written and edited via its class diagram using this tool. The user has the choice

of viewing different aspects of the class diagram: in full detail showing the attributes and

constraints of each class; only the classes and their relationships (this view is shown in

Figure 3.5); or the textual Cob code (Figure 3.8). The texutal Cob code generated from a

class diagram can be viewed through this tool, but it cannot be edited directly. In order to

change the generated Cob program/code, the original class diagram should be edited and

then recompiled (using the create Cob code option to generate the modified code.

Once the complete class diagram is developed, the tool can be used to compile the

diagram to generate the corresponding Cob code and subsequently, the execute button can

be used to run the Cob code to obtain answers. The compilation and execution of the Cob

code are described in detail in Chapters 4 and 5. The answers (values for variables) obtained

by running the code are displayed back on the class diagram. The programmer can then
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modify the class diagram, generate the corresponding modified Cob code, and recompile

and re-execute the generated program any number of times to observe its behavior.

3.3.2 Domain-Specific Interfaces

We now describe the visual drawing interface for developing Cob models of trusses.

Cob Diagrams of Trusses We provide a domain-specific tool for modeling trusses. The

visual aspects of this tool were implemented by Kapil Gajria, a recent graduate student of

the Department of Computer Science and Engineering, University at Buffalo. This model-

ing tool provides a palette of buttons for creating instances of bars and loads. Member of

a truss can be placed together at a joint by merging the ends of two or more bars. Figure

3.9 shows a truss drawn using the truss drawing tool. The interface has a predefined library

of classes corresponding to each component (bar, load, joint) of the structure. Placing the

icon of a component on the canvas creates an instance of the corresponding class. To cre-

ate an instance of a beam, the user clicks on the beam icon. This pops open a window

(Figure 3.10) through which the user can enter values for the attributes of a beam (e.g. its

Young’s modulus, yield strength, length, width, etc.) and any instance-level constraints

on the attributes (e.g. force must be less than 100lbs). Any or all attributes may be left

uninstantiated or undefined (i.e., specified by a variable). Every instance of a component is

labeled with a default name.

Once the drawing is completed, the user can compile the drawing to generate the textual

Cob code corresponding to the diagram. This is done by clicking on the Compile button

from the Tools menu. Below is a part of the code generated for the truss in Figure 3.9.

class sampletruss
�

attributes

beam AB, BC, CD, BD, AC; load IAV, IAH, ICV, IDV;

.....

joint JA, JB, JC, JD;

constraints

W1 = H1; W2 = H2; W3 = H3; W4 = H4; W5 = H5;
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Figure 3.9: Snapshot of the Truss Drawing Tool showing a Sample Truss

.....

constructor sampletruss()
�

AB=new beam(Es,Sy,10.4,W1,H1,Fab bn,Fab bk,Fab t,Sigab,Iab,Fab);

BC=new beam(Es,Sy,7.3,W2,H2,Fbc bn,Fbc bk,Fbc t,Sigbc,Ibc,Fbc);

CD=new beam(Es,Sy,12.7,W3,H3,Fcd bn,Fcd bk,Fcd t,Sigcd,Icd,Fcd);

BD=new beam(Es,Sy,14.7,W4,H4,Fbd bn,Fbd bk,Fbd t,Sigbd,Ibd,Fbd);

AC=new beam(Es,Sy,7.3,W5,H5,Fac bn,Fac bk,Fac t,Sigac,Iac,Fac);

IAB = new bar(AB,Pi/4); IAC = new bar(AC,0);

IAV = new load(Fav,Pi/2); IAH = new load(Fah,0);

Ba = [IAB, IAC]; La = [IAV, IAH]; JA = new joint(Ba,La);
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Figure 3.10: Popup Window for Entering Values for Attributes of a Beam

.....

�
�

By clicking on the Run button from the Tools menu, the generated Cob code is com-

piled and executed. The answers resulting from this execution are displayed on the dia-

gram. The user can get different views of the structure: the diagram; the Cob code; the

translated CLP(R) code; and the window showing the script of the execution. The modeler

can click on any component of the diagram and get information about the instance, its input

constraints and output constraints.

A Cob diagram can be saved and viewed at a later time. To modify an existing diagram,

the modeler can use the mouse buttons to drag and drop parts of the diagram on the canvas

or erase button to delete parts of the diagram. To modify the values of attributes of a

component or change its constraints, the modeler can right click on the component to get

its information displayed on a separate window and then edit the information through this

window. The modeler can then click the Run button to view the results of the modified

diagram.
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3.4 Related Work

A number of languages have been developed by integrating objects with constraints and

object-oriented programming with logic programming. While some of the integration is

motivated purely from a programming language standpoint - to develop a language that

has the advantages of both paradigms - some efforts are motivated by the application

area, namely, interactive development of user interfaces, drawing and manipulation of

geometrical figures, data integrity, etc. Motivations range from making object-oriented

programming more declarative to making logic programming more modular to using the

multi-programming paradigm for modeling problems from the engineering/physical/user-

interface domains. This section gives an overview of several such languages, their moti-

vation and their applications. In surveying the related work we categorize these languages

according to their underlying programming paradigms.

3.4.1 Constrained Objects Languages

One way to make object-oriented programming more declarative is to provide constructs

for explicit specification of relations that otherwise hold implicitly in imperative code. The

purpose of making the relations explicit is to make the code more readable, less brittle

to change and more reusable by making the patterns of interaction between objects easier

to detect. Languages motivated by these reasons try to simulate imperative or procedu-

ral computation of object-oriented programming via automatic satisfaction of constraints

and/or pre/post conditions. These languages give a declarative specification of the state of

an object and hence are closely related to our work on constrained objects.

ThingLab. An early forerunner in the area of constrained objects is the work of Alan

Borning on ThingLab [10]. This language is intended for interactive graphical simulations

in physics and geometry, e.g, geometric objects like lines and triangles, electrical circuits,

mechanical linkages, and bridges under load. ThingLab is an object-oriented language with

constraints for specifying the relation between parts of an object. A constraint consists of

a rule and a set of methods for satisfying the constraint. The rule is used to test how well

the constraint is satisfied. Each method has a message plan that describes how to invoke
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the method and specifies its side effects. The system uses this information, to decide on a

constraint satisfaction plan when a state change occurs. The order of the methods indicates

the user’s preference for how the constraint should be solved and can be thought of as sim-

ulating constraint hierarchies. Classes can be defined by example, by creating prototypical

instances that serve as the default instance of the class. Multiple inheritance of constraints

along with method overriding is permitted. The user can view and edit simulations/objects

through a graphical user interface similar to that of Smalltalk with a window provided for

drawing and manipulating objects. The ThingLab system is built on top of Smalltalk and

uses a constraint solver based on local propagation for constraint satisfaction. For cyclic

numeric constraints, it uses relaxation, an iterative approximation algorithm. Although

constraints can be stated explicitly within a class definition in ThingLab, the programmer

has to provide the methods that will ensure that the constraints are satisfied. This is in

contrast to the constraints provided in the Cob language, which are a declarative statement

of relations between attributes and are not accompanied by any user defined algorithm for

solving them.

Siri. The constrained object language Siri [55], developed by Bruce Horn integrates con-

straints into an object-oriented framework. Object encapsulation, inheritance, constraints

and message passing are modeled using constraint patterns. A constraint pattern is of

the form Label: Prefix
�

Body � ’Type; This creates an object called Label of type ’Type

which inherits from the objects listed in Prefix and Body describes the object’s implemen-

tation. The Body consists of constraint expressions (constraints), imperative expressions or

nested constraint patterns. Variations of this basic form of a constraint pattern can represent

classes, instances, methods or control structures. Constraints define relationships between

the attributes of an object. A relationship may be equality, arithmetic or user-defined.

Methods are specified by declaring invariants, i.e., the constraints that must hold during

the execution of a method, and by specifying which attributes must remain unchanged and

which may change and how they should change during the method execution. Multiple

inheritance is provided and is based on the BETA [69] prefixing mechanism for resolving

name conflicts. Constraint patterns are an extension of the pattern in BETA. Encapsula-

tion is preserved by allowing state change (externally) only through state change methods.
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Constraints are also allowed only on ‘owned’ attributes (an objects owns an attribute if it

is its sole modifier). The Siri language is implemented in C and extends Bertrand [72], a

language aimed at graphics applications. Siri uses Bertrand’s augmented term-rewriting for

equation-solving and can handle limited types of constraints: simple linear equations and

certain non-linear algebraic constraints over real numbers. Although Siri gives a uniform

representation of object-oriented constructs through constrain patterns, it cannot handle

the wide variety of features available in Cob, viz., conditional constraints and existentially

quantified constraints, predicates, symbolic constraints and optimization.

Kaleidoscope. The Kaleidoscope ’91 [30] language integrates constraints and object-

oriented programming for developing interactive graphical user interfaces. The main issue

that it addresses is solving constraints over the types of variables as well as constraints over

the values of variables. User-defined constraints are simplified until a primitive constraint

solver can be used to solve the constraints over the primitive domain. The compiler tries to

determine statically which constraints will be active at run-time, and uses this knowledge

to produce a short sequence of instructions instead of a run time call to a constraint solver.

There are three primitive domain constraint solvers, and provision is made so that they

can communicate to solve inter-domain constraints. In Kaleidoscope ’93, constraints are

solved according to their type: class/type constraints, identity constraints, or value/structure

constraints. This ‘constraint imperative language’ uses constraints to simulate imperative

constructs such as updating, assignment, and object identity [77, 75]. These are important

issues in a constraint imperative language, but not for a declarative object-oriented language

such as Cob. For the class of modeling applications that we target, it is not essential for

us to consider such imperative concepts. In our modeling scenarios, model execution and

the model revision are carried out in mutual exclusion of one another. Changes are made

at the level of the modeling environment. Thus we have a clear separation of the declar-

ative and procedural parts of a constrained object. Also, Kaleidoscope does not provide

many features available in Cob such as conditional constraints and existentially quantified

constraints, predicates, and optimization.
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Modelica. Modelica [34] is a constrained object language for modeling and simulation of

engineering structures. Modelica classes have a variety of numeric constraints, including

quantified and the if-then-else form of conditional constraints, for modeling the behavior

of the physical component a class represents. The underlying system uses Matlab [109] for

constraint solving. Classes, inheritance, and aggregation are used to represent the structure

of the physical system. Separate constructs are provided for performing imperative changes

to the state. Modelica also provides visual tools for drawing models of different types of

engineering structures through a graphical user interface. Although the constructs, visual

interfaces, and applications of this language are very similar to our work, the constrained

object paradigm that we present makes greater use of the power of constraint (logic) pro-

gramming by providing the following features: optimization, answer constraints represent-

ing under specified models, constraint queries, logic variables, predicates, and symbolic

constraint solving. Our novel scheme for implementation of constrained objects (described

in Chapters 4 and 5) us to define formal semantics for constrained objects. No other con-

strained object language provides such rigorous formal semantics. Also, our implemen-

tation techniques (described in Chapter 5) facilitate the development of unique interactive

execution and visual debugging interfaces based on the underlying object structure of a

Cob model.

Other constrained object languages include ASCEND IV which is an equation-based

environment featuring a strongly-typed, object-oriented model-description language. It

has interactive support tools for modeling, debugging, and solving systems with nonlinear

algebraic or differential equations. In addition to constraints , it also allows imperative

methods to be written within the model definitions. However, ASCEND does not deal

with non-mathematical constraints (an example of such constraints in Cob is given in the

document layout example in Chapter 7). Another constrained object language (also named

COB) [90] is intended for analyses integration and automated design. It handles numeric

constraints but does not appear to provide logic variables, conditional constraints, aggregate

constraints or preferences.

Compared to Cob, the above languages provide only a limited capability for expressing

constraints, and also provide no support for handling multiple solutions to constraints. Al-
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though ThingLab has a preference construct that orders constraint solving methods, it does

not address the more general problem of optimization. The Cob language and modeling en-

vironment facilitates a systematic approach to modeling engineering systems by providing

a rich set of features including arithmetic, symbolic, non-linear constraints, quantified and

conditional constraints, preferences as well as visual interfaces for developing Cob models.

3.4.2 Constraints, Logic and Objects

The use of constraints for problem modeling can be traced to the work on Sketchpad by

Sutherland [108]. Sketchpad is a general-purpose system for drawing and editing pictures

on a computer based on the notion of constraints. The system used local propagation for

constraint solving and had multiple cooperating solvers. Leler’s Bertrand language and

system integrated term-rewriting with linear constraint solving and was aimed at graphics

applications [72]. A major breakthrough was achieved when Jaffar and Lassez integrated

logic programming with constraint solving in their CLP family of languages [59]. Other

important developments in the area of constraint programming include van Hentenryck’s

work on incorporating finite-domain constraint satisfaction techniques into Prolog [49];

and Saraswat’s work on the family of concurrent constraint languages [99]. Research at

the UNH Constraints Computation Center under Freuder is related to our efforts. From a

language standpoint, there are two important differences: (i) we integrate the concepts of

object and constraint, and (ii) we adopt the more general CLP paradigm as opposed to a

pure constraint language. Our approach to constraints and preferences builds upon the work

on PLP given in [38, 40] which subsumes the paradigms of CLP as well as HCLP (Hierar-

chic CLP) [40]. Firstly, CLP does not support conditional constraints or preferences. Also,

our provision of conditional constraints allows object creation to take place dynamically

and be controlled by constraint satisfaction.

Efforts directed at making logic programming more modular try to give a notion of

state to logic programs to increase their (re)usability. By providing a multi-paradigm pro-

gramming language, they hope to increase understandability of a complex software system,

its synthesis and its analysis. They aim at extending logic programming for flexible struc-

turing, sharing and reuse of knowledge in large logic programming applications. We give
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below a survey of work in multi-paradigm programming involving constraint, logic and

object-oriented programming that is relevant to our work on constrained objects.

Objects as Intensions [17]: provides an intensional semantics for objects from a logical

perspective. First-order logic is extended with the concepts of intensional variables, and

static and dynamic predicates. Intensional variables represent the state changing variables

found in object-oriented programming and their value can be retrieved or updated using

the static or dynamic predicates respectively. When state changes, only the value of the

variable being updated changes, all other variables continue to have the same value as in the

previous state. This is referred to as the frame assumption. Every object is associated with

an intension which is a mapping from states to values. An object can have different values

in different states and hence the meaning or behavior of an object instance is given by the

entire history of its state (i.e., a sequence of state-value pairs). The main issue addressed by

this work is the semantics of state change in the logic programming context. This differs

from our approach to semantics of constrained objects described in Chapter 4. We provide

a set-thoeretic semantics for constrained objects which is based upon a translation to CLP.

Essentially, the meaning of constrained object class is the set of values of its attributes that

satisfies the constraints of the class. We do not focus on state change but on the set of valid

states with respect to the constraints of a class.

Logical Objects [20]: is a scheme for modeling objects using first-order logic. There are

two categories of literals, one representing objects and the other representing procedures.

The former when present as the head of a Horn clause define the structure (attributes and

possibly their values) of a class. When used with procedural literals in the head of (an ex-

tension of) Horn clauses, they define the methods of a class. Each object literal has an extra

argument which refers to a unique instance of a class and such references are static, i.e.,

they can be referred to by other clauses or procedures. The state of an object is stored in an

internal database within the system and state change is provided at the programming level

by associating a different structure with the same reference internally. At the programming

level, logical objects is an extension of Prolog-like sytax to simulate the concepts of objects,

encapsulation, state change, and modularity, and tries to incorporate procedural behavior
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into a logic programming framework. It does not deal with the notion of constraints. This

is unlike Cob which extends the syntax of a traditional object-oriented language to provide

constraints and logic predicates at the modeling level with focus not on procedural methods

or state change, but on declarative specification of the state or behavior of objects through

constraints.

SICStus Objects [104]: is a module of SICStus Prolog which provides object as a named

collection of predicate definitions. In this sense an object is similar to a Prolog module. The

object system can be seen as an extension of SICStus Prolog’s module system. In addition

an object may have attributes that are modifiable. Predicate definitions belonging to an

object are called methods. So an object is conceptually a named collection of methods and

attributes. Some of the methods defined for an object need not be stored explicitly within

the object, but are rather shared with other objects by the inheritance mechanism. Although

SICStus has separate constraint libraries for CLP(R), CLP(Q), and CLP(bool), unlike Cob,

constraints cannot be stated directly as a part of a class definitions but only as a part of the

methods and hence do not automatically come into play when an instance is created.

OLI [71]: is an approach to integrating logic with object-oriented programming and

stands for the Object Logic Integration design methodology which allows programming

in either or mixed paradigm. From the object point of view, the logic part of OLI is an

object with logic programs as states and methods performing logical deduction. The mixed

paradigm allows the usual class definitions and methods can be written as queries. How-

ever, no notion of constraints is supported by this language.

LyriC [12]: can store relations between objects in a database as constraints. Constraints

are treated as first class objects: a constraint itself is an object, and can have attributes and

methods and operations (to attach additional information and manipulate constraints). A

constraint object can be an attribute of another object and this attribute can in turn be part

of another constraint. Constraints can be used in a query to filter stored constraints and to

create new constraint objects. Unlike the wide variety of constraints provided in the Cob

programming language, LyriC, which is essentially a database querying language, supports
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only linear equality or inequality constraints.

CHIC [89]: maintains coherence of a composite object model using the concept of con-

straints. Constriants exists outside of the objects. A constraint stating a relation between

two or more classes is defined separately as a subclass of the predined class Constraint. The

relation is then stated inside of this class definition. Thus a constraint itself is an object and

the constraint manager performs maintains consistency or coherence of these constraints

by using a perturbation model. In this model an application is initially coherent, and when

a variable is modified, it is the task of the system is to compute a new coherent application

by generating a plan (order) for solving the constraints on different classes. Constraints

are kept outside of objects to provide abstraction. However, we feel that writing constraints

within class definitions as provided in Cob is a more natural way of describing the behavior

of an object. This increases the readability of the code and with suitable visibility modifiers

can an maintain the desired level of abstraction.

Logic++ [116]: is an effort at making the methods in object-oriented programming more

declarative. A Logic++ class contains methods which are Prolog Horn clauses while the

rest of the class is similar to a C++ class. The compiler translates these methods to C++

functions. Unlike Cob, this multi-paradigm programming language does not support con-

straints.

Prolog++ [87]: extends logic programming by allowing storage and modification of the

state of a system by providing constructs for classes, methods and assignment. A Pro-

log++ program is compiled into standard Prolog and does not have any constraint solving

capabilities.

Two other related logic-based languages are LIFE [4] and Oz [106]. LIFE combines

logic with inheritance, however, it does not deal with full-fledged constraints as we do.

Oz is a language combining constraints and concurrency as well as objects. Both these

languages do not support the notion of preference nor do they consider engineering appli-

cations.
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3.4.3 Constraint-based Specifications

For the sake of completeness, we also mention software specification languages that make

use of constraints.

OCL. The need for a formal representation of constraints in object-oriented programming

is illustrated by the development of the Object Constraint Language [110]. For practitioners

of object-oriented design and analysis, constraints provide an unambiguous and concise

means for expressing the relations between objects. OCL is a specification language that

helps in making explicit these relations that would otherwise be implicit in the code and

not apparent to the programmer who reads or modifies it.

Eiffel. Eiffel is another language which employs constraints for specifying pre- and post-

conditions that must hold on the operations of an object [85]. These languages use con-

straints as specifications; no constraint solving is done at run-time in order to deduce the

values of variables.

Contracts. Contracts [47] provide a formal language for specifying behavioral compo-

sitions in object oriented systems. A contract defines a set of communicating participant

classes and their contractual obligations as constraints. A class conforming to a contract

must implement the methods exactly as specified in the contract. Contracts promote an

interaction-oriented design rather than a class-based design.

There are several modeling tools for engineering structures which have a graphical

drawing front end. These are not programming languages, but a method of creating a model

of a structure through a GUI. The representation of the structure and checking its validity

are done separately, and usually there is no provision for representing the results back onto

the drawing. Nonetheless, these are highly specialized and useful drawing tools intended

for restricted fields within the engineering domain. In general, the more specialized an

application/language, the more restricted its use. This is usually because the more specific

the problem domain, the more tractable the problem.
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3.5 Summary

We have described in detail the syntax of the Cob language and given several examples

of Cob programs that illustrate its syntax and application to engineering modeling. The

examples demonstrate the use of several different important features of the Cob language:

constraints, quantified constraints, conditional constraints, inheritance, aggregation, poly-

morphism, predicates, etc. Each example illustrates that the constrained object paradigm is

not only better than a pure object-oriented language but also facilitates building modular,

more intuitive and easier to understand models of engineering structures than those built

using pure constraint languages such as CLP(R).

We have described two types of visual interfaces for the development of Cob models.

The visual interface for drawing Cob class diagrams facilitates rapid development of Cob

code in which the programmer specifies the high level object-oriented design of a Cob

program in terms of constrained objects classes and their relationships with each other.

This interface can be used to generate Cob code as well as execute it to obtain results.

The domain specific visual interfaces for drawing engineering structures are a convenient,

intuitive, and high level tool of developing Cob models of engineering systems. They

are specialized for a particular domain with built-in library of classes for the engineering

structures in that domain. In this way a modeler can focus on building the model of a

structure and analyze it without having to understand the underlying constrained object

model.

The concept of inheritance, gives rise to several other object-oriented features such

as visibility modifiers for attributes, multiple inheritance, interfaces, constraint overriding,

etc. Most of these features are conceptually possible in the constrained object paradigm.

For example, if multiple inheritance is permitted, then a class will inherit the constraints of

all its parent classes. The inheritance of constraints as well as attributes can be controlled

by visibility modifiers (e.g. private, public, protected etc.). Constraints can be labeled and

subclasses may be permitted to override the constraints of the parent class. Although it

is possible to incorporate these features into the constrained object paradigm, the current

prototype Cob language does not support all of them. Their omission from the current

prototype Cob language is not an inherent limitation in the language. They can be included
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in Cob in much the same way that they are used in imperative languages. The development

of Cob and its constructs has been guided by modeling problems in the engineering domain.
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Chapter 4

Semantics of Constrained Objects

Formal semantics of a programming language provide a framework for studying (properties

of) classes of programs in that language. The mathematical model of a language provided

by its formal semantics can be used to reason about programs, including their analysis,

verification, computability, etc. In the context of modeling complex systems, for example,

formal semantics of constrained objects can be used to determine if a Cob model of a

system does indeed model its behavior. Formal semantics of a language typically have

two parts: the declarative semantics define the meaning of a program; and the operational

semantics provide a scheme for execution and can be used as a basis for developing a

compiler or interpreter for the language.

Different techniques have been used to define declarative semantics, e.g., logical, alge-

braic, denotational, axiomatic, etc. [60, 107, 114]. In traditional object-oriented languages,

a class defines an abstract datatype whose behavior is characterized procedurally, i.e., by

its operations. Cob classes also define abstract datatypes but their “behavior” is character-

ized declaratively, i.e., by the constraints on the data. We give a set-theoretic semantics

for Cob datatypes using an approach that can satisfactorily account for recursively defined

classes. We translate a Cob class c into a CLP-like predicate definition pc, and define the

semantics of the class c in terms of the least model of the predicate pc. A Cob program C

is thus translated to a CLP-like program P by translating each class in C to a corresponding

predicate in P. The top-level call on a constructor class is equivalent to a top-level goal or

query. The semantics of C are given in terms of the least model of the program P. However,
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a conditional constraint is an important construct that cannot be directly mapped to CLP.

This is because CLP semantics do not provide any means to determine the validity of a

constraint or atom, they can only check for its consistency with the state of a computation.

We describe a technique for handling conditional constraints in this chapter.

The material in this chapter is organized as follows. In Section 4.1, we first give an

overview of the declarative semantics of constraint logic programs; then we describe a

scheme for the translation of Cob programs to CLP programs; and finally we use this trans-

lation to define the declarative semantics of Cob programs. In Section 4.2 we give an

overview of the operational semantics of CLP programs; then we define the operational

semantics of Cob programs followed by their soundness result. We formulate the com-

pleteness result for the operational semantics of Cob programs with a brief sketch of our

intended approach for its proof.

4.1 Declarative Semantics

The declarative semantics of Cob programs are based upon a translation to CLP and build

upon some of the concepts from CLP semantics. Therefore, in order to understand the

declarative semantics of Cob programs, an understanding of the declarative semantics of

CLP programs is required. Hence, before defining the declarative semantics of Cob pro-

grams, we first describe the formal declarative semantics of CLP programs as given in

[60]. In Section 2.2 we gave an overview of the constraint logic programming language

CLP(R) in which the constraints are over the real number domain R. In general, the CLP

scheme defines a family of languages parameterized by the domain of the constraints and

the solver for that domain. A constraint domain refers to a set with operations and boolean

relations, e.g., real numbers with multiplication and addition, and relational operations

such as inequality and equality. Certain properties of the constraint domain are known to

the constraint solver, e.g., associativity of addition, distributive property of multiplication

over addition, etc. The operators and relations together define the primitive constraints

of the domain. In the CLP paradigm, given a constraint domain, one can define con-

straints/predicates in terms of the underlying constraint domain and primitive constraints.
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Answers to queries are computed using rule-based evaluation and constraint solving. The

formal definitions of the above notions and the formal declarative semantics of a CLP pro-

gram are described in [60] and we give an overview of this material in the next section.

4.1.1 Constraint Logic Programs

The definitions and description of the declarative semantics of CLP languages presented in

this subsection is summarized from [60] which gives a more detailed and thorough discus-

sion. The CLP(C ) scheme is parameterized by the constraint domain C � �
Σ � D � L � T � solv �

where:

� Σ is the signature which consists of a set of function and predicate symbols and

their respective arities. The set of function and predicate names appearing in a CLP

program is a subset of its signature.

� D is a Σ � structure which consists of a set D and functions and relations over D

that correspond to the function and predicate symbols in Σ with corresponding arity.

A Σ-structure is an interpretation of Σ, i.e., it gives a meaning to the symbols of the

signature. D can be thought of as the domain of computation.

� T is a Σ-theory which is a (possibly infinite) set of closed first order Σ-formulas. A

first-order Σ-formula is a logical formula constructed from variables and the function

and predicate symbols of Σ using logical connectives
� ��� ��� � � and quantifiers � and

�
. T represents the set of known properties of the constraint domain.

� L is a subset of first-order Σ-formulas that represents the primitive constraints of the

language. The primitive constraints, referred to as explicit constraints in the syntax

of CLP(R) in Section 2.2.1, are basically the set of constraints that are permitted in

the language.

� solv is a solver for L . The solver solv defines a mapping from the set of formulae in

L to either true, f alse or unknown.

Thus the constraint domain defines the constraints permissible in the language, their

domain and properties as well as the solver. The following assumptions are made about
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the constraint domain. It is assumed that Σ has the binary predicate symbol “=” which

is interpreted as the identity relation in D and T contains the standard equality axioms.

Also, L is assumed to contain all atoms constructed from =. The solver is assumed to

ignore variable renamings, i.e., solv
�
c � � solv

�
ρ

�
c � � where ρ maps distinct variable names

occurring in c to some other distinct variable names. Finally, it is assumed that the domain

of computation D , solver solv and constraint theory T are in agreement, i.e., D is a model

of T and for any constraint c � L , if solv
�
c � � f alse then T � � � ˜� c and if solv

�
c � �

true then T � � ˜� c, where ˜� c denotes the existential quantification of all the free variables

occurring in c. In the rest of this section, symbol C will refer to the constraint domain
�
Σ � D � L � T � solv � .

Consider as examples, the following two constraint domains. The constraint domain

Real has the relation symbols
� � � � � � � � � , the function symbols +, -, * and /, and

constants which are sequences of digits including atmost one decimal point per sequence.

The intended interpretation or the domain of computation of Real is the set of real numbers

R. The primitive constraints (
� � � � � � � � � ), the function symbols and constants have the

usual arithmetic meaning. The theory is a theory for Real given in [102]. An implemen-

tation of a solver for Real can be based on Gauss-Jordan elimination [63]. The constraint

domain Term has the relation “=” forming the primitive constraints and alphanumeric char-

acter strings as the function symbols and constants. CLP(Term) forms the traditional logic

programming language such as Prolog. A solver for this domain implements a unification

algorithm.

Before giving the declarative semantics we give some useful definitions from [60].

Definition 4.1: A model of a Σ-theory T is an interpretation of Σ in which all the formulae

in T evaluate to true. A D-model of a Σ-theory T is a model of T that extends (is a

superset of) a Σ-structure D .

A theory T of a constraint domain
�
Σ, D , L , T , solv � is said to be satisfaction com-

plete if for every constraint c � L , either T � � ˜� c or T � � � ˜� c. This means that every

constraint c in this domain and theory can be deduced to be either true or false. A solver

solv is said to be theory complete if solv
�
c � � f alse iff T � � � ˜� c and solv

�
c � � true iff

T � � ˜� c.
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We have defined the syntax of CLP(R) programs in Section 2.2.1. The syntax of a

general CLP(C ) program is similar except that the syntax of constraints may be different

for each constraint domain. We recapitulate the syntax of CLP programs briefly here. A

CLP program is a set of rules of the form H :- B where H is called the head of the rule

and B is the body of the rule. The head consists of an atom and the body is a collection of

literals. A literal is an atom or a primitive constraint. An atom is of the form p
�
t1 � ����� � tn �

where p is an n-ary user-defined predicate symbol and t1 � ����� � tn are terms of the constraint

domain. A term is either a variable or a constant or of the form f
�
t1 � ����� � tn � where f is an

n-ary function symbol and t1 � ����� � tn are terms. A goal is a conjunction of literals.

Definition 4.2: A C -interpretation of a CLP(C ) program P is an interpretation that agrees

with D , i.e., it gives the same meaning to the function and predicate symbols of the signa-

ture of C as D does.

Since the meaning of primitive constraints is fixed by C , it suffices to regard a C -

interpretation as a subset of

C -base of P � � p �
d1 � ����� � dn � � p is an n-ary user defined predicate in P and each di � D �

The logical reading of a CLP program rule of the form

p
�
t � :- q1

�
t1 � � ����� � qn

�
tn �

is given by the following Σ-formula

˜� p
�
t � � q1

�
t1 � � ����� �

qn
�
tn �

where the symbol ˜� indicates the universal quantification of all the free variables occurring

(in the formula) on its right hand side. In other words, the truth of the body of a rule implies

the truth of the head of the rule. Thus the logical semantics of a CLP(C ) program can be

understood as the theory T appended with the logical formulae corresponding to each of

the program rules.

Definition 4.3: A C -model M of CLP(C ) program P is a C -interpretation of P such that

for every rule of P of the form

p
�
t � :- q1

�
t1 � � ����� � qn

�
tn �

if q1
�
d1 � � ����� � qn

�
dn � � M, then p

�
d � � M where di � D and there exists a valuation ρ such

that ρ
�
t � � d � ρ �

t1 � � d1 � ����� � ρ �
tn � � dn

�
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Thus, a model M of a program P is a subset of the C -base of P such that whenever a

ground instance of the body of a rule of P belongs to M, the corresponding instance of the

head of the rule also belongs to M. This in effect means that the logical semantics of every

rule is a formula which is always true.

The intersection of two models of a program is also a model of the program. The proof

of this proposition is quite straightforward [60]. The intersection of all the C -models of a

CLP(C ) program P is also a C -model of the program [60] and is referred to as the least

model lm
�
C � P � . Every CLP(C ) program has a least model [60]. Thus an instance of any

user-defined predicate whose truth is not implied by the program is not present in the least

model of the program. The meaning of a CLP(C ) program is defined in terms of its least

model.

Definition 4.4: The declarative semantics of a CLP(C ) program P is defined as its least

model Mp.

The least model is thus the intended interpretation of a CLP(C ) program as well as for

the underlying primitive constraints and function symbols. Given a CLP(C ) program P and

a goal G, we are interested in finding an instance of the G that is implied by the program.

Definition 4.5: Given a CLP(C ) program, a valuation θ is a mapping from the variables

of the program to values in the constraint domain C , i.e., values in D.

Given a goal, we are interested in those valuations that make the goal true in the in-

tended interpretation of the program.

Definition 4.6: The correct answer to a goal G is a valuation σ such that
�
G σ ��� Mp.

We have described the declarative semantics of CLP(C) programs and goals. We will

use these semantics as a basis to define the declarative semantics of constrained objects.

4.1.2 Translation of Constrained Objects to CLP

A Cob program C is translated to a CLP-like program P by translating each class in C to

a corresponding predicate in P. The top-level call on a class constructor is equivalent to

a top-level goal or query. We describe this translation for the key components of a Cob

program. We first consider Cob programs without conditional constraints.
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Class. We use Vi, Ci and Pi to denote collections of variables, constraints, and predicates

respectively. For every class c in a Cob program C, we define a predicate pc with two

arguments: the first is a list of the arguments of the constructor of c, and the second is

the list of attributes of class c. For predicates corresponding to abstract classes, the first

argument is a null list. For classes with more than one constructor, one predicate is defined

per constructor.

class c
�

��� T P1
� �

de f n
�
pc � �

attributes V1 where de f n
�
pc � is:

constraints C1 pc
�
V2 � V1 � :- C1 � C2

�

predicates P1

constructor c
�
V2 � �

C2

�
�

If class c
�

is a subclass of c, then the second argument of predicate pc � is the list of

attributes of c
�
prepended with Vc, which is the list of attributes of the parent class c as well

as the attributes of the superclass of c (if any) and so on recursively. The body of predicate

pc � invokes predicate pc on Vc in order that the constraints of the parent class are met by

the corresponding attributes of the subclass.

class c
�
extends c

�
��� T P2

� �
de f n

�
pc � � �

attributes V
�

1 where de f n
�
pc � � is:

constraints C
�
1 pc �

�
V
�

2 � Vc � V
�

1 � :-

predicates P2 pc
� � Vc � � C �1 � C �2 �

constructor c
� �

V
�

2 � �

C
�
2

�
�

The predicates in a Cob class remain unchanged under the translation. To maintain en-

capsulation and prevent name clashes, predicate names within a class are suitably renamed

during translation.

80



Variable Renaming. In an inheritance hierarchy, a subclass may redeclare a variable

of its superclass. Our approach to handling variable redeclaration involves a systematic

renaming of variables in subclasses to provide variable over-riding. Suppose class C1 is a

superclass of C2 and that class Ci is a superclass of Ci � 1 for all i � 2
���
n � 1. Suppose that C1

does not extend any class and Cn is not extended by any class. C1 � ����� � Cn is called a chain of

hierarchy and its variables are renamed using the algorithm shown in Figure 4.1.

C1 � ����� � Cn: forms a chain of hierarchy.

declares
�
C j � : set of variables declared within the definition of class C j.

uses
�
C j � : set of variables used but not declared within the definition of class C j.

subst
�
X � Y � C � : substitute all occurrences of variable X with variable Y

in definition of class C.

renamed
�
X � Y � C � : true if subst

�
X � Y � C � has already been performed, false otherwise.

rename variables()

f or i � 1
���
n
�

f or X � declares
�
Ci � �

if X � � i � 1
k � 1declares

�
Ck � then

�

subst
�
X � NewX � Ci � ;

renamed
�
X � NewX � Ci � : � true

�
�
f or X � uses

�
Ci � �

m � max
�
k � 1

�
k

�
i � 1 � X � declares

�
Ck � �

if renamed
�
X � Y � Cm � then

subst
�
X � Y � Ci �

�
�

Figure 4.1: Algorithm for renaming variables

In the chain of hierarchy C1 � ����� � Cn, if Ci declares a variable X which is also declared
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in one of the classes C1 � ����� � Ci � 1, then X and all of its occurrences in Ci are renamed to a

new variable name. If Ci uses a variable Y without declaring it, then we inspect the nearest

class Cm (with the highest value for m less than i) that declares Y . If Y in Cm was renamed

to NewY , then all occurrences of Y in Ci are replaced with NewY . If Y in Cm was not

renamed, then Y in Ci is also not renamed. The above algorithm is executed for every chain

of hierarchy of classes in a Cob program. Thus when a subclass redeclares a variable, it

over-rides the variable declaration of its superclass.

The translation of a Cob class to a CLP predicate involves translation of its constructors,

constraints and terms. Below we give the high level description of this translation; the finer

details are given in Chapter 5 along with an implementation of the compiler.

Constraint Atom. A list of constraints is translated by translating every element of the

list. A constraint atom is translated to an explicit CLP constraint. Since the underlying

constraint domain remains the same, the relational operator is left unchanged and only the

constituent terms of the constraint atom are translated.

T relop U ��� T TT relop UT

where TT is obtained by translating term T

UT is obtained by translating term U

and relop is a relational operator.

Translation of terms is required since they might use array indexing or selection opera-

tions which are not directly available in CLP. An appropriate translation of such operations

ensures that the translated CLP constraint compares corresponding equivalent terms. The

details of the translation of terms is given in Chapter 5.

Constructor. A constructor invocation in Cob is translated to a CLP goal as shown below.

A call to the constructor of class c is translated to an invocation of the predicate pc which

is obtained by translation of the class c. The list of constructor arguments form the first

argument of the call to pc and the variable being equated to the newly formed object of

class c becomes the second argument.

X = new c
�
t � � � T pc(tT , XT )

where pc is the translation of class c
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class component
�

attributes real V, I, R;

constraints V = I * R;

constructors component(V1,I1,R1)
�

V = V1; I = I1; R = R1;

�
�
class parallel extends component

�

attributes component [] PC;

constraints

forall X in PC : X.V = V;

(sum Y in PC : Y.I) = I;

(sum Z in PC : 1/Z.R) = 1/R;

constructors parallel(B)
�

PC = B;

�
�

Figure 4.2: Cob Class Definitions

XT is the translation of X

and tT is the translation of t

Thus we represent a Cob class definition by a predicate definition, and an object or

instance of class C is represented as a list of variables corresponding to the attributes of

C. For this translation of constructor calls to be meaningful, it is required that in classes

with more than one constructor, each of the constructors should be of a different arity.

An important point to note is that any or all of the arguments to the constructors may be

non-ground (unbound) variables.

To illustrate the above translations with a concrete example, consider the Cob classes

shown in Figure 4.2. Class component models an electrical component with attributes
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p ���������	��
	��� ([V1, I1, R1], [V, I, R]) :-

V = I * R,

V = V1,

I = I1,

R = R1.

p ����������
�� ([B],[V,I,R,PC]):-

PC = [ ],

PC = B,

p ������������
	��� ( ,[V,I,R]),

forall1(PC,X,V),

N1 = I,

sum1(PC,N1,Y,I),

N2 = 1/R,

sum2(PC, N2,Z,R).

Figure 4.3: Translated CLP Program

voltage(V), current(I), and resistance (R), and a constraint that expresses Ohm’s law (V=I*R).

Class parallel represents a collection of components(PC) connected in parallel.

Using the translation scheme described above, the Cob classes in Figure 4.2 are trans-

lated to the CLP predicates shown in Figure 4.3. The list of arguments to the construc-

tor of class component become the first argument of the corresponding CLP predicate

p ���������	��
	��� ; the list of attributes of the class become the second argument of the predicate.

The constraints of the class become the constraints in the body of the corresponding predi-

cate. A similar translation of arguments is done for the parallel class. The translation

of quantified constraints and quantified terms is done by defining recursive predicates that

iterate over the enumeration and whose definition captures the body of the quantified con-

straint. In the parallel class the quantified constraints and terms are translated to calls

on the forall1, sum1 and sum2 predicates. The definitions of these predicates will be

shown later in Chapter 5 after we give a detailed description of the translation of each type

of constraint and term.
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4.1.3 Constrained Object Programs

Like CLP programs, constrained object programs are parameterized by their constraint

domain. The constraint domain defines the kinds of constraints permitted in the language,

their properties and the set of permissible values for their variables. Given a constraint

domain C � �
Σ, D , L , T , solv � , we define a class of constrained object programs with

the syntax described in Section 3.1. where L can be thought of as defining the grammar

rules for the non-terminal constraints in Section 3.1., Σ contains the predicate and function

names appearing in a class definition, T defines the properties of the constraints, D is

the domain of the variables appearing in the constraints, and solv is the solver for the

constraints.

The semantics of Cob programs without conditional constraints can be understood di-

rectly in terms of the semantics of their CLP-translation (using the scheme given in Section

4.1.2). In the rest of this chapter and dissertation, the underlying constraint domain C for

Cob will be assumed to be the tuple � Σ, D , L , T , solv � and, for the sake of brevity, in

the discussion below Cob(C) programs will be refered to simply as Cob programs.

Definition 4.7: Let C be a Cob program. The CLP program P obtained by translating each

class of C by the scheme described in Section 4.1.2 is called the CLP-translation of C. For

each class c in C, the predicate pc obtained by translating c is called the CLP-translation

of c. For a goal G � X � new c
�
t � , the query pc

�
t � X � obtained by using the translation in

Section 4.1.2 is called the CLP-translation of G.

Given a Cob program with a constraint domain C , the underlying constraint domain of

its corresponding translated CLP program will be a slight extension of C . This is because

the predicate symbols generated by the translation will have to be accomodated in the un-

derlying signature, structure and interpretation. That said, for simplicity, we will continue

to refer to this augmented constraint domain as C .

Intuitively, we would like to define the semantics of a class as the set of values for

its attributes that satisfies the constraints of the class. In general, when a Cob class is

translated to a CLP predicate, its attributes form a part of the arguments of the predicate,

and the constraints of the class become the constraints in the body of the predicate. The

instances of a class correspond to ground instances of the corresponding predicate, and the
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set of possible instances of the class naturally become the set of ground instances of the

corresponding predicate that are present in the intended model of the CLP program. The

declarative semantics of a Cob program can therefore be given in terms of the least model

of its CLP-translation.

Definition 4.8: Let C be a Cob program and P be its CLP-translation. The declarative

semantics of C is the least model Mp, of P. More specifically, the set-theoretic semantics

of each class c � C is defined as Mc �
�
t2 � pc is the CLP-translation o f c and pc

�
t1 � t2 � �

Mp � f or some t1 � where t1 � t2 � D � .
For example, consider the program P defined earlier in Figure 4.2 with classes component

and parallel. The declarative semantics of the component class is the set of all in-

stances of the tuple [V, I, R] such that the constraint V = I*R is true. Thus

M � �������	� 
	��� �
� �V � I � R � � � V1 � I1 � R1 � R � p ���������	��
	���

� �V 1 � I1 � R1 � � �V � I � R � � � Mp � .
The creation of a Cob model of a complex system is initiated by a query or goal of the

form X = new c
�
t � where t are the arguments to the constructor and X corresponds to the

attributes of class c. A solution to such a query should be an instance of class c that satisfies

the above equality. In general, since the constructor arguments are fixed by t, we define the

solutions to such a query as the set of all ground instances of X such that the goal evaluates

to true, i.e., X satisfies the constraints of class c. A ground instance of the attributes of a

class is defined as follows.

Definition 4.9: A valuation θ is a mapping from Cob program variables to values in the

constraint domain D .

The declarative semantics of a Cob query is defined in terms of a valuation and the

CLP-translation of both the Cob program and query. The notion of a correct answer to a

Cob query is similar to the concept of a correct answer to a CLP query: the CLP-translation

of the Cob program can be compared to a CLP program and the CLP-translation of the Cob

query can be compared to a CLP query.

Definition 4.10: Let C be a Cob program with CLP-translation P and let Mp be the least

model of P. Given a goal G � X = new c
�
t � , let pc

�
t � t � � be its CLP-translation. A correct

answer to G is a valuation θ for the attributes t
�
of c, such that Mp � � θ pc

�
t � t � � , .i.e., under

the valuation θ, pc
�
t � t � � is in the least model Mp.
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For example, consider again the definition of class component. The correct answer

to a goal new component(V1, I1, 10) is a valuation θ for the variables V1 and I1

such that θ
�
V1, I1 � �

� �
X � Y � � X � 10 � Y � .

4.1.4 Cob Programs with Conditional Constraints

The translation scheme and declarative semantics described in Sections 4.1.2 and 4.1.3 do

not account for Cob programs having conditional constraints. This is because constraint

logic programs and their semantics cannot handle conditional constraints. To give the se-

mantics of Cob programs in general, we need to augment CLP semantics to account for

conditional constraints. Conditional constraints are of the form A :- B, where A is the

head and B is the body of the conditional constraint. The head can be a constraint atom

which could be defined in terms of a user-defined predicate if the head is a creational con-

straint. The body is a collection of literals (positive or negative).

To account for conditional constraints, we first extend the CLP paradigm with a spe-

cial construct that represents conditional constraints. To distinguish conditional constraints

from CLP program rules, we represent the conditional constraint A :- B as A � cc B. We

augment the syntax of CLP programs to include conditional constraints in the body of a

rule. We refer to this extension of constraint logic programs as the CCLP(C ) paradigm

where C is a constraint domain as before. For the rest of the discussion, we will refer to

CCLP(C ) as simply CCLP. The logical semantics of a conditional constraint of the form

p
�
t � � cc q1

�
t1 � � ����� � qn

�
tn �

is given by the logical formula

˜� p
�
t � � q1

�
t1 � � ����� �

qn
�
tn � �

where the symbol ˜� represents universal closure. Thus a conditional constraint is true if the

truth of its antecedant implies the truth of its consequent.

Having given a logical meaning to a conditional constraint, the declarative semantics of

a CCLP program can be defined by incorporating this meaning into the semantics of CLP

programs. Before defining the meaning of a CCLP program, we give a formal definition of

the model of a conditional constraint.

Definition 4.11: Assuming a constraint domain C as before for a CCLP program, a set Mc
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models a conditional constraint of the form

p
�
t � � cc q1

�
t1 � � ����� � qn

�
tn �

if for every valuation ρ such that ρ
�
t � � d and for i = 1..n ρ

�
t i � � di,

if q1
�
d1 � � ����� � qn

�
dn � � Mc,

then p
�
d � � Mc where di � D .

This notion of a model of a conditional constraint allows us to define a model of a

CCLP(C ) program as follows.

Definition 4.12: Given a CCLP program P, a model M of P is a C -interpretation of P such

that for every ground instance of a rule of P of the form

p
�
t � :- q1

�
t1 � � ����� � qn

�
tn � � c1

�
u1 � � ����� � cm

�
um �

where qis are user-defined predicates or constraints and cis are conditional constraints, if

there exists a valuation ρ such that ρ
�
t � � d � ρ �

t1 � � d1 � ����� � ρ �
tn � � dn � ρ �

u1 � � d
�
1 � ����� � ρ �

um � �

d
�
m and if

q1
�
d1 � � ����� � qn

�
dn � � M and M � � c1

�
u1 � � ����� � cm

�
um �

then p
�
d � � M.

In other words, a model of a CCLP program P is an interpretation of P such that for

every rule of P, if a ground instance of the antecedant belongs to the model, then the

corresponding ground instance of the consequent also belongs to the model. Clearly, a

program can have more than one model and we are interested in the intended model of the

program, i.e., any ground instance of a predicate that is not implied by the program rules

should not be in the intended model. As before with CLP models, the intersection of two

models of a CCLP program P is also a model of P. The intersection of all the models of a

program is the least model of the program and this is the intended model.

Definition 4.13: The declarative semantics of a CCLP program P is defined as the least

model Mp of P.

Having defined the declarative semantics of CCLP programs, we can now extend the

translation scheme of Section 4.1.2 to include the following case.

Translation of Conditional Constraints. A conditional constraint is translated to a

special predefined predicate cc with appropriate translation of its constituent constraints,
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i.e., its antecedant and consequent.

A :- B ��� T cc(AT � BT )

where AT is obtained by translating constraint A

BT is obtained by translating constraint B

and cc is the predefined predicate with semantics:

cc(X � Y ) :- X . (i)

cc(X � Y ) :- � Y . (ii)

The goal cc(A,B) represents the conditional constraint A � cc B defined previously.

The above case together with the translation scheme of Section 4.1.2 can satisfactorily

translate Cob programs with conditional constraints. The program resulting from such a

translation is clearly a CCLP program.

Definition 4.14: Let C be a Cob program. The CCLP program P obtained by translating

each class of C using the scheme in Section 4.1.2 and every conditional constraint in C

using the above rule is called the CCLP-translation of C. For each class c in C, the

predicate pc obtained by translating c is called the CCLP-translation of c.

We can now define the declarative semantics of a general Cob program with conditional

constraints in terms of its CCLP-translation.

Definition 4.15: Given a Cob(C) program C defining a class c, if P is the CCLP-translation

of C, pc is the CCLP-translation of c, and Mp is the least model of P, then the declarative

semantics of c, Mc is defined as: Mc �
�
t2 � pc

�
t1 � t2 � � Mp � f or some t1 � where t1 � t2 � D �

For example, the consider the Cob model of a date object given in Section 3.2. In

addition to some simple constraints, this definition has the following conditional constraint.

Day
�

29 :- Month = 2, leap(Year);

A set S of tuples [Day, Month, Year] will model the above conditional constraint if

for every �X � Y � Z � � S, if Z is a leap year and Y is 2 then the value of X is less than 29. A

model of the Cob class date should model all its conditional constraints as well as simple

constraints. The declarative semantics of the date class is the least such model. Thus

the intended interpretation of the date class is the set of [Day, Month, Year] tuples

that form valid dates according to the Gregorian calendar.
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The declarative semantics of a query with respect to a Cob program with conditional

constraints is defined in terms of a valuation and the CCLP-translation of both the Cob pro-

gram and query. Since a query cannot have conditional constraints, the CCLP-translation

of a query is the same as its CLP-translation.

Definition 4.16: Let C be a Cob program with CCLP-translation P and let Mp be the least

model of P. Given a goal G � X = new c
�
t � , let pc

�
t � t � � be its CCLP-translation. A correct

answer to G is a valuation θ for the attributes t
�
of c, such that Mp � � θ pc

�
t � t � � , .i.e., under

the valuation θ, pc
�
t � t � � is in the least model Mp.

For example, consider again the definition of class date. The correct answer to a

goal Date = new date(D1, M1, 2003) is a valuation θ for the variables Day,

Month and Year of class date such that θ
�
Day, Month, Year � �

� �
X � Y � 2003 � �

X
�

31 � X �
28 � Y � 2 � X �

30 � Y � � 4 � 6 � 9 � 11 � � .

4.2 Operational Semantics

The declarative semantics of constrained objects described in Sections 4.1.2, 4.1.3 and

4.1.4 define the meaning of a Cob program and the meaning of an answer to a goal with

respect to the program. Given the meaning of Cob program and a goal, we need a scheme

that will compute an answer to the goal. We therefore define the operational semantics of

Cob programs that provide a scheme for computing an answer (if it exists) with respect

to a goal. The operational semantics of Cob programs are based upon the translation of

Cob to CLP (described in Section 4.1.2) and build upon the rewrite rules of the operational

semantics of CLP languages. Therefore, before defining the operational semantics of Cob

programs, we give an overview of the operational semantics of CLP programs. This serves

to compare the two and illustrate why CLP operational semantics alone cannot account for

the CCLP programs obtained by translating Cob programs.

4.2.1 Constraint Logic Programs

In Section 2.2 we gave an informal overview of such a technique for goal evaluation in the

constraint logic programming language CLP(R). We now describe the scheme for evaluat-
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ing goals in any CLP(C ) language as given in [60]. The concepts, definitions, and theorems

described in this subsection are obtained from [60]. Let the constraint domain C � �
Σ, D ,

L , T , solv � , be as defined before. The operational semantics of a goal G with respect

to a CLP program P are defined in terms of a derivation which is a finite or infinite se-

quence S0 � ����� � Si � ����� of states. A state is a tuple
�
G
�

C � where the goal G is the current

set of literals and C is the current set of constraints. In every step of a derivation, a state

Si � 1 � �
Gi � 1

�
Ci � 1 � is derived from state Si � �

Gi
�
Ci � by selecting a literal in Gi and apply-

ing one of the following transition rules. The literal is selected based on some predefined

convention (usually left-to-right).

Let a goal Gi be of the form L1 � ����� � Li � 1 � Li � Li � 1 � ����� � Lm and let Li be the selected literal.

� if Li is the user-defined constraint p
�
t1 � ����� � tn � and if

p
�
s1 � ����� � sn � :- B

�

is a rule in the program P, then Si � 1 is the state

�
L1 � ����� � Li � 1 � t1 � s1 � ����� � tn � sn � B � Li � 1 � ����� � Lm

�
C �

Note that the variables of the program rule are renamed (to new variable names)

before this transition rule is applied.

� if Li is the user-defined constraint p
�
t1 � ����� � tn � and if there does not exist a rule of the

form

p
�
s1 � ����� � sn � :- B

�

in the program P, then Si � 1 is the state

�
φ
�

f alse �
and the derivation is said to fail.

� if Li is a primitive constraint and solv
�
Li

�
C ���� f alse then Si � 1 is the state

�
L1 � ����� � Li � 1 � Li � 1 � ����� � Lm

�
C

�
Li �

� if Li is a primitive constraint and solv
�
Li

�
C � � f alse then Si � 1 is the state

�
φ
�

f alse �
and the derivation is said to fail.
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The state state S0 for a derivation of goal G is
�
G
�
φ � . A derivation is said to succeed

if it is finite and its last state is
�
φ
�
C � such that solv

�
C � does not evaluate to false. In this

case, the answers to the goal G with respect to a program P are the constraints ˜� var � G � C,

where ˜� represents existential closure. C is the computed answer and is called the answer

constraint and any solution to C is a solution to the original goal G.

Note that in the first transition rule above, when goal reduction leads to constraints of

the form t1 � s1 � ����� � tn � sn, it is understood that the underlying constraint domain has the

equality constraint which is the identity relation over D. If either ti or si is a functor term,

then the equality reduces to pairwise equality between their constituent arguments provided

the functors are identical (otherwise the equality fails).

Having defined the declarative and operational semantics of a language, it is important

to show that they agree, i.e., the answer computed by the operational semantics is correct

as per the declarative semantics.

Theorem: 4.1 (Soundness) [60]: Let P be a CLP(C) program. If goal G has answer

constraint c, then lm
�
P� C � � � c � G.

The soundness of CLP derivations states that the answer computed by any derivation is

indeed in the intended model of the program. The soundness of the derivations is proved

by showing that at every step of the derivation for every type of transition rule, if
�
G
� �

C
� �

is derived from
�
G
�

C � , then P� T � � �
G
� � C

� � �
�
G � C � . Thus if the start state of a

derivation is
�
G
�

φ � and the final state is
�
φ
�

c � , i.e., c is the computed answer, then by

the transitivity of the logical connective � , it can be seen that P� T � � �
φ �

c � �
�
G

� φ � ,

which is the same as P� T � � c � G.

The soundness result ensures that an answer computed by goal evaluation (operational

semantics) will always be correct. It is also important to see if the operational semantics

can compute an answer whenever one exists.

Theorem: 4.2 (Completeness) [60]: Let P be a CLP(C) program, G a goal and θ a valu-

ation. If lm
�
P� C � � � θ G, then G has an answer c such that DC � � θ c.

The completeness theorem states that if there is a answer to a goal in the intended

model, then there is a derivation that will compute this answer. The proof of the com-

pleteness theorem uses the fixpoint semantics of constraint logic programs. The fixpoint
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semantics are based on two operators. The immediate consequence operator T C
P which

given a CLP program P maps a set of facts F (subset of C -base of P) to the set of facts that

can be deduced from F using the program rules. The power set of C -base of P, P (C -baseP)

forms a complete lattice ordered by the subset relation. The function T C
P : P (C -baseP) �

P (C -baseP) is continuous and its least fixpoint is exactly the least model lm
�
P� C � of P. A

different fixpoint semantics is based on the immediate consequence SP
�
F � of a set of facts

F of the form A :- c, using program rules P and breadth-first (BF) derivations. The op-

erator SP
�
F � is also continuous. The least fixpoint of the two operators are directly related

to each other by � l f p
�
SP � � C � l f p

�
T C

P � , where �F � C �
� σ �

A � � D � � σ c � . The proof of the

completeness theorem uses the result: a successful BF derivation of a goal G with respect

to a program P corresponds to a successful BF derivation of G with respect to the program

SP � n, the nth ordinal power of SP. This result is proved by induction on the length of the

derivation.

4.2.2 Constrained Object Programs

We define the operational semantics of a Cob(C ) program in terms of its CCLP-translation.

As before, C denotes the constraint domain
�
Σ, D , L , T , solv � . The solver solv is assumed

to be theory complete, although in practice this may not be true. Given a Cob program

C and a goal G � new c
�
t � , suppose P is the CCLP-translation of C and G0 � pc

�
t � is

the CCLP-translation of G. The operational semantics of G with respect to C are defined

in terms of a derivation which is a finite or infinite sequence S1 � ����� � Si � ����� of states. This

is similar to the derivation sequence of CLP semantics but differs in the representation of

a state and the transition rules used for deriving one state from another. A state is rep-

resented by the tuple � A � Sc � Cc � N � , where A is a collection of atoms and constraints

and Sc, Cc, N are respectively collections of simple constraints (i.e., non-conditional con-

straints), conditional constraints and conjunction of negated atoms. A simple constraint is

any constraint other than a conditional constraint. Sc, Cc, and N can be regarded as the

constraint stores. Given a goal G � � ��� c
�
t � , the start state is S0 � � pc

�
t � t � � � φ � φ � φ � . At

each step in the derivation, a literal is selected from the state Si � � Ai � Sci � Cci � Ni � and

one of the following transition rules is applied to obtain the next state Si � 1.
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1. � A
�

a � Sc � Cc � N � � r � A
�

B � Sc
� �

t1 � t2 � � Cc � N �

if a is the selected atom and h � B is a rule of P and a and h have the same outermost

predicate and a � p
�
t1 � and h � p

�
t2 � .

2. � A
�

a � Sc � Cc � N � � r f ail

if a is the selected atom and there does not exist a rule h � B of program P such that

a and h have the same outermost predicate, namely, a � p
�
t1 � and h � p

�
t2 �

3. � A
�

c � Sc � Cc � N � � c

� A � Sc
���

c � � Cc � N � if c is a simple constraint.

� A � Sc � Cc
���

c � � N � if c is a conditional constraint.

4. For conditional constraints of the type p � cc q, where both p and q are constraints

(not literals),

� A � Sc � Cc
���

p � cc q � � N � � cc

� A � Sc � Cc � N � if P� T � � � �
p �

�
Sc

�
N � �

� A � Sc � Cc � N � � � q � � if P� T � � � �
� p �

�
Sc

�
N � �

� A � Sc
���

p � � Cc � N � if P� T � � � �
q �

�
Sc

�
N � �

5. � A � Sc � Cc � N � � f f ail if � consistent
�
Sc � N �

The case-analysis in rule 4 above presents the formal operational semantics of a certain

class of conditional constraints. In the first case, the condition P� T � � � �
p �

�
Sc

�
N � � ,

states that p is implied by the current set of constraints in Sc together with the negated

atoms in N. If this condition is true, then the conditional constraint is satisfied. This

checking is carried out by the underlying constraint solver. In the other cases, depending

on the condition the appropriate constraint (or its negation) is added to the constraint store.

This is an important transition rule that cannot be handled by CLP semantics alone. A

derivation ends when no more transition rules can be applied on the last state. A state S j is

derived from state Si, denoted Si ��� S j, if S j is obtained from Si by applying one or more

of the above rules. If S j is obtained from Si by the application of exactly one of the above

rules, then we say that Si � S j.
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Definition 4.17: If a derivation for a goal G w.r.t. a Cob program C ends in the state

� φ � Sc � Cc � N � such that consistent
�
Sc � N � , then the derivation is said to be successful

and Sc � Cc and N are the answer constraints. A valuation θ is a computed answer if the

answer constraints evaluate to true under θ, i.e., P� T � � θ
�
Sc
�

Cc
�

N �
In terms of the engineering structure that is being modeled, a valuation means giving

values for attributes of various parts of the structure (e.g. values for current, voltage and

resistance of an electrical component). For example, consider the Cob classes defined in

program P in Figure 4.2. A solution to the goal or Cob query new component(10,

I, 5) with respect to P, will be obtained by a derivation of the corresponding CCLP

goal pcomponent([10, I1, 5], t) with respect to the CCLP program P
�
of Figure 4.3.

A solution to this goal will be a valuation that assigns a value of [10, 2, 5] to the

variables [V, I, R] of class component.

4.2.3 Soundness and Completeness

It is important to ensure that, given a goal, the answer computed by the above operational

semantics is correct according to the declarative semantics proposed in Section 4.1.3. Simi-

larly, one would like to know if the operational semantics can compute a solution whenever

one exists. In this section we state and prove the soundness of Cob derivations. The com-

pleteness result is stated along with a proposed approach for its proof.

The soundness result (Lemma 4.1 and Theorem 4.1) below is proved along the lines

of a similar lemma for CLP programs with the main difference being the representation of

state and the case for handling conditional constraints.

Lemma 4.1: Let C be a Cob program with CCLP-translation P. If a state � G � Sc � Cc � N �

� � G
� � Sc
� � Cc

� � N � � , then P� T � � �
G
� �

Sc
� �

Cc
� �

N
� � �

�
G

�
Sc

�
Cc

�
N � .

Proof : Let G be of the form L1 � ����� � Li � ����� � Ln and let Li be the selected literal that is used

to transform the state. The state � G
� � Sc
� � Cc

� � N � � is obtained by applying one of the

transition rules of Section 4.2.4. We prove the lemma for every case of the transition.

1. Li is an atom of the form p
�
t1 � and p

�
t2 � � B is the selected rule of the program

P. Then G
�

is L1 � ����� � Li � 1 � Li � 1
����� � Ln � B and Sc

�
is Sc

� �
t1 � t2 � and Cc � Cc

�
and
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N � N
�
.

Since p
�
t2 � � B is a rule of P, P � � B � p

�
t2 � . Also in the constraint theory T ,

T � � t1 � t2 �
�
p

�
t1 � � p

�
t2 � � (i)

therefore

P� T � � � �
t1 � t2

�
B � � p

�
t1 � �

therefore

P� T � � �
G
� �

Sc
� �

Cc
� �

N
� � �

�
L1 � ����� � Li � 1 � Li � 1 � ����� � Ln � B � � Sc

�
t1 � t2

�
Cc

�
N �

therefore

P� T � � �
G
� �

Sc
� �

Cc
� �

N
� � �

�
G

�
Sc

�
Cc

�
N � using (i)

2. Li is an atom of the form p
�
t1 � and there does not exist a rule h :- B of P such

that Li and h have the same outermost predicate of the same arity. Therefore �

G
� � Sc
� � Cc

� � N � � is actually the state f ail. Hence,

P� T � � �
G
� �

Sc
� �

Cc
� �

N
� � �

�
G

�
Sc

�
Cc

�
N �

3. Li is a simple constraint. Then G
�

is L1 � ����� � Li � 1 � Li � 1
����� � Ln, and Sc

�
is Sc

� �
Li � and

Cc � Cc
�

and N � N
�
. Thus,

�
G
� �

Sc
� �

Cc
� �

N
� � is just a reordering of

�
G

�
Sc

�

Cc
�

N � . Hence

P� T � � �
G
� �

Sc
� �

Cc
� �

N
� � �

�
G

�
Sc

�
Cc

�
N �

4. Li is a conditional constraint. Then G
�
is L1 � ����� � Li � 1 � Li � 1

����� � Ln, and Cc
�
is Cc

� �
Li �

and Sc � Sc
�
and N � N

�
. Thus,

�
G
� �

Sc
� �

Cc
� �

N
� � is just a reordering of

�
G

�
Sc

�

Cc
�

N � . Hence

P� T � � �
G
� �

Sc
� �

Cc
� �

N
� � �

�
G

�
Sc

�
Cc

�
N �

5. Let G be as before and let Cc be c1 � ����� � cm and let ci be the selected conditional

constraint for applying transition rule 4, which is � cc. Let ci be of the form p � cc

q1 � ����� � qr.

Cc
�
is c1 � ����� ci � 1 � ci � 1 � ����� � cm and G

�
� G. (ii)

(a) If P� T � � � �
p �

�
Sc

�
N � � , then N

�
� N and Sc

�
� Sc. (iii)

Then P� T � � � � �
Sc

�
N � � p �

� P� T � � � � �
Sc

�
N � �

�
p � q1 � ����� � qr � �
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� P� T � � � � �
Sc

�
N � � ci �

� P� T � � � � �
G
� �

Sc
�

Cc
� �

N � �
�
G
� �

Sc
�

Cc
� �

N
�

ci � �
� P� T � � � � �

G
� �

Sc
� �

Cc
� �

N
� � �

�
G

�
Sc

�
N

�
Cc
� �

ci � � using (iii)
� P� T � � � � �

G
� �

Sc
� �

Cc
� �

N
� � �

�
G

�
Sc

�
N

�
Cc � �

(b) If P� T � � � �
� p �

�
Sc

�
N � � , then N

�
is N

�
�

�
q1 � ����� � qr � and Sc

�
� Sc. (iv)

Then P� T � � � � �
Sc

�
N � � � p �

� P� T � � � � �
Sc

�
N

�
�

�
q1 � ����� � qr � � �

�
� p

�
�

�
q1 � ����� � qr � � �

� P� T � � � � �
Sc

�
N

�
�

�
q1 � ����� � qr � � �

�
p �

�
q1 � ����� � qr � � �

� P� T � � � � �
Sc

�
N

�
�

�
q1 � ����� � qr � � � ci �

� P� T � � � � �
Sc

�
N

�
�

�
q1 � ����� � qr � � �

�
Sc

�
N

�
ci � �

� P� T � � � � �
Sc
� �

N
� � �

�
Sc

�
N

�
ci � using (iv)

� P� T � � � � �
G
� �

Sc
� �

Cc
� �

N
� � �

�
G
� �

Sc
�

N
�

Cc
� �

ci �
� P� T � � � � �

G
� �

Sc
� �

Cc
� �

N
� � �

�
G

�
Sc

�
N

�
Cc � using (ii)

(c) If P� T � � � � �
q1 � ����� � qr � �

�
Sc

�
N � � , then N � N

�
and Sc

�
� Sc

�
p. (iv)

Then P� T � � � � �
Sc

�
N � �

�
q1 � ����� � qr � �

� P� T � � � � �
Sc

�
p
�

N � �
�
p
� �

q1 � ����� � qr � � �
� P� T � � � � �

Sc
�

p
�

N � �
�
p �

�
q1 � ����� � qr � � �

� P� T � � � � �
Sc

�
p
�

N � � ci �
� P� T � � � � �

Sc
�

p
�

N � �
�
Sc

�
N

�
ci � �

� P� T � � � � �
Sc
� �

N
� � �

�
Sc

�
N

�
ci � � using (iv)

� P� T � � � � �
G
� �

Sc
� �

Cc
� �

N
� � �

�
G
� �

Sc
�

N
�

Cc
� �

ci � �
� P� T � � � � �

G
� �

Sc
� �

Cc
� �

N
� � �

�
G

�
Sc

�
Cc

�
N � � using (ii)

Theorem 4.3 (Soundness): Given a Cob(C ) program C, its CCLP-translation P with least

model Mp, and a goal G, if a derivation for G w.r.t. P ends in � φ � Sc � Cc � N � such that

consistent(Sc, Cc, N), then Mp � T � � �
Sc
�

Cc
�

N � � G.

Proof : A derivation for G with respect to P has the start state S0 � � G � φ � φ � φ � . Sup-

pose that in n steps, the derivation reaches the final state Sn � � φ � Sc � Cc � N � such that

consistent
�
Sc � Cc � N � . Suppose the intermediate states of the derivation are Si � � Gi � Sci � Cci � Ni �

such that state Si � 1 � � Gi � 1 � Sci � 1 � Cci � 1 � Ni � 1 � is derived from Si by one derivation step.

By Lemma 4.1,
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Mp � T � � �
Gi � 1

�
Sci � 1

�
Cci � 1

�
Ni � 1 � �

�
Gi

�
Sci

�
Cci

�
Ni � �

i � 0
���
n � 1

By repeated use of Lemma 4.1 and the transitivity of � ,

Mp � T � � �
G0

�
Sc0

�
Cc0

�
N0 � �

�
Gn

�
Scn

�
Ccn

�
Nn �

Since Sc0 � Cc0 � N0 and Gn are empty and Gn � G � Scn � Sc � Ccn � Cc and Nn � N, the

following holds.

Mp � T � � �
Sc
�

Cc
�

N � � G.

Thus the above lemma and theorem prove that a computed answer (as per the oper-

ational semantics) to a Cob program with respect to a query or goal is indeed a correct

answer (as defined by the declarative semantics of Cob).

Theorem 4.4 (Completeness): Given a Cob(C) program C, its CCLP-translation P and

a goal G, if a valuation θ is such that Mp � � θG, then there exists a finite derivation with

start state � G � φ � φ � φ � and ending in � φ � Sc � Cc � N � such that consistent(Sc, Cc, N) and

P� T � � θ
�
Sc
�

Cc
�

N � .

We do not provide a full proof of completeness in this dissertation, but provide an

outline of the main steps needed for this proof. Basically, the proof strategy follows that

of the CLP language, i.e., it requires an intermediate step involving fixpoint semantics. We

may define an immediate consequence operator for a CCLP program whose least fixpoint

coincides with the least model of the program. By defining another operator that computes

immediate consequences of certain rules based on breadth-first derivations, and relating it

to the immediate consequence operator, we may be able to show that an element in the

least model of the program can be reached within a finite number of steps of breadth-first

derivations. The presence of user-defined predicates in the antecedant of a conditional

constraint may give rise to nontermination. Hence in the proof of completeness bounded-

depth recursion may have to be assumed. The operational semantics given above can be

compared with the semantics of CLP languages given in [61, 60].

4.2.4 Operational Semantics of General Conditional Constraints

Thus far, we have considered conditional constraints in which the head and body consist

of constraints. In general, the head of a conditional constraint consists of a constraint or a

positive atom and the body can have constraints or positive or negative atoms. To determine
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the consistency of such conditional constraints, the operational model must determine if

the validity (truth) of a constraint or atom is implied by the state of a computation. This

cannot be determined by the CLP semantics (transition rules) described in Section 4.2.1. In

addition to the transition rules given for Cob programs in Section 4.2.2, we define below the

transition rules required for handling a state consisting of general conditional constraints.

The selected conditional constraint is shown enclosed in parenthesis (
� � ) and the following

notation is used.

A: collection of atoms and constraints.

Sc: set of simple constraints.

Cc: set of conditional constraints.

N: set of negated literals.

c � ci: a constraint atom.

a � ai: an atom.

li: literal (positive or negative atom).

b � bi: a constraint or an atom.

1. � A � Sc � Cc
���

c :- c1 � ����� cm � � N �

This case was discussed in Section 4.2.4.

2. � A � Sc � Cc
� �

c :- b1 � ����� bm � � N � � cc � A � Sc � Cc � N � if P� T � � � �
c �

�
Sc
�

N � �
3. � A � Sc � Cc

� �
c :- b1 � ����� bm � � N � � cc � A � Sc � Cc � N � � � �

b1 � ����� bm � � � if P� T � �
� �

� c � Sc
�

N �
4. � A � Sc � Cc

� �
b :- c1 � ����� cm � � N � � cc � A

� �
b � � Sc � Cc � N � if foreach i � � 1 ���m � ,

P� T � � � �
ci �

�
Sc
�

N � �
5. � A � Sc � Cc

� �
b :- c1 � ����� cm � � N � � cc � A � Sc � Cc � N � if for some i � � 1 ���m � ,

P� T � � � �
� ci �

�
Sc
�

N � �
6. � A � Sc � Cc

���
a :- b1 � ����� bm � � N � � cc � A � Sc � Cc � N � if ground

�
a � and P� T � �

� �
a �

�
Sc
�

N � �
7. � A � Sc � Cc

� �
a :- b1 � ����� bm � � N � � cc � A � Sc � Cc � N � � � �

b1 � ����� bm � � � if ground
�
a �

and P� T � � � �
� a �

�
Sc
�

N �
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8. � A � Sc � Cc
� �

b :- l1 � ����� lm � � N � � cc � A
� �

b � � Sc � Cc � N � if for each i � � 1 ���m � ,
ground

�
li � and P� T � � � �

li �
�
Sc
�

N � �

9. � A � Sc � Cc
� �

b :- l1 � ����� lm � � N � � cc � A � Sc � Cc � N � if for some i � � 1 ���m � ,
ground

�
li � and P� T � � � �

� li �
�
Sc
�

N � �

Clearly, the above transition rules are not subsumed by the CLP semantics given in Sec-

tion 4.2.1 since entailment of constraints or atoms is not handled by CLP. The operational

semantics of Cob, on the other hand, subsume and extend CLP semantics to handle general

conditional constraints. The above transition rules together with the operational semantics

for Cob programs given in Section 4.2.2 serve as a basis for an implementation of a com-

piler for Cob programs. Currently, our computational model (compiler) implements rules

1,2,4 and 7-9. Essentially, evaluation of conditional constraints can be done if they are sim-

ple conditional constraints, or after sufficient information about them is obtained, i.e., they

become sufficiently ground thus making it possible to check for the validity of a constraint

and ground literals. A more detailed description of how the compiler handles conditional

constraints is given in Chapter 5.

4.3 Summary

In this chapter we defined the formal declarative and operational semantics of constrained

objects. First an overview of the declarative semantics of CLP programs [60] was given.

The logical meaning of a CLP rule and a program were described. The set-theoretic seman-

tics of a CLP(C ) program is the smallest interpretation of the program symbols that models

the rules of the program, i.e., its least model. We then defined the declarative semantics of

Cob programs.

A Cob program can be translated to a CLP predicate in a natural way: the arguments of

the predicate represent aggregation and the constraints in the body of the predicate corre-

spond to the constraints of the Cob class. We defined a novel scheme for systematic trans-

lation of Cob programs to CLP programs. Using this translation, we defined the declarative

semantics of a Cob program (without conditional constraints) as the least model of its cor-

responding CLP-translation.
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Cob programs with conditional constraints cannot be translated directly to CLP pro-

grams. Hence we defined a CCLP program as an augmentation of a CLP program with

conditional constraints. We gave a logical semantics for conditional constraints and defined

the notion of a model of a conditional constraint as well as a CCLP program. Cob programs

with conditional constraints are translated to CCLP programs and their declarative seman-

tics is defined as the least model of their CCLP-translation. Informally, the meaning of a

Cob class is given by the set of values for its attributes such that the constraints of the class

evaluate to true.

We presented an overview of the operational semantics of CLP programs [60] and de-

fined the operational semantics of Cob programs in terms of derivations of their CCLP-

translations. These derivations are similar to CLP derivations except for the case of con-

ditional constraints. We gave the complete operational semantics of Cob programs with

restricted conditional constraints. The soundness result for such programs was stated with

proof and the completeness result was stated with a proposed approach for a proof along the

lines of the completeness result for CLP derivations. We then briefly presented an overview

of the possible cases for goal evaluation with respect to Cob programs with general condi-

tional constraints. The declarative semantics of constrained objects, the translation scheme

for Cob to CLP and the operational semantics of Cob programs presented in this chapter

define the meaning of constrained objects and a scheme for computing this meaning. We

have successfully used these schemes for developing a compiler for Cob programs. The

implementation of this compiler is discussed in detail in Chapter 5.
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Chapter 5

Implementation of Constrained Objects

The overall modeling scenario for constrained objects can be summarized as follows:

modeling ::= build; solve; [ [ modify; re solve] � ; query � � �

A modeler can build a complex object either by defining classes of constrained ob-

jects and composing together instances of these classes or by drawing the complex object

through a domain specific visual interface. Given a complex object, i.e., a composition of

constrained objects, the Cob computational engine tries to solve their constraints and arrive

at values for the (uninitialized) attributes of these constrained objects. Operations can then

be performed through the visual interfaces to modify these values, and the Cob engine will

attempt to re-solve the constraints and arrive at new values for attributes that will satisfy

the constraints. The complex object can then be queried to find possible assignments of

values to attributes that will satisfy some given constraints in addition to the ones already

present in the constrained objects. The process of modifying and querying can be repeated

as many times as the modeler wishes.

As described in Chapter 3, Cob models can be developed (build phase) either by: (i)

a domain-independent interface for building class diagrams; (ii) domain-dependent inter-

faces for drawing diagrams of engineering structures; or (iii) by writing textual Cob code.

For the first two cases, the interfaces are furnished with domain-independent (CUML) and

domain-specific compilers that translate class diagrams and drawings respectively to tex-

tual Cob code. The Cob code generated by any of the above three methods is then translated

to CLP(R) code by the prototype Cob compiler. This development and compilation of Cob
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Domain Specific
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       Compiler
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Figure 5.1: Cob Computational Environment: build phase

programs is illustrated in Figure 5.1.

The implementation of the Cob compiler is based upon the translation of Cob to CLP

discussed in Chapter 4. Since a Cob class defines a datatype satisfying certain constraints

or relations, the mapping of a class to a predicate is natural, as the predicate can be thought

of as a procedure for enforcing the constraints of the class. This translation also facilitates

a straightforward translation of the CLP predicates that may be defined within a Cob class

and used in the constraints of the class.

The next phase (solve) involves the evaluation of this CLP(R) code with respect to the

query obtained by translating the top-level call to the constructor of the complex object.

The default query corresponds to a call to main (when such a class exists); otherwise it is

specified by the user (see Figure 5.2). The translated CLP(R) code can be run directly on the
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CLP(R) Code

Optimized Code

Answers

Constraint Engine

CLP(R)
Solver
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Default or User−defined
Query

Conditional Constraint
Evaluator

Figure 5.2: Cob Execution Environment: solve phase

CLP(R) interpreter. The first version of our computational model [68] did precisely this.

Such an evaluation however, suffers from certain limitations: constraints can be solved

only if they are sufficiently linear; there is no mechanism in CLP to handle conditional

constraints; and, for large programs the evaluation can be slow due to repeated attempts to

solve a large constraint store while generating more constraints and variables.

We can obtain a more efficient and general implementation by employing a “pre-execution”

step wherein we partially execute the translated CLP(R) program in order to unwrap con-

straints from their object containers and also unravel loops arising from quantified con-

straints. The optimized code resulting from this partial evaluation is essentially a collection

of constraints including linear, non-linear and conditional constraints. Partial evaluation en-

ables us to collect non-linear constraints and use a more powerful constraint solver, such
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Figure 5.3: Cob Interactive Execution Environment

as Maple [112] to solve them. The partial evaluator also allows us to handle conditional

constraints separately and satisfactorily (see Figure 5.2).

Our technique for partial evaluation for optimized code generation also enables novel

techniques for interactive execution including visual debugging of constrained object pro-

grams. A variant of the partial evaluator is used to generate the constrained object graph

(defined in Section 5.3) for a given Cob program and query. This graph contains informa-

tion about Cob object instances present during the execution of a Cob program and their

relation (aggregation) with each other. In the interactive execution mode, the solving can

be performed step wise and viewed via the graph, on a per node (object instance) basis. It

is possible to step forward and backward through the solve phase and in case there is an

error, the object in which it occurs is highlighted. This process is shown in Figure 5.3.
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Figure 5.4: Cob Execution Environment: query phase

The final answers thus obtained are displayed either at the command line, on the class

diagram, on the drawing, or on the object graph as the case may be. The user can now query

the diagram or graph for detailed information about a component or node by clicking on

the relevant part of the diagram/graph. The user can now modify the model either through

the textual code (not shown in above diagram), the domain-specific drawing, or the CUML

diagram, but not through the object graph. Subsequently the modeler can go through one or

more iterations of the above (solve and query computation). This process is show in Figure

5.4.

The material presented in this chapter is organized as follows. We first describe the

computational model underlying the Cob programming language and modeling environ-

ment. Section 5.1 gives details of the translation of Cob programs to CLP programs and

describes some properties of the translated programs. In Section 5.2 we describe a scheme

for partial evaluation of the CLP-translations of Cob programs and illustrate it with some

examples. We also describe how this scheme enables us to improve the efficiency of large-

scale models and handle conditional as well as non-linear constraints. Section 5.3 describes

a visual environment for interactive execution of Cob programs. Section 5.4 compares our

partial evaluation technique with related work and Section 5.5 summarizes the material
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presented in this chapter.

5.1 Cob Compiler

We have developed a prototype Cob compiler based on the translation of Cob to CLP

shown in Section 4.2. The Cob compiler takes as input a Cob program C and generates a

CLP program P. The execution of a Cob program is initiated by a call to the constructor of

a Cob class, e.g., X = new c(Args). This call is translated by the compiler to the CLP

query q � pc
�
Args, X � . The result of evaluating the call on the constructor of c is given

in terms of the result of evaluating the query q with respect to the CLP program P.

5.1.1 Translation of Cob to CLP

In Section 4.2 we described the translation of a Cob class, a constraint atom and a con-

structor. In this section, we give more details of this translation pertaining to quantified

constraints and terms, arrays, indexing, lists, etc.

Quantified Constraint. The ith occurrence of a forall quantified constraint is trans-

lated to a predicate
�
� 	 ���
� i with suitable parameters that capture the variables in the con-

straint in the body of the forall.

forall X in E: C � � T
�
� 	�� �
��� (E , V )

where
�
��	����
��� ([ ], V ).

�
� 	�� �
��� ([X|Tail],V ) :- CT ,

�
� 	�� �
��� (Tail,V ).

V is a list of the variables in C

and CT is obtained by translating constraint C

The predicate
�
� 	������ i is defined recursively and iterates, via variable X , through its first

argument. In the translation of the quantified constraint above, the enumeration E is passed

as the first argument to this predicate. This ensures that the variable X iterates through

every element of the enumeration. Note that since the original constraint C contains X , so

does its translation CT . Hence, every time the second clause of
�
� 	������ i is evaluated, the

X in the head of the clause matches the X present in CT and the constraint is iteratively

evaluated for every element of the enumeration E .
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Passing V as an argument to
�
� 	����
� i ensures that the constraint CT is evaluated in the

correct context, i.e., the variables present in CT unify or bind with the same value as they

did in the context in which the quantified constraint appeared in the original program. This

is important since otherwise the variables of CT , other than X , will become free variables

in the second clause.

In general, a programmer may use same variable names for the quantified variables in

two separate quantified constraints. Semantically, this does not lead to any unintentional

sharing of variables between the two constraints since the scope of the quantified variables

is well defined and separate. To ensure such semantics (i.e., no unintentional sharing of

variables) in the translation of the quantified constraints, quantified variables like X above

are renamed (to unique internal variable names) before carrying out the above translation.

Similarly, if the enumeration is an interval of integers, it is translated as shown below. Note

that the predicate makelist is a predefined predicate whereas the predicate
�
� 	�� �
� � is

defined during the translation.

forall X in I
���
J: C � � T makelist(I � J � ItoJ),

�
� 	�� �
��� (ItoJ, V )

where makelist(N � M � NtoM) is defined such that

NtoM is the list of integers from N to M.

Existentially quantified constraints are translated along the same lines, with an appropriate

definition for the � � � ��� � i predicate. As explained in the case of quantified constriants

above, the list of variables V is passed in order to ensure that the translated constraint C is

evaluated in the correct context in the body of the � � � ��� � i predicate.

exists X in E: C � � T � � � ��� � � (E , V )

where � � � ��� � � ([X|Tail], V ) :- CT .

� � � ��� � � ([X|Tail],V ) :- � � � ��� ��� (Tail,V ).

V is a list of the variables in C

and CT is obtained by translating constraint C
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Conditional Constraints. As shown in Section 4.2.2, conditional constraints are translated

as follows.

A :- B ��� T cc(AT � BT )

where AT is obtained by translating constraint A

BT is obtained by translating constraint B

and cc is the predefined predicate with semantics:

cc(X � Y ) :- X . (i)

cc(X � Y ) :- not Y . (ii)

The implementation of cc is:

cc(A, ) :- ground(A), call(A), ! .

cc(A, B) :- ground(A), !, (B).

cc(A, B) :- ground(B), call(B), !, call(A).

cc( , B) :- ground(B), !.

It is clear that this simplistic implementation of the conditional constraints will result

in the correct answer only for sufficiently ground instances of the constraint. This was the

implementation of conditional constraints in the first version of the Cob compiler [67, 68]

whose output ran on CLP(R). The current version of the compiler translates Cob code to

Sicstus Prolog [104]. This reduces the groundness requirement to some extent because

Sicstus provides a builtin predicate to check entailment of a constraint. This scheme is

described in the section on partial evaluation (Section 5.3).

Term. Terms appear in constraints and as arguments to functions (sin, cos, etc.) and

constructors. Translation of constraints involves the translation of terms. We show below

how the differnt kinds of terms are translated.

The ith occurrence of a summation term is replaced by a new variable Sumi whose value

is computed by an invocation of the predicate � � �

i with suitable parameters that capture

the variables in the term in the body of the sum term.

sum X in E: T � � T Sumi

where � � �
� (E , V , Sumi)

where � � �
� ([ ], V , 0).
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� � �
� ([X|Tail],V , TT + SumRest) :-

� � �
� (Tail,V , SumRest).

V is a list of the variables in term T

and TT is obtained by translating term T

Product terms are translated similarly with a * instead of the +. Terms computing the

minimum of a collection of terms (min) are translated similarly by iteratively computing

the minimum of two terms instead of the sum as shown above.

min X in E: T � � T Cobvar

where min(E , V , Cobvar)

where min([X], V , TT ).

min([X|Tail],V , min(TT , MinRest)) :-

min(Tail,V , MinRest).

V are the variables in C

and TT is obtained by translating T

Terms computing the maximum are translated similarly with max/2 replacing min/2.

Selection. Selection terms of the type A
�
B are translated by retrieving the list of attributes

of the class tA (type of A) and extracting attribute B from it as shown below.
A
�
B � � T A B

where A = A VtA

and tA is the type of A

VtA is the list of attributes of the class tA.

A VtA � prefix every element of VtA with A

Suppose an attribute A is of type tA, and A Bi is obtained from A
�
Bi using the above

translation. Suppose class tA is defined as:

class tA
�
attributes X1 B1; ...;Xn Bn; constraints .... �

To illustrate that A Bi indeed refers to the attribute Bi of A, we give the following justifica-

tion.

From the translation of constructor calls, we know that an instance of a class is repre-

sented as a list of variables corresponding to the attributes of the class. It is given that A is

of type tA, i.e., A is an instance of class tA. Hence we know that
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A � �XB1 � ����� � XBn �
where f orall i � 1

���
n, XBi refers to the attribute Bi of A

From the translation, it is also known that VtA is the list of attribute names of class tA. Thus,

VtA � �B1 � ����� � Bn �
By prefixing every attribute name with A we get

A VtA � �A B1 � ����� � A Bn �
From the translation, it is known that

A � A VtA

Therefore,

�XB1 � ����� � XBn � � �A B1 � ����� � A Bn �
This means that corresponding elements of the list are equal. Hence, for i � 1

���
n,

A Bi � XBi

Thus A Bi refers to the attribute Bi of A.

Arithmetic expressions are translated by translating their component terms. For exam-

ple A
�

B is translated to TA
�

TB where TA and TB are the translations of the terms A and

B respectively. Similarly, an enclosed term
�
A � is translated to

�
TA � . A list of terms is

translated by translating each element of the list. A function call is translated by translating

each of its arguments, i.e., f uncid
�
terms � is translated to f uncid

�
Tterms � , where Tterms is

the translation of the list of terms terms. A variable V is translated as is, i.e., it does not

change under translation unless the context in which it appears requires that it be renamed

to another variable name (for example, the quantified variable in a quantified constraint is

renamed in order to avoid unintentional variable sharing).

Arrays and Indexing. Arrays are represented as lists and multidimensional arrays are

represented as list of lists of lists and so on depending on the dimension 1. Array declara-

tions are translated to calls on the predefined predicate makearray. An array of undefined

size is represented as the list [ ].

typeName [I][J] X � � T makearray([I,J], X)

where makearray(ListDim, Y): Y a list of size N
1The inefficiency arising from list traversal during array creation and indexing is overcome by partial

evaluation (see Section 5.2).
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where N is the length of the list ListDim.

If the nth element of Listo f Dim is M, then

the nth element of Y is a list of size M.

As array declarations of unspecified size are bound to [ ], and elements can be inserted into

such an array one at a time, the tail of the array may be a variable ([ ]). Hence the actual

definitions of recursive predicates like
�
� 	������ � � � � �

� , etc. contain a conditional statement

that checks if the tail is a variable.

We provide a predefined predicate index for accessing elements of a list. This pred-

icate takes as input a list L and a positive integer I (the index) and returns the I th element

of L. For large values (up to n) of the index, this predicate is defined by pattern matching

against the input list (array). For all values of the index less than n, the goal index(L,

n) matches exactly one non-recursive clause in the definition of index. In other words,

by using pattern matching we are able to avoid a recursive definition as well as iterative

list traversal. Evaluation of the index predicate thus takes the same amount of time for

all indices less than n. This ensures that for all practical purposes, list or array accessing

is done in constant time. Translation of array indexing in Cob makes use of the index

predicate as shown below.

Indexed terms are translated to a new variable whose value is obtained by a call to the

predefined predicate index. Translation of multilevel indexing involves multiple calls to

index, the result of one call being indexed by the next.

X [I] � � T X I

where index(X , IT , X I)

and IT is obtained by translating I

X [I][J] � � T X I J

where index(X , IT , X I)

and index(X I, JT , X I J)

and JT is obtained by translating J

In our scheme of partial evaluation, calls to the index predicate are evaluated at the “pre-

execution” stage. Although evaluation of indexing goals takes constant time as explained
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class component
�

attributes real V, I, R;

constraints V = I * R;

constructors component(V1,I1,R1)
�

V = V1; I = I1; R = R1;

�
�
class parallel extends component

�

attributes component [] PC;

constraints

forall X in PC : X.V = V;

sum Y in PC : Y.I = I;

sum Z in PC : (1/Z.R) = 1/R;

constructors parallel(B)
�

PC = B;

�
�

Figure 5.5: Cob class definitions

before, their processing away during partial evaluation leads to a more efficient execution

of the model at runtime.

To illustrate the above translations with a concrete example, consider the Cob classes

shown in Figure 5.5. Class component models an electrical component with attributes

voltage(V), current(I) and resistance (R) that obey Ohm’s law (V=I*R). Class parallel

represents a collection of components(PC) connected in parallel. Figure 5.6 shows the

translation of these Cob classes to CLP predicates.
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p ������� �	��
	��� ([V1, I1, R1], [V, I, R]) :-

V = I * R,

V = V1,

I = I1,

R = R1.

p���� �����
�� ([B],[V,I,R,PC]):-

PC = [ ],

PC = B,

p ������� �	��
	��� ( ,[V,I,R]),

forall1(PC,X,V),

N1 = I,

sum1(PC,N1,Y,I),

N2 = 1/R,

sum2(PC, N2,Z,R).

forall1([],X,V).

forall1([X|Tail],X,V):-

X V=V,

X=[X V,X I,X R],

forall1(Tail,X,V).

sum2([],0,Z,R).

sum2([Z|Tail],(1/Z R)+ Sumrest,Z,R):-

sum2(Tail,Sumrest,Z,R),

Z = [Z V,Z I,Z R].

sum1([],0,Y,I).

sum1([Y|Tail],(Y I)+Sumrest,Y,I):-

sum1(Tail,Sumrest,Y,I),

Y=[Y V,Y I,Y R].

Figure 5.6: Translated CLP(R) code
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5.1.2 Classification of Predicates

The CLP program obtained by translating a Cob program is a sequence of predicate defini-

tions. Since some of these definitions make use of certain builtin or predefined predicates,

the translated program is appended with the definition of these predicates before evalua-

tion. The predicates in the resulting composite program can be classified into the following

categories.

1. CLP builtins The predicates in this category are either CLP builtin predicates or

defined directly in terms of CLP builtin predicates.

� I/O Predicates: Input-output can be performed in a Cob program through the use

of the dump/1 or the CLP built-in predicates print/1, tell/1, told/1,

read/1, write/1. These are generated by the non-terminal constraint predicate id

in the grammar in section 3.1. The predicate dump/1 is predefined in Cob using the

CLP built-in predicate print/1. The Cob programmer can directly use these pred-

icates in a Cob program.

� Predicate for constraint handling (expand/0): In the first version of the compiler

mentioned in [68], the translated code was run on CLP(R). The output of the current

version of the Cob compiler is run on the clpr module provided by SICStus Prolog

[104]. In the clpr module of Sicstus Prolog, constraints must be explicitly enclosed

in
� � to indicate their interpreted meaning. The translation described in the previous

subsection generates programs where symbols and constraints are interpreted by de-

fault without the need for a surrounding
� � . To transform such translated programs

into programs where constraints are enclosed in
� � for input to Sicstus clpr module,

we use the expand/0 predicate provided for this purpose by Sicstus Prolog. As a

result of using expand/0, all constraints get explicitly enclosed in
� � . A call to

the expand/0 predicate is inserted at the beginning of the translated CLP program.

A slightly modified translation can achieve a similar output by explicitly enclosing

constraints within
� � during the translation itself.
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2. Cob compiler builtins The predicates in this category are either predefined or gener-

ated automatically by the Cob compiler.

� Predicate for conditional constraints (cc/2): The conditional constraints appearing

in a Cob program are translated into a call to the predefined predicate cc/2. A

simple implementation of this predicate was given in section 5.2.1 which gave correct

answers only for sufficiently ground instances of conditional constraints. The current

version of the Cob compiler uses a modified definition which reduces the groundness

requirement to some extent and the Cob computational model delays the evaluation

of conditional constraints until sufficient information is known about them. This

strategy is discussed in Section 5.3.2.

� Predicates for quantification and aggregation: These predicates are generated as

a result of translating the quantified constraints, existential constraints and quantified

terms present in a Cob program (as shown in Section 5.2.1). These predicates are

named foralli/2, existsi/2, mini/3, maxi/3 or sumi/3 depending on

the occurrance of the constraint or term they represent. The body of these predicate

definitions captures the corresponding constraint (or term) of the Cob program and

hence evaluation of these predicates gives rise to constraints. Note that these predi-

cates are not predefined, as their definition depends on the Cob program and hence

is given by the compiler.

� Predicates for array operations: Array declarations, array accessing and certain

enumerations in a Cob program are translated to calls on the predicates makelist/3,

makearray/2 and index/3 (as shown in Section 5.2.1). These are predefined

predicates whose definitions are appended to the translated program before its eval-

uation. Note that the Cob programmer does not invoke these predicates, they appear

only in the translated CLP code. They are defined recursively and involve list pro-

cessing and their evaluation will not generate any constraints. The scheme for partial

evaluation described in Section 5.3 will process away these predicates.

3. User-defined predicates This category consists of the predicates appearing in a Cob

class and the translated predicates corresponding to a class.
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� User-defined CLP predicates: A Cob program can contain predicate definitions un-

der the predicates part of a class definition. Although these predicates can be

invoked by passing them Cob program variables, their definitions cannot involve gen-

eral Cob terms (such as class attributes and complex identifiers or quantified terms)

but only the usual logic variables. These predicates are translated as is by the com-

piler (except for some internal renaming to avoid name clashes between classes). The

syntax of these predicates is the full fledged CLP syntax and hence these are like any

other CLP predicate.

� Predicates corresponding to class definitions or constructors: Each class defini-

tion in a Cob program is translated to one or more predicates. A Cob program with

n class definitions where the ith class has ci constructors is translated into a CLP

program with at least one predicate for each class and a predicate (clause or def-

inition) corresponding to each constructor. Thus the number of such predicates is

∑n
i � 1 min

�
1 � ci � .

Clearly, the CLP builtin predicates and the Cob builtin predicates for array accessing

are predefined predicates and hence do not give rise to any constraints. Except for the user-

defined CLP predicates, the CLP program obtained from the translation of a Cob program

thus has a known form, i.e., the format of the definitions etc. This knowledge enables us to

predict some properties of the translated programs.

5.1.3 Properties of Translated Programs

The CLP programs obtained from translation of Cob program have a known structure. We

make some practical assumptions about the CLP program that are justified in the context

of using constrained objects for modeling engineering structures.

1. We assume that there can be only a finite depth of predicate invocations, for predi-

cates derived (or translated) from class definitions.

2. We assume that the user-defined predicates in a Cob program terminate on all invo-

cations.
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With the above assumptions, the CLP program obtained by translating a Cob program

has the following properties.

Property 5.1 (Termination): The CLP programs resulting from the translation of Cob

models of engineering structures have the property that their predicates have only finite

depth recursion.

Justification: We need to show that the predicates in each category listed in Section 5.2.2

terminates. Due to assumptions (i) and (ii) above, it is clear that the category of user-

defined predicates terminates on all invocations. The CLP builtin predicates expand,

print, tell, told, etc. are known to terminate. Of the third category of predi-

cates, viz., the Cob compiler builtins, the cc, makearray, makelist and index

are predefined and even though the definition is recursive, they are known to terminate on

all invocations. The predicates resulting from quantified constraints and terms (forall,

exists, sum, etc.) are recursively defined, with the recursion occurring on the argu-

ment representing enumeration (an array or list of integers). Since the arguments cannot be

infinite lists, all invocations of these predicates also terminates. Hence, every predicate in

the translated CLP program has only a finite depth recursion.

Property 5.2 (CLP subset): The predicates, constructs and queries appearing in the CLP

program and its evaluation are a subset of the CLP(R) language.

Justification: This property follows straightforwardly from the fact that the translated CLP

program contains predicates from the categories of Section 5.2.2. These predicates are ei-

ther predefined or generated by the compiler and hence their structure is known a priori or

from the syntax of the Cob program. A query to the CLP program is always obtained by

translating a call to a Cob class constructor as shown in Section 5.2.2 and hence its format is

also well known. Every predicate invocation in the translated program arises from translat-

ing a Cob constructor invocation (unless it is a call on user-defined CLP predicate). Hence

we can say that the constructs and predicates appearing in the translated CLP program are

a subset of the CLP language and their form is well-known.

Besides the above properties, the following are some straightforward outcomes of the

translation.
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Property 5.3 (Identifying Constraints): The constraints in a CLP-translation that corre-

spond to the constraints of the original Cob program can be identified from those that are

generated as a result of the translation.

Justification: The constraints of the original Cob program are straightforward to iden-

tify in the CLP-translation since they are explicitly enclosed in
� � . Although the use of

the expand/0 predicate generates some equalities (not enclosed in parentheses) in the

CLP translation in addition to the original Cob constraints, it is possible to identify these

since they involve CLP internal variables (not present in the Cob program). Conditional

constraints can be easily identified since they are handled by a special built-in predicate.

Non-logical constructs. Translated CLP programs do not have cuts except in defini-

tion of the compiler built-in predicate index. Negated goals, which can appear only in

conditional constraints, are evaluated only when ground.

The above properties tell us that the CLP-translations are well structured subsets of the

CLP language in which constraints are easy to identify and knowing which predicates will

not and may have constraints allows us to design a strategy for partial evaluation of such

programs discussed in Section 5.3.2.

5.2 Partial Evaluation

Partial evaluation is a pre-execution of the source program at compile time in order to obtain

a more efficient execution in terms of space/time. Traditional techniques for code optimiza-

tion include loop unraveling and data flow analysis [3] and have been used in languages

such as FORTRAN and C. In logic programming, partial evaluation refers to a source-to-

source transformation of a program with respect to a query such that for all instances of

the query, the output program runs more efficiently than the original. In the context of Cob

programs, we provide a scheme for partial evaluation of their CLP-translations with respect

to a query.

As mentioned earlier, given the CLP-translation of a Cob program, a query can be

evaluated directly on a CLP interpreter ([63] or [104]). Due to the limitations of the CLP

solver, such a computation will return answers only when the constraints are sufficiently
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linear. Also, the computational model of CLP(R) checks for consistency of the constraint

store every time the constraint store is modified. This means that for every iteration of a

loop (in the translated code) corresponding to a quantified constraint or term the constraint

store is tested for consistency. For large-scale models this repeated checking of constraints

and the presence of a large number of variables (including those generated as a result of

the translation) may lead to a slowdown of the evaluation. Thus, execution of the translated

CLP predicates directly on CLP(R) may not yield adequate performance for large-scale

systems. Hence we have developed a partial execution technique for optimized code gen-

eration. The optimized code is run on a system which consists of a CLP-engine, a powerful

constraint solver like Maple, and our conditional constraint evaluator.

5.2.1 Strategy

The execution of a Cob program is initiated by invoking the constructor of some Cob class,

e.g., X = new c(Args). The evaluation of such a call involves the creation of in-

stances of constrained object classes and solving of their internal as well as interface con-

straints. Answers are obtained by evaluating the CLP-translation of the query with respect

to the CLP-translation of the program. In general, this evaluation combines goal reduction

with constraint solving (recall the operational semantics of CLP given in Sections 2.2.1 and

4.2.1). For large scale models, with large numbers of variables and constraints, this scheme

may be inefficient since it involves repeated checking for consistency of constraints.

Our approach to a more efficient evaluation of the CLP-translation with respect to a

query performs goal reduction to obtain all the constraints underlying a Cob model without

solving any of the constraints. Different instances of the query can then be evaluated by

solving the corresponding instances of these constraints. Separating goal reduction from

constraint solving leads to a more efficient evaluation than when the two are interleaved.

In order to collect constraints without processing (solving) them, we require knowl-

edge about where and in what form the constraints occur in the CLP-translation of a Cob

program. The classification of predicates in a CLP-translation given in Section 5.2.1 pro-

vides us with this information and Property 5.3 gives us a means of identifying these con-

straints. With this knowledge, we can design a meta-interpreter that inspects a goal to
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decide whether it should be evaluated or added to the collection of constraints. Since the

types of predicates/goals that can appear in a CLP translation is finite and well known

(Property 5.2), such a meta-interpreter is written as a case analysis on the type of goal.

The partial evaluator takes as input a CLP program obtained by translating a Cob pro-

gram and a query obtained by translating a constructor call, and returns a list of constraints.

A solution to this list of constraints is a solution to the query. Formally, the partial evaluator

is described as follows.

Input: A CLP(D) program P satisfying the properties in Section 5.2.3 and a goal G.

Output: A set of constraints C such that P � D � � C � G.

In the following discussion, it is understood that the CLP-translation of a Cob program

is given as input to the partial evaluator. We do not show the input program explicitly as an

argument to the predicate parEval/2 which defines the partial evaluator.

parEval(G, C) :-

parEval(G,[ ],C).

The predicate

parEval(+Goal,+InputConstraints,-OutputConstraints)

takes the input Goal and an initially empty list of constraints InputConstraints and

returns the list of constraints of the Cob model in OutputConstraints. Its definition

is given in Figure 5.6 and we describe below some of the interesting clauses from this

definition.

� The result of partial evaluation of a pair of goals
�
A � B � is the union of the constraints

resulting from partial evaluation of A followed by the partial evaluation of B.

� The CLP built-in predicates do not contain any constraints. The partial evaluator

evaluates such goals to completion without further analysis. Similarly unification

goals are also evaluated without further analysis.

� Of the Cob builtin predicates, we know from Section 5.2.2 that predicates for array

declaration and accessing do not involve constraints. Hence these goals are evaluated

to completion. Thus the partial evaluator processes away calls to predicates index,

makearray and makelist.
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parEval(true, C, C).

parEval((A,B), Cin, Cout) :-

parEval(A, Cin, Cout1),

parEval(B, Cout1, Cout).

parEval(G, C, C) :-

clp built in(G), call(G).

parEval(G, C, C) :-

is unification(G), call(G).

parEval(G, C, C) :-

cob built in (G), call(G).

parEval(cc(A,B), Cin, Cout ) :-

evalCC(A,B,Result),

(Result - � (Cin = Cout);

(Result=callA - � Cout = [A � Cin];

Cout = [cc(A,B) � Cin])).

parEval(A � B;C, Cin, Cout):-

call(A) � parEval(B, Cin, Cout1);

parEval(C, Cout1, Cout).

parEval(G, C, [G � C ] ):-

predicate property(G, imported from(clpr)).

parEval(
�
X = N � , C, C) :-

var(X), number(N), call(
�
X = N � ).

parEval(G, Cin, Cout) :-

clause(G,Body), parEval(Body,Cin,Cout).

Figure 5.7: Scheme for Partial Evaluation
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� A conditional constraint is of the form cc(A,B) and is evaluated using the prede-

fined predicate evalCC shown below.

evalCC(A, B, true) :- entailed(A).

evalCC(A, B, callA) :- entailed(B).

evalCC(A, B, true) :- ground(B).

evalCC(A, B, cannot prove).

A conditional constraint is satisfied if its consequent is entailed by the current state

of the evaluation. In this case, the partial evaluation processes the next goal. On the

other hand, if the antecedent is entailed by the current state of evaluation, then the

consequent must be true for the conditional constraint to be satisfied and hence it is

added to the current collection of output constraints. The third rule states that if the

antecedent is false, then the conditional constraint is satisfied. However, the failure

of the antecedent can be checked only if it is ground. In case none of the above

rules is applicable, the conditional constraint is added to the list of output constraints

to be evaluated at a later stage (when more information might be available). The

predicate entailed/1 is a SICStus Prolog builtin which evaluates to true if a given

constraint is entailed by the current constraint store or state of the evaluation.

� A constraint atom (see grammar in Appendix A) is detected using the builtin SICStus

Prolog predicate predicate property, which returns the value imported from(clpr)

for constraints. Equivalently, a constraint atom can be detected by the presence of

surrounding parenthesis (Property 5.3). Constraints of the form X � number are

evaluated (not collected) because they represent variable initialization. All other con-

straints are added to the existing list of output constraints (they are not evaluated).

� If the input goal is not handled by any of the above rules, it is resolved into a col-

lection of goals using the rules in program P, i.e., goal reduction is performed with

respect to the input CLP program. This is done using the CLP builtin predicate

clause/2. The goals that fall in this category (i.e., they are reduced) are: calls

on the user-defined predicates as well as the Cob builtin predicates for quantification

and aggregation (e.g. foralli, existsi, sumi), etc predicates, there are goals
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V1 = I1 * 10 = I2 * 20 = V2

V3 = I3 * 20 = I4 * 20 = V4

V1 = S.I * P1.R

S.I = I1 + I2

1/P1.R = 1/10 + 1/20

V3 = S.I * P2.R

S.I = I3 + I4

1/P2.R = 1/20 + 1/20

30 = S.I * S.R

30 = V1 + V3

S.R = P1.R + P2.R

Figure 5.8: Constraints obtained by partial evaluation of samplecircuit

of the form A � B;C. This means that the partial evaluator performs loop unraveling

to generate the set of constraints a quantified constraint represents.

Since there are no non-logical constructs, we do not have any case for them. The

scheme for partial evaluation described above terminates on all inputs because, by Property

5.1, we know that the CLP program has only finite depth recursion and all invocation of

the predicates in the CLP program terminate.

As an example of the result of the above scheme of partial evaluation, consider the

samplecircuit class defined in Section 3.2.4. A query S1 = new samplecircuit()

creates an instance of the sample circuit shown in Figure 3.3. This query is translated to

samplecircuit([ ],S1), and is partially evaluated to obtain the constraints shown

in Figure 5.7. The full name of every variable above is actually prefixed by “S1.” since

each variable is a local variable of S1. To avoid repetition, we do not show the prefix above.

These constraints can now be solved to obtain values for the variables.

The partial evaluator described above generates optimized code and enables the han-

dling of conditional as well as non-linear constraints. We give two examples to illustrate

this point. The first example shows that the code resulting from partial evaluation is more
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efficient than the original CLP program. It also demonstrates how the optimized code can

be used for incremental constraint solving. The second example shows how partial evalu-

ation can facilitate solving Cob models with non-linear and conditional constraints which

otherwise cannot be handled by the CLP engine.

5.2.2 Optimization

Heat Transfer in a Plate. We give below a different Cob formulation of the Heatplate

problem than the one given in Section 3.2.2. The problem is to model a plate in which

the temperature of any point in the interior of the plate is the average of the temperature

of its neighboring four points. This can be stated mathematically by using 2D Laplace’s

equations. In this formulation, we model every point on the plate as a cell with four

neighboring cells. The value of the Flag attribute of the cell class indicates whether it

is an interior cell (Flag=1) or not (Flag=0). If a cell is on the interior, its temperature T

is related to its neighbors. This is modeled by the conditional constraint in class cell. The

Cob representation of a 2D plate is shown below in a class called heatplate. Compared

to its CLP(R) representation, the Cob representation of this problem is more comprehen-

sible, and the quantified and conditional constraints make it reusable for different sizes of

the plate. Note that we can also give an alternate model for this example using inheritance

instead of conditional constraints to model the difference in behavior of a border and an

interior cell. A description of such an alternate model is provided in Appendix D.

class cell
�

attributes
cell Left, Right, Up, Down;
real T, Flag;
constraints
(T = (Left.T+Right.T+Up.T+Down.T)/4) :- Flag=1;
constructor cell(T1, F1)

�
T = T1; Flag = F1;

�
�
class heatplate

�
attributes
int Size;
cell [Size][Size] Plate;
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constraints
forall I in 2..Size-1:

(forall J in 2..Size-1:
(Plate[I,J].Up = Plate[I-1,J];
Plate[I,J].Right = Plate[I,J+1];
Plate[I,J].Left = Plate[I,J-1];
Plate[I,J].Down = Plate[I+1,J];););

constructors heatplate(S, A,B,C,D)
�

Size = S;
forall I in 2..Size-1:

forall J in 2..Size-1:
(Plate[I,J] = new cell( , 1););

forall K in 1..Size:
(Plate[1,K] = new cell(A,0);
Plate[Size,K] = new cell(B,0););

forall L in 2..Size-1:
(Plate[L,1] = new cell(C,0);
Plate[L,Size] = new cell(D,0););

�
�

The Cob compiler translates the above program to the CLP program P using the trans-

lations given in Sections 4.1.2 and 5.2.1. Suppose we want to compute the heat at all the

interior points of a 4x4 grid and suppose that the temperatures along the top, bottom, left

and right border of the grid are A, B, C and D respectively. We can partially evaluate the

query

parEval(heatplate(4,A,B,C,D),Constraints).

to obtain the constraints:

X1 = (A + X2 + C + X3)/4,

X3 = (A + X4 + X1 + D)/4,

X2 = (X1 + C + B + X4)/4,

X4 = (X3 + B + X2 + D)/4

where Xi are the Cob program variables (Plate[I,J].T). The array operations (dec-

laration and indexing) are processed away by the partial evaluator. The conditional con-

straints in the cell class are simplified by the partial evaluator since the value of the flag vari-

able is known for all cells. Suppose the above set of constraints is denoted as C(A,B,C,D).

We can now obtain solution for any 4x4 grid by solving these constraints. For example, a
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4x4 grid, with the top row set to 0 and the rest of the border set to 100, can be evaluated

simply by solving the constraints C(0,100,100,100).

These constraints can also be displayed in terms of the original Cob program variables as:

Plate[3][3].T = (Plate[2][3].T+100+Plate[3][2].T+100)/4

Plate[3][2].T = (Plate[2][2].T+100+100+Plate[3][3].T)/4

Plate[2][3].T = (0+Plate[3][3].T+Plate[2][2].T+100)/4

Plate[2][2].T = (0+Plate[3][2].T+100+Plate[2][3].T)/4

By solving these constraints we get the values:

Plate[3][3].T = 87.5

Plate[3][2].T = 87.5

Plate[2][3].T = 62.5

Plate[2][2].T = 62.5

A clear advantage of partial evaluation is that the Cob program need not be recompiled

for different instances of the query heatplate(4,A,B,C,D). This is especially ad-

vantageous in the context of the domain specific interfaces. Once the modeler creates the

drawing of a structure and it is compiled, subsequent changes to the attributes of the draw-

ing can be solved without need for re-compilation of the diagram. Thus partial evaluation

saves time in the modify and resolve phases of the Cob modeling environment.

Another source of performance improvement during goal evaluation is the separation

of the goal reduction and constraint solving phases. Compared to the evaluation of the

CLP-translation P, of the above program on SICStus Prolog directly, the partial evaluation

of P followed by the solving of the collection of constraints takes less time.

Performance Results We compare the performances of the CLP-translation P of the

above program with and without partial evaluation (PE). The points of the heatplate along

the top, left, right and bottom border were initialized to 0, 100, 100 and 100 respec-

tively for all queries. Table 5.1 shows the runtimes of the program for different sizes (N) of

the heatplate. These tests were performed on a Sun Ultra Enterprise 450 Model 4400.

The first column in Table 5.1 specifies the size (NxN) of the heatplate, the second

column gives the runtime (in seconds) of the query heatplate(N, 0, 100, 100,

100) with respect to the CLP program P on SICStus Prolog, and the third column gives
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Size Running time

of Heatplate on SICStus Prolog

(square) (in seconds)

without PE with PE

20x20 1 1 ( 0 + 1)

25x25 5 1 ( 0 + 1)

30x30 14 3 ( 1 + 2)

35x35 42 4 ( 1 + 3)

40x40 113 8 ( 1 + 7)

45x45 203 15 ( 2 + 13)

50x50 428 25 ( 2 + 23)

51x51 651 32 ( 2 + 30)

52x52 Resource error: insufficient memory

Table 5.1: Comparison of Runtimes with and without Partial Evaluation

the runtime (in seconds) of the same query using partial evaluation and run on SICStus

Prolog. The figures in the braces in the third column give the individual times for partial

evaluation and the time for solving of the constraints. A 0 time indicates that the com-

putation took a small amount of time which could not be measured (hence almost zero).

Clearly, for all sizes of the heatplate, the total time taken for the partial evaluation and the

constraint solving is less than the time taken to run the program without partial evaluation.

The table shows that the time taken for partial evaluation (first element inside parenthesis)

does not change significantly with the size of the heatplate. This indicates that even for

large values of indices, the array accessing operation takes constant time. The figures in

Table 5.1 indicate that partial evaluation leads to a performance improvement of 5 to 17

fold.
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5.2.3 Conditional and Non-linear Constraint Solving

Truss Design. For the truss problem in section 3.2.1, we encounter several non-linear

constraints. A concrete example of a truss and its Cob model from [68] is given in Appendix

C. A sample truss is created using five steel beams each having a square cross-section. The

length of the beams, the angle at which they are placed at a joint and the load at each joint

is given. The problem is to determine the thickness required of each beam to be able to

support the load. The query T = sampletruss() is partially evaluated to obtain a set

of constraints. We show below the constraints for one of the instances of the beam (AB)

and joint (JA) class:

Iab = -Fab*(12*10.4)2/(3.141)2*3.0E+07) :- Fab � 0

Fab = 3.0E+04*(W*H) :- Fab � 0

Iab = W14 / 12

Fab * cos(3.141/4) + Fac * cos(0) +

Fav * cos(3.141/2) + Fah * cos(0) = 0

Fab * sin(3.141/4) + Fac * sin(0) +

Fav * sin(3.141/2) + Fah * sin(0) = 0

These non-linear constraints cannot be solved in the CLP(R) system. Hence we make

use of Maple [112], which is a computing system for interactive algebra, calculus, dis-

crete mathematics, graphics, numerical computation and many other areas of mathematics.

From the above set of non-linear constraints, we give the non-conditional constraints to

Maple. The answers obtained include the value of Fab which is -13440.80489. Using this

value, we can simplify the conditional constraints. The second conditional constraint is

satisfied because its antecedent is false. The first conditional constraint simplifies to yield

the constraint

Iab = -(-13440.80489)*(12*10.4)2/(3.1412*3.0E+07)

With this value substituted in the set of constraints above, we get a simplified set of con-

straints which is then given to Maple to obtain the following solutions.

S1.AB.W = 1.70684719

S1.AB.H = 1.70684719

Thus the conditional constraints are evaluated alternately with the set of non-conditional
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constraints since the simplification of one may give sufficient information to solve the other.

Such a scheme for handling conditional constraints and non-linear constraints is possible

due to the partial evaluation which returns the set of constraints underlying the Cob model.

5.2.4 Queries that can be Partially Evaluated

In general, the evaluation of a Cob query involves the creation of instances of constrained

object classes and the solving of their internal as well as interface constraints. In the context

of engineering modeling, the creation of object instances and aggregating them to form

other complex objects represents the process of assembling the components of a complex

engineering structure together to form a specific configuration. We would like to identify

the class of Cob queries for which the scheme for partial evaluation given in Section 5.3.1

will return a correct answer (set of constraints).

The most important aspect of the partial evaluation is loop unraveling and process-

ing array accessing operations. For the partial evaluator to process away these operations

or loops, it must have sufficient information about them. For example, array accessing

requires the value of the index. Similarly, the enumeration (list or array) over which quan-

tified constraints and aggregation terms iterate must be a known finite (ground) list. Thus,

queries that can be partially evaluated have a groundness requirement that allows the pro-

cessing of loops and array operations.

In the context of engineering structures, we can understand the above groundness re-

quirement as follows. A call to a Cob class constructor may represent either a specific con-

figuration or a collection of different configurations depending upon the value or ground-

ness of its arguments. In general, the arguments to a constructor may determine the type,

arrangement and attributes of the components of a configuration. Queries that can be par-

tially evaluated represent a family of structures all having the same configuration but differ-

ent values for attributes. Thus, every instance of the query must result in the same assembly

but possibly different values for the attributes of the assembly.
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5.3 Interactive Execution

The result of partial evaluation of a Cob program or model is a list of constraints. For

large programs, if a constraint fails, it can be difficult to trace the error back to the object

that that gave rise to the constraint. We introduce the notion of a constrained object graph

which serves as a meaningful representation of constraints and can be used for interactive

execution and debugging of partially evaluated Cob programs.

Constrained Object Graph. A complex object may be depicted by an object graph.

Each node represents an object (i.e., instance of some class) and each directed edge repre-

sents an aggregation relationship. Replacing each node of the object graph with the con-

straints of the object it represents results in the formation of the constrained object graph.

In the case of Cob models of engineering artifacts, the structure of this graph implicitly

represents the assembly of components of the artifact.

We have implemented a tool that generates the constrained object graph for Cob pro-

grams. Figure 5.8 shows the constrained object graph for the samplecircuit defined in

Section 3.2.4 and shown in Figure 3.3. In this example, all instances of resistors, battery,

etc are created in the class samplecircuit. In general this need not be the case. The

components R1 and R2 might be created inside the parallel class. In either case, the object

graph will be identical to the one in Figure 5.8. This is because, the edges of the object

graph denote aggregation and do not indicate where the instance was created.

Augmented Translation. In order to build an object graph, the translation must include

information regarding object creation and aggregation a map of Cob variable names and

their corresponding CLP variables. The translation shown in Sections 4.1.2 and 5.2.1 is

augmented in order to store this information. We show below only the modified parts of

the translation. The rest of the translation is identical to that given in Sections 4.1.2 and

5.2.1.

The translator inserts calls to predefined predicates for building the object graph, col-

lecting constraints at every node and maintaining information about which node is currently

being evaluated (to indicate the node to which subsequent constraints will belong).
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Figure 5.9: Object Graph of Samplecircuit
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class c
�

��� T P1
� �

de f n
�
pc � �

attributes V1 where de f n
�
pc � is:

constraints C1 pc
�
V2 � V1 � :-

predicates P1 edge(V1),

constructor c
�
V2 � � mapvar(V1 � NamesV1)),

C2 C1 � C2
�

� and

� NamesV1: the names of

the variables in V1

Creational constraints are translated as shown below. Calls to the predefined predicates

in and out are placed before and after the creational constraints. This indicates to the

partial evaluator that a new node is being created and that all the subsequent constraints

between these two calls belong to one node.

X = new c
�
t � � � T in(XT),

pc(tT , XT )

out(XT).

where pc is the translation of class c

XT is the translation of X

and tT is the translation of t

Partial Evaluator built ins: We refer to the predicates edge, mapvar, in, out,

as the partial evaluator built ins. edge is used for building the edges of the object graph.

mapcompoundvar is used for building the CobCLP variable map for variables of the

kind X.Y

in, out are used for building the Cob to CLP variable map and as the beginning and end

markers for distinguishing the constraints of each node.

Augmented Partial Evaluator. The partial evaluator is also modified in order to build

the object graph. The predicate parEval/3 defined in section 4 is changed changed to

parEval/7. It maintains a map (Min, Mout) of variable names and keeps track of the

current node (Nin, Nout) of the object graph.
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parEval(G, Cin, Cout, Min, Mout, Nin, Nout) :-

par eval built in(G),

call approp(G).

On all goals except the partial evaluator built ins, the partial evaluator behaves as be-

fore. The partial evaluator built ins are called appropriately using the current state of the

object graph, the variable map, and the current node being visited. The output of this partial

evaluator is used to build the constrained object graph.

5.3.1 Interactive Solving

We have developed a tool that takes as input a Cob program and displays its constraint

object graph (COG) through a visual interface that can be used to interactively solve and

debug. Once the constrained object graph is created, the solve phase of the Cob model

can be observed and/or controlled via this interface. The solving of constraints is done

on a per node basis, i.e., the constraints of node are solved then the next and so on. This

graphical user interface of this tool was implemented by the following persons under the

author’s supervision: (i) Anuroopa Shenoy, a recent graduate student of the Department

of Computer Science and Engineering, University at Buffalo, who implemented the basic

graphical user interface and provided a visual display of the text-based representation of

a graph; (ii) Anantharaman Ganesh, currently a graduate student of the Department of

Computer Science and Engineering, University at Buffalo, who enhanced the graphical

user interface by providing more features for user inputs, improving the graph display and

suggesting ways of making the constraint solving process more interactive.

The tool is equipped with the following features and menu buttons.

� Node Information: Each node displays the constraints as well as the attributes (and

their values) for the instance it represents.

� Solve: The constraint solving phase (after partial evaluation) can be traced on the

COG. The tool highlights the node whose constraints are being solved. During the

solving, every time a variable gets a value, it is displayed on the COG.
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� Step: The modeler can step through the solve phase by clicking on the Step button,

i.e., for every click one node of the COG is solved. The tool uses a default order in

which to solve the nodes which is a bottom-up order.

� StepN: By clicking on this button, the modeler can specify a number (N) of nodes

that should be solved without displaying the intermediate state of the COG.

� Continue: By clicking on this button, the modeler indicates that the solving should

continue to completion, i.e., all nodes should be solved and the end result displayed.

� SetOrder: The programmer can specify the order in which the nodes should be

solved, or that the constraints of only a subgraph should be solved. The programmer

can choose from top-down, bottom-up, left-right and right-left or explicitly specify

an ordering of the nodes.

� Minimize: For large graphs, a display of the entire graph with all the details of each

node may be cluttered and incomprehensible. The Minimize button can be used to

hide the details of a node or a subgraph of the COG.

5.3.2 Interactive Debugging

In general, an error in constraint solving might be caused due to an incorrect initialization

of a variable, or an incorrect constraint. The tool described in the previous subsection fa-

cilitates a novel means by which the modeler can be assisted in understanding the possible

cause of error in an over-constrained system. The following features are provided in the

tool for aid in debugging. The visual aspects of these features were developed by Anan-

tharaman Ganesh, currently a graduate student of the Department of Computer Science and

Engineering, University at Buffalo.

� The programmer can step back or forward through the solve process by any number

of steps. This can help the modeler understand the effect of solving as well as help

detect an unexpected value for a variable.

� If an error occurs while solving, the node whose constraint fails is flagged.
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� Simply knowing which node’s constraint(s) failed may not be sufficient to determine

the cause of error. By providing different orders of solving, which may result in dif-

ferent locations of the error, the programmer will be in a better position to understand

the source of error.

Currently the tool can handle only acyclic constrained object graphs. Although this tool

currently serves as a simple aid for understanding execution and errors of a Cob program,

it sets the stage for a giving a unique view of the running and debugging of constrained

object programs. For example, as a part of ongoing work, we will be providing a trace

of the nodes which are involved in assigning a value to a variable. We will also need to

address

5.4 Comparison with Related Work

Partial evaluation of logic programs has been studied widely [1, 74, 97, 59, 53]. The tech-

niques used to perform partial evaluation include program transformations using unfolding,

folding and definition [97]. Given a program and a query, they return a program specialized

for all instances of the query. The program returned by partial evaluation is expected to be

more efficient than the original program. A scheme for partial evaluation of constraint logic

programs [59] is discussed in [53] which uses the fundamental transformations: specializa-

tion, unfolding and factorization. Specialization replaces a query with a call to a specialized

version of the predicate. Unfolding is done by resolving a goal with the body of the specific

clause it matches. Redundant code is eliminated and constraint simplification is done by

detecting tautologies and contradictions.

Specialization techniques can be applied to constraint logic programs to obtain deter-

minism, i.e., only one clause is applicable for goal reduction at a time. Again, this too

uses specialized fold, unfold and partitioning operations [28]. A description of the fold and

unfold operations for CLP with dynamic scheduling is given in[25].

Some of the operations in our scheme for partial evaluation can be considered as in-

stances of the more general program transformations such as unfolding. However, our par-

tial evaluator differs from other implemented schemes for partial evaluation of constraint
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logic programs because we deal with a special class of CLP programs. These are programs

obtained as a result of translating Cob programs. The different categories of predicates

that appear in such programs is known apriori: Cob built-in predicates, conditional con-

straints, and quantified constraints, and this knowledge tells us where to expect constraints

and which subgoals to process away.

5.5 Summary

The implementation of constrained objects involves two main steps: translation of Cob

classes to CLP predicates, and partial execution of the translated program. Cob classes es-

sentially represent abstract data types, and the translation to CLP predicates is quite natural,

compact, and straightforward. The translated predicate can be considered as a procedure

to enforce the constraints of a class. The translated programs however, are not suitable

for immediate execution. There are overheads arising from the representation of arrays by

lists and indexing by list traversal; and also due to the loop iterations caused by quantified

constraints. Given a query, partial evaluation allows us to process away these operations

and returns a set of constraints. A solution to these constraints is a solution to the query.

Different instances of the query can be evaluated by solving the corresponding instances of

this set of constraints.

Based on partial evaluation and the concept of constrained object graph, we provide a

unique view of Cob program execution which can also be used for understanding the source

of errors in an over-constrained system. We have developed an implementation of all the

techniques presented in this chapter. Our initial experiments with partial evaluation shows

that there is a 5-17 fold improvement in performance. We have also found the interface to

Maple to be a very effective means of handling nonlinear constraints.
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Chapter 6

Constrained Objects with Preferences

This chapter extends the paradigm of constrained objects to model optimization problems.

Often a constrained object model of a complex system has multiple solutions, but some

solutions may be considered better than others. In our constrained object paradigm, we

provide constructs for the modeler to express a preference between solutions. The prefer-

ences may specify minimization/maximization criteria (as in linear programming) or they

may be of a more general form discussed in [40]. In the presence of a preference, the resul-

tant optimal state of the constrained object is obtained by employing constraint satisfaction

and optimization techniques.

We extend the basic paradigm of constrained objects given in Chapter 4 to include

preferences, along the lines of preference logic programs [39, 40, 66, 41] described in

Section 2.3. A preference logic program is a logic program with two types of predicates:

ordinary predicates and optimization predicates. The latter are defined using a combination

of ‘optimization clauses’ and ‘preference clauses’. We map a Cob class with preferences

to a PLP predicate and give a set-theoretic semantics of a Cob program in terms of the

preferential consequences of the corresponding PLP program.

When two optimization problems are combined or interdependent, or an optimization

problem has multiple preference criteria, an optimal solution to one may not form an op-

timal solution to another. In such cases, and also in general, one may be interested in the

optimal as well as suboptimal solutions to a problem. Thus an optimization problem may

be subject to relaxation, which is a technique for finding suboptimal solutions. This chapter
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also addresses the computational problems arising from relaxation of constrained objects

with preferences as well as relaxation in the paradigm of preference logic programming

(PLP) [38]. We explore different forms of relaxation, introduce a more general the concept

of a relaxation goal, and present two different variations of this concept: relaxation with

respect to the underlying preference order as well as relaxation with respect to additional

constraints on the optimization goal (i.e., ‘what-if’ relaxation).

The execution of preference logic programs is based upon SLD search trees extended

with a preference structure which is determined from the preference clauses of the program

[38]. This model crucially depends upon memo-tables for efficiency. We present a refor-

mulation of the above model using rewrite rules that facilitates an extension of the model

to include the evaluation of relaxation goals.

The material in this chapter is organized as follows. In Section 6.1 we extend the syntax

of the Cob language to express preferences and give an example of its use in engineering

modeling. This section also describes the declarative and operational semantics of Cob

programs with preferences. We also give a reformulation the operational semantics of

PLP programs in terms of rewrite rules. Section 6.2 introduces the notion of relaxation of

constrained objects with preferences and gives the syntax and motivating examples of the

different relaxation constructs. In Section 6.3 we propose an operation semantics for PLP

programs with relaxation goals. Section 6.4 gives a comparison with related work.

6.1 Cob Programs with Preferences

6.1.1 Syntax

We extend the syntax described in Section 3.1 to express preferences in Cob programs.

Class. A class definition now has the following structure.

class definition :: � ���������
	���������������� class id ������������� class id � � body �
body :: � ��� ��� 	 � ���
����� attributes �

����������� 	�� � �
� � constraints �
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����	��� � � � ��� � pred clauses �
����	� � � 	����� ��� pref clauses �
����������� 	�������� 	 � constructor clause �

There are two forms of preference clauses:

1. A preference clause can express an objective function (essentially an arithmetic ex-

pression) and state whether it is to be minimized or maximized.

pref clauses :: � pref clause
� � pref clause

�
pref clauses

pref clause :: �
� � � arithmetic expr

�

pref clause :: �
� ��� arithmetic expr

�

2. Another form of expressing preferences augments a predicate definition with prefer-

ence criteria that define the optimal solution(s) to goals that make use of this predi-

cate. Such a preference clause has the following syntax in Cob.

pref clause :: � p(s1)
�

p(s2) :- clause body

This clause states that the solution s1 is less preferred than solution s2 for predicate

p if the condition specified by clause body is true. The non-terminal clause body is

defined as before in Section 3.1. This form of preference clause is discussed in [38]

in the context of preference logic programs.

The non-terminals attributes, constraints, pred clauses and constructor clause are de-

fined as before in Section 3.1. We now give an example from the engineering domain that

involves multiple solutions and illustrates the use of the preference syntax in Cob. This ex-

ample was developed with the help of Pratima Gogineni, a former graduate student of the

Departments of Chemical Engineering and Computer Science and Engineering, University

at Buffalo.

Separators and Mixers. A common problem in chemical engineering is the use of a

combination of mixers and separators to produce a chemical that has specific ingredients in

a certain proportion. The arrangement of mixers and separators in Figure 6.1 has two input
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Figure 6.1: A Separation Flow Sheet

raw material streams R1 and R2. Each of these streams has certain ingredients in different

concentrations. R1 and R2 are split and a part of each (I1 and I2 respectively) is sent to

a separator which separates its ingredients. Each separator supplies certain proportion of

each ingredient to the mixer which combines them to produce Mout, the desired chemical.

W1 and W2 are waste streams from the separators. The problem is to produce Mout while

minimizing I1 and I2 thereby minimizing the cost of processing material in the separators.

Figure 6.1 describes a typical scenario, and we present below some of the key classes

needed for this example. A stream is modeled by the class stream with attributes for its

rate of flow FlowRate and the concentrations of its ingredients (Concentrations is

an array of reals indexed by the ingredients of the stream). The concentrations of all the

ingredients of a stream must sum up to 1.

class stream
�

attributes
real FlowRate;
real [] Concentrations;
constraints
sum C in Concentrations:C = 1;
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constructors stream(Q, C)
�

FlowRate = Q; Concentrations = C;

�
�

The class equipment models any piece of equipment having some input streams and

output streams. Every equipment that processes streams is constrained by the law of mass

balance. Separators, mixers and splitters are instances of the equipment class.

class equipment
�

attributes
stream [] InStream, OutStream;
int NIngredients;
constraints % law of mass balance
forall I in 1..NIngredients :
(sum J in InStream : (J.FlowRate * J.Concentrations[I])) =
(sum K in OutStream: (K.FlowRate * K.Concentrations[I]));

constructors equipment(In,Out,NumIng)
�

InStream = In; OutStream = Out; NIngredients = NumIng;

�
�

The class sampleFlowSheet representing Figure 6.1 creates instances of separators

and a mixer. The variables representing output streams of one equipment are made the

input streams of another appropriate equipment. The class also has the preference: min

I1.FlowRate + I2.FlowRate. This states that the constraints of the model should

be satisfied while minimizing the amount of raw material processed (which in turn will

minimize the cost of the process). Given the the concentration of materials in each input

stream and their desired composition in the output stream, such a Cob model can be used

to determine the optimal amount of input raw material.

class sampleFlowsheet
�

attributes
stream I1, I2, S1out, S2out, Mout, W1, W2;
equipment S1, S2, M1;
real Q1, Q2;
constraints
Mout.FlowRate = 150;
Mout.Concentrations = [0.2,0.8,0.0];
I1.FlowRate

�
500;

I2.FlowRate
�

600;
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preferences
min (I1.FlowRate + I2.FlowRate).
constructors sampleFlowsheet()

�
I1 = new stream(Q1, [0.5, 0.3, 0.2]);
I2 = new stream(Q2, [0.05, 0.4, 0.55]);
S1 = new equipment([I1], [S1out, W1], 3);
S2 = new equipment([I2], [S2out, W2], 3);
M1 = new equipment([S1out, S2out], [Mout], 3);

�
�

6.1.2 Declarative Semantics

A Cob program containing preference clauses can be translated to a Preference Logic Pro-

gram (PLP) in a natural way. To obtain a PLP program from a Cob program, we augment

the translation of Cob programs to CLP (described in Chapters 3 and 4) with the following

transformation for Cob classes that contain preferences.

In Cob programs with more than one correct answer, preferences are a way of specify-

ing the criteria for the optimal answer(s). There are two ways of specifying preferences:

� using the min/max construct (see examples in Sections 6.1 and 7.1).

� using an explicit preference clause: p
�
t � �

p
�
u � :- L

�

The preference clauses of the first kind above (min/max clauses) are translated as

shown below. We use Vi, Ci, Pi to denote collections of variables, constraints and predi-

cates respectively.

class c
�

��� T P1
� �

de f n
�
pc � �

attributes V1 where de f n
�
pc � is:

constraints C1 pc
�
V2 � V1 � : � C1 � C2

�

predicates P1 pc
�
X � V1 � �

pc
�
X � V �1 � :- v � v

�

preferences min v

constructor c
�
V 2 � �

C2

�
�
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Thus we translate a Cob class with min/max preferences to an O-predicate with an arbiter

clause whose body captures the preference criterion. The class c is translated to a predicate

pc whose first argument corresponds to the list of arguments of the constructor of class c

and second argument corresponds to the list of attributes of class c. The body of pc contains

the class constraints and constructor constraints of c. This ensures that the attributes of

the class satisfy these constraints. Until this point the translation is similar to the CLP-

translation defined in Chapter 4. However, if a min preference is present in the definition

of class c, then it gives rise to an arbiter clause for pc as shown above. For the same list of

constructor arguments X , if the values V1 for the list of attributes of class c give a value v

for the objective function and if the values V
�

1 amount to a value v
�

for the same objective

function, and v
�

is less than v, then the set of values in V1 is less preferred to V
�

1. The

comparison in the body of the arbiter clause is reversed if the objective function is being

maximized.

Preference clauses of the second kind are arbiters for the predicates of a Cob class.

Since we translate predicates of a Cob class without any transformation, their arbiter clauses

are also translated as is (with the necessary translation of subterms). We now give the

declarative semantics of Cob programs with preferences.

Definition 6.1: Suppose C is a Cob program containing preference clauses. The PLP pro-

gram P obtained by translating each class of C using the above scheme is called the PLP-

translation of C. For each class c in C containing preferences, the predicate pc obtained

by translating c is called the PLP-translation of c.

The paradigm of PLP is capable of expressing both hierarchic as well as recursive

optimization problems [38, 40]. References [38, 40] give a possible-worlds semantics for

preference logic programs. We describe these semantics here briefly. Consider a predicate

p with one or more preference clauses associated with it. The different models of p form

different worlds, and an ordering over the worlds is determined by the preference clauses.

The preferential consequences of the program are the set of atoms that are true in the

strongly optimal worlds, i.e., worlds such that there are no other worlds that are better

according to the preference clauses. This is in contrast to logical consequence which refers

to truth in all worlds. A strongly optimal answer to the query G is a valuation θ such that
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Gθ is a preferential consequence of the preference logic program.

When preferences are specified in a Cob class definition, we determine the set-theoretic

semantics of the class from the set of preferential consequences of the corresponding PLP

predicate.

Definition 6.2: Given a Cob program C containing preferences, if its PLP-translation is P,

then the declarative semantics of C is defined to be the set of preferential consequences of

the program P.

Definition 6.3: Given a Cob program C with preferences and a query X = new c(t), if P is

the PLP-translation of C and the goal corresponding to the constructor call is G � pc(t,

X), then the correct optimal answer to G is a valuation θ such that G θ is a preferential

consequence of P.

Note that the PLP-translation of a Cob program C without preferences is equivalent to

the CLP-translation of C.

6.1.3 Operational Semantics

The operational semantics of a Cob program with preferences can be understood as the

operational semantics of its PLP-translation. The operational semantics of PLP given in

[38, 40] was based upon a scheme called Pruned Tree SLD resolution (PTSLD). In essence,

PTSLD-derivations incrementally construct the search tree from a goal and use the pref-

erence clauses as advice to prune paths that compute non-optimal answers. Essentially a

tree T1 derives a tree T2, written T1 � T2, if T2 is obtained from T1 by reducing a goal in a

leaf of T1 in all possible ways and creating the corresponding offspring nodes. Paths that

compute sub-optimal solutions are pruned by consulting the preference clauses. We refer

the reader to [38, 40] for the details of the operational semantics.

In this section we reformulate these semantics by describing them in terms of rewrite

rules. This enables us to give a concise operational semantics for PLP with relaxation goals

(introduced later in Section 6.2). Recall the overview of preference logic programs given

in Section 2.3. A PLP program P is represented by the tuple
�
TC � TO � A � , where TC is the

set of C-predicates, TO is the set of O-predicates and A is the set of arbiter clauses of the

PLP program. Given a goal G, we represent a PTSLD derivation of G with respect to P as
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a sequence of states.

Definition 6.4: A state is a 2-tuple � S � P � of sets. The first element S represents the set

of non-failed, non-pruned paths in the PTSLD resolution tree. The second element P of the

tuple represents the pruned paths of the PTSLD resolution tree.

Definition 6.5: A non-pruned, non-failed path is represented by a 3-tuple � L � C � ℘ � .

The first element L is the list of the literals at the leaf node of the path. The second element

C is the constraint store, i.e., the collection of constraints encountered along the path. The

third element ℘represents the ordered sequence of O-predicates that were expanded along

the path (the leftmost element representing the first and the rightmost representing the most

recent).

Each element in the sequence ℘ uniquely identifies the name and occurrence of the

O-predicate in the PTSLD tree.

Definition 6.6: A pruned path is represented by a 4-tuple � L � C � ℘� �
� . The first 3

elements are identical to those in a non-pruned path and the fourth element
�

is a label

indicating the name, level, occurrence and depth (in the PTSLD search tree) of the O-

predicate by which the path was pruned.

The label corresponding to an occurrence of a predicate also indicates the depth of the

predicate occurrence in the search tree and its level in the PLP program. Each predicate

in a PLP program is associated with a positive integer called its level which is the least

such integer that satisfies the following condition. If predicate p appears in the definition

of a predicate q, then the level of p is less than the level of q. The start state of a PTSLD

derivation for a goal G with respect to a PLP program P is

Go � �
�

� G � � � � � � � φ �

We now describe the transition rules that transform one state into another.

Let Gi � � U � P � represent the state of a PTSLD derivation where

U � � � S1 � C1 � ℘1 � � ����� � � Sn � Cn � ℘n � � and

P � � � S
�
1 � C �1 � ℘�1 � �

1 � � ����� � � S
�
m � C �m � ℘�m � �

m � �
The different types of transitions are :

1. Expand O-predicate:

�
�

� S1 � C1 � ℘1 � � ����� � �
�
a � � Si � Ci � ℘i � � ����� � � Sn � Cn � ℘n � � �
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�
� S
�
1 � C �1 � ℘�1 � �

1 � � ����� � � S
�
m � C �m � ℘�m � �

m � � � � r

�
�

� S1 � C1 � ℘1 � � ����� � � Si � 1 � Ci � 1 � ℘i � 1 � �
� B1

�
Si � �

Ci
� α1 � � �

℘i pu � � � ����� � � Bk
�

Si � �
Ci
� αk � � �

℘i pu � � �
� Si � 1 � Ci � 1 � ℘i � 1 � � ����� � � Sn � Cn � ℘n � � �
�

� S
�
1 � C �1 � ℘�1 � �

1 � � ����� � � S
�
m � C �m � ℘�m � �

m � � �

if a � p
�
t � is an atom selected by the computation rule, and p is an O-predicate such

that the following holds. Let h1 � B1 � ����� � hk � Bk be all the rules of program P such

that a and hi have the same outermost predicate. If t represents the terms t1 � ����� � tn, we

use the notation s � t to denote the set of constraints s1 � t1 � ����� � sn � tn. Now suppose

that for j � 1
���
k, h j � p

�
t j � , then α j is the set of constraints t � t j and pu uniquely

identifies the occurrence of atom a.

2. Expand C-predicate:

�
�

� S1 � C1 � ℘1 � � ����� � �
�
a � � Si � Ci � ℘i � � ����� � � Sn � Cn � ℘n � � �

�
� S
�
1 � C �1 � ℘�1 � �

1 � � ����� � � S
�
m � C �m � ℘�m � �

m � � � � r

�
�

� S1 � C1 � ℘1 � � ����� � � Si � 1 � Ci � 1 � ℘i � 1 � �
� B1

�
Si � �

Ciα1 � � �
℘i � � � ����� � � Bk

�
Si � �

Ciαk � � �
℘i � � �

� Si � 1 � Ci � 1 � ℘i � 1 � � ����� � � Sn � Cn � ℘n � � �
�

� S
�
1 � C �1 � ℘�1 � �

1 � � ����� � � S
�
m � C �m � ℘�m � �

m � � �

if a � p
�
t � is an atom selected by the computation rule, and p is a C-predicate such

that the following holds. Let h1 � B1 � ����� � hk � Bk be all the rules of program P such

that a and hi have the same outermost predicate. Suppose that for j � 1
���
k, h j � p

�
t j � ,

then α j is the set of constraints t � t j.

3. Prune using non-pruned path:

�
�

� S1 � C1 � ℘1 � � ����� � � Si � Ci � ℘i � � ����� � � Sn � Cn � ℘n � � �
�

� S
�
1 � C �1 � ℘�1 � �

1 � � ����� � � S
�
m � C �m � ℘�m � �

m � � � � p

�
�

� S1 � C1 � ℘1 � � ����� � � Si � 1 � Ci � 1 � ℘i � 1 � � � Si � 1 � Ci � 1 � ℘i � 1 � � ����� � � Sn � Cn � � �
�

� S
�
1 � C �1 � ℘�1 � �

1 � � ����� � � S
�
m � C �m � ℘�m � �

m � � � Si � Ci � ℘i � � �
� � �

if there exists a j such that 1
�

j
�

n and p
�
t � is an element of ℘i and ℘j such

that i �� j and both Si and S j have finished solving for p
�
t � and the following holds.
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Suppose p is an O-predicate subject to an arbiter of the form:

p
�
u � �

p
�
u1 � � L1 � ����� � Lk

�

The above transition holds if the following goal is satisfiable:

� p
�
t � θi � p

�
u � � p

�
t � θ j � p

�
u1 � � L1θiθ j � ����� � Lkθiθ j

�

where θi and θ j are the valuations obtained by restricting the constraints in Ci and C j

respectively to the variables in t. Also p
�
t � should be the rightmost such element of

℘i and ℘j. This ensures that we are pruning based on the expansion of the closest

ancestor of the two leaf nodes i and j (this is a requirement of the semantics of PLP

[40]). The label
� �

denotes p and its level and its depth. The path � Si � Ci � ℘i � is

said to be pruned.

4. Prune using pruned path:

�
�

� S1 � C1 � ℘1 � � ����� � � Si � Ci � ℘i � � ����� � � Sn � Cn � ℘n � � �
�

� S
�
1 � C �1 � ℘�1 � �

1 � � ����� � � S
�
m � C �m � ℘�m � �

m � � � � p

�
�

� S1 � C1 � ℘1 � � ����� � � Si � 1 � Ci � 1 � ℘i � 1 � � � Si � 1 � Ci � 1 � ℘i � 1 � � ����� � � Sn � Cn � � �
�

� S
�
1 � C �1 � ℘�1 � �

1 � � ����� � � S
�
m � C �m � ℘�m � �

m � � � Si � Ci � ℘i � �
j � � �

if there exists a j such that 1
�

j
�

m and p
�
t � is an element of ℘i and ℘

�
j such that

both Si and S
�
j have finished solving for p

�
t � , the label

�
j denotes p and its level and

depth, and the following holds. Suppose p is an O-predicate subject to an arbiter of

the form:

p
�
u � �

p
�
u1 � � L1 � ����� � Lk

�

The above transition holds if the following goal is satisfiable:

� p
�
t � θi � p

�
u � � p

�
t � θ j � p

�
u1 � � L1θiθ j � ����� � Lkθiθ j

�

where θi and θ j are the valuations obtained by restricting the constraints in Ci and C j

respectively to the variables in t. Also p
�
t � should be the rightmost such element of

℘i and ℘
�
j The path � Si � Ci � ℘i � is said to be pruned.

5. Fail:

�
�

� S1 � C1 � ℘1 � � ����� � � a
�

Si � Ci � ℘i � � ����� � � Sn � Cn � ℘n � � �
�

� S
�
1 � C �1 � ℘�1 � �

1 � � ����� � � S
�
m � C �m � ℘�m � �

m � � � � f
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�
�

� S1 � C1 � ℘1 � � ����� � � Si � 1 � Ci � 1 � ℘i � 1 � � � Si � 1 � Ci � 1 � ℘i � 1 � � ����� � � Sn � Cn � ℘n � � �
�

� S
�
1 � C �1 � ℘�1 � �

1 � � ����� � � S
�
m � C �m � ℘�m � �

m � � �

if a is an atom selected by the computation rule and there does not exist a rule of P

such that a unifies with the head of that rule.

Definition 6.7: A state is said to be final if it cannot be transformed by any of the above

transition rules.

Definition 6.8: A derivation for a goal G is said to be successful if its final state is:

�
�

�
� � � Co1 � ℘1 � � ������� � �

� � � Cot � ℘t � � � � � S
�
1 � C �1 � ℘�1 � �

1 � � ����� � � S
�
m � C �m � ℘�m � �

m � � �

and the optimal computed answers to G are the constraints: Co1 � �����Cot .

We refer to the above derivation scheme as A . The operational semantics described

above are essentially a reformulation (with a different representation of a state) of those

described in [40]. The soundness of PTSLD-derivations requires, among other things,

that the predicates be sufficiently non-ground when invoked. To show the soundness of

PTSLD-derivations, the notion of stratified preference logic programs is introduced [38].

Informally, a program is stratified if its O-predicates can be arranged in a linear order such

that predicates that appear in the body of an O-predicate come below it in the linear order.

If a program is stratified, then it can be shown that the above derivations do not prune any

answers that are in a strongly optimal world [38]. Also, answers to an O-predicate goal

of level i computed along different paths (i.e., present in different elements of U in the

above derivations) correspond to instances of p
�
t � present in distinct worlds in the intended

preference models at level i [38]. Also if the arbiter applies to these answers, then the

corresponding worlds are also related by the preference criterion.

The completeness of PTSLD-derivations requires that the search tree for every opti-

mization goal be finite [38]. This is because the optimal solution cannot in general be

computed unless the search tree is exhaustively explored. If an instance of an O-predicate

goal is present in the intended preference model at the same level as the goal, then it can

be shown that there is a PTSLD-derivation that computes that instance. This is because the

candidate solutions to an O-predicate goal are obtained from the SLD-derivations which

have the completeness property [73]. It can then be shown that if an arbiter applies between

two computed answers, then the preference criterion applies to the corresponding worlds
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in which these instances are present. The proof of both soundness as well as completeness

is given by induction on the level of the O-predicate goals [38].

6.2 Relaxation in Cob

It is often the case that in constrained objects with preferences, one may be interested in

the optimal as well as certain suboptimal solutions to the problem. For example, a designer

may be interested in the five most efficient models of a gear train or say the three most

cost effective designs for a car. In the case of multiple optimization criteria, a solution that

is optimal based on one criterion may not be optimal with respect to another. Such cases

naturally give rise to a need for relaxing the preference criterion to obtain a suboptimal

solution.

A simple form of relaxation of optimization goals is discussed in [38] and we describe

it here. Consider the sh path predicate defined in Section 2.3.2. We can use this predicate

along with the relaxation construct RELAX WRT, to determine the second-shortest distance

between a pair of nodes in a graph. Determining the second-shortest distance is a prob-

lem of sub-optimization, i.e., relaxation of the preference criterion. Suppose the shortest

distance between nodes a and b in a graph is d. The following goal specifies the second

shortest distance C and corresponding path P (if it exists) between nodes a and b.

?- RELAX sh path(a,b,C,P) WRT C > d.

The above is a relaxation goal and states that the optimization goal sh path(a,b,C,P), should

be relaxed with respect to (WRT) the constraint C > d. Note that if there are multiple paths

having the same shortest distance, the second-shortest path(s) are the path(s) with next

shortest distance.

To illustrate the power of the above RELAX clause, consider the recursive definition for

the nth-shortest path in a graph given in [38].

n sh path(1,X,Y,C,P) � sh path(X,Y,C,P).

n sh path(N+1,X,Y,C,P) � n sh path(N,X,Y,D, ),

RELAX sh path(X,Y,C,P) WRT C > D.

The first clause states that the 1st shortest path is the same as the shortest path between two
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nodes. The second clause states that an (N+1)th shortest path P from X to Y has distance C

if there is an Nth shortest path of distance D between X and Y and P is a path obtained by

the relaxation goal RELAX sh path(X,Y,C,P) WRT C > D. In other words the opti-

mization goal sh path(X,Y,C,P) is relaxed to give a path whose distance, C, is greater

than the shortest distance D. For example, given a query, ?- n sh path(2,a,b,C,P),

the computed answer for C will be the second-shortest distance between a and b.

The above program gives a concise, modular and declarative specification of the prob-

lem. Although the evaluation of such a goal makes multiple calls to the sh path predicate,

re-computation is avoided through the use of memoization. Memoization is a technique by

which solutions to goals once computed are stored in a memo-table and solutions to subse-

quent calls to the same goal are obtained by looking up this memo-table.

The above is one form of preference relaxation. In this section we first present different

forms of relaxation: relaxation with respect to a constraint, relaxation with respect to the

underlying criterion, and relaxation to the nth level (nth suboptimal answers). We present

examples motivating the use of these kinds of relaxation in constrained objects as well

as in PLP. Since the semantics of constrained objects with preferences are given in terms

of their PLP-translation, when giving the operational semantics of the relaxation goals in

later sections, we restrict our attention to relaxation goals in preference logic programs

(PLP). We follow the PLP paradigm outlined in the papers [39, 40, 41, 66], as it provides a

reasonably general framework for exploring this concept.

In this section, we present the computational issues arising from relaxation goals. The

simplest strategy for defining operational semantics of the RELAX p
�
t̄ � WRT C goal is to

dynamically augment the optimization clause for p with the condition C and then evaluate

the augmented clause under the preference criteria for p. Such a strategy was outlined in

[40]. However, this simple strategy is correct when the optimization predicate is defined in

terms of ordinary predicates but not other optimization predicates. In the latter case, one

might consider “pushing” the condition C down further, but we show that such a scheme

could result in the inner optimization predicates to flounder.
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6.2.1 Syntax

A relaxation goal can have the form

RELAX p
�
t̄ � WRT c

�
ū � ,

where p is an O-predicate and c is a C-predicate or a constraint as in CLP and was given in

[38]. The predicate p is said to be a relaxation predicate and c is said to be the relaxation

criterion. Our semantics also captures the meaning of relaxation goals where c is any O-

predicate that is not defined in terms of p. However, in this chapter, we will only deal with

relaxation goals where c is a C-predicate. A relaxation goal may appear in the body of an

O-predicate, a D-predicate or in a top level query.

As explained earlier, the above relaxation goal finds the best solutions to p
�
t̄ � that sat-

isfy c
�

ū � . We also provide a form of relaxation for O-predicates in which the relaxation is

with respect to the underlying preference criterion for the predicate. Such a goal has the

form

RELAX � p
�
t̄ �

This form of relaxation generates solutions (from the set of feasible solutions to the opti-

mization problem) in the order of decreasing preference. This form of relaxation is moti-

vated by the need for sub-optimization when the relaxation criterion is not known before

hand. This form of relaxation will permit backtracking into an optimization goal to get

suboptimal solutions. In this case, p can be an O-predicate or a D-predicate.

In optimization problems, it is often the case that we are interested in not just the opti-

mal solution(s), but the n best solutions. For example, in searching for flights from source a

to destination b, we are not just interested in the cheapest flight but in say the first 5 cheap-

est flights so that we may pick one that best suits our frequent flyer program or stopover

preference. To model such problems, we provide the construct

RELAXn p
�
t̄ �

Note that this goal will not provide n optimal solutions, but instead, it will first generate all

the optimal solutions, then all the next-best solutions, and so on till the nth level.

These constructs are motivated by their need in modeling optimization problems. We

illustrate their usefulness via the examples in Section 6.2.2.
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6.2.2 Motivation

In this section, we give examples to motivate the need for the RELAX � p
�
t � , RELAXnp

�
t �

and RELAX p
�
t � WRT c

�
u � constructs in constrained objects.

We formulate the problem of putting together a meal plan given a person’s dietary

preferences. This problem illustrates different scenarios for relaxation depending upon the

different forms of optimization.

Combining Multiple Optimizations

The meal class below, defines the optimal breakfast, lunch and dinner based on a person’s

taste.

class meal
�

attributes
brkfst B; lunch L; dinner D;
real Cals;
constraints
B.Cals + L.Cals + D.Cals = Cals;
constructors meal(B1, L1, D1)

�
B = B1; L = L1; D = D1;

�
�

The class dinner aggregates the bread, meat, vegetable and drink that the person

prefers most (likes the taste of) for dinner. The constraint din bread(B, Bc) ensures

that B is a bread that the person likes (stated as preferences on din bread) to have for

dinner. The variable Bc represents the calorie content of B.

class dinner
�

attributes
foodItem B, M, V, D;
real Cals, Bc, Vc, Mc, Dc;
constraints
din bread(B,Bc); din meat(M,Mc);
din veg(V,Vc); din drink(D,Dc);
Cals = Bc + Mc + Vc + Dc;
predicates
din bread(B,Bc) � bread(B,Bc).
bread(french,10).
bread(foccacia,20).
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...
preferences
din bread(B, )

�
din bread(garlic, ) :- B �� garlic.

din bread(french, )
�

din bread(foccacia, ).
...
constructors dinner(B1, M1, V1, D1)

�
B = B1; M = M1; V = V1; D = D1;

�
�

The first preference clause for the din bread predicate indicates a preference for

garlic bread over any other bread. The second preference clause indicates a preference for

foccacia over french bread. We have only listed two preferences, though in general

there may be more. The rest of the predicates din meat, din veg and din drink

are defined similarly. The classes brkfst and lunch are defined along the lines of the

dinner class.

The predicate din bread above is a basic O-predicate since it is defined in terms of

C-predicates. Note that the class meal when translated to a PLP predicate, will not be an

optimization predicate itself (it does not have a preference clause), but is defined using a

combination of multiple O-predicates. Now, it may happen that given the preferences of

the person, the optimal lunch and dinner may end up looking identical. So instead of simply

solving the query meal([ ], [B,L,D,Cals]), a more appropriate query would be

?- RELAX meal([ ], [B,L,D,Cals]) WRT L �� D

in which the preferences on the food items in either the lunch or dinner will be relaxed

in case the optimal dinner and lunch are identical. Note that since a meal aggregates a

breakfast, a lunch, and a dinner, and each of these consist of atleast one food item, the

calorie content of a meal will always be non-zero (except for the unlikely case when all the

selected food items are of zero calories).

Hierarchic Optimization

Suppose that in addition to the basic preferences in a meal defined above, the person has to

adhere to certain other restriction, e.g., cutting down on calories. The class low cal meal

below defines the person’s preferred meal having lowest calories. The constraints in the
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low cal meal class ensure that the total calories in a day’s meal meet the standards

recommended by the US RDA (Recommended Daily Allowances) for an average healthy

person. The preference clause in low cal meal states that the lowest calorie meal that

meets the person’s taste is the optimal answer.

class low cal meal extends meal
�

constraints
Cals � � 2500;
Cals � � 1200;
preferences
min Cals;
constructors low cal meal(C)

�
Cals = C;

�
�

For simplicity, we have not modeled other nutrient requirements (vitamins, minerals,

etc.) and assume that each item is served in 1 serving size. It is possible to extend the

above Cob model to accommodate such details. Note that class low cal meal performs

hierarchic optimization: its PLP-translation is an optimization predicate defined in terms of

other optimization predicates. The above example brings up a number of interesting issues

regarding relaxation.

Suppose the person’s optimal breakfast, lunch and dinner do not meet the RDA require-

ments (of say the maximum calorie content). Surely, we do not want the goal low cal meal(M,

C) to fail. Instead, we would like the optimization of either the breakfast, lunch or dinner

(or possibly all three) to be relaxed so that the calorie requirements are met. In order to

carry out such a relaxation, we make use of the RELAX � construct. The goal

?- RELAX � low cal meal([ ], [B,L,D,Cals]).

will recursively relax one or more of the brkfst, lunch, dinner predicates (PLP-

translations of the corresponding classes). The solution might involve an optimal breakfast

combined with a suboptimal lunch and dinner.

The classes low sod din and high iron din shown below, optimize a dinner

based on its nutritional content. The predicate low sod din returns only those optimal

(based on the person’s taste) dinners that have the least sodium content and the predicate

high iron din returns the optimal dinner that has the highest iron content.
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class low sod din extends dinner
�

attributes
real Na, BNa, MNa, VNa, DNa;
constraints
Na = BNa + MNa + VNa + DNa;
sodium(B,BNa); sodium(M,MNa);
sodium(V,VNa); sodium(D,DNa);
preferences
min Na;
constructors low sod din(Na1)

�
Na = Na1;

�
�
class high iron din extends dinner

�
attributes
real Fe, BFe, MFe, VFe, DFe;
constraints
Fe = B.Fe + M.Fe + V.Fe + D.Fe;
iron(B,BFe); iron(M,MFe); iron(V,VFe); iron(D,DFe);
preferences
max Fe;
constructors high iron din(Fe1)

�
Fe = Fe1;

�
�

Suppose the person has nutritional requirements of low sodium and high iron. In that

case, we would like to solve

?- low sod din([ ], D), high iron din([ ], D).

This is another form of combining multiple optimizations. It is quite possible that none

of the optimal solutions to the first goal is an optimal solution to the second goal. Therefore,

we would once again like to make use of relaxation. Either one or both of the optimization

subgoals needs to be relaxed and so the query we are interested in is

?- RELAX � (low sod din([ ], D), high iron din([ ], D)).

Recursive Optimization

We now give an example of a PLP program which illustrates the issues involved in relax-

ation of recursive O-predicates and the need for recursive relaxation. Consider the dynamic
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Figure 6.2: Sample Graph.

programming formulation of the shortest distance problem [40]. The predicate sh dist

is defined recursively as follows.

sh dist(X,X,N,0).

sh dist(X,Y,1,C) � X � � Y � edge(X,Y,C).
sh dist(X,Y,N+1,C1+C2) � N � 1, X � � Y �

sh dist(X,Z,1,C1), sh dist(Z,Y,N,C2).

sh dist(X,Y,N,C1)
�

sh dist(X,Y,N,C2) � C2 � C1.

Consider the sample graph shown in Figure 6.2. Suppose that the shortest distance between

nodes a and b is d. Now consider the goal

?- RELAX sh dist(a,b,N,C) WRT C � d.

We expect that the answers to the above goal give us the suboptimal shortest distance

between a and b. Consider the graph in Figure 6.2.

The result of the goal sh dist(a,b,4,C) is C = 100. Now suppose we want to

get the next shortest distance. We evaluate the goal

?- RELAX sh dist(a,b,4,C) WRT C � 100.

Although this gives us the next best solution to the optimization goal, the above goal

is a roundabout way to achieve relaxation of the underlying preference criterion: we first

obtain the optimal answer and then use it to sub-optimize. In general it is more useful to

have a builtin construct that will automatically relax an optimization goal with respect to

the underlying preference criterion. The RELAX � construct is provided for this purpose and

can be used directly to obtain relaxation with respect to different criterion. For example,

we may want to sub-optimize the shortest distance goal so that a particular node is (or

is not) visited. With suitable modifications to the sh dist predicate to include the path

corresponding to a distance, such a relaxation goal can be simply stated as
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RELAX � sh dist(a,b,4,C,P), member(n, P).

where the argument P is the path corresponding to the shortest distance. The relaxation goal

returns the distances between nodes a and b in increasing order of cost and the first of these

distances whose path does not go through n is the answer (as expected). We would like to

note here that the above example suggests a general scheme for the operational semantics

of relaxation goals involving basic, hierachic as well as recursive optimization. We define

this scheme in the next section.

6.3 Operational Semantics

Having given several examples motivating the need for different forms relaxation goals in

constrained objects and in Preference Logic Programs, we assume that the reader is now

familiar with the different forms of relaxation goals and their expected answers. Assuming

this informal description of the meaning (declarative semantics) of relaxation goals through

examples, we now describe their abstract operational semantics. We first show why the ap-

proach to operational semantics of relaxation goals given in [38] cannot be applied to all the

different forms of optimization. Then we describe our approach which first gives the oper-

ational semantics for RELAX � goals and subsequently defines the operational semantics of

general relaxation goals.

6.3.1 Naive Approach

It would appear that the operational semantics of a relaxation goal such as RELAX p
�
t̄1 �

WRT c
�

ū � can be defined simply by embedding the relaxation criterion into the definition

of the O-predicate. This approach was used in [38]. We show below how such an approach

while useful for relaxing basic O-predicates, cannot satisfactorily compute the answers to

relaxation goals for hierarchic and recursive O-predicates.

Basic O-predicates. Basic O-predicates are non-recursive and non-hierarchic, i.e., they

are defined in terms of C-predicates only. Suppose p
�
t̄ � is an O-predicate defined in terms

of one or more C-predicates. The predicate sh path defined in the previous section is an
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example of such a p. Suppose p is defined as follows, where qi are C-predicates.

p
�
t̄ � � q1

�
ū1 � � � � � � qm

�
ūm � �

p
�

x̄1 � �
p

�
x̄2 � � d

�
x̄1 � x̄2 � �

To evaluate the goal RELAX p
�
t̄1 � WRT c

�
ū � , we first define a predicate R p as

R p
�
t̄1 � � q1

�
v̄1 � � � � � � qm

�
v̄m � � c �

ū � �

R p
�
t̄ � � t̄ �� t̄1 � p

�
t̄ � �

R p
�

x̄1 � �
R p

�
x̄2 � � d

�
x̄1 � x̄2 � �

where v̄i is obtained by applying the unifier of t̄1 and t̄ on ūi. The second clause is given so

that the definition of R p is complete. Now the goal RELAX p
�
t̄1 � WRT c

�
ū � , is evaluated as

R p
�
t̄1 � . In the above transformation, the original O-predicate is transformed into another

O-predicate by embedding the condition c
�

ū � into its body while leaving the preference

criterion unchanged. For example, to evaluate

?- RELAX sh path(a,b,C,P) WRT C � d.

we first transform the definition of sh path to define another predicate R sh path by

embedding the condition C � d into the body of sh path but leave the preference con-

dition on sh path unchanged.

R sh path(a,b,C,P) � path(a,b,C,P), C � d.

R sh path(X,Y,C,P) � (X,Y) �� (a,b) � sh path(X,Y,C,P).

R sh path(X,Y,C1,P1)
�

R sh path(X,Y,C2,P2) � C2 < C1.

By pushing the condition C � d into the body, we are able to reject paths with cost more

than d before the preference clause orders them.

Hierarchic and Recursive O-predicates. The above scheme of embedding the relax-

ation condition c
�

ū � into the body of the definition [38] will not work if the O-predicate

is hierarchic or recursive. For example, suppose the goal sh dist(a, b, N, C) (see

previous section) is to be relaxed with respect to the condition C � d where d is the cost

of the optimal path. Now suppose there is a single optimal path of cost d. If we were to

embed the condition C � d in the the body of the definition of sh dist, we would not

get any solution at all, since the shortest path will be rejected and no other path found.
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RELAX sh_dist(a,b,4,C) WRT C > 100

C = C1+C2
AND

RELAX sh_dist(a,g,1,C1) WRT C1+C2 > 100, RELAX sh_dist(g,b,3,C2) WRT C1+C2 > 100

RELAX sh_dist(a,g,1,10)
WRT C2 > 90,

RELAX sh_dist(a,g,1,11) 
 WRT C2 > 89,

RELAX sh_dist(g,b,3,C2) 
 WRT C1 > 10

RELAX sh_dist(g,b,3,C2)
 WRT C1 > -50

C1 = 10 C1 = 11
OR OR... ...

Node X

Node ZNode Y

Figure 6.3: Naive evaluation of a relaxation goal.

Thus, to achieve relaxation of hierarchic or recursive predicates with respect to a con-

dition, we must induce relaxation on the subgoals. At least one of the recursive calls in its

body must be relaxed. Now suppose we recursively relax subgoals with respect to the same

condition. The evaluation then proceeds as shown in Figure 6.3. The evaluation cannot

proceed beyond any of the leaf nodes shown in Figure 6.3. This is because in each of the

sub goals the relaxation constraint (criterion) has a free variable and the optimization goal

is not sufficiently non-ground. For example, in the goal:

RELAX sh dist(a,g,1,10) WRT C2 � 90.

the variable C2 does not appear in the optimization goal (which is being relaxed) and

thus constraint C2 � 90 cannot be verified. If we ignore the constraint and optimize

based on the cost, we will in fact get an incorrect answer. To see this, suppose the goal

sh dist(a,g,1,10) with C2 � 90 is returned as the optimal choice at node Y of

Figure 6.3. This will cause the optimal choice at Node Z to be the path g � n � t

� b with C2 = 150. Thus the answer will be the path a � g � n � t � b with

cost 160 which is indeed greater than 100. However, this is not the shortest path with cost

greater than 100. The correct answer is the path a � g � m � t � b with cost

101. The error in the above goal reduction occurs because of the presence of free variables

in the relaxation criterion. Thus we see that the operational semantics of RELAX p
�
t̄ � WRT

c
�

ū � for a recursive predicate p, cannot be obtained by simply relaxing its subgoals.

Thus the scheme of relaxing subgoals with the same/modified condition may work in

some cases, for example, relaxing the shortest path with respect to the condition that it does

not go through a particular vertex. But it cannot be used in general to evaluate relaxation of

hierarchical O-predicates. Still, there is a well defined notion of relaxation of the subgoals,
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viz., with respect to their underlying preference ordering. This motivates the need for a

different approach to the operational semantics of relaxation goals that is based on the

relaxation with respect to the underlying preference criterion. This approach first defines

the operational semantics of RELAX � p
�
t̄ � giving answers to p

�
t̄ � in decreasing order of

the underlying preference as specified for p
�
t̄ � . To obtain the answers to RELAX p

�
t̄ �

WRT c
�

ū � , we first evaluate RELAX� p
�
t̄ � , followed by applying the condition c

�
ū � .

6.3.2 Improved Approach

Intuition. We regard the problem of relaxation with respect to the underlying preference

criterion as a specialization of the optimization problem in which the optimal solutions

to the original problem have been removed from the set of feasible solutions. In other

words, the constraints and the preference criteria remain the same but there are additional

constraints that disqualify the optimal solutions. We first define the operational semantics

of the RELAX � G construct and use it to define the semantics of the RELAX p
�
t̄ � WRT

c
�

ū � construct.

As stated earlier, the goal RELAX � G returns solutions in order of decreasing prefer-

ence. It first returns the optimal answers to G, then the next-best answers, then the next to

the next-best answers and so on. In this way, the goal RELAX � G exhaustively enumerates

all the feasible solutions to the optimization goal G. We refer to the optimal solutions to

G as RELAX0 G, i.e., there is no relaxation. In other words, RELAX0 G � G. In general,

the goal RELAXn G returns the n best solutions to the goal. We refer to n as the level of

relaxation. Note that there may be more than one solutions at each level of relaxation just

as there can be more than one optimal solutions to an optimization problem.

Since, RELAX0 G � G, the operational semantics of RELAX0 G are already well de-

fined (see Section 6.1.3). For all n � 0, we define the operational semantics of RELAXn G

in terms of the operational semantics of RELAXn � 1 G. These operational semantics are

in the form of rewrite rules and make use of the transitions described in Section 6.1.3, in

scheme A .

For n � 1, the operational semantics of RELAX1 G are defined as follows. Suppose the

final state at the end of the derivation for RELAXn � 1 G � G is � S0 � P0 � . We know that
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this state is obtained by applying the transitions of A to the start state �
�

� G � � � � � � � φ � .

Therefore, the set
�
C � � L � C � ℘ � � S0 � represents the set of solutions to RELAXn � 1 G, i.e.,

the optimal solutions to G. In order to get sub-optimal solutions, we must: remove those

paths in S0 from the PTSLD search tree that represent the optimal solutions to G; unprune

the paths that were pruned by the optimal solutions; and then continue the derivation. To

do this, we introduce a transition rule that constructs a new state from the final state of the

derivation for G.

� S0 � P0 � � up � S
�
0 � P �0 �

where S
�
0 �

�
p � P0 � p was pruned by a path in S0 �

and P
�
0 � P0 � S

�
0

The derivation now proceeds from state � S
�
0 � P �0 � using the transition rules of scheme A .

If the final state at the end of this derivation is � S1 � P1 � , then the answers to RELAXn G,

i.e., RELAX1 G are given by the set
�
C � � L � C � ℘ � � S1 � .

We now define the transition � up more formally and the operational semantics of

RELAXn G for any n � 1 as follows. Suppose that

� S � P � � � S � � � S
�
1 � C �1 � ℘�1 � �

1 � � ����� � � S
�
m � C �m � ℘�m � �

m � � �

is the final state at the end of the derivation for RELAXn � 1 G. This means that the set
�
C � � L � C � ℘ � � S �

forms the
�
n � 1 � th sub-optimal answer constraints to G. From this final state, we obtain

the next state by the application of the � up transition rule as follows

1. � S � P � � � S � � � S
�
1 � C �1 � ℘�1 � �

1 � � ����� � � S
�
m � C �m � ℘�m � �

m � � � � up � S
� � P � �

if the following holds. We first identify the following subset UP of pruned paths:

UP :=
�

� S
�
j � C �j � ℘� j � �

j � � 1
�

j
�

m �
�

k � 1
���
m level

� �
k � � level

� �
j � �

�
k � 1

���
m if

�
j and

�
k refer to the same predicate,

then depth
� �

j � �
depth

� �
k � �

where level(
�

j) and depth(
�

j) refer respectively to the level of the predicate

that pruned the path � S
�
j � C �j � ℘� j � and its depth in the PTSLD search tree. This

information is already incorporated in the label
�

j (see Section 6.1.3).
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The above set UP gives us the set of paths that should be unpruned, i.e., derivation

down these path should be continued in order to find sub-optimal solution. The set S

of successful paths at the end of the derivation for RELAXn � 1 G is now replaced by

the set

NewS :=
�

� L � C � ℘ � � � L � C � ℘� �
� � UP �

This set forms the new set of non-pruned, non-failed paths and the derivation pro-

ceeds with the state

� S
� � P � � � � NewS � P � NewS �

while the set of successful paths that dominated (pruned) it is removed from the set

of feasible solutions.

The selection of path that should be unpruned uses the level and depth of the predicate

that pruned it. By selecting those paths whose label has the highest level, we ensure that

an O-predicate is relaxed before relaxing the O-predicates in its definition. This also en-

sures that while relaxing an O-predicate, we explore the feasible solutions to its subgoals

before further relaxing them. When two labels refer to the same predicate (and level), then

we choose to unprune those with lower depth. This ensures that for recursively defined

predicates, the outer most invocation is relaxed before the recursive call.

We then continue the derivation by applying the transitions of scheme A to this new

start state � S
� � P � � . If the final state at the end of this derivation is � Sn � Pn � , then the

set
�
C � � L � C � ℘ � � Sn �

forms the nth sub-optimal answer constraints to G, thus giving us the solutions to RELAXn G.

To summarize, relaxation is performed by first removing the paths corresponding to

optimal solutions in the PTSLD search tree, then by systematically (with respect to level

and depth) unpruning paths that were pruned by the optimal solutions and then continuing

the search for optimal solutions.

Soundness and Completeness. In the previous sections we have given an informal defi-

nition of relaxation goals by illustrating their meaning through examples. A formal defini-

tion of the declarative semantics of relaxation goals of the form RELAX p
�
t̄ � WRT c

�
ū �
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can be given in terms of the subset of the intended preferential consequences of the program

that satisfy the constraint c
�

ū � . An approach along these lines has been discussed in [38].

The declarative semantics of general relaxation goals of the form RELAX n and RELAX �

may require a recursive definition using the relaxed preferential consequences for RELAX

n � 1 to define those for RELAX n. However, for the purposes of this dissertation, we rely

on the informal meaning of relaxation goals given via the examples in Section 6.2.2.

For an informal justification for the soundness of the operational semantics of Section

6.3 we rely on the soundness of the derivations for optimization goals [38]. Using this,

we argue that if the sub-optimal solutions to a goal are the “next-best” solutions, i.e., they

are considered as the best solutions in the absence of the optimal solutions, then removing

the optimal solutions from the search tree, and again optimizing with respect to the same

preference criteria will indeed lead us to these next-best solutions. A formal proof for

soundness must use formal declarative semantics of relaxation goals and show that the

unpruning step is sound for basic, hierarchic as well as recursively defined O-predicates.

Such a proof lies beyond the scope of this dissertation.

The completeness result for the above operational semantics requires finite-depth recur-

sion. As with the completeness of PTSLD derivations, the search tree must be finite, since

all possible paths are explored before determining the optimal or suboptimal solutions. The

proof for the completeness result relys on the completeness of PTSLD resolution which in

turn relys on the completeness of SLD resolutions and is beyond the scope of this disserta-

tion.

In addition to the above informal arguments for soundness and completeness, we have

also successfully implemented the above scheme of operational semantics for relaxation

goals for certain test programs including the sh dist program. This implementation uses

the technique of memoization or tabling [96, 93] to reduce the time for computing repeated

calls to the same goal. In this technique, when a goal is evaluated for the first time, the

system stores the computed answer(s) in a table (memo-table). All subsequent evaluations

of the same goal are performed by simply retrieving its answer from this table, thus making

the computation more efficient. In the case of optimization goals, we use this scheme to

store not only the optimal but also the feasible solutions. The feasible solutions are useful

164



if the optimization goal is later subject to relaxation.

6.4 Related Work

Optimization in logic programming is discussed in [26, 82] and is given a semantics based

on negation. Unlike these approaches where optimization can be stated only via a min-

imizing or maximizing objective function, PLP provides a more general framework for

optimization and relaxation and gives the programmer explicit control over stating the pref-

erence criterion. Preferences have also been used in databases [19] and the reference [29]

gives a survey of different forms of preference structures and their numerical representa-

tions.

The PLP paradigm crucially depends on memoization for efficient computation as well

as termination of computation. Memoization or tabling has been used with logic program-

ming and deductive databases for efficiency and termination [101, 96, 92, 111, 93]. Tabling

is used typically used to store answers to a goal for retrieval in case the same goal is eval-

uated again. In the PLP context, the memo-table stores only the optimal solutions to an

optimization goal. But in the operational semantics of relaxation goals that we described

in the previous section, the memo-table stores the optimal as well feasible solutions to an

optimization goal. This reduces computation time when such a goal is subjected to relax-

ation.

Some relevant contributions in the area of preferences and relaxation within the frame-

work of logic programming include Courteous Logic Programs [42], Relaxable Horn Clauses

(RHC) [13, 80] and Hierarchical Constraint Logic Programming (HCLP) [11, 113]. Cour-

teous logic programs are an extension of logic programs with a Overrides predicate that

states a pairwise preference order between the clauses of a predicate definition. Program

rules can contain negated literals in the head as well as the body and hence the logical con-

sequence of a query may contain contradictions. Stating a priority between pairs of rules

allows the resolution of such contradictions or conflicts and leads to a unique set of logical

inference of a program that does not have contradictions. Preferences in PLP on the other

hand, do not address the problem of conflict handling (since the head of a rule cannot be a
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negated literal). They are used instead, to order the feasible solutions to a goal (or the set of

logical consequences of a programs) and generate them in decreasing order of preference

using the relaxation constructs. Although the Overrides predicate of courteous logic pro-

grams, in the absence of conflicts, may be viewed as a means for ordering or prioritizing

the solutions to a goal, the priority cannot be relaxed. RHC defines a relaxation clause as a

definite clause with a partial order over the goals in the body. In case of a failure, the partial

order determines the order in which the goals should be relaxed. This form of relaxation

can be thought of as providing an order on the solutions to a goal. It cannot be used to state

or relax the underlying preference criterion of an optimization problems.

Hierarchical constraint logic programming (HCLP) is an extension of CLP in which

constraints are organized into a hierarchy by the tags required, strong, weak, etc.

to indicate that certain constraints must be satisfied and those that can be relaxed. Each

of the tags is associated with a weight and an error function that determines how well a

valuation satisfies the constraints of the problem. A comparator function is then used to

compare two valuations based on their error values. Thus the HCLP scheme is parameter-

ized by the domain of constraints (similar to CLP) and also by the choice of error function

and comparator. Although the comparators can be thought of as stating a preference be-

tween multiple solutions to the required constraints, not all forms of optimization problems

(in particular global optimization such as shortest distance) can be stated in the HCLP

paradigm [38]. The PLP paradigm along with the relaxation constructs introduced in this

chapter is a more expressive paradigm for constraint optimization and relaxation.
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Chapter 7

Case Studies

In this chapter we present three case studies illustrating the application of the Cob pro-

gramming language and environment to engineering modeling as well as non-engineering

domain. The case studies required an understanding of the problem domain to elicit de-

tails of the structure being modeled and to design an appropriate class hierarchy for the

problem. In all the problems presented in this chapter, the Cob model can be developed

textually or through the domain dependent and independent interfaces. After specifying the

Cob model, we illustrate its use for analyzing various types of scenarios. We also compare

our model with other existing approaches to modeling.

The first case study in Section 7.1 is from the electrical engineering domain and illus-

trates the simplicity and power of the constrained object paradigm. We define a Cob model

for electrical circuits and present a domain specific visual interface for drawing electrical

circuits (AC as well as DC). We show how the underlying Cob model of the diagram along

with the Cob debugging tool provides a powerful and flexible computational model for

simulating electrical circuits and for pedagogic purposes. The second case study in Section

7.2 is from the mechanical engineering domain from the area of variant product design. We

design a gear train based on the specifications and preferences of the client. In coming up

with a model, we show the use of the CUML tool for drawing class diagrams. The third

case study in Section 7.3 discusses the use of constrained objects to model documents from

the simple spreadsheets to books. In particular we give a Cob model for the problem of

formatting the contents of a book.
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7.1 Electric Circuits

The classical problem of modeling electrical circuits illustrates the simplicity and power of

the Cob programming language and modeling environment. The behavior of the compo-

nents of a circuit varies depending upon the voltage supply (AC or DC). In Section 3.2.4 we

defined Cob classes for modeling DC circuits. In this case study we use the Cob language

and environment to model AC as well as DC circuits.

We would like to model resistance, inductance, and capacitance circuits (RLC circuits)

as constrained objects. The components of such circuits include resistors, capacitors, in-

ductors, diodes, transformers, wires, batteries, and AC voltage sources. We would like to

be able to model any assembly of such components and use this model to: (i) compute the

current or voltage drop at any point in the circuit; (ii) specify voltage across two points

and compute what the input voltage should be; (iii) specify a model giving values for all

the attributes of the circuit and verify the model; (iv) debug an over-constrained model; (v)

specify the model through a visual drawing tool and observe the results of the underlying

Cob computation through this tool; (vi) use the drawing tool to edit, modify and resolve

the model any number of times.

7.1.1 Cob Model of RLC Circuits

We model the components and connections of RLC circuits as objects and their properties

and relations as constraints over the attributes of these objects. Given below is the code that

defines these classes. The features or attributes of analog circuits (current, voltage, etc.) are

represented as complex numbers. We first define a class complex which represents the

set of complex numbers and the predicates of this class represent some basic mathematical

operations on complex numbers.

class complex {
attributes

real Re,Im;
predicates
c_add([R1r, R1i], [R2r, R2i], [R3r, R3i]):-
R3r = R1r + R2r,
R3i = R1i + R2i.

c_mult([R1r, R1i], [R2r, R2i], [R3r, R3i]):-
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R3r = (R1r*R2r) - (R1i*R2i),
R3i = (R1r * R2i) + (R2r * R1i).

c_sub([R1r, R1i], [R2r, R2i], [R3r, R3i]):-
R3r = R1r - R2r,
R3i = R1i - R2i.

c_neg([R1r, R1i], [R2r, R2i]):-
R2r = - R1r,
R2i = - R1i.

makeReal([R1r, R1i], R):-
R=(R1r*R1r+R1i*R1i).

constructors complex(Re1,Im1) {
Re = Re1;
Im = Im1;

}
}

The component class below models any electrical entity with two terminals. Its at-

tributes V1, V2 are complex numbers and represent the voltages at the two terminals.

Similarly the attributes I1, I2 represent the corresponding currents at the two terminals.

The currents at the two terminals are equal and opposite to each other and the potential

difference across the component (V) is the difference between V1 and V2. These two re-

lations are represented as constraints of the component class. The class component is

an abstract class and hence cannot be instantiated.

abstract class component {
attributes
complex V1, V2, I1, I2, V;

constraints
c_neg(I1, I2);
c_sub(V1, V2, V);

}

A resistor is a component characterized by its resistance R. It is represented by the resistor

class which is a subclass of the component class. The values of current, voltage and re-

sistance of a resistor are governed by Ohm’s law which is represented as a constraint of this

class.

class resistor extends component{
attributes
complex R;

constraints
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c_mult(I1, R, V);
constructors resistor(R1) {
R = new complex(R1,0);

}
}

A diode is a component that allows current to flow only in one direction. The current flow

is a piecewise linear function of the voltage across the diode and represents the transition

from a state of reverse breakdown to reverse bias to forward bias. This relation between the

voltage and current can be modeled either through predicates or as conditional constraints.

We give the latter formulation below. The diode class is a subclass of component.

class diode extends component{
attributes
real Vr, Ir;

constraints
V = new complex(Vr, 0);
I1 = new complex(Ir, 0);
diode1(Vr,Ir);

predicates
diode1(V, I) :- V < -100, DV = V + 100, I = 10*DV.
diode1(V, I) :- Vr >= -100, Vr < 0.6, I = 0.001*V.
diode1(V, I) :- Vr >= 0.6, DV = V - 0.6, I = 100*DV.

constructors diode(){}
}

Electrical components such as voltage sources, inductors, and capacitors are two termi-

nal components whose behavior depends upon the frequency of the applied AC voltage.

The class of frequency dependent components is defined below as the freq component

class, a subclass of component. The attribute W, a function of the frequency, is known as

omega and is used in defining the characteristic of frequency dependent components.

abstract class freq_component extends component{
attribute
real Freq; % frequency of voltage
real W; % omega

constraints
Pi = 3.141;
W = 2 * Pi * Freq;

}
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The behavior of a voltage source is frequency dependent. If Omega (W), the frequency, is

zero, then it is interpreted to be a DC voltage source.

class voltage_source extends freq_component{
constraints
V2 = Zero :- W = 0;

constructors voltage_source(Va, W1) {
V1 = new complex(Va, 0);
W = W1;

}
}

A capacitor resists quick changes (high frequency) in voltage whereas an inductor resists

quick changes in current. The resistance is represented by the capacitance and inductance

of the capacitor and inductor respectively. While resistors vary only the magnitude of the

voltage, capacitors and inductors introduce a phase lag in the AC voltage. Hence frequency

dependent characteristics are modeled using complex numbers (resistors are represented

by complex numbers with the imaginary part zero). The voltage and current of a capacitor

(or inductor) are related to the capacitance (or inductance) and Omega by the constraints

shown in the following classes.

class inductor extends freq_component{
attributes
complex L; % inductance
complex T; % temporary variable

constraints
c_mult(T, I, V);

constructors inductor(L1,W1){
L = L1;
W = W1; % Omega
T = new complex(0.0, W*L);

}
}
class capacitor extends freq_component{
attributes
complex C; % capacitance
complex T; % temporary variable

constraints
c_mult(T, V, I);

constructors capacitor(C1,W1){
C = C1;
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W = W1; % Omega
T = new complex(0.0, W*C);

}
}

The class end represents a particular end of a component. We use the convention that

the voltage at end 1 of a component is V1 (similarly for current). A node aggregates

a collection of ends. When the ends of components are placed together at a node, their

voltages must be equal and the sum of the currents through them must be zero (Kirchoff’s

law). Notice the use of the quantified constraints (forall) to specify these laws.

class end
�

attributes
component C;
real E, V, I;
constraints
V = C.V1 :- E = 1;
V = C.V2 :- E = 2;
I = C.I1 :- E = 1;
I = C.I2 :- E = 2;
constructors end(C1, E1)�

C = C1; E = E1; �
�
class node

�
attributes
end [] Ce;
real V;
constraints
sum C in Ce: C.I = 0;
forall C in Ce: C.V = V;
constructors node(L)

�
Ce = L; �

�

7.1.2 Cob Diagrams of Electrical Circuits

We have developed a domain-specific tool for modeling DC circuits. The visual aspects

of this tool were implemented by Abhilash Dev and Narayan Mennon, recent graduate

students of the Department of Computer Science and Engineering, University at Buffalo.

This modeling tool provides a palette of buttons for creating instances of resistors, batteries
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Figure 7.1: Snapshot of the Circuit Drawing Tool

and wires. Electrical joints can be created by merging the ends of two or more electrical

components.

A similar domain-specific tool is provided for modeling RLC analog circuits. The

visual aspects of this tool were developed by Palaniappan Sathappa and Prakash Rajamani,

graduate students in the department of Computer Science and Engineering, University at

Buffalo.

DC Circuits. Figure 7.1 shows a circuit drawn using the DC circuit drawing tool. The

interface has a predefined library of classes corresponding to each component. Placing the

icon of a component on the canvas creates an instance of the corresponding class. To create
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Figure 7.2: Snapshot of the input window for a resistor in the circuit drawing tool

an instance of a resistor, the user clicks on the resistor icon. This pops open a window

(Figure 7.2) through which the user can enter values for the attributes of a resistor (e.g. its

resistance) and any instance level constraints on the attributes (e.g. current must be less than

10Amps). Any or all attributes may be left uninstantiated or given a variable value (e.g.

X). A similar interface is provided for creating an instance of a battery. Every instance of a

component is labeled with a default name.

Once the drawing is completed, the user can compile the drawing to generate the tex-

tual Cob code corresponding to the diagram. This is done by clicking on the Compile

button from the Tools menu. By clicking on the Run button from the Tools menu, the

generated Cob code is compiled and executed. The answers resulting from this execution

are displayed on the diagram. The user can get different views of the structure: the dia-

gram; the Cob code; the translated CLP(R) code; and the window showing the script of the

execution. The modeler can click on any component of the diagram and get information

about the instance, its input constraints and output constraints as shown in Figure 7.3.

RLC Circuits. The interface for drawing analog circuits works much the same way and

has extra icons for drawing inductors, capacitors and AC voltage sources. Figure 7.4 shows
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Figure 7.3: Snapshot of the Circuit Drawing Tool showing input and output windows and

details of resistor
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Figure 7.4: Snapshot of the Analog Circuit Drawing Tool

a snapshot of this tool.

7.1.3 Uses of Cob Model

Using the Cob classes of Section 7.1.2, we can model any analog circuit containing any

number of the above components. Given initial values for some attributes such models

can be used to calculate values of the remaining attributes (e.g. the current through a

particular component or voltage drop at a particular node). The Cob model may be used

to solve different kinds of problems. The designer may model the circuit leaving some

of the attributes unspecified. The system can then be asked to run the model, i.e., solve

the constraints and arrive at values or constraints for all the unspecified fields. After a

solution has been obtained, the designer may modify the value of some of the attributes to

see the effect of the modification on the rest of the model. Instead of giving initial values
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to a component, a modeler may specify the constraints on the value of a component (e.g.,

the current through a component must be between 5Amps to 10Amps. The Cob model

will then returns answers for the rest of the components in the form constraints on their

values. The debugging tool of Section 5.5 can be used to locate the source of error in an

over-constrained model.

Conclusions and Future Work. The Cob code presented in this case study provides a

simple and intuitive model for electrical circuits. The CLP(R) models of such circuits are

given in [45]. We have shown a part of such CLP(R) code in Section 2.2.2. In compar-

ison to the CLP(R) code, the above Cob model is more intuitive, concise, readable and

amenable to modifications. When modeling, thinking in terms of objects leads to better

design. Directions for future work include combining the drawing tool with the debugging

tool so that the source of error can be displayed on the diagram instead of the Cob code

generated from the diagram.

7.2 Product Design: Gear Train

The process of product design begins with the specification of the functional requirements

of the product. This specification is given by the client. Along with the functional require-

ments, the client also places constraints and preferences on the performance of the product.

The domain mapping process of product design involves mapping the functional require-

ments to concepts in the physical world that realize them. The original function specified

by the client is broken down into smaller functions and in the process, the correspond-

ing concepts get refined. There can be more than one concept that can achieve the same

function. The designer must build the product by choosing the appropriate concepts and

assigning absolute values to their physical attributes. The design, i.e., choice of concepts

and values of physical attributes, must be such that building such an object is feasible in

the real world. The aim of this case study was to explore the use of Cob, in product design.

A gear train is a special kind of drive whose purpose is to transmit rotary power be-

tween shafts while reducing angular speed. It consists of an assembly of pairwise engaged

gears (meshes) enclosed in a gear box. The efficiency of a drive depends on its input and
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output torques, angular speeds and transmission powers. An acceptable design of the gear

train must meet the functional specifications and constraints of the designer as well as pref-

erences like maximizing its efficiency. The problem is to create a constrained object model

for gear trains that can be used to come up with a design for the gear train, validate an

existing design, etc. The above problem was proposed by Prof. Li Lin of the Department

of Industrial Engineering, and by Prof. Bharat Jayaraman, Department of Computer Sci-

ence and Engineering, University at Buffalo. The details of the Cob model were worked

out with the help of Jason Chen, a former graduate student of the Department of Industrial

Engineering, University at Buffalo.

7.2.1 Structure of Gear Train

Drive: A drive is an engineering entity that transmits rotary power between shafts while

reducing angular speed. There are different types of drives based on the medium used for

transmitting power between the shafts, e.g., belt drive, gear train, chain drive.

The attributes describing a drive are its input( � � � ) and output( � ����� ) torque (turning forces

on its input and output shaft), input ( � � � ) and output( � ����� ) transmission powers, input( � � � )

and output( � ����� ) angular speeds of the shafts, efficiency(E) and speed reduction ratio(R).

These attributes are related by the following equations:

E = � ����� / � � � �

R = � ����� / � � � �

� � � = 63025 * � � �
�
� � � �

� ����� = 63025 * � �����
�
� �����

Gear Train: A gear train is a drive that uses gears to transmit rotary power between

shafts. A pair of gears engaged together form a mesh. A gear train consists of an assembly

of meshes enclosed in a gear box. The speed reduction ratio(R) of the gear train is related

to the speed reduction ratio(r) of the meshes by the relation:

R = Π (M � Mesh) M.R

There are different types of gear trains based on the shape of the teeth of the gears, the

angle between the shafts and the number of gears inside a gear box.

Gear: The attributes of a gear include its diameteral pitch(P), number of teeth(N), pitch
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diameter(D), face width(F), pressure angle(PA), size(S). The following relations hold on

these attributes

P = N/D.

N >= 18.

PA � � 14.5, 20, 25 � .
9 / P <= F <= 13 / P

Mesh: For placing two gears say G1 and G2 together in a mesh, their diameteral pitch, face

width and pressure angles have to be equal. Therefore the following relations must hold.

G1.P = G2.P.

G1.F = G2.F.

G1.PA = G2.PA.

The speed reduction ratio of a mesh is related to the number of teeth of its gears by the

following relation:

R = G2.N / G1.N.

Two adjacent meshes share a shaft, hence the output angular speed of one mesh is the input

angular speed of the next. Hence,
�
M � Meshs: M.G2.S = next(M).G1.S

Depending upon the type of gear used inside a mesh, the engineer may be able to

provide more information specific to the gear used. For example, if it is known in advance

that spur gears will be used in the design, then the following constraints can be added to

the properties of a mesh: R
�

5 and G1.N � 17.

Gear Box: A gear box is the physical box around an assembly of meshes that encloses

the meshes but leaves part of the input and output shafts of the first and last mesh outside.

The attributes of a gear box are its length, width and height and the number of gears (Ng),

bearings(Nb) and shafts(Ns) inside it. Since a mesh has two gears and there are two gears

on one shaft, the following relation holds:

Nb = 2 * Ns

The problem of designing a gear train that meets client specification, involves coming

up with values for the physical attributes of a gear train. These values have to be such that

the performance and certain other attributes meet the client’s constraints. There are two
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stages in the design. In stage I, given values for Tin, Hin, Nin, calculate the # of meshes

and # of teeth required to maximize the efficiency of the drive. In stage II, given the # of

meshes and # of teeth from stage I, the values of P, D and F need to be calculated.

7.2.2 Cob Model of Gear Train

We now give a constrained object representation of a gear train in Cob and describe how

the computational engine of Cob can be used to come up with a specific instance of a gear

train that meets the client’s constraints and preferences.

The structure of a gear train described above gives an intuitive class hierarchy for defin-

ing Cob classes for a gear train. We begin with the drive class that represents any generic

drive. The attributes and constraints on these attributes are derived from the properties of

a drive. In addition to the relations among attributes mentioned above, the client has spec-

ified that gear train be built with the maximum efficiency possible. A drive is given as a

relation between its input and output torques, angular speeds and transmission powers. We

model this as a constraint in the drive class. The designer can specify a preference that

the transmission power be as close to 12hp (horse power) as possible. The problem is to

maximize the efficiency which is also stated as a preference. For simplicity we do not show

the constructors in the classes below. We give a part of a constrained object hierarchy that

can be used to models different gears. Figure 7.5 shows the entire class diagram.

class drive
�

attributes
real � � � , � ����� , � � � , � ����� , � � � , � ����� , E, R;

constraints
E < 1;
E = � ����� / � � � ;
R = � ����� / � � � ;
� � � = 63025 * � � �

�
� � � ;

� ����� = 63025 * � � ���
�
� ����� ;

preferences
max E.

�
class gear train extends drive

�
attributes

mesh [] Meshs;
gear box Gbox;
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Gbox

n

1

Inheritance

Meshs

Aggregation

1

Notation :

1

belt_drive gear_train

Gbox, Meshs

mesh

G1, G2, R

R = G2.N / G1.N
G1.P = G2.P
G1.F = G2.F
G1.PA = G2.PA
R <= 5

chain_drive

reverted_train

drive

E < 1

Tin = 63025 * Hin / Nin
Tout = 63025 * Hout/Nout

E = Hout / Hin

max E

R = Nin / Nout

Tin, Tout, Hin, Hout, Nin, Nout, E, R

compound_train

epicyclic_train

gear

member(PA, [14.5, 20, 25])
N >= 18
P = N / D

9 / P <= F <= 13 / P

R = prod M in Meshs : M.R

forall M in Meshs : 

P, N, D, F, PA, S

gear_box

Nb, Ns, Ng, L, W, H

Nb = 2 * Ns

max R

G1.N >= 17

Hin : Input transmission power
Tin : Input torque

Nin : Input angular speed
E : Efficiency

N : Number of teeth
D : Pitch diameter
F: Face width

R : Speed reduction ratio
Nb : # of bearings
Ng : # of gears
Ns : # of shafts
PA : Pressure angle

P : Diametral pitch

S : Rotational speed

M.G2.S = next(M).G1.S 
:- not is_last(M)

Figure 7.5: Gear Train as Constrained Objects
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constraints
size(Meshs, NumMesh);
R = prod M in Meshs: M.R;
forall M in 1..(NumMesh-1): M.G2.S = next(M).G1.S ;

�
class mesh

�
attributes

gear G1, G2;
real R;

constraints
G1.N � � 17;
R = G2.N / G1.N;
G1.P = G2.P;
G1.F = G2.F;
G1.PA = G2.PA;
R � � 5;

preferences
max R.

�
class gear

�
attributes

real P, N, D, F, PA, S;
constraints

P = N/D;
N >= 18;
PA � �

14.5, 20, 25 � ;
9 / P <= F <= 13 / P;

�
class gear box

�
attributes

real Nb, Ns, Ng, L, W, H;
constraints

Nb = 2 * Ns;

�

7.2.3 Uses of Cob Model

The above Cob model of a gear train can be used by the designer in different ways.

1. Design: Given values of some attributes, the Cob model can be used to calculate

values of remaining attributes. For example, given the values for � in
�
� 	 � in � � � in � � �

the Cob model can be used to compute the value of � ����� .
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2. Verification: A designer can specify an existing design in Cob and the underlying

Cob computational engine can verify whether design satisfies the constraints of ev-

ery component of the gear train. The design that needs to be verified need not be

complete (i.e., all the attribute values need not be specified). The designer can spec-

ify a partial model and the Cob engine can verify or solve this partial model returning

answer constraints.

3. Optimization: Preferences such as maximum efficiency for the drive can be stated

directly in drive class as max E. The constraint � ��� (which prevents � out from

becoming equal to � in) along with the constraints of the rest of the Cob classes forms

a linear programming problem with the objective function maximizing E. The un-

derlying Cob engine can solve such optimization problems to give the values for the

attributes of the gear train.

4. Interactive Design: Very often some of the design decisions are based purely on the

experience of the design engineer. For example, a partial design of a gear train may

be developed based on the constraints and functional specifications of the problem

but some choices such as the type of gear (spur, helical, or double helical gears) are

made by the engineer. The Cob engine can be used to come up with a partial model

of a gear train, the engineer can then make some design choices and the Cob engine

can verify/solve the resulting model. Thus at any point in the design process, the

engineer can modify the (partial) model and observe the effect of the change on the

rest of the model.

Conclusions and Future Work. It is natural to model gear trains and engineering arti-

facts in general as an assembly of constrained objects:

� Each physical component of the engineering structure has a counterpart in the Cob

model. The attributes of each physical object can be represented as the attributes

of the corresponding Cob object. Thus the compositional nature of an actual gear

train can be mapped onto the class hierarchy that represents it in Cob. The CUML

tool provides a convenient way of thinking and designing with an object-oriented

approach.
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� Compared to a the traditional paradigm of imperative objects, a constrained object

representation is better since the behavior of the structure can be modeled through the

constraints, and the underlying Cob computation engine does the constraint handling.

The relations that hold between the attributes as well as the restrictions on their values

as given by client specifications can be declaratively stated as Cob constraints. The

computational engine of Cob can be used to verify these constraints and/or use them

to obtain values for some of the uninitialized attributes of the complex object.

In comparison with other object oriented languages with constraints, e.g. Modelica

[88], the Cob model of a gear train is easier to understand, develop and debug. Future di-

rections for work include developing a domain specific visual interface for drawing assem-

blies of gears and gear trains, investigating the use of constrained objects with predicates in

variant product design, etc. When designing an engineering artifact, there may be several

choices for a physical component of the structure. For example, there may be different

brands of a part, differing in quality, color, cost, etc. The choice may depend upon the en-

gineers experience as well as compatibility constraints between various parts. In particular,

we have explored the use of Cob in representing shape grammars [2] and bill of material

and feel that constrained objects with predicates may provide a powerful tool for specifying

and solving such problems in variant product design.

7.3 Documents as Constrained Objects

The use of constrained objects is not restricted to modeling engineering structures alone.

Any complex system that is compositional in nature and whose characteristics are gov-

erned by some rules can in general, be modeled using constrained objects. For example,

constrained objects are ideal for modeling the class of structured documents such as spread-

sheets, telephone bills, tax forms, transcripts, etc.

7.3.1 Structured Documents

By structured documents we mean documents whose contents are organized or arranged in

a certain way conforming to some format and are related to each other via some constraints.
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The contents of such documents can be modeled as objects and the relation between the

contents can be stated as constraints. Constrained object models of such documents may be

used for their analysis and recognition, and can be queried for information or consistency.

We give some examples of structured documents below.

Document Analysis.

Student Transcript. As an example of a structured document, consider a student’s transcript

or grade sheet. This document is kind of a spreadsheet that contains a list of courses that

the student has taken in each semester, the number of credits for each course and the grade

received in each course. There are different kinds of constraints on the contents of such

a grade sheet. For example, some courses must be taken for exactly 3 credits, some other

can be for variable number of credits not more than 6 and so on. The overall grade point

average (GPA) on the grade sheet is related to the grades in all the courses by a certain

formula. Another constraint may limit the number of credits that have a non-letter grade.

The contents of a transcript and the constraints on them can be modeled using constrained

objects. In order to determine if the student meets the degree requirements, we can pose the

various queries to the Cob model, e.g., has the student taken certain course and electives,

is the total number of credits sufficient, is the grade at least a B+ and so on. A student can

use such a model to determine the courses and the minimum grade in each such that he/she

must take in order to graduate in a certain number of semesters.

Tax Forms. A tax form can also be thought of as a spreadsheet but the constraints are much

more complicated. The numerical figures in some rows of a tax form depend on the con-

tents of previous rows only by simple arithmetic expressions such as addition, subtraction,

percentage, etc. But the numeric figure of other rows depend on the person’s income and

can be determined only after consulting some tax tables. Conditional constraints are very

appropriate for modeling such dependencies. A constrained object model of a tax form

will be a modular representation of its contents and will provide a declarative specifica-

tion of the tax rules. The tax payer can simply provide his or her personal and financial

information such as name, date of birth, income, number of dependents, etc. and the Cob

model can compute the tax based on the tax rules. Although there are existing softwares

that perform such tasks, an advantage of the Cob model is that it can handle queries that
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contain constraints and/or ranges for variables. Such queries can be useful in determining

the optimum set of claims, exemptions or deductions such that the tax is minimized.

Document Recognition. An interesting problem in document recognition consists of scan-

ning an old document and filling in the faded parts or contents that could not be read by

the scanner. Examples of such documents are bill of materials (BOM), schedules, expense

reports, or even a phone bill.

Bill of Material. A BOM is an inventory of the components of an engineering artifact such

as a plane, a building, etc. A BOM contains information about the name, cost, physical

dimensions, quantity, brand, code etc. of the parts used. BOMs are used in scheduling,

resource planning, manufacturing control, etc. Scanning and storing such documents in a

format which can be queried later is valuable. Constrained objects are ideal for modeling

BOMs because they give a compositional/hierarchical description of an engineering prod-

uct, i.e., they list the product, its parts, their subparts, and so on. Also, each category of

parts and their product information can be stored represented as objects and their attributes

respectively. Any relation between parts can be stored as a constraint. Such a represen-

tation of a BOM can be queried for the cost or the product, the raw material required for

its manufacture, etc. Computation of such queries will involve constraint solving, e.g., the

cost of a part will be a sum total of the cost of its subparts each multiplied by the number

representing their quantity.

Phone Bill. As another example, consider a phone bill. The contents of a phone bill list

in chronological order, phone calls, their time, duration, cost, etc. The contents of a phone

bill are ideally suited for modeling as constrained objects since there several constraints on

attributes of every phone call. For example, the end time of a call must be less than the start

time of the next call, and the cost of a call depends on the duration, destination, time of

the call and the rate for such calls depends on the calling plan. A constrained object model

allows specification of such constraints declaratively into the document recognizer. Such a

model is also conducive to being adapted for recognizing other kinds of documents.
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7.3.2 Book as a Constrained Object

One of our first case studies in developing the paradigm of constrained objects involved

the representation of a book and its layout as a constrained object. Constrained objects

can model not only the logical contents of a document, as shown by the examples in the

previous section, but also its physical layout. The problem of layout or formatting is typ-

ically a combination of “must satisfy” constraints and “should satisfy” preferences. Often

an optimal layout which satisfies certain esthetic preferences may not satisfy some of the

basic layout constraints. The problem of formatting a compound document has another

interesting aspect, viz., though the structure of the document and its overall layout is com-

positional, the problem of optimizing its layout is not. For example, the optimal layout of

a chapter is not strictly composed of the optimal layouts of its sections. This is a problem

of hierarchic optimization which may require relaxation (sub-optimization) of preference

criteria in order to compute a satisfactory solution (layout). This case study investigates the

application of constrained objects to represent the contents and layout of a simple book,

with the main focus being the use of predicates, preferences and relaxation to compute a

satisfactory layout.

A book is a complex compound document which is made of several logical (chapters,

sections, figures, footnotes, etc.) and physical (font and its size, page size, layout of figures,

margins, etc.) components. For the purposes of this case study we take a simplified form

of a book, one which has chapters, chapter titles, sections, section titles, and paragraphs.

We show how the concept of constrained objects can be used to model the contents and

formatting of such a book. We discuss, at the end of the case study, how our model for a

simple book can be extended to accommodate, figures, footnotes, references, etc. for use

in modeling a more complex book.

Problem Definition. Given a simple book whose contents are grouped into the logical

components: chapters (and their titles), sections (and their titles), and paragraphs, we are

to format the contents of the book onto pages. Some global dimensions for the physical

layout of the contents are provided, e.g., page size, size of the margins, space between two

lines, and font size. We are given one or more algorithms for formatting the contents of a
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paragraph that takes care of the indentation and alignment with the margin. This algorithm

takes a sequence of words and returns a sequence of lines that contain the words. We are

also given that there can be at most say 30 lines per page. In the setting of this example,

there are certain important constraints that we must deal with while formatting, e.g.: “No

section shall begin on the last line of a page.” and “No section shall end on the first line of

a page.” These are called the orphan and widow constraints.

In general there can be several guidelines for obtaining an appealing format: a line

should not have only one word. There should be not be too many hyphenated words in a

paragraph, the white space between words should be at least or at most of a certain length,

etc. Since these are guidelines and not strict constraints, we regard them as preferences.

Our task is to provide a constrained object model for a simple book that expresses the above

constraints and preferences and, more importantly, can also be used to compute a format

satisfying these constraints and preferences.

In Section 3.1 we presented the syntax of Cob programs. In order to keep the dis-

cussion relatively simple at that point, we did not give certain details of the syntax of

predicates. We now provide some enhancements to the syntax of Section 3.1 that will be

used in this case study: (i) Object attributes may appear in user-defined predicates, and

(ii) Selection operation may be performed on these object attributes to invoke a predicate

defined in their corresponding class. In relation to the syntax of constraints and predicates

given in Section 3.1.2, this means that the non-terminal term
�
can generate complex id and

that the non-terminals goal and constraint atom can reduce to predicate calls of the form

X
�
predicate id

�
terms

� � . The complete syntax of Cob programs including these enhance-

ments is given in Appendix A. It is possible to translate these enhancements into CLP

or PLP code using a mechanism for name resolving along the lines of the translation of

selection terms given in Section 5.1.1.

A book may be thought of as a complex object that aggregates many chapters, each of

which aggregates many sections. Each section in turn aggregates many paragraphs, and

each paragraph aggregates many words (see Figure 7.6). Thus, the elements of a book,

viz., chapter, section, and paragraph become the basic classes of objects in the constrained

object model. The physical attributes of a logical component, e.g., the page number on
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Figure 7.6: Structure of a Simple Book

which a chapter begins, also become attributes of the appropriate class.

We may think of a format predicate within each class of book-element (chapter, sec-

tion, etc.), whose purpose is to obtain the optimal layout for the element (the reason for

having a predicate, instead of a method, will become clear below.) In a compositional for-

mulation, the format predicate of one element should invoke the format predicate of

its constituent elements in order to construct its optimal layout.

Although we do not focus on the formatting algorithm itself, we are interested in the

quality of the resultant format. Hence, each formatted element is associated with a mea-

sure of how good or bad its formatting is, viz., its so-called badness. We assume that the

format predicate incorporates some such method for calculating its badness. Suppose

there are several possible formats for the book using the same algorithm. The possibility of

multiple solutions necessitates a preference criterion for choosing the best (most preferred)

one. This is shown in the class para, where we state that the format with lesser badness is

the preferred one:

format(W, L1, B1) � format(W, L2, B2) :- B1 � B2.

The restrictions on the formatting (mentioned in the problem definition) are better spec-

ified separately from the formatting algorithm, since the algorithm may be modified inde-
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pendently while these still hold. These are specified as constraints within the class def-

initions of a section. We now define constrained object classes representing the logical

components of a book. For simplicity we do not show the constructors in the classes below.

Book. The class book aggregates a sequence of Chapters and has an attribute represent-

ing its title. Every chapter of the book begins on a new page and the first chapter begins on

page number 1. These relations are specified as constraints of the book class. The quan-

tified constraint in the book class states that every chapter begins on an odd-numbered

page: either immediately after or leaving a blank page after the previous chapter (indicated

by the conditional constraints inside the quantification). The format predicate for the book

calls the format predicate on each of its chapters.

class book
�

attributes
chapter[] Chapters;
string Title;

constraints
Chapters[1].Begin pg = 1;
size(Chapters, NChap);
forall C in 1..NChap-1:
(Chapters[C].End pg + 1 = Chapters[C+1].Begin pg :-

even(Chapters[C].End pg);
Chapters[C].End pg + 2 = Chapters[C+1].Begin pg :-
odd(Chapters[C].End pg));

predicates
format(Bpgs) :- format(Chapters, Bpgs).
format([], []).
format([C1 �C], [CP1 �CPgs]) :-
C1.format(CP1), format(C, CPgs).

�

Chapter. The class chapter aggregates a sequence of Sections and has attributes

denoting its title and its beginning and end pages (Begin pg and End pg respectively).

Let us assume that the title of a chapter is always placed on line number 8 and the first

section begins on line number 10 of the first page of the chapter. These restrictions are

represented by the first two constraints of the chapter class. In an alternate formulation,

the title and first section’s line number may be left uninitialized in the constraints clause and
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their values may be passed as arguments to the constructor, thus allowing these formatting

guidelines to be decided at runtime. Each section of a chapter begins on a new line, the one

immediately following the end line of the previous section. The above relations are stated

as constraints of the chapter class. The format predicate for a chapter calls the format

predicate of each its sections.

class chapter
�

attributes
section[] Sections;
string Title;
int Begin pg, End pg, Numpgs, Title ln;

constraints
Title ln = 8;
Sections[1].Begin ln = 10;
size(Sections, NSec);
End pg = Begin pg + Numpgs - 1;
forall S in 1..NSec-1:
Sections[S].End ln + 1 = Sections[S+1].Begin ln;

predicates
format(Cpgs) :-
format(Sections, SLines),
form pgs(SLines, Cpgs, Numpgs).

format([], []).
format([S1 �S], [SL1 �SLines]) :-
S1.format(SL1), format(S, SLines).

�

Section. The class section aggregates a sequence of paragraphs and has attributes rep-

resenting its title (Title), the maximum number of lines per page (Size), and its begin-

ning and end lines (Begin ln and End ln respectively). The first paragraph of a section

begins on the line immediately following the title of the section. All other paragraphs of

a section begin on the line following the ending line of the previous paragraph. A section

ends on the same line on which its last paragraph ends. These relations are stated as simple

and quantified constraints in the section class. The restriction that a section cannot be-

gin on the last line of a page is modeled by the disequation Begin ln mod Size != 0

where the attribute Size represents the maximum number of lines per page. This attribute

is initialized in the constructor of the section class. The restriction that a section cannot

end on the first line of a page is modeled similarly. Note that since the maximum number
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of lines per page does not vary per section or chapter, this information may be better placed

in the book class. In that case, a section will need to have access to this value through

an attribute referring to the book object. The format predicate of a section calls the format

predicate of its paragraphs.

class section
�

attributes
para[] Paras;
int Begin ln, End ln, Size, Title ln;
string Title;

constraints
size(Paras, NPara);
Begin ln = Title ln;
Begin ln + 1 = Paras[1].Begin ln;
End ln = Paras[NPara].End ln;
Begin ln mod Size != 0;
End ln mod Size != 1;
forall P in 1..NPara-1:
Paras[P].End ln + 1 = Paras[P+1].Begin ln;

predicates
format(Sec lines) :- format(paras, Sec lines, Badness).
format([], [], 0).
format([P �Paras], [L �Lines], Badness) :-

P.format(L,Badness’),
format(Paras, Lines, Badness’’),
Badness = Badness’ + Badness’’.

�

Paragraph. The class para aggregates a sequence of words and has attributes repre-

senting its first and last lines and the total number of lines. Assume that the width of a

paragraph is given to be 13 centimeters. The format predicate of a paragraph takes a list

of words as input, formats them into a list of lines and computes the measure of badness

for the format. This formatting algorithm may take the font size, width of paragraph, inter-

word spacing, etc. into account and will usually have more than one solution for a list

of words depending on how much apart the words are stretched (more or less inter-word

spacing). We are not interested in the exact details of this formatting algorithm but only in

the solution(s) it gives. Each solution is associated with a measure of badness which may

depend upon the inter-word space, the number of hyphenated words, the number of words
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on the last line of the paragraph, etc. Again, we are not interested in how the badness is

measured, but only in its value (which can be different for different formats).

class para
�

attributes
int Begin ln, End ln, Numlines;
char[] Words;

constraints
End ln = Begin ln + Numlines;
Width = 13;

predicates
format(Words, Lines, Badness) :-

� � �
details omitted

� � �
preference

format(Words, L1, B1)
�

format(Words, L2, B2) :- B1 � B2.

�

Since there can be more than one format for the same set of words, we state a preference

to indicate what is an optimal format. The preference clause above states that among two

formats (L1 and L2) for the same sequence of Words, the format with lesser badness (B2)

is preferred over the one with more badness (B1).

Although we have not shown the constructors for any of the classes above for the sake

of brevity, their definition is not difficult to understand. The constructors would essentially

initialize the contents of each component, e.g., the constructor for the chapter class will

assign a value to the Sections array and so on.

7.3.3 Creating and Formatting a Simple Book

Having defined the classes needed for modeling a simple book, we now describe how a

sample book is created and a format for its contents is computed. A class samplebook

can be defined along the lines of the samplecircuit class of Section 3.2.4. In it, first

instances of paragraphs are created, by aggregating lists of words. These instances of

the paragraph class are aggregated to create an instance of a section. In this way, several

sections are instantiated and then chapter objects are created by aggregating these instances

of the section class. Finally a book object is created by aggregating the chapters and the

top level query to build a book is B = new samplebook(Var list). The parameters

for formatting a book, e.g., line spacing, line number at which title of a chapter appears,
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size of page, width of paragraph, etc., can be passed as arguments to the constructor of the

samplebook class.

Conceptually, the above constrained object program is translated to a PLP program

along the lines given in Sections 4.1.2., 5.1.1. and 6.1.2. Subsequently, there can be two

ways to format the book. Either using the query B = new samplebook(Var list),

B.format(Bpgs), which results in Bpgs containing the format; or by placing the con-

straint B.format(Bpgs) in the samplebook class and simply invoking the query B =

new samplebook(Var list). In either case, the query is translated to a PLP query and

its evaluation proceeds along the lines described in Section 6.1.3. When B.format(Bpgs)

is evaluated, it calls the C1.format(CP1), where C1 iterates over the list of chapters of

the book. Similarly when the format predicate for each chapter is evaluated, it invokes the

format predicate of each of its section. Similarly a section formats each of its paragraphs.

So far most of the constraints of the book, chapter, section, and paragraph objects are not

sufficiently ground to be solved or verified. Once the format predicate for a paragraph is

invoked these constraints start to get evaluated. For example, when a paragraph’s words

are formatted and its last line is determined, this tells the next paragraph where it should

begin and so on. The paragraphs are formatted in a sequential order beginning with the first

paragarph of the first section of the first chapter.

The format predicate of a paragraph is an optimization predicate. Its evaluation pro-

ceeds along the lines described in Section 6.1.3. The preference criterion is used to prune

sub-optimal formats, resulting in an optimal format for the paragraph. In this way all para-

graphs get an optimal format. Subsequently, the layout attributes of all the other objects

(sections, chapters and book) get instantiated by the evaluation of their constraints. Thus a

set of pages are associated with every chapter and lines with every section and paragraph

of the book. This is, however, only the best-case scenario. The more interesting cases oc-

cur when the optimal layouts of all the paragraphs do not together satisfy all the constraint

of the section class. We discuss two such scenarios next and explain how the preferences

together with relaxation in constrained objects can address the issues raised by these cases.

Preferences and Relaxation. Suppose the optimal format of a paragraph violates one of

the orphan or widow constraints. In this case the evaluation of format query B.format(Bpgs)
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backtracks to produce obtain another optimal format for the paragraph which will satisfy

all constraints. This is possible because the query is a PLP query and is evaluated using the

goal evaluation scheme described in Section 6.1.3. along with the traditional backtracking

of logic programming. This is why having a format predicate is more convenient than a

method. If all the optimal formats for a paragraph violate the constraint, then backtracking

proceeds to find an alternative optimal format for the previous paragraph, and so on till a

satisfactory optimal format is found. Backtracking to obtain another optimal solution as-

sumes that such a format exists; otherwise we need some means of relaxing the constraints.

Consider the case when the none of the optimal formats for the paragraphs of a section

satisfy the orphan or widow constraint. In such a case backtracking will be unable to find a

satisfactory format for the book. Hence what is really needed is a query of the form

RELAX � B.format(Bpgs).

This query will first try to find a solution (a format) by backtracking through all the

optimal solutions. If a solution is not found, the evaluation will proceed to relax the opti-

mization subgoals involved in this query, viz., subgoals of the form P.format(W,L,B)

where P is a paragraph object. These are optimization subgoals because the format pred-

icate of the paragraph class is an optimization predicate. Recall the scheme for relaxing

multiple optimization and hierarchic optimization goals described in Section 6.3.2. By this

scheme, when formatting a paragraph, first the optimal solutions will be returned and sub-

sequently, they will be removed from the search tree to obtain suboptimal solutions. The

relaxation is with respect to the underlying preference criterion, which in this case is the

badness level of a format. Thus the query RELAX � B.format(Bpgs) will invoke the

query RELAX � P.format(W,L,B) and find suboptimal formats for a paragraph in the

order of increasing badness.

Suppose a chapter has n sections: S1 � ����� � Sn. According to the above formulation, the

paragraphs of S1 will be formatted first, then the contents of S2, and so on. Within a section

Si, the contents of its first paragraph are formatted, then the second, and so on. Suppose the

last paragraph of Si ends on the last but one line of a page. No matter what format is selected

for Si � 1, it will always begin on the last line of a page. It may seem that the computation

will have to iterate through all formats of Si � 1 to conclude that none can satisfy the orphan
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constraint and hence backtrack to get an alternate format for Si. However, this is not the

case. Due to the constraint

forall S in 1..NSec-1:

Sections[S].End ln + 1 = Sections[S+1].Begin ln

in the chapter class, the optimal format for Si is rejected since it implies that the next section

will begin at the bottom of a page. Thus the evaluation will try to find a suboptimal format

for Si and then proceed to format the section Si � 1.

Similarly, if a section Si ends on the first line of a page, the formatting algorithm will

backtrack to produce an alternate format (suboptimal or another optimal solution) for its

last paragraph. If none of them satisfy the widow constraint, the preference criterion of the

last but one paragraph will be relaxed, and so on.

Consider a reformulation of the problem such that the orphan and widow constraints

are moved down to the class para and the preference on the format is moved up to the

class section. This is a more rigid constraint since no paragraph is to begin on the

last line of a page and it automatically implies that no section will violate this condition

either. Such a formulation always returns the optimal solution since the constraint is in

a way embedded in the definition of the format predicate of a paragraph. Suppose there

were some further constraints on the section, and suppose that an optimal format violated

these constraints. One may ask how the section will know which paragraph to reformat.

The computational model of preferences and relaxation described in Chapter 6 accounts for

such scenarios. The global preference criterion of the section class compares all possible

formats for its paragraphs to compute the next best overall format of the section. Thus in

both cases above, the correct query should be RELAX � B.format(Bpgs).

Advantages of the Constrained Object Model. The constrained object representation

of a book allows a natural and compositional specification of the logical as well as physical

structure of a book. Classes provide a compact means of representing a concept and its

attributes. While the formatting of the contents of a book is defined using predicates and

preferences, the constraints on the format are specified separately. This allows the pro-

grammer to change the formatting algorithm without having to alter the constraints. The

use of predicates within class definitions promotes a compositional or modular definition
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of the formatting algorithm which is easy to understand.

Preferences allow the programmer to specify a criterion for selecting between different

formats. This is a valuable construct that facilitates optimization and, along with backtrack-

ing and relaxation, can be used to compute sub-optimal solutions. Thus the constrained

object model of a book shown above is better than a pure object-oriented as well as better

than a purely logic programming representation.

Extending the Model. The above model of a simple book can be extended to account for

details such as figures, tables, footnotes, references, etc. For example, a figure class may

be defined that aggregates a figure, its size, orientation, etc. The section class may be

suitably modified to aggregate paragraphs and figures and its formatting algorithm modified

to take the size of the figure into account. Similarly, tables can also be incorporated in the

above model. Footnotes may be associated with a word or a line and the class representing

them should be aggregated by a paragraph. In that case, a paragraph class may incorporate

a constraint that states that the footnote appears on the same page as its associated word

or line. Thus, we can say that it is feasible to extend the model to cater for more logical

components and their layout.

By extending the model with the above mentioned features, we do not greatly alter the

evaluation scheme for its format predicate. The format predicate will have to be changed to

incorporate the formatting algorithm and preferences for figures, tables, etc. But the evalu-

ation scheme will essentially remain the same, viz., if a table’s format violates a constraint,

an alternate optimal format will be computed or the preference will have to be relaxed.

The constraints mentioned so far are related to the physical layout of the book. There

is an entire separate category of constraints that are concerned with the integrity of the

contents of the book. For example, checking the existence of a reference and the validity

of its format. Such constraints can also be modeled using constrained objects. These type

of constraints, referred to as integrity constraints in the context of databases, may use the

Cob quantified existential constraint exists (see Cob constraint syntax in Section 3.1.2).

We made several other simplifications to the book before modeling it, e.g., we assumed

that the first section of a chapter comes immediately after its title. In general this need not

be the case, there may be a few or several paragraphs before the first section begins. We feel
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that such details can be accommodated by suitably altering the class definitions to contain

attributes representing these details. The extensions will not give rise to any fundamental

problem in the issues addressed in this case study.

Conclusions and Future Work. We have shown through several examples that con-

strained objects provide a modular and declarative specification that is suitable for mod-

eling structured documents. Constrained object models of documents can be used for

recognition (e.g. phone bill and BOM) and querying the document for information (e.g.

transcript), computing the contents of the document (e.g. tax forms) or arranging the con-

tents in a certain format (e.g. simple book).

The case study presented in this section focused on the use of predicates, preferences,

and relaxation, in the context of constrained objects, to represent and compute the problem

of document formatting for a simple book. We illustrated how the use of predicates and

preferences facilitates a succinct specification of the optimization criterion and facilitates

the relaxation of the preference criterion in case of constraint violation. The use of the

RELAX � construct allows relaxation with respect to the underlying criterion, thus generat-

ing formats in increasing order of badness. Our conclusion is that constrained objects with

predicates, preferences and relaxation can provide a compact representation of a complex

problem and its solution.

As a part of the future work, we intend to provide an extension of the above constrained

object model incorporating several more details of the contents and format of a book. We

also intend to provide detailed constrained models for other documents including those

given at the beginning of this section. We may also develop domain specific interfaces

for certain kinds of documents such as transcripts and tax forms that allow the user to

interactively create the document and or query it for information.
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Chapter 8

Conclusions and Future Work

8.1 Summary and Contributions

This dissertation reported the development of a programming language and execution en-

vironment for modeling complex systems based upon three basic concepts: objects, con-

straints, and visualization. Our language, Cob, facilitates a compositional specification

of the structure (through objects), declarative specification of the behavior (through con-

straints), and allows visual development of models of complex systems. A complex system

is thus represented as the aggregation of several constrained objects and the underlying

computational engine performs logical inference and constraint satisfaction to obtain the

resultant behavior of the system.

Constrained Objects are better than Constraints and Objects. In modeling many

complex structures (especially in the engineering domain), constrained objects are prefer-

able to the traditional paradigm of imperative objects and also the traditional constraint/constraint

logic programming language: (i) It is more natural to specify the behavioral laws govern-

ing the attributes of an object as constraints rather than through imperative methods. (ii)

It is more natural to model an engineering artifact as a complex object than as a complex

constraint. An object has a direct counterpart in the physical world. (iii) The diagrammatic

visualization of a structure can be more easily traced back to an object representation rather

than a constraint representation. (iv) Object structure helps in reporting the cause of model
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inconsistency.

Cob Language and Environment. At the modeling level, Cob provides quantified and

conditional constraints, logic variables and preferences. These facilitate compact specifi-

cations of a wide range of arithmetic and symbolic constraints, and optimization criteria.

This set of modeling features along with constraint solving and optimization capabilities,

specification and querying of partial models, visual interfaces for drawing constrained ob-

ject class diagrams (CUML) and domain-specific drawings, visual interfaces for interactive

execution and debugging, makes Cob a comprehensive language for modeling complex sys-

tems. Compared to Cob, other constrained object languages [10, 55, 30, 34] provide only

limited features for modeling only certain category or domain of constraints, no constructs

for modeling general optimization problems and little or no facility for visual development

of models.

Semantics of Constrained Objects. We have defined set theoretic semantics for con-

strained object programs where the meaning of a Cob class is defined as the set of values

for its attributes that satisfy the constraints of the class. These semantics are based on a

mapping from Cob programs to constraint logic programs (CLP). Essentially, a Cob class

is mapped to a CLP predicate and the semantics of the class are defined as the logical

consequences of the predicate. We have developed a novel implementation of constrained

objects based on this mapping. CLP semantics however, cannot account for all features

of the Cob language, viz., conditional constraints which model state dependent behavior.

We have therefore defined conditional-CLP (CCLP) programs which are an augmentation

of CLP programs with conditional constraints and have given their logical semantics. Cob

programs with conditional constraints are translated to CCLP programs. The operational

semantics of a Cob program with respect to a query are based on the rewrite semantics of

CLP programs which are extended to account for conditional constraints. No other con-

strained object language or modeling system provides such rigorous theoretic foundations

for constrained objects as the semantics provided in this dissertation.
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Partial Evaluation. Due to the limitations of the CLP(R) (constraint logic programming

over the real number domain) language, the basic implementation of constrained objects

by translating them to CLP(R) predicates cannot handle non-linear constraints, conditional

constraints and may not always yield adequate performance for large-scale systems. Hence

we have developed a technique for partial evaluation of Cob programs that generates op-

timized code. This approach has enabled us to develop techniques for: (i) incremental

constraint satisfaction and model revision (ii) visual debugging of Cob programs (iii) inter-

facing Cob with systems such as Maple for solving non-linear constraints and (iv) handling

conditional constraints. During partial evaluation of a Cob program, we build its underlying

constrained-object graph. This graph serves as a domain-independent visual representation

for a Cob program that can be used for interactive execution and debugging.

Optimization and Relaxation. Modeling complex systems involves constraint satisfac-

tion as well as optimization (minimize expenses, maximize efficiency, meet client’s pref-

erences, etc.). Therefore, we provide preference constructs within a Cob class definition

for specifying optimization problems. The semantics of Cob programs with preferences

are based on a translation to preference logic programs (PLP) and we presented a refor-

mulation of PLP operational semantics [38] in the form of rewrite rules. We have shown

through several examples that in optimization problems, there is often interest in the opti-

mal as well as suboptimal solutions. Suboptimal solutions can be obtained by relaxation of

the preference criterion either with respect to an external constraint or with respect to the

underlying preference criterion itself. We feel that the latter form of relaxation introduced

in this dissertation is the most basic form relaxation that can be used to compute sub-

optimal solutions in different kinds of optimization and sub-optimization problems. The

reformulation of PLP operational semantics that we presented enables us to give an intu-

itive operational semantics for PLP with relaxation goals that accounts for hierarchic as

well as recursive optimization predicates. Although languages such as [42, 13, 11] deal

with relaxation issues in logic programming languages, they do not address the relaxation

of the general optimization problems that can be modeled in PLP.
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Application. We have shown a variety of examples to illustrate that the paradigm of con-

strained objects is very well-suited for modeling complex systems from different domains.

A domain of particular interest is engineering structures such as circuits, gears, mixers,

separators, etc. With the aid of domain-specific visual interfaces, the resulting paradigm

has considerable potential for both pedagogic purposes as well as for more advanced appli-

cations. On a technical level, our language advances previous work by showing the use of

a number of new features in modeling, especially conditional and quantified constraints, as

well as preferences.

8.2 Directions for Future Work

8.2.1 Language Design

Dynamic Constrained Objects: Most of the systems we have modeled in Cob so far have

been of a static nature, i.e., the values of attributes of the objects are time-invariant. We

are currently investigating the use of Cob to model dynamic systems that can be described

through behavioral laws, e.g, hydrological and biological processes, physical systems, sen-

sor networks, etc. In the context of modeling hydrological processes the state of a geo-

logical surface can be its water content. This state varies with time depending on several

factors: precipitation, water content of neighboring surfaces, run off, ground water level,

and the previous state, etc. Currently the history of changes to an attribute is represented as

an array, and we are exploring better and more efficient techniques for the representation

of time varying behavior.

Mutable Constrained Objects: We are also interested in providing state change operations

in Cob at the modeling level. Our technique for partial evaluation enables us to efficiently

resolve constrained objects for a certain class of problems (see Section 5.2.4). But for other

general Cob models, currently, if the state changes, the entire constrained object model

must be re-evaluated. This is inefficient and thus a technique for associating a mutable state

with a constrained object is desirable. Currently we are exploring the use of SICStus objects

for this purpose. We are examining the problem of constraint-based information sharing
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between objects whose state changes frequently and subsequently affects the sharing of

information between them.

Modeling Features: The modeling features provided in Cob are motivated mostly by prob-

lems in the engineering domain. A continued exploration of problems in the engineering,

organizational enterprises, hydrological domains will serve as a guide to adding new con-

straint constructs to the Cob language. Expanding the current set of features to include

constructs such as differential equations, integrals, time varying constraints etc. will make

Cob applicable to an even wider range of problems.

Constructive Negation: In Chapter 4 we described the operational semantics of conditional

constraints. The case when a consequent is false entails the negation of the antecedent

which may have more than one literal. Negation of a conjunction of non-ground literals is

a problem that has been closely studied and involves issues of termination. Constructive

negation is the process of obtaining solutions for negated non-ground goals and a practical

implementation of it is needed in Cob.

8.2.2 Modeling Environment

Domain Specific Interfaces: As the application of Cob to different engineering domains

is investigated, domain specific interfaces can be developed for each of these domains. A

project under development is constraint-based information sharing in a battlefield scenario.

Information about moving targets is shared between stationary sensors. The sensors that

should exchange information depend upon the range of the sensors and their location as

well as the location of the target. The underlying Cob model computes how the information

is shared and between whom and the visual interface displays the model. There is also

ongoing work to develop a domain specific interface for hydrological modeling that studies

precipitation and the flow of water on geological surfaces.

Pedagogical Tools: There is growing interest from faculty in the departments of Architec-

ture and Civil Engineering at University at Buffalo, to develop visual interfaces with under-

lying Cob representations that will be used for teaching students the fundamental concepts

of architecture and engineering. One possible scheme is to have a 3-D visualization of, say,
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different gears, trusses, beams etc. with which the students can interact. Through a visual

interface, the student can examine the laws of physics and the various forces acting on the

entity; place two entities together too see how their forces interact, etc. Problems that are

usually solved using paper and pencil can be tested on this tool which will help students

understand the source of their mistakes/miscalculations. The partial specification of Cob

models is especially advantageous in this scenario since the modeler (in this case a student)

is not fully aware of how the model should be initialized.

Model Abstraction: When complex system is very large (i.e., consists of many sub-objects),

it may be very time-consuming to do solve a detailed model. In this case it may be nec-

essary to work with a simplified model, i.e., a “cross-section” of the model so as to get an

approximate answer in reasonable time. This problem may be called model abstraction.

Thus it may be useful to expand the Cob modeling environment with facilities for viewing

and evaluating a certain part of a Cob model.

8.2.3 Semantics

General Conditional Constraints: In Sections 4.1.3 and 4.1.4 we defined the formal se-

mantics of Cob programs (with and without conditional constraints). In Sections 4.2.2 and

4.2.3 we defined the formal operational semantics of Cob programs with simple condi-

tional constraints and gave proof of their soundness. We also discussed in brief the issues

involved in showing their completeness. In Section 4.2.4 we gave a brief overview of the

operational semantics of general conditional constraints. As part of future work, we would

like to give a comprehensive operational semantics for Cob programs with rigorous proof

of their soundness and completeness results.

Optimization: In Section 6.1 we gave a description of the declarative semantics of PLP pro-

grams and gave a reformulation of their operational semantics. It will be useful to provide

a rigorous theoretic evaluation of this reformulation and formally prove its equivalence to

the PLP semantics given in [38]. An implementation of these operational semantics will

also prove to be interesting work.

Relaxation: In Section 6.2 we discussed two forms of relaxation: with respect to a given
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constraint and with respect to the underlying preference criterion. The latter is a more gen-

eral form of relaxation and we described an intuitive approach to its operational semantics

in Section 6.3. As a part of future research, we would first like to formalize the declarative

semantics of the different relaxation goals and then prove the soundness and completeness

of the operational semantics that we proposed in Section 6.3.

8.2.4 Interactive Execution

Drawing: The Cob tool for interactive execution described in Section 5.3 displays the

object graph of a complex constrained object. We currently have a simple drawing scheme

that gives a satisfactory display for a tree. For more complicated graphs (i.e., those with

cycles, large number of nodes, etc.) this scheme may not always give a very intuitive and

legible display of the object graph. For example, the object graph for the heatplate example

in Section 3.2.2 cannot be displayed using the existing algorithm. We need to develop

graph drawing algorithms so that as far as possible, the object graph bears resemblance to

the original structure that the program is modeling.

Explaining the Cause of Constraint Violation: When a constraint is violated, the Cob tool

for interactive execution and debugging (Section 5.3) displays the object to which the con-

straint belongs. Although this is the first step in locating the immediate cause for error,

it may not be sufficient for understanding the source of the constraint violation. This is

because when a constraint such as A = B fails, the reason may be an incorrect initializa-

tion of A or B either of which could be initialized due to the solving of another constraint.

Hence the real cause of error may be located several such logical steps before the constraint

A = B is encountered. Thus, tracing the order in which nodes and their constraints were

solved, i.e., giving a form of a proof tree for constraint solving, can be of importance to

the modeler. We therefore feel that such a facility should be developed for the Cob tool for

interactive execution.

Domain Specific Debugging: The current debugger works with the object graph of the

Cob model. This is useful for debugging Cob programs that are created directly as textual

code or through the CUML tool. For Cob programs generated through the domain specific

interfaces, the debugger should be linked to the diagram (since the modeler is not aware of
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the Cob code generated from the diagram). A modeler is likely to find this debugging via

diagrams to be more useful and easier to follow than tracing the generated Cob program.

Incremental Constraint Solving: Partial evaluation has enabled us to reuse computation

when the attributes of a model change but its structure remains same. Traditional ap-

proaches to incremental constraint satisfaction focus on reducing re-computation when a

constraint or value is modified. These algorithms use a dependency graph in which nodes

correspond to variables and edges correspond to constraints. We feel that since some of

this information is inherent to a constrained object graph, an investigation of its use in

incremental constraint solving might lead to interesting results.
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Appendix A: Complete Syntax of Cob Programs

program ::= class definition � $
class definition ::= [ abstract ] class class id

[ extends class id ]
�

body �
body ::= [ attributes attributes ]

[ constraints constraints ]

[ predicates pred clauses ]

[ preferences pref clauses ]

[ constructors constructor clause ]

attributes ::= decl ; [ decl ; ] �
decl ::= type id list

type ::= primitive type id � class id � type [ ]

primitive type id ::= real � int � bool � char � string
id list ::= attribute id [ , attribute id ] �

constraints ::= constraint ; [ constraint ;] �
constraint ::= simple constraint � quantified constraint

� creational constraint

creational constraint ::= complex id = new class id( terms )

quantified constraint ::= forall var in enum : ( constraints)

� exists var in enum : ( constraints )

simple constraint ::= conditional constraint � constraint atom

conditional constraint ::= constraint atom :- literals

constraint atom ::= term relop term � constraint predicate id(terms)

� complex id.predicate id(terms’)

relop ::= = � != � > � < � >= � <=
term ::= constant � var � complex id

� arithmetic expr � func id(terms)

� [terms] � (term)

� aggreg op var in enum : term
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aggreg op ::= sum � prod � min � max
terms ::= term [ , term ] �

aggreg op ::= sum � prod � min � max
complex id ::= attribute id[.attribute id] � � complex id [ term ]

literals ::= literal [ , literal ] �
literal ::= [ not ] atom

atom ::= predicate id(terms) � constraint atom

pred clauses ::= pred clause . [ pred clause . ] �
pred clause ::= clause head :- clause body

pred clause ::= clause head.

clause head ::= predicate id( terms’ )

clause body ::= goal [ , goal ] �
goal ::= [ not ] predicate id(terms’)

� complex id.predicate id(terms’)

terms’ ::= term’ [ , term’ ] �
term’ ::= constant � var’ � complex id � func id(terms’)

pref clauses ::= pref clause . � pref clause . pref clauses

pref clause ::= min arithmetic expr .

pref clause ::= max arithmetic expr .

pref clause ::= p(s1)
�

p(s2) :- clause body

constructor clauses ::= constructor clause �
constructor clause ::= constructor id(formal pars)

�
constructor body �

constructor body ::= constraints

Appendix B: Compiling and Running Cob Programs

Compilation Modes. The Cob compiler translates a Cob program to a CLP(R) program.

Essentially, each class definition translates to one predicate clause. We use the underlying

CLP(R) engine for constraint handling. Depending upon whether the programmer wants

to work with the compiled CLP(R) file or directly run the executable, there are different

modes of compilation described below.
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1. To compile a Cob file named foo.cob, into a file foo.clpr use the command

$ /projects/tambay/temp/compiler/cob foo.cob foo.clpr

The clp program in foo.clpr should be run in the sicstus clpr module. To do

this, start a prolog process and load in the file foo.clpr. Cob queries can now be

evaluated at the prolog prompt. Note however, that the queries must be calls to the

constructor of some constrained object appended with an extra argument.

$ prolog

�?- [’foo.clpr’].

�?- samplecircuit( , ).

2. An alternate method of compilation is to compile a Cob file named foo.cob, into a

file named foo.clpr and place the compiled (in prolog) clpr file in foo.run using

the command

$ /projects/tambay/temp/compiler/cob foo.cob foo.clpr

-e foo.run

To run the executable, type in its filename and press return. A prolog prompt will

be displayed. Queries should be given at this prompt. Note that the queries must be

calls to the constructor of some constrained object appended with an extra argument.

$ foo.run

�?- samplecircuit( , ).

3. A third way to compile is with the -c option. This will create the executable as in the

previous command but with a cobinterface above the prolog interpreter. To compile

in this way, run the command

$ /projects/tambay/temp/compiler/cob foo.cob foo.clpr

-e foo.run -c

To run the executable, type in its filename and press return. A cob prompt will be

displayed. Queries can be entered at this prompt in the form of calls to constructors

of constrained objects.

$ foo.run
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cob query ?- samplecircuit( ).

During the evaluation of the query, if there is an exception, then control will return

to the prolog prompt. To return to the cob query mode, type the cob prompt.

command.

Example Run. Suppose a file named circuit.cob contains the Cob program shown

below.

class component {
attributes
real V, I, R;

constraints
V = (I * R);

constructors component(V1, I1, R1) {
V = V1; I = I1; R = R1;

}
}

class series extends component {
attributes
component [] Cmp;

constraints
forall C in Cmp: C.I = I;
sum C in Cmp: C.V = V;
sum C in Cmp: (C.R) = R;

constructors series(A) {
Cmp = A;

}
}

class parallel extends component {
attributes
component [] PC;

constraints
forall X in PC: X.V = V;
sum X in PC: (X.I) = I;
sum X in PC: (1/X.R) = 1/R;

constructors parallel(B) {
PC = B;

}
}

class battery {
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attributes
Real V;

constructors battery(V1) {
V = V1;

}
}

class connect {
attributes
battery B; component CC;

constraints
B.V = CC.V ;

constructors connect(B1, C1) {
B = B1; CC = C1 ;

}
}

class samplecircuit {
attributes
battery B;
connect C;
component R1, R2, R3, R4, P1, P2, S;
component[] R12, R34, P12;

constructors samplecircuit(X) {
R1 = new component(V1, I1, 10);
R2 = new component(V2, I2, 20);
R3 = new component(V3, I3, 20);
R4 = new component(V4, I4, 20);
R12[1] = R1;
R12[2] = R2;
R34[1] = R3;
R34[2] = R4;
P1 = new parallel(R12);
P2 = new parallel(R34);
P12[1] = P1;
P12[2] = P2;
S = new series(P12);
B = new battery(30);
C = new connect(B, S);
dump([R1, R2, R3, R4]);

}
}

Shown below is a script of the compilation and running of the above program.
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tambay@kulta>cob circuit.cob circuit.clpr -e ckt

% restoring /projects/tambay/CobToSicstus/cobcompiler...

...

yes

...

% consulting /projects/tambay/temp/compiler/circuit.clpr...

....

% /projects/tambay/temp/compiler/ckt.sav created in 110 msec

yes

tambay@kulta>ckt

% restoring /projects/tambay/temp/compiler/ckt...

...

| ?- samplecircuit(_,_).

R1 = [12.0,1.2,1.0E+01]

R2 = [12.0,0.6,2.0E+01]

R3 = [18.0,0.8999999999999999,2.0E+01]

R4 = [18.0,0.8999999999999999,2.0E+01]

yes

| ?-

Error Messages and Warnings. The cob compiler will point out a syntax error by nam-

ing the class in which it occurs, the attribute/constraint/constructor definition in which it

occurs and the index of the constraint/attribute declaration. If the error is in the ith con-

straint, it means, it is in the ith semi-colon separated constraint. Line number of error is not

given. Undeclared variables will not be caught unless the selection operation (.) is being

performed on them. If the compilation hangs, please send e-mail with the uncompilable

cob program to tambay@cse.buffalo.edu

If the executable is being formed along with compilation, then errors (if present) will be

detected by the prolog interpreter. These should be removed by correcting the cob program

and re-compiling it.
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If the clp translation of a cob program is loaded within prolog manually, then there

may be a series of warnings of singleton variables. In most cases, these can safely be

ignored. However, errors shown during this compilation must not be ignored. They should

be removed by correcting the cob program and re-compiling it.

Printing. Two functions are provided for printing the values of attributes to standard

output.

1. dump: To print the value of a variable, use the built-in Cob predicate dump/1. If

A,B,C are Cob program variables with values 1,2 and unknown respectively, and X

is an undeclared variable, then dump([A,B,C,X]) will print

A = 1

B = 2

C = some internal name

X = some internal name

2. print: To print a string or just the value of a variable, use print/1. print(’Sample

String’) will print Sample String on standard output.

Type checking. Currently type checking is performed only on the variables on which the

select/access “.” operation is performed. This type inference is done at run-time.

Tracing. The translated CLP program can be traced by using Prolog’s trace command.

Once in trace mode, the normal debugging commands of Prolog can be used to trace the

program.

Using underscore. The underscore character ( ) can be given as argument to constructors

or predicates. The programmer should get familiar with its use Prolog before using it in

Cob.
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Figure 8.1: A Simple Truss

Appendix C: Sample Truss Code

The truss in Figure 8.1 can be modeled in Cob by the class sampletruss given below.

The Cob model calculates the cross sectional area of the beams given that they have a

square cross section, are made of steel and that the truss must support a load of 15000 lbf.

class sampletruss
�

attributes

beam AB, BC, CD, BD, AC; load IAV, IAH, ICV, IDV;

bar IAB, IAC, IBA, IBC, IBD, ICA, ICB, ICD, IDB, IDC;

bar [] Ba, Bb, Bc, Bd; load [] La, Lc, Ld;

real W1, W2, W3, W4, W5, H1, H2, H3, H4, H5, Fab, Fbc, Fcd,

Fbd, Fac, Fab bk, Fbc bk, Fcd bk, Fbd bk, Fac bk, Fab bn, Fbc bn,

Fcd bn, Fbd bn, Fac bn, Fab t, Fbc t, Fcd t, Fbd t, Fac t, Fdv,

Fcv, Fav, Fah, Sigab, Sigbc, Sigcd, Sigac, Sigbd,

Iab, Ibc, Icd, Ibd, Iac, Es, Sy, Pi;

joint JA, JB, JC, JD;

constraints

Es = 30000000; Sy = 30000; Pi = 3.141;

W1 = H1; W2 = H2; W3 = H3; W4 = H4; W5 = H5;

constructors sampletruss()
�

AB=new beam(Es,Sy,10.4,W1,H1,Fab bn,Fab bk,Fab t,Sigab,Iab,Fab);

BC=new beam(Es,Sy,7.3,W2,H2,Fbc bn,Fbc bk,Fbc t,Sigbc,Ibc,Fbc);
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CD=new beam(Es,Sy,12.7,W3,H3,Fcd bn,Fcd bk,Fcd t,Sigcd,Icd,Fcd);

BD=new beam(Es,Sy,14.7,W4,H4,Fbd bn,Fbd bk,Fbd t,Sigbd,Ibd,Fbd);

AC=new beam(Es,Sy,7.3,W5,H5,Fac bn,Fac bk,Fac t,Sigac,Iac,Fac);

IAB = new bar(AB,Pi/4); IAC = new bar(AC,0);

IAV = new load(Fav,Pi/2); IAH = new load(Fah,0);

Ba = [IAB, IAC]; La = [IAV, IAH]; JA = new joint(Ba,La);

IBA = new bar(AB, 5*Pi/4); IBC = new bar(BC, 3*Pi/2);

IBD = new bar(BD, 11*Pi/6); Bb = [IBA, IBC, IBD]; Lb = [];

JB = new joint(Bb, Lb); ICA = new bar(AC, Pi);

ICB = new bar(BC, Pi/2); ICD = new bar(CD, 0);

ICV = new load(15000, 3*Pi/2); Bc = [ICA, ICB, ICD];

Lc = [ICV]; JC = new joint(Bc, Lc); IDB = new bar(BD, 5*Pi/6);

IDC = new bar(CD, Pi); IDV = new load(Fdv, Pi/2);

Bd = [IDB, IDC]; Ld = [IDV]; JD = new joint(Bd, Ld);

�
�

Appendix D: Cob Model of Heatplate using Inheritance

We give below a reformulation of the Cob model of a Heatplate that uses inheritance. We

define a cell class that aggregates four cells (its neighbors) and has an attribute (T) rep-

resenting its temperature. There are no constraints in this class and it is used to represents

the cells along the border of a heatplate. We define a subclass of such a cell called

inner cell which inherits the attributes of cell and in addition has a constraint stat-

ing that its temperature is the average of the temperatures of its neighbors. An instance of

inner cell represents the interior points of a heatplate. We give below the Cob code

for the above classes and the heatplate class which represents the creation and initial-

ization of a heatplate. This formulation may be compared with the Cob model given in

Section 5.2.2. The former uses inheritance to model the difference in behavior of a border

cell and an interior cell, while the latter uses conditional constraints for this purpose.
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class cell
�

attributes
cell Left, Right, Up, Down;
real T;
constructor cell(T1)

�
T = T1;

�
�
class inner cell

�
constraints
T = (Left.T+Right.T+Up.T+Down.T)/4;
constructor inner cell(T1)

�
T = T1; ;

�
�
class heatplate

�
attributes
int Size;
cell [Size][Size] Plate;
constraints
forall I in 2..Size-1:

(forall J in 2..Size-1:
(Plate[I,J].Up = Plate[I-1,J];
Plate[I,J].Right = Plate[I,J+1];
Plate[I,J].Left = Plate[I,J-1];
Plate[I,J].Down = Plate[I+1,J];););

constructors heatplate(S, A,B,C,D)
�

Size = S;
forall I in 2..Size-1:

forall J in 2..Size-1:
(Plate[I,J] = new inner cell( ););

forall K in 1..Size:
(Plate[1,K] = new cell(A);
Plate[Size,K] = new cell(B););

forall L in 2..Size-1:
(Plate[L,1] = new cell(C);
Plate[L,Size] = new cell(D););

�
�
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