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Chapter 1 

Introduction 

1.1  Motivation and Significance 

One of the major tasks for computer scientists is to abstract the physical world 

into models that a computer can process. Thus computer languages should be 

designed to narrow the gap between the concepts in the real world and those of 

computer languages. There are two major categories of programming languages: 

imperative and declarative. Imperative languages require a step-by-step procedure for 

solving a problem, while declarative languages focus on the main constraints of the 

problem. Imperative languages have evolved from procedure languages to 

object-oriented languages, such as Java and C#, which model real world applications 

by means of features such as encapsulation, inheritance, aggregation, polymorphism, 

etc. Meanwhile, the declarative languages make the modeling process simpler by 

requiring only a specification of the constraints in the applications, and doing the 

necessary computation automatically. Obviously, it is highly desirable to combine 

these two kinds of languages together to gain the advantages of both while 

overcoming their disadvantages. 

Significant research work has been done to fulfill this goal and numerous 

approaches and results have been obtained. Recently a new programming paradigm 

called constrained objects has been proposed in which constraints are embedded in 

objects [3,11,12]. The idea is that while the object-oriented point of view is natural, 
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the behavior of an object in many domains, especially engineering, is not naturally 

modeled by traditional imperative procedures. For example, consider the truss in 

Figure 1. The two major kinds of objects in the truss are ―bar‖ and ―joint‖. While bars 

have constraints expressing the standard law of forces and material, the joints have 

equilibrium constraints over the bars that are incident at the joint. Thus, bars and 

joints are most appropriately modeled as constrained objects rather than as traditional 

objects. 

 

Figure 1. A simple truss 

In this thesis we will explore two major modeling domains for constrained 

objects:  

(i) modeling static systems; and 

(ii) modeling dynamic systems. 

Our primary example of a static system is a building architecture, a domain in 

which the computer has played an increasingly important role in recent years. 

However, most computer-aided design programs have evolved from traditional 

representations such as scale drawings, etc. Like their predecessors, these programs 

still need much human involvement and correction because they inherit the same 

informational deficiencies. As explained by Khemlani et al [4], what we need is a 
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more ―intelligent‖ representation of a building, one which serves as a detailed 

computation model and also includes semantically meaningful information on all 

aspects of the building. They also classify building elements into three main 

categories: architecture, structure, and geometry. To show the applicability of 

constrained objects in this domain, we provide a detailed example of applying the 

paradigm in modeling a simple two-level structure according to their categorization of 

building elements. This example not only gives an in-depth look into the concept and 

semantics of the constrained objects language, but also the common methodology of 

applying the paradigm to a given domain. 

The second application domain is motivated by the fact that there are many 

problems where constraints and objects are natural but the behavior of the system is 

not static, i.e., the objects exhibit time-varying behavior. Examples arise in different 

domains, for example, voltage and current in an AC circuit, fluid flow between cells 

in a hydrology system, sensor networks, moving objects, etc. However, there are 

constraints between the objects involved in the model and the concept of constrained 

objects is still applicable in these dynamic systems. 

As a detailed case study of a dynamic system, consider the nerve system 

which is the information highway of a living body. In the 1950‘s, Hodgkin and 

Huxley formulated a mathematical model the nerve cell‘s behavior. They showed that 

electrical signals are sent out by the body periodically to control bodily processes such 

as muscular movement. Furthermore, electrical signals are controlled by ions and their 

concentrations around the nerve cell. However, the relation between the ion flow and 

the electrical current follow a set of equations which can be viewed as constraints 

among them. This model is now referred to as the Hodgkin-Huxley model and these 

scientists received the Nobel Prize for their work. 
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The concept of dynamic constrained objects was introduced by Jayaraman 

and Raux in a recent paper[10].  Thus the second major component of thesis is 

showing that examples such as the AC circuit and the nerve cell behavior can be 

modeled as dynamic constrained objects. The methodology behind the computational 

model for dynamic constrained objects can serve as a basis for the next generation of 

constrained objects. 

1.2  Outline of the Thesis Chapters 

Chapter 2 gives a brief overview of constrained objects. We first introduce a 

language, called Cob, which implements the concept of constrained object. We then 

describe the complete syntax of Cob and illustrate the paradigm of constrained objects 

with two applications: DC circuits and trusses. Finally, we sketch the constrained 

object execution environment including compilation and execution. 

Chapter 3 describes the application of the constrained objects for modeling 

intelligent buildings. First we review the notion of an ‗intelligent building‘ described 

by Khemlani et al, and show how objects and constraints are naturally come into play 

there. Then we describe the framework of intelligent building design and the 

associated overall architecture. We subsequently introduce the concept of parametric 

design and show a parametric-based design for intelligent building. Finally, we 

assemble all the pieces in order to obtain our results. A higher-level approach to the 

building problem based on parametric design is also described. 

Chapter 4 describes the paradigm of dynamic constrained objects. We first 

address the weakness of the static constrained objects in modeling dynamic systems. 

Second, we discuss the concept of series variables to represent the attributes that 
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change with time. A series variable has different states associated with time, and 

constraints involving previous states and future states can be specified. After showing 

its syntax and usage, we use dynamic constrained objects to model AC circuits and 

nerve cell behavior, and we illustrate the computational model.  

Chapter 5 presents our conclusions and also addresses future research for 

constrained objects. 
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Chapter 2 

Overview of Constrained Objects 

2.1  Introduction 

As we stated in the introduction, constraints and objects are both powerful and 

have wide application. Cob is a constrained object programming language that 

supports traditional object-oriented features such as encapsulation, inheritance, 

aggregation, and polymorphism, as well as declarative constraint language features 

such as arithmetic equations and inequalities, quantified and conditional constraints, 

and disequations [3].  Cob also has a modeling/execution environment that includes 

a compiler, executer, and debugger. In addition, a constrained object system usually 

has an affiliated visual representation component that is domain specific. This is 

natural since, often every component of the visual part can be traced back to an object 

in the underlying model. All of the above features help the user create, modify, and 

execute a Cob program without a deep understanding of the theory of logic 

programming or constraint solving techniques. This allows users with domain specific 

knowledge to write Cob programs easily. 

2.1.1 Cob Syntax 

A Cob program is basically a series of class definitions. A class definition is 

made up of attributes, constraints, predicates, and constructors [11].  

class_definition ::= [abstract] class class_id [extends class_id] {body} 
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body ::=    [ attributes attributes ] 

[ constraints constraints ] 

[ predicates pred_claues ] 

[ constructors constructor_clauses ] 

The syntax of attributes in Cob is similar to that of an object-oriented language. 

Cob has primitive types, including arrays, and also user defined types which are 

defined by classes.  

attributes ::= [ decl ; ]

 

decl   ::= type id_list 

type  ::= primitive_type_id | class_id | type [] 

primitive_type_id  ::= real | int | bool | char | string 

id_list  ::= attribute_id [, attribute_id]   

Cob constraints can be simple, quantified, creational, or any combination of 

them.  

constraints     ::= [ constraint ;]

 

constraint  ::= simple_constraint | quantified_constraint | 

creational_constraint 

simple_constraint ::= conditional constraint | constraint_atom 

quantified_constraint ::= forall var in enum : (constraints) 

| exists var in enum : (constraints) 

creational_constraint ::= complex_id = new class_id( terms) 

constraint_atom ::= term relop term | constraint_predicate_id(terms) 

       relop   ::= > | < | >= | <= | != | = 

The constructor is a means of creating an instance of a class and a class can have 
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one or more constructors.  

constructor_clauses  ::=  constructor_clause

 

constructor_clause   ::=  constructor_id(formal_parts) { constructor_body } 

constructor_body   ::= constraints 

To help understand these ideas better we will present a Cob program that shows 

how these parts are assembled together to model a problem. 

2.2  Examples of Cob Programs 

2.2.1 Cob Model for DC Circuit 

Our first example is a model of a simple electrical DC circuit [3]. We model the 

components and connections of such a circuit as objects and their properties as 

constraints on their attributes. We also define an assembly class which is responsible 

for creating every component of the circuit.  

We define a component class as the parent class of any electrical entity (e.g. 

resistor, voltage source) with two ends (referred to as 1 and 2 respectively). The 

attributes of this class represent the currents and voltages at the two ends of the entity. 

abstract class component { 

attributes 

    real I1, I2; 

    real V1, V2; 

   constraints 

      I1+I2=0; 

} 

The constraint in class resistor, which is a subclass of component, 

represents Ohm's law. The constraint in class battery shows that one end of the battery 

is connected to ground (voltage is 0). 
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class resistor extends component{  

attributes 

     real R; 

   constraints 

     V1 - V2 = I1*R; 

   constructors resistor(X) { 

      R = X; 

  } 

} 

class battery extends component{ 

constraints 

      V2 = 0; 

   constructors battery(X) { 

      V1 = X; 

  } 

} 

 

The class componentEnd represents a particular end of a component. We use 

the convention that the voltage at end 1 of a component is V1 (similarly for current).  

class componentEnd { 

attributes 

    component C; 

    real End, V, I ; 

  constraints 

    V = C.V1 :- End = 1; 

    V = C.V2 :- End = 2; 

   I = C.I1[1] :- End = 1; 

   I = C.I2[1] :- End = 2; 

 Constructors componentEnd(C1, E){ 

    C = C1; End = E; 

  } 

} 

 

The class node aggregates a collection of ends. When the ends of components 

are placed together at a node, their voltages must be equal and the sum of the currents 

through them must be zero (Kirchoff‘s law). Notice the use of the quantified 

constraints (forall) to specify these laws. 

class node { 

attributes   

    componentEnd [] Ce; 

    real V; 

   constraints   

    sum X in Ce: X.I = 0; 

    forall X in Ce: X.V = V; 

constructors node(L) {  

      Ce = L; 

  } 

} 

We can create any DC circuit by adding an additional assembly class which we 
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usually name it as sampleCircuit. The syntax to create a new object is very similar 

to that in C++/Java; however, it is considered as a creational constraint in our 

programming paradigm. We now show an example, Figure 2, to model with Cob. 

 

Figure 2. An example of a DC circuit (modified from [3]) 

class samplecircuit { 

attributes 

    resistor R12, R13, R23, R24, R34; 

   battery B; 

    componentEnd Re121, Re122, Re131, Re132, Re231, Re232, Re241, 

 Re242, Re341, Re342, Be1, Be2; 

   node N1, N2, N3, N4; 

   constructors samplecircuit() { 

      R12 = new resistor(10); 

      R13 = new resistor(10); 

      R23 = new resistor(5); 

      R24 = new resistor(10); 

    R34 = new resistor(5); 

      Re121 = new componentEnd(R12, 1); 

Re122 = new componentEnd(R12, 2); 

    Re131 = new componentEnd(R13, 1); 

Re132 = new componentEnd(R13, 2); 

    Re231 = new componentEnd(R23, 1); 
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Re232 = new componentEnd(R23, 2); 

    Re241 = new componentEnd(R24, 1);  

Re242 = new componentEnd(R24, 2); 

    Re341 = new componentEnd(R34, 1); 

Re342 = new componentEnd(R34, 2); 

    B = new battery(10); 

    Be1 = new componentEnd(B, 1); 

Be2 = new componentEnd(B, 2); 

    N1 = new node([Re121, Be1, Re131]); 

    N2 = new node([Re122, Re241, Re231]); 

     N3 = new node([Re132, Re232, Re341]); 

      N4 = new node([Re242, Re342, Be2]); 

  } 

} 

 All nodes are marked on the figure 2, and given initial values for some of their 

attributes. The model can then be used to calculate values of the remaining attributes 

(e.g. the current through a particular component). 

2.2.2 Truss Example 

To illustrate the use of constrained objects in structural engineering design, we 

define the Cob classes needed to model a simple truss structure, as shown in Figure 1 

[3]. A truss consists of bars placed together at joints. We will use classes to model bar 

and joint objects, and apply constraints to describe their individual physical properties 

and connection conditions. There are four different kinds of objects in a truss and we 

will model them by four classes. We will first introduce the beam class which models 

the basic objects in the truss. 

 

class beam {  

   attributes 

      Real E, Sy, L, W, H, F_bn, F_bk, F_t, Sigma, I, F; 

   constraints 
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      I = F_bk * L *L /3.141 * 3.141*E; 

      I = W * H * H * H / 12; 

      F_t = (Sy * (W * H)); 

      Sigma = (((H * L) * F_bn )/ (8 * I)); 

      F_t = F :- F > 0; 

      F_bk = F :- F < 0; 

   constructors bar(E1,Sy1,L1,W1,H1,F_bn1,F_bk1,F_t1,Sigma1,I1,F1) { 

      E=E1;  Sy=Sy1;  L=L1;  H=H1;  W=W1;  F_bn=F_bn1; 

      F_bk=F_bk1;  F_t=F_t1;  Sigma=Sigma1;  I=I1;  F=F1; 

   } 

} 

The constraints in the beam class express the standard relations between its 

modulus of elasticity (E), yield strength (Sy), dimensions (L, W, H), bending, 

buckling, and tension forces (F bn, F bk, F t), and stress (Sigma). Depending 

upon the direction of the force in a beam (inward or outward), it acts as either a 

buckling force or a tension force. This relation is expressed as conditional constraints 

in the beam class. The above details were taken from the text by Mayne and Margolis 

[14].  

class bar {  

   attributes 

      bar B; Real A; 

   constraints 

      0 <= A;   A <= 2* 180; 

constructors beam(B1, A1) { 

      B = B1; A = A1; 

   } 

} 

class load {  

attributes 

      Real F; Real A; 

   constraints 

      0 <= A;   A <= 2*180; 

   constructors load(F1, A1) { 

      F = F1; A = A1; 

   } 

} 

A bar is a beam placed at an angle (A) and a load is a force (F) applied at an 

angle (A). 

class joint { 

   attributes 

      beam [] Beams; load [] Loads; 
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constraints 

      (sum X in Beams: (X.B.F * sin(X.A))) + sum X in Loads: (X.F * sin(X.A)) 

   = 0; 

     (sum X in Beams: (X.B.F * cos(X.A))) + sum X in Loads: (X.F * cos(X.A))

 = 0; 

   constructors joint(B1, L1) {  

      Beams = B1; Loads = L1 ; 

   } 

} 

The joint class aggregates an array of bars and an array of loads (that are 

incident at the joint) and its constraints state that the sum of the forces in the 

horizontal and vertical directions respectively must be 0.  

The classes defined above can be applied to any truss; each individual truss 

still needs a specific assembly class to model its own unique structure. Here we will 

show the assembly class corresponds to the truss in Figure 1. 

 

class sampletruss { 

   attributes 

      beam AB, BC, CD, BD, AC; 

      bar IAB, IAC, IBA, IBC, IBD, ICA, ICB, ICD, IDB, IDC; 

      load IAV, IAH, ICV, IDV; 

    bar []  Ba, Bb, Bc, Bd; 

      load []  La, Lc, Ld; 

      Real Esteel, Sy, Pi; 

      Real W1, W2, W3, W4, W5, H1, H2, H3, H4, H5, 

          Fab, Fbc, Fcd, Fbd, Fac,  

          Fab_bk, Fbc_bk, Fcd_bk, Fbd_bk, Fac_bk,  

          Fab_bn, Fbc_bn, Fcd_bn, Fbd_bn, Fac_bn,  

          Fab_t, Fbc_t, Fcd_t, Fbd_t, Fac_t, 

          Fdv, Fcv, Fav, Fah,  

          Sigmaab, Sigmabc, Sigmacd, Sigmaac, Sigmabd, 

          Iab, Ibc, Icd, Ibd, Iac; 

      joint JA, JB, JC, JD; 
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   constraints 

      ESteel = 30000000; 

    Sy = 30000; 

      Pi = 3.141; 

    W1 = H1; W2 = H2; W3 = H3; W4 = H4; W5 = H5; 

constructors sampletruss() { 

      AB = new beam(ESteel, Sy, 10.4, W1, H1, Fab_bn, Fab_bk, Fab_t,  

      Sigmaab, Iab, Fab); 

    BC = new beam(ESteel, Sy, 7.3, W2, H2, Fbc_bn, Fbc_bk, Fbc_t,  

      Sigmabc, Ibc, Fbc); 

    CD = new beam(ESteel, Sy, 12.7, W3, H3, Fcd_bn, Fcd_bk, Fcd_t,  

      Sigmacd, Icd, Fcd); 

BD = new beam(ESteel, Sy, 14.7, W4, H4, Fbd_bn, Fbd_bk, Fbd_t,  

     Sigmabd, Ibd, Fbd); 

    AC = new beam(ESteel, Sy, 7.3, W5, H5, Fac_bn, Fac_bk, Fac_t,  

      Sigmaac, Iac, Fac); 

    IAB = new bar(AB, Pi/4); IAC = new bar(AC, 0); IAV = new load(Fav,  

      Pi/2); IAH = new load(Fah, 0); 

    Ba = [IAB, IAC]; La = [IAV, IAH]; 

    JA = new joint(Ba, La);  IBA = new bar(AB, 5*Pi/4);  

IBC = new bar(BC, 3*Pi/2); IBD = new bar(BD, 11*Pi/6); 

    Bb = [IBA, IBC, IBD]; Lb = [];   JB = new joint(Bb, Lb); 

ICA = new bar(AC, Pi); ICB = new bar(BC, Pi/2);  

ICD = new bar(CD, 0);  ICV = new load(15000, 3*Pi/2); 

    Bc = [ICA, ICB, ICD];  Lc = [ICV]; 

      JC = new joint(Bc, Lc);  IDB = new bar(BD, 5*Pi/6);  

IDC = new bar(CD, Pi); IDV = new bar(Fdv, Pi/2); 

      Bd = [IDB, IDC]; Ld = [IDV]; JD = new joint(Bd, Ld); 

  } 

} 

The Cob classes defined here can model a truss with given applied loads. 

These classes may be used to determine the forces acting in the beams given the loads 

and the dimensions of the beams.  It can also be used to determine the dimensions 

(e.g. width) in order support a given maximum load; this capability requires the 
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computational model to support the solution of nonlinear equations. After we create 

the constrained object model for the application, the next step is to compile, run and 

get the result. 

2.3  Cob Execution Environment 

The Cob compiler compiles the Cob programs into CLP(R) programs, which is 

basically a Prolog-like language with a built-in constraint solver. Each Cob class is 

mapped to a CLP(R) predicate such that the constraints of the class form the body of 

the predicate [2]. Since CLP(R) supports only linear constraints, the Cob 

implementation has been extended to solve conditional constraints and has also been 

interfaced with Maple to solve non-linear equations. After successfully compiling the 

files, a partial evaluator is invoked to produce the optimized code. The optimization 

basically eliminates the overheads from unnecessary predicate invocations.  It also 

unravels the iteration specified by quantified constraints, and also minimizes the 

amount of constraint re-checking that takes place when attributes are assigned values.  

The user then loads the compiled file into CLP(R) and executes one or more queries 

in order study the model. Here is the overall diagram Figure 3 of the Cob execution 

environment. 

In order to enhance the usability of constrained objects, a domain-specific user 

interface is generally also provided.  Such interfaces have been constructed for 

simple domains such as circuits and trusses.  The domain-specific interface translates 

(circuit or truss) diagrams into textual Cob code which is then compiled down to 

CLP(R) for execution.  This interface requires knowledge of the basic classes that 

make up the domain; it is primarily useful in building a specify assembly for testing. 
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Figure 3. Flow diagram of the Cob computational model 
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Chapter 3 

Constrained Objects for Intelligent Building Design 

3.1  Objects and Constraints in Building Architecture 

The paradigm of intelligent building representations consists of two main parts: 

the components and the assembly [4]. The components, which are basically 

representations of various building elements, have attributes (properties) and a 

hierarchical structure. Most of the building elements have some variations, e.g., there 

are various kinds of walls which differ from each other by their function or material. 

The walls can be grouped by similar properties and organized into a hierarchy. 

Furthermore, building elements involve many aggregation relations with one another. 

For example, as shown in Figure 4, the surface element will aggregate wall, edge, and 

opening elements, while a wall element will aggregate beam and vertex elements. 

Thus, an object-oriented approach to building element representation is very natural. 

On the other hand, the structure of building elements and their relations involve 

many constraints between them. According to [6] there are mate constraints (which 

join points, axes, plane, etc.), insert constraints (which align two circles), flush 

constraints (which make two planes coplanar with their faces aligned in the same 

direction), and angle constraints (which control an angle between two planes). For an 

example of a mate constraint, the positions of a beam and a column should be the 

same when they are joined together; for an example of a flush constraint, the height of 



 18 

all four walls of a room should be the same; etc. Thus constraints play an important 

role in the assembly and hence it would be ideal to integrate constraints with an 

object-oriented design. 

 

Figure 4. Overall class diagram of all building elements, adapted from[4] 

One of our goals in this thesis is to create a constrained-object based model of a 

building.  It is natural to use Cob to implement the idea since Cob has all the features 

needed for this purpose. Our model can be viewed as an object-oriented database 

coupled with a powerful constraint-based computation. Consequently, with this model 

we can analyze the most useful properties that architects need to know about a 

building. 

3.2 Related Work 

Nassar’s Approach.  The use of the constraint-based model in building has 

been explored by Nassar et al. [6,7].  In their work, a set of constraint-based 
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assembly operations for generating 3D details of building assemblies are presented. 

The operations constrain the locations and orientations of the components in a 

building assembly through a series of constructive steps. There are two operations: 

declarative constraints, which relate the location of two objects together, and 

assembly operation. This approach is quite similar to the ODB and PDB in [4]; 

however they put more emphasis on geometry or structure instead of the architectural 

features of the building. 

Nassar‘s approach also differs from our approach in several ways. First, 

Nassar‘s approach uses more architecture-related knowledge, while our approach pays 

more attention to fully applying objects and constraints. They use Visual Basic, which 

is supported by AUTOCAD, to enforce constraints; but this does not fully support the 

constraint concept. Should some constraints fail, they will not be able to detect it. 

Secondly, in Nassar‘s approach they don‘t have the concept of object while in our 

approach every building element is an object. 

 

Khemlani’s Approach.  As stated earlier, the intelligent building representation 

is divided into two parts: components and assembly. The components are stored in an 

Object Database (ODB), which stores detailed information about various building 

elements. Since the elements have the inherited relation we mentioned before, the 

objects will be stored in a hierarchical structure like Figure 5. The assembly is stored 

in a Project Database (PDB), which holds information about how these elements are 

assembled to make up a particular building. The PDB stores all the relations between 

various components, like which beam should be supported. The main obstacle is a 

so-called space-structure dilemma [4]. In order to solve this problem, the PDB 

imports the notion of a purely geometric ‗vertex‘ and also tries to represent not only 
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structure but also spaces. Thus the assembly rule becomes a little bit complicated and 

all the building elements are to some extent related to another. On the other hand, it 

also helped to computationally improve the model. 

The intelligent building representation of Khemlani et al supports assessments 

such as access, egress, and privacy, which will be performed by expert systems or 

other types of programs, to be developed separately from the building representation. 

In this sense, it may be regarded as a semantically ―rich‖ model. 

 
Figure 5. The hierarchy structure of opening 

3.3  Constrained Objects Model for Intelligent Building 

Our approach is that we map every kind of building element in the intelligent 

building representation to a Cob object and combine them by applying all the 

applicable constraints between the objects. Since Cob also supports inheritance, it is 

straightforward to represent inheritance hierarchies such as that shown in Figure 5. In 

order to simplify and emphasize the overall relations among all the building elements, 

we will only show the ―top-level‖ object of every building element. For example, we 

will use ―wall‖ to represent all kinds of walls, regardless of whether it is a support 

wall or non-support wall; neither do we distinguish between an internal wall and an 
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external wall.  This is because all the sub-classes of the top-level object will inherit 

the constraints and thus have the same relation with all the other elements as the top- 

level object.  

Constraints are the key idea when we try to define an assembly in Cob. As we 

mentioned before, we will have one class for each kind of building element along with 

the corresponding constraints of the class. Since constraints will come into play when 

elements are integrated together, they determine whether two elements can be 

combined or how two elements are combined.  

Thus, objects and constraints are two key ideas in this intelligent building 

representation. However, we still need an overall methodology for creating a building. 

Typically, there are three types of design—exact design, parametric design and 

component design. Here we will try the last two since they are the more efficient and 

modern methods of design. 

3.3.1 Parametric and Higher Level Organization 

The traditional approach of defining a building model requires the user to input 

all building elements and their locations. The data entry work is very tedious and 

error-prone for a large-scale building. To solve this problem, we first try the 

parametric model, in which the designers can vary the design parameters. We can then 

reuse existing designs and standard elements. In addition, we further simplify the 

process of input from the user by grouping the building elements into a higher-level 

virtual component called room and the user will only have to ―create‖ the building 

room by room. This feature is mainly fulfilled in the domain-specific visualization 

tool (which is usually written in Java or another object oriented language). With this 
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software, the user will input the dimension of a room and specify where it is attached 

to the original building. After the input, the user can compile and run the program. 

3.4  Parametric Design 

In the traditional computer-aided program, users draw lines, arcs, and circles, 

which are combined with dimensions and notes to produce the drawings for civil, 

architectural, or mechanical designs. These programs are based on geometric objects 

and making a design change requires changing all appropriate components in order to 

make the drawing correct.  

Most modern CAD software utilizes a feature called parametric design, a 

method of linking dimensions and variables to geometry in such a way that when the 

values change, the part changes as well. Basically, the drawings consist of different 

elements and each one can be described by some parameters. The user needs to assign 

these parameters, and the element will be created automatically by the values of these 

parameters. This is essentially what our approach does. Assigning values to all the 

parameters of the building elements can create the whole building. 

Re-examining Figure 4 we see that there are elements of Building, Level, Space, 

Surface, Opening, Floor/Ceiling (horizontalSurface), Wall, Slab, Beam, Column, 

Edge, and Vertex. Furthermore, these elements are grouped into three 

categories—architecture, structure and geometry. Although they share some common 

features, the elements in the three categories also have their own characteristics. We 

will show how to represent building elements in these three categories, and in the 

process we will also illustrate the Cob language features further. 
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3.4.1 Architecture, Structure and Geometry 

The ‗architecture‘ elements are the higher-level elements to which we will add 

constraints to analyze important or interesting features of the building. All the data 

needed to depict the building can be obtained from objects in this category. Therefore, 

new analyses can be imported seamlessly into the existing system without affecting 

the existing model by means of new constraints. 

 The ‗structure‘ elements are more about the material and their combination. 

When we assemble the structure elements in the model, we need to ensure that they 

can be feasibly combined together. These constraints guarantee that the whole 

building model is feasible in the sense that every building element can be assembled 

in practice. 

The ‗geometry‘ elements are important because the three-dimensional location 

for the building elements. Every object in the geometry category will carry its xyz 

coordinates and thus provide information to other elements when they are assembled 

together. 

 

3.4.1.1 Architecture Example 

The class definition of ―level‖ in the architecture category is shown in Figure 6. 

It has four attributes: building, spaces, slabs and volume. The level 

class, as its name indicates, represents a level in a building. The Pb attribute stands 

for the parent building. The Spaces attribute stands for the spaces in this level. Here 

we use space instead of room to follow the notation from Ref. [4]. In the same way, 

the Slabs attribute stands for the slabs that form this level. Finally, the volume 
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attribute records the total volume inside this level. These attributes, except for 

volume, naturally exist according to the intelligent building representation. Other 

attributes and constraints can be added depending on what the model is interested in. 

 

Figure 6. The definition level class 

We will illustrate how the constraint helps compute the volume here. 

Volume = sum X in Spaces: X.Volume;  

This constraint states that the volume of the level equals the sum of all the volumes of 

the spaces (rooms) in this level. Although it might not be always true since there may 

be aisles, such a constraint provides the methods for computing the volume of the 

level. This approach is based on the fact that every space has its volume. It is 

important to note that the space volume is a constraint and not an assignment; thus, 

whenever the spaces are assembled, the level‘s volume will be implicitly defined. 

3.4.1.2 Structure Example 

We use the ―slab‖ class in the structure category, see Figure 7, to show the 

common features of the structure element. 

 

class level { 

 attributes 

   building Pb; 

   space[] Spaces; 

   slab[] Slabs; 

   real Volume; 

 constraints 

   Volume = sum X in Spaces: 

X.Volume; 

constructors 

   level(B,Sp,Sl) { 

         Pb = B; 

         Spaces = Sp; 

         Slabs = Sl; 

    } 

} 
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Figure 7. The definition of slab class 

A slab is mainly defined by the beams surrounding it. Therefore we have a variable 

Peripheralbeams of type beam array. The surrounding beams will determine all 

properties of the slab, such as height and size. In our example we calculate the height 

of the slab using the constraint: 

forall B in Peripherialbeams: B.Z = Z 

However this constraint is more useful than just for computation; it checks if the 

peripheral beams really form a slab, since they must have the same height. In addition, 

we can further check if the beams can connect to each other by adding more 

constraints to match every two pairs. This is done by the ‗mate‘ constraint which we 

mentioned in the previous sections. This kind of constraint is common in building 

elements of the structure category. 

3.4.1.3 Geometry Example 

In the intelligent building representation, an edge is tightly associated with a 

surface and further defined by a vertex. Therefore it is natural to have surface and 

vertex variables in the definition of edge. Since an edge may also have an opposite 

edge in order to help separate the two surfaces of the same wall, we also declare a 

class slab { 

 attributes 

   level Pl; 

   beam[] Peripheralbeams; 

   real Z; 

    

 constraints 

   forall B in Peripheralbeams: 

B.Z = Z; 

constructors 

   slab(L,B){ 

         Pl = L; 

         Peripherialbeams = B; 

    } 

} 
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variable (oe) foe the opposite edge. The remaining three variables are just for the 

 

Figure 8. The definition of edge class 

three-dimensional position of the edge‘s starting point, which is required for every 

geometry element. The first three constraints of this class serve more as assignments. 

However the last constraint checks if the opposite edge is really associated with the 

same wall as this edge. 

The edge and vertex classes are of great importance for our computation model 

of the building—because all the other elements rely on geometry directly or indirectly 

to locate themselves in the three dimensional space.  

3.4.2 Assembly 

In the Appendix A we provide similar class definitions created for the remaining 

building elements. The final step consists of creating and assembling all the building 

elements together. What we have is another instance of an assembly class. We can see 

from Figure 9 that in order to model a very simple building, we need to declare not 

only the structure elements but also some architecture elements. Those elements such 

class edge{ 

 attributes 

   surface Ps; 

   vertex Vertex; 

   edge Oe; 

   real Z; 

   real HeadX,HeadY; 

   

 constraints 

   Z = Vertex.Z; 

   HeadX = Vertex.X; 

HeadY = Vertex.Y; 

   Oe.Ps.Wall = Ps.Wall; 

 

 constructors 

   edge(S,V,E){ 

         Ps = S; 

         Vertex = V; 

         Oe = E; 

    } 

} 
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space Spaces00; 

 slab[] Slabs0; 

 slab[] Slabs1; 

 surface[] Surfaces00; 

 beam[] Beams01; 

 slab Slabs00; 

 surface Surfaces003, Surfaces002; 

 surface Surfaces001, Surfaces000; 

 horizontalSurface Ceiling00; 

 horizontalSurface Floor00; 

 beam B014, B013,B012, B011 ; 

 edge Edge003, Edge002; 

 edge Edge001, Edge000; 

 wall Wall007, Wall002; 

 wall Wall001, Wall000; 

 column  C8,C4, C6, C2; 

 vertex  V8,  V7,  V6, V5; 

 vertex V26, V30, V36, V31; 

 level Level0;  

 

as space, surface and edge are mostly virtual elements so they cannot be seen in the 

real building.  

The previous example of level shows that when we create an element we need to 

specify what the related elements are. Figure 10 shows that in order to define column 

C6 we need to provide the beginning and end point of that column. In a similar way 

we can specify the whole structure of the building by merely creating all the elements; 

the order is not important.  

Figure 9. All the elements declared corresponding to the simple building 

3.4.3 Result 

After writing the definitions of all the elements and creating the building object, 
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the user is just a few steps away from getting the result, namely compiling and 

running the model, and possibly debugging. The Cob environment provides tools for 

all these functions. Thus, the whole process consists of three steps: First, create all the 

building elements following the overall relations diagram (Figure 4). Second, create 

the building structure by instantiating all the building elements. Third, compile, run 

and get the results.  

 

Figure 10. The creation of some elements in the sample building 

The output now is the total volume and square footage of the building. Indeed, 

we can also do other meaningful analysis on the building. We believe the new 

constrained object model of a building will have a more comprehensive semantic 

meaning and stronger computational power. 

Wall007 = new wall( V7, V8, 3.0, B014 ); 

Wall002 = new wall( V6, V7, 3.0, B013 ); 

Slabs10 = new slab( Level1, Beams10 ); 

Slabs00 = new slab( Level0, Beams00 ); 

B012 = new beam( V5, V6, B014, _ ); 

B011 = new beam( V8, V5, B013, _ ); 

C4 = new column( V6, V50 ); 

C6 = new column( V8, V51 ); 

C8 = new column( V7, V55 ); 

Edge003 = new edge( Surfaces003, V7, 

Edge011 ); 

Edge000 = new edge( Surfaces000, V8, _ ); 

V36 = new vertex( V55, C8, 5.0, 5.0, 3.0 ); 

V8 = new vertex( V31, _, 5.0, 0.0, 0.0 ); 
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Figure 11. The code and the output of a sample building 

 

3.5  Higher-Level Approach 

Although usually the class definitions for building elements are pre-defined or 

reusable, the building structure is very complicated in the sense of requiring every 

vertex and every wall to be specified. Needless to say, it is highly error-prone and 

time consuming. For example, even for a simple two-level house with five spaces, 

there are 127 building elements for the user to input, and for every element the user 

needs to specify the exact location and the relation with other elements. It is obvious 

that for a larger building, the input task would be beyond the capability of a normal 

human being. We realize the importance of this problem and our solution is to create 

the building structure with a component-based methodology.  
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Our approach is to group certain kinds of elements together and create the 

building structure based on that higher-level virtual component. That is to say, we no 

longer have to start from the very beginning and create the building ―brick by brick.‖ 

Instead we will start from a higher level and create the building ―room by room.‖ 

Here the room actually includes the following building elements in the previous 

definition: space, surface, wall, edge, beam, vertex, slab, etc. We group them together 

and encapsulate them so that users only have to be concerned about how to place the 

room one after another. However, notice that the Cob model for an intelligent building 

remains the same, which means we still need the Cob code similar to the previous one. 

Here we need a ‗meta level‘ middleware to seamlessly map and generate the lower 

level Cob code from the component-based design. 

 

3.5.1 Meta-level Layer 

This meta-level middleware needs to have a user-friendly interface to gather the 

user input, create a new room, and finally connect it to the existing building. This 

process is very complicated, since most building elements are interleaved with each 

other in the original relations. For example, the new room and the old one will share 

the same wall and the other two walls are also connected with the ―base‖ at one end. 

Since beam, edge and vertex are also related to the wall, all these elements are 

somewhat connected to the old one. When we merge the new room into the base 

several checks and reassignments need to be done. However, it is still feasible, with 

some assumptions, to simplify the situation and develop an environment for 

component-based intelligent building representation (Figure 12). 
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The merge process is that every time the user creates a new room, we will 

declare a new space variable. After that, we will initialize all elements associated with 

it step by step: horizontalSurface, surfaces, walls, edges, beams, etc. The key point is 

that after the new room is added, some part of the old building is also changed. For 

example, the beams of the adjacent space will be longer, since it will also support new 

walls. In order to support this kind of operation efficiently and conveniently, we use 

Java to write the meta-level software. The advantage is that we can map one-to-one 

from the classes in Java to the classes in Cob, and hence we also have building, space, 

level, etc., in Java.  Thus when we generate Cob code, we just map it back. However, 

 

 

Figure 12. The interface prompts the user to specify the ―base room‖ 

the Java classes support some features different from the corresponding Cob class, 

such as change of attribute values. We also have a registry-like class called 

ComponentManager, which will provide methods to locate the building elements we 

need to reference, such as by name. Thus, every time we need to find the element 
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belonging to the old room, we resort to ComponentManager and then either change its 

attribute or assign its value to the new room. In this way, we successfully implement 

the meta-level software, use it to generate an intelligent building room-by-room, and 

get the results just by clicking Run in the build menu. 
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Chapter 4 

Dynamic Constrained Object 

4.1  Introduction and Concept 

Our constrained object paradigm involves modeling a component as an object 

possessing a certain set of attributes as well as a set of behavioral laws, which are 

thought of as constraints that the component must satisfy at all times [10]. Using this 

approach, we have successfully modeled an application in the architecture domain. 

However, most of the problems that have been modeled in constrained objects 

paradigm have been ―static,‖ i.e., DC circuits, trusses, etc. The dynamic systems we 

consider in this chapter are those whose state changes with time. In some instances, 

this state-change can be characterized in a mathematical way, such as the behavior of 

AC circuit. In other examples, such as in hydrologic modeling of rain fall and runoff, 

the rain-fall over time can only be provided explicitly as time-series data because it is 

largely random. In modeling dynamic systems in general, we also need to maintain 

information regarding previous states and also enforce constraints that relate a state to 

those of its previous or succeeding states. 

Recently the concept of a ‗series‘ variable was introduced to deal with such 

dynamic behavior [10].  The series variable can be used to refer to a sequence of 

values.  A reference to a series variable x gives its current value, but a reference such 

as x‘ refers to its previous value, whereas a reference such x‗ refers to its next value. 

Additionally, we can declare a class as dynamic to highlight that the fact that the class 
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that has series variables in it. In the next section we describe D-Cob, and extension of 

Cob for modeling dynamic constrained objects. 

4.2  D-Cob Syntax and Usage 

The syntax of the declaration of a ―series‖ variable in D-Cob is as follows: 

 

program ::= class_definition +  

class_definition ::= [ abstract ][ dynamic ]class class_id 

                                [ extends class_id ] { body }  

body ::= [ attributes attributes ]  

[ constraints constraints ] 

[ predicates pred_clauses ] 

[ constructors constructor_clause ]  

attributes ::= decl ; [ decl ; ] +  

decl ::= type_id_list | series_decl 

series_decl::= series attribute_id = series_type  

series_type ::= term | [ terms ]  

type ::= [ series ] primitive_type_id | class_id | type [ ]  

primitive_type_id ::= real | int | bool | char | string  

id_list ::= attribute_id [ , attribute_id ] +  

 

For example, a series variable Height as: 

series int Height; 

There are two ways to initialize a series variable: the most common method is to 

assign an array of values to the variable during its declaration. This assignment 

specified the value of a series variable at any time slot by the corresponding value of 

this array. Here is an example: 

series int Height = [12,14,16,20,26,34,49,59,66,69,72];  

There is a simplified special version to initialize the series variable when the 
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value of that series variable does not change. We can just write: 

series int Height = 68;  

This form of initialization means the series variable Height is always 68, no 

matter what time it is.  However, there are situations where only the first one or two 

values of the series variable are decided.  Therefore, we also support a special form 

of assignment that we call a boundary initialization. The boundary initialization 

allows a form of indexing <i> in conjunction with a series variable. E.g., we can say:  

Height<1> = 0;   

Height<2> = 1; 

After the initialization or assignment we can also use the backquote (‗) or 

forward quote (‘) keyword in order to assign the previous or next value of a series 

variable: 

Height’ = 70;  

Height‘ = 78; 

Next we provide a simple example to illustrate how to use dynamic constrained 

objects as well as constraints over series variables. 

4.2.1 Newton’s Method 

Our first example shows how to compute a positive real number‘s square root by 

applying Newton‘s method of approximation. The formula for the square root of n is: 

 nx  = 
2

/ 11   nn xnx
.  

This approximation formula is actually in a series form, which perfectly matches the 

series variable concept.  
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dynamic class sqr { 

   attributes 

      series real SQ; 

      int Num; 

      real EPS, Ans; 

       

   constraints 

      SQ =  ( SQ’ + Num/SQ’ ) / 2; 

      Ans =  SQ‘ :- abs(SQ‘ - SQ) <= EPS; 

       

   constructors sqr(N, E) { 

      Num = N; 

      EPS = E; 

      SQ<1> = N + 1; 

   } 

} 

From this definition we defined a series variable SQ, which is of the real type. 

In the constructor part we initialize Num and EPS variables, which represent the 

number whose square root we are seeking and the accuracy level, respectively. More 

importantly, we assign the boundary condition of the series variable SQ as N+1, using 

the boundary initialization, which essentially means that the first element in the series 

is N+1. In the constraint part we now have a very simple mapping between Newton‘s 

method and the equation involving SQ and its previous value. The modeling also 

makes it easy to determine when we have got the correct answer; we simply check 

that the difference between two consecutive values in the series is less than accuracy 

level.  This program is concise and runs predictably after we translate it into CLP(R). 

We will show the translating methodology in the next chapter. 
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4.3  AC Circuit Model 

We have already seen how to model DC circuits with the current version of Cob 

[3]. One law behind the model is Ohm‘s law, which describes a linear relationship 

between voltage and current on a resistor. Another is Kirchoff‘s law, which asserts 

that the sum of all currents running through a node is zero. We model the DC circuit 

by creating node objects to connect all the resistors or voltage sources together and 

applying Kirchoff‘s law as the node constraint. This model works very well and there 

is also a visualization tool for the user to draw a DC circuit and obtain the answer 

visually.  Now we will model a different kind of circuit, an AC (alternating current) 

circuit. The difference is that the voltage of the source will change over time and we 

will have capacitors and inductors. 

4.3.1 Capacitor and Inductor 

Just as Ohm‘s law specifies the behavior of a resistor, we also have laws for 

capacitor and inductor [5]. The electrical law for a capacitor is I = C
dt
dV  where C is 

the capacitance of the capacitor. This law is actually a differential equation involving 

current and voltage, and Cob is not immediately suitable for this computation. Our 

new approach in D-Cob is that we approximate it by a difference equation, which is 

more suitable to depict by series variables. Therefore the differential equation 

becomes I = C
t

V




 . 

Now we can declare both I and V as series variables and we assume that the 

time interval is just the time difference unit of the two adjacent values in the series. 

Therefore we now have the Cob code for this law I = C  (V – V‘). 
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The law for an inductor is V = L
dt

dI
 , and this can be transformed similarly 

into the Cob code V = L  (I – I‘). 

The above approach is a very concise way to describe the electrical laws for 

capacitors and inductors, and thus the whole model for an AC circuit is formulated in 

a simple way. 

4.3.2 D-Cob Model for AC Circuit 

Now we will show an example of a simple AC circuit and its Cob model. Figure 

13 shows the circuit whose voltage source provides AC voltage. 

 

Figure 13. Sample AC circuit 

In this circuit a 0.1-henry inductor is in parallel with a 10-ohm resistor and in 

series with a 0.1-farad capacitor. The frequency of the AC voltage source is  =0.1 

within a range of 10 volts, and hence is specified as 10 )10sin( t . We now show 

the Cob code for this circuit: 

abstract dynamic class component { 

  attributes 

   series real I1,I2,V1,V2; 

  constraints 

      I1+I2=0; 

} 
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This is the parent class for all the electrical components, as before with DC 

circuits. Notice that they are all series variables, which means they will change along 

with time. There is a constraint I1+I2=0 over them and it will hold at all time by the 

semantics of constraints over series variables. 

 

 

Figure 14. D-Cob code for resistor and capacitor 

 

class resistor extends component{  

  attributes 

   real R; 

  constraints 

   V1 - V2 = I1*R; 

  constructors resistor(D) { 

     R = D; 

  } 

} 

 

class capacitor extends component { 

 attributes 

     Real C;      

 constraints 

      I1 = C*((V1-V2)-(V1'-V2')); 

constructors capacitor(C1) { 

    C = C1; 

    V1<1> = 0; 

    V2<1> = 0; 

 } 

} 
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Figure 15. D-Cob code for inductor and voltageSource 

 

The above four classes are the four basic electrical components. Their constraint 

parts are the corresponding translations of the electrical laws we described in the 

previous section. In addition, we need to specify the boundary initialization to prepare 

for computing the difference equation. The only difference here is that voltage over a 

component is now represented by the difference between V1 and V2 instead of one 

variable. 

class inductor extends component { 

   attributes 

      Real L;       

  constraints 

  V1-V2 = L*(I1-I1');     

  constructors inductor(L1) { 

     L = L1; 

  I1<1> = 0; 

  } 

} 

class voltageSource extends component{ 

  constraints 

        V2 = 0; 

  constructors voltageSource(X) { 

     V1 = X; 

  } 

} 
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Figure 16. D-Cob code for componentEnd and node 

 

The componentEnd class is used to represent the two sides of an electrical 

component. The node class is the class to connect all the componentEnds together and 

apply Kirchoff‘s law as a constraint. The law is represented by two universally 

quantified equations, which describe two simple facts:  

1. All the voltages of the component end‘s that are attached to a node are equal. 

2. The sum of all currents running through a node is zero. 

 

dynamic class componentEnd { 

  attributes 

   component C; 

   series real V, I; 

   int End; 

  constraints 

 V = C.V1 :- End = 1; 

 V = C.V2 :- End = 2; 

 I = C.I1 :- End = 1; 

 I = C.I2 :- End = 2; 

  constructors componentEnd(C1, E){ 

     C = C1;  

     End = E; 

  } 

}  

 

dynamic class node { 

  attributes   

   componentEnd [] Ce; 

   series real[] V; 

  constraints   

 sum X in Ce: X.I = 0; 

 forall X in Ce: X.V = V; 

  constructors node(L) {  

     Ce = L; 

  } 

} 
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Figure 17. D-Cob code for AC circuit 

This is the assembly class, which actually declares and initializes all the 

electrical components and nodes that connect them. To model a user-defined circuit, 

only this class has to be modified corresponding to the structure and values of the 

circuit elements. As we see, this class is large even with only four components in the 

circuit. However, a drawing tool can help the user draw the circuit and generate the 

above code mechanically. 

We have shown a model for an AC circuit using dynamic constrained objects. 

Next we provide a different illustration. 

dynamic class samplecircuit { 

  attributes 

    resistor R; 

    real[] Voltages;  

    voltageSource B; 

    capacitor C; 

    inductor I; 

    componentEnd 

R1,R2,B1,B2,C1,C2,I1,I2; 

    node N1, N2, N3; 

constructors samplecircuit() { 

    R = new resistor(10); 

    C = new capacitor(0.2); 

    I = new inductor(0.1); 

    Time[1] = 0; 

 

    Voltages = 10*sin(0.1*Time);  

    B = new voltageSource(Votages); 

    B1 = new componentEnd(B, 1);  

    B2 = new componentEnd(B, 2); 

    R1 = new componentEnd(R, 1); 

    R2 = new componentEnd(R, 2); 

    C1 = new componentEnd(C, 1);  

    C2 = new componentEnd(C, 2); 

    I1 = new componentEnd(I, 1); 

    I2 = new componentEnd(I, 2);  

    N1 = new node([C1, B1]); 

    N2 = new node([B2, R1, I1]); 

    N3 = new node([C2, R2, I2]); 

  } 

} 
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4.4  Nerve Cell Behavior Model 

In the early 1950s, Hodgkin and Huxley were awarded the Nobel Prize for their 

work on nerve cells. They did experiments on the giant axon of the squid and found 

the details of the electrophysiology characteristic of the cell membrane [2]. They 

found that a semi-permeable cell membrane separates the interior of the cell from the 

extra-cellular liquid and acts as a capacitor.  If an input current I(t) is injected into 

the cell, it may add further charge on the capacitor, or leak through the channels in the 

cell membrane that consists mainly of Cl   ions. Because of active ion transport 

through the cell membrane, the ion concentration inside the cell is different from that 

in the extra-cellular liquid. They further discovered that there are three different types 

of ion flow, viz., sodium, potassium, and a leak current. The ion gates are protein 

channels that regulate ion flow into and out of the cell. There are three gates that are 

associated with the action potential: m, h, and n; the m and h gates control sodium 

flow, while the n gate controls potassium flow.  

4.4.1 Mathematical Model 

Under the Hodgkin and Huxley model, the total current flow through a cell 

membrane is the sum of capacitive and resistive current flows. The capacitive current 

is described by the equation: I = C
dt

dv
 , where C and V denote the membrane 

capacitance and trans-membrane potential. A resistive current depends on the 

transmembrane potential, V, the equilibrium potentials of the individual ions ionE  

and the conductance of the ion channels iong . All resistive currents can be generally 

described by equations of the form: 
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    i o nI = iong - (V - ionE ).  

Hodgkin and Huxley's experiments further demonstrated that among the three currents 

only sodium and potassium are time variant. Therefore the total resistive current can 

be described by:  

)()()( 43
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where m, h and n are three coefficients that also depend on V, which satisfies the 

following general equation: 

xvxv
dt

dx
xx  )()1()(   

in which x stands for m, h or n and x  and x  are coefficients depend that on V 

and associate with m, h or n respectively.  

4.4.2 D-Cob Model for Nerve Cell Behavior 

We now show how to use dynamic constrained objects to solve this recursive 

specification by using the parameters that Hodgkin and Huxley found in their 

experiment [9]. Just as in the AC circuit, we use difference equations in D-Cob to 

model differential equations. The main difference is that we have second order 

differential equations. We stratified the equations into two levels since m, h and n 

depend on V. Therefore m, h and n are at a second level and we make them depend on 

V‘ instead. Figure 18 shows the code for the Hodgkin and Huxley model. We use the 

series variable V to represent the voltage between the inner and outer side of the cell 

and I for the current. We use M, H and N to represent each coefficient for the different 

resistive current. We can see that the mapping from the mathematical form into a Cob 

expression is quite straightforward. We show how to execute a D-Cob program and 
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obtain the result in the next section. 

 

Figure 18. The D-Cob code for the Hodgkin and Huxley model 

4.5  Dynamic Cob Computational Model 

4.5.1 Synchronize and Translate 

The advantage of dynamic Cob is its ability to compute a series of results over 

time. Now we will show how to execute a dynamic Cob program to get the results. 

There usually is more than one series variable declared in a dynamic Cob program, 

hence they must be synchronized to avoid confusion in order. Essentially, we should 

make time to progress at the same pace for all series variables at the same interval. To 

achieve this we have an internally defined a class called dobject ( see Figure 19). 

dynamic class HodgkinHuxley { 

   attributes 

      series real V,M,H,N; 

      real I; 

   constraints 

      V-V' = I- (120*pow(M,3)*H(V+155) + 36*pow(N,4)*(V-12) + 

 0.3*(V+10.6));       

      M-M' = (1-M)*((V’+25)/10)/(exp((V’+25)/10)-1) - M*4*exp(V’/18); 

      H-H' = (1-H)*0.07*exp(V’/20)- H/(1+exp((V’+30)/10)); 

      N-N' = (1-N)*0.1*((V’+10)/10)/(exp((V’+10)/10)-1) – 

 N*0.125*exp(V’/80);       

       

   constructors HodgkinHuxley(A) { 

   I = A; 

      V<1> = 0;    M<1> = 0;    H<1> = 0;    N<1> = 0;  

   } 

} 
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All classes that are declared dynamic and their subclasses will inherit from this 

dobject class automatically. The semantics of the dobject is that it defines a time slot 

with a length specified at the time of creation. The constraint: 

 forall X in 1..Len: TimeSlots[X] = X;  

will initialize the TimeSlots array the same as its index, e.g. TimeSlots[8] = 8. 

Another key array variable is Time. This is the variable that all the series variables 

use to synchronize with each other when necessary. We used a special form, which we 

will discuss in detail in the next section, to initialize the whole array. 

 

Figure 19. Cob and CLP(R) code for dobject 

In another step to synchronization we translate all series variables into a 

corresponding array with one more dimension, i.e.: 

series real SQ;         real []  SQ; 

series real [10]  P;      real [10] [] P; 

class dobject { 

  attributes 

   int[] Time,TimeSlots; 

     int Len,Interval; 

 

  constraints 

     forall X in 1..Len: 

  TimeSlots[X] = X; 

     forall T > 1 in TimeSlots:

 Time[T]=   

Time[T-1]+Interval; 

  

   constructors dobject() { 

      Time[1] = 0; 

   } 

} 

dobject([],[TimeSlots,Time,Len,Interval]) 

:- 

   Len = 10, 

   Interval = 0.1, 

   makearray(1,TimeSlots), 

   makearray(1,Time), 

   Cob80  =  0, 

   index(Time,1,Cob80), 

   makelistfromto(1,Len,Cob82), 

   coball17(Cob82,[Cob81,TimeSlots]),  

   TimeSlots = [_|SSlot], 

coball18(SSlot, 

[Interval,Cob85,Time]). 
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This translation captures the semantics of the series variable. In order to 

translate a constraint involving a series variable, we will first wrap it with a universal 

quantifier: forall T in TimeSlots.  Secondly, we transform any series variable 

X in the constraint into X[T], captures the semantics that a series variable must obey 

its constraints for all time. We illustrate the translation with Newton‘s method for 

square roots (see Figure 20).   In this example, the constraint 

SQ = ( SQ’ + Num/SQ’ ) / 2  

is transformed into  

SQ[T] = (SQ[T-1]+Num/SQ[T-1])/2 

because SQ’ means the previous value of SQ.   We can see that the mapping for a 

series variable X 

 X  X[T] 

 X’ X[T-1] 

 X‘ X[T+1]  

can be applied to any constraints involving series variables, and thus can serve as a 

standard in translating D-Cob to Cob. However, it is not the final step, since the 

current Cob system is not designed and optimized for this kind of computation.  
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Figure 20. Newton‘s method D-Cob and its translation into Cob 

4.5.2 Compute in CLP(R) 

One of the problems is the boundary initialization. If a series variable is 

involved in difference equations, it most likely will need to have boundary 

initialization. Therefore we employ a special form; instead of  forall T in 

TimeSlots, we use  

    forall T > 1 in TimeSlots  

which will not apply the constraints on the first element of the array. Here is the 

translation of these two forms in the CLP(R). 

forall T in TimeSlots   coball2(TimeSlots,[EPS,Num,Cob3,SQ,Len,Ans]) 

forall T>1 in TimeSlots   

TimeSlots=[_|SSlot], coball2(SSlot,[EPS,Num,Cob3,SQ,Len,Ans]) 

class sqr extends cobject { 

  attributes 

    real[] SQ; 

    int Num; 

    real EPS, Ans; 

constraints 

    forall T >1  in TimeSlots: 

      SQ[T] = (SQ[T-1]+Num/SQ[T-1])/2; 

    forall T in Slot: 

      Ans = SQ[T] :-  

abs(SQ[T]-SQ[T-1]) <= EPS; 

   constructors sqr(N, E) { 

      Num = N; 

      EPS = E; 

      SQ[1] = N+1; 

   } 

 } 

dynamic class sqr { 

   attributes 

      series real SQ; 

      int Num; 

      real EPS, Ans; 

   constraints 

      SQ =  ( SQ’ + Num/SQ’ ) / 2; 

    Ans =  SQ‘ :- abs (SQ‘-SQ) <= EPS; 

   constructors sqr(N, E) { 

      Num = N; 

      EPS = E; 

      SQ<1> = N + 1; 

   } 

} 
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In the similar way, we use forall T > 2 in TimeSlots to adapt to the ―double‖ 

boundary initialization.  

Although the mapping process is almost finished, in order to run the D-Cob 

program we still need two more system variables. The first is Len in dobject, which 

determines how much iteration of the series variables will be computed. This value 

can be determined several ways: 

1. In the Newton‘s method case, the number of iterations is determined by an end 

condition (error<EPS). Thus we can set a very high value, which serves as a 

boundary, although in most cases it will not reach this value. 

2. In the AC circuit and other examples that use a constant period, the stages depend 

on the frequency ‗ω‘ of the voltage source and the time interval. That is because 

we only need to compute one cycle of system performance and the result will 

repeat itself. 

3. In other cases users can specify how many ―steps‖ they want to observe. 

The second variable is the time Interval between each iteration. The time is 

a variable that is initialized in the dobject class and every class that extends dobject 

will use it to synchronize with others. As we see, time is actually an array that starts 

from 0t and increases a certain amount for every index. This amount, called 

Interval, needs to be determined by the user before starting to run the program. 

The choice of the value of Interval is a trade off between performance and 

accuracy. That is because the semantics of Interval is the sampling rate for the 

model, i.e., how often we sample the real system. Therefore the trade off is as follows: 

1. The smaller the interval, the more accurately we simulate the real system.  

2. The larger the interval, the better the modeling performance. 
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4.5.3 Results for AC Model 

To solve the circuit of Figure 13, we choose pick Len as 200 and Interval as 

0.01. We translated the D-Cob program shown in Figure 17 into Cob using the 

mapping shown in 4.5.2 section, and further translated it into CLP(R).  

To show the results we focus on the voltage on the capacitor. We first choose the 

input voltage of voltage source as V = 10sin(10t).  We also used the standard 

method in electrical engineering to solve the differential equations and obtained the 

actual formula of the voltage on the capacitor. First we show the result of the 

mathematical formula: 

 
)399sin(399

399

100
2
1 teV t

C  

  + 

    
)399cos(100

2
1 te t  

- 100  )10cos( t  + 10 )10sin( t  

The solution is depicted in Figure 21.  

 

Figure 21. Diagram from the numerical solution of AC circuit V B  = 10*sin(10*t) 

In order to show the results more thoroughly, we changed the input voltage into 

V = 10sin( )t .  Now the mathematical formula is changed to:  
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CV    0.012134723
te
cos( 2

1

 399  t)  

       –  0.0055577143
te
 399   sin( 2

1

 399  t)  

          –  12.134723cos(  t) + 0.35312367 sin(  t)  

The solution is depicted in Figure 22. 

 

Figure 22. Diagram from the numerical solution of AC circuit V B  = 10*sin( *t) 

The AC circuit example shows that D-Cob is capable of solving problems whose 

mathematical solution is complicated. The modeling is simple and straightforward, 

and the result is accurate.  

4.5.4 Results for Nerve Cell Behavior Model 

We can also follow the process we mentioned in section 4.5.2 to run the nerve 

cell behavior example. Figure 23 is the intermediate Cob code that we translated by 

the rule for mapping from D-Cob to Cob. (We omit the dobject class as it is the same 

everywhere.)  After translating the Cob into CLP(R) code, we can run this model and 

check the result. We choose a current of 0.5 amp and check the V, which is a key 
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variable. 

We next run the example with a current of 3 amps applied on the cell and show 

the results in Figure 24. It is also possible to adjust the coefficient of the 

Hodgkin-Huxley model and get useful cell nerve function data by running the 

dynamic constrained objects model.  

From the results of nerve cell behavior model and the AC circuit model we can 

see that the dynamic constrained object paradigm is capable of modeling dynamic 

systems whose states are changing, and provides an alternate solution for differential 

equations. The computational model is also simple and easy to extend from the static 

domain. 
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Figure 23. The Cob code translated for the Hodgkin and Huxley model 
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Figure 24. A set of data obtained from the Hodgkin-Huxley Model 

class HodgkinHuxley extends dobject{ 

   attributes 

      real[] V,M,H,N; 

      real I; 

   constraints 

      forall T>1 in TimeSlots: 

        V[T]-V[T-1] = I[T]-(120*pow(M[T],3)*H[T]*(V[T]+155)+36* 

pow(N[T],4)*(V[T]-12)+0.3*(V[T]+10.6))/Interval; 

       forall T>1 in TimeSlots: 

M[T]-M[T-1] = (1-M[T])*((V[T-1]+25)/10)/(exp((V[T-1]+25)/10)-1)  

– M[T]*4*exp(V[T-1]/18))/Interval; 

       forall T>1 in TimeSlots: 

           H[T]-H[T-1] = ((1-H[T])*0.07*exp(V[T-1]/20)- 

H[T]/(1+exp((V[T-1]+30)/10)))/Interval; 

       forall T>1 in TimeSlots: 

          N[T]-N[T-1]=(1-N[T])*0.1*((V[T-1]+10)/10)/(exp((V[T-1]+10)/10) 

-1)–N[T]*0.125*exp(V[T-1]/80))/Interval;      

       

   constructors HodgkinHuxley(A) { 

         V<1> = 0;     M<1> = 0;      H<1> = 0;      N<1> = 0; I = A; 

   } 

} 
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Chapter 5 

Conclusions and Further work 

The idea of combining constraints and objects is applicable for modeling a 

variety of systems [4, 5].  In this thesis we explored examples of static as well as 

dynamic systems.  In the former case, we showed a novel illustration of how 

constrained objects can be applied to the building architectural domain, by showing a 

detailed model for an ―intelligent‖ representation.  In our approach, the user can 

input the model of a building in a relatively easy way and achieve the comparable 

results as in a component-based approach.  This not only shows that the idea of 

intelligent building representation is correct in general, but also that the Cob 

environment can adapt to the architectural domain. Our meta-level software also 

shows how to apply component-based design with Cob. 

In the area of modeling dynamic systems, we showed examples in two different 

domains (AC circuits and nerve-cell modeling) to illustrate the features of the D-Cob 

language. A key idea in both examples is the use of difference equations to model 

differential equations. The execution process is simple and the results are 

encouraging. 

We have seen that changing the values of attributes is very common during the 

process of building and experimenting with a model.  Such changes are made using 

meta-level software, but it may be desirable to make them in Cob itself. This is a 

fundamental dilemma because there is no assignment in declarative semantics. The 

current approach to deal with the changing is to have variables that can refer to its 

previous and future value. However, we still need to explore more examples to see if 
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this concept is sufficient for more broad domains. The immediate improvement can be 

a compiler to translate from dynamic cob directly into CLP(R).  

The Cob environment is relatively slow for handling a large amount of objects 

due to its limited computational efficiency. It is obvious that we need to improve the 

efficiency in order to tackle real-world buildings. One approach may be to support an 

interface with state-of-the-art solvers in specific domains. This will improve the 

solving ability so that we can solve more problems with efficiency. Another more 

fundamental approach is to migrate the underlying system to C/C++, which is to some 

extent more efficient and friendly to most problems. In this way, we can find and 

improve the bottleneck of the system and make it more robust and efficient.  
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Appendix A 

 

Class definition of building and level 

 

 

 

 

 

 

 

 

 

 

Class definition of space 

class level{ 

 attributes 

    building Pb; 

    space[] Spaces; 

slab[] Slabs; 

    real Volume; 

 constraints 

   Volume =  

sum X in Spaces: X.Volume;  

constructors 

   level(B,Sp,Sl){ 

         Pb = B; 

         Spaces = Sp; 

         Slabs = Sl; 

    } 

} 

 

class building{ 

 attributes 

   level[] Levels; 

   real Volume; 

 constraints 

   Volume =  

sum X in Levels: X.Volume; 

 constructors 

   building(L){ 

     Levels = L; 

   } 

} 

class space{ 

 attributes 

   level Pl; 

   surface[] Surfaces; 

   horizontalSurface Floor; 

   horizontalSurface Ceiling; 

   real Height,Width,Length; 

   real Volume; 

   real X1,X2,Y1,Y2; 

 constraints 

   forall S in Surfaces:  

S.Height = Height; 

   X2 = Surfaces[1].Edge.HeadX; 

   X1 = Surfaces[2].Edge.HeadX; 

Y2 = Surfaces[3].Edge.HeadY; 

   Y1 = Surfaces[2].Edge.HeadY; 

   Length = X2-X1; 

   Width = Y2-Y1; 

   Volume = Height*Length*Width;   

Floor.Z-Floor.Distance+Ceiling 

.Z-Ceiling.Distance = Height; 

constructors 

   space(L,S,F,C){ 

         Pl = L; 

         Surfaces = S; 

         Floor = F; 

         Ceiling = C; 

    } 

} 
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Class definition of surface 

 

 

      Class definition of edge 

class surface{ 

attributes 

     space Ps; 

     wall Wall; 

     edge Edge; 

opening[] Openings; 

     real Height; 

    constraints 

     Height = Wall.V1.Z+Wall.Height-Edge.Z; 

 constructors 

    surface(S,E,O,W){ 

        Ps = S;   Edge = E;   Openings = O;    Wall = W; 

    } 

} 

class edge{ 

  attributes 

     surface Ps;  

    vertex Vertex; 

     edge Oe; 

     real Z; 

    real HeadX, HeadY; 

  constraints 

     Z = Vertex.Z; 

     HeadX = Vertex.X; 

     HeadY = Vertex.Y; 

     Oe.Ps.Wall = Ps.Wall; 

 constructors 

   edge(S,V,E){ 

         Ps = S;  Vertex = V;   Oe = E; 

    } 

} 
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Class definition of opening 

 

 

Class definition of horizontalSurface 

class opening { 

  attributes 

     string Type; 

     surface Ps; 

     real Width,Height,Distance; 

  

  constructors 

     opening(T,S,W,H,D){ 

        Type = T; 

        Ps = S; 

        Width = W; 

        Distance = D; 

        Height = H; 

   } 

} 

class horizontalSurface{ 

  attributes 

     space Ps; 

     slab Slab; 

     real Distance; 

     real Z; 

  constraints 

     Z = Slab.Z+Distance; 

    constructors 

     horizontalSurface(S,Sl,Dis){ 

        Ps = S; 

        Slab = Sl; 

        Distance = Dis; 

  } 

} 
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Class definition of slab 

 

 

Class definition of beam 

class slab{ 

  attributes 

     level Pl; 

     beam[] Peripherialbeams; 

     real Z; 

    constraints 

     forall B in Peripherialbeams: B.Z = Z; 

  constructors 

     slab(L,B){ 

          Pl = L; 

          Peripherialbeams = B; 

     } 

} 

class beam{ 

  attributes 

     vertex Vertex1,Vertex2; 

     beam Parallelbeam; 

     beam Continuousbeam; 

     real Z; 

    constraints 

     Vertex1.Z = Z; 

     Vertex2.Z = Z; 

   constructors 

     beam(V1,V2,Pb,Cb){ 

          Vertex1=V1; 

          Vertex2=V2; 

          Parallelbeam = Pb; 

          Continuousbeam = Cb; 

   } 

} 
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Class definition of wall 

 

 

Class definition of column 

class wall{ 

  attributes 

     vertex V1; 

     vertex V2; 

     real Height; 

     beam Beam; 

  constraints 

     V1.Z = V2.Z; 

     V1.Z = Beam.Z; 

    constructors 

     wall(F,S,H,B){ 

          V1 = F; 

          V2 = S; 

          Height = H; 

          Beam = B; 

    } 

} 

class column{ 

  attributes 

     vertex V1,V2; 

     real Length; 

    constraints  

     V1.X = V2.X; 

     V1.Y = V2.Y; 

     Length = V2.Z - V1.Z; 

  constructors 

     column(Low,High){ 

          V1 = Low; 

          V2 = High; 

    } 

} 
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Class definition of vertex 

class vertex{ 

  attributes 

     vertex Nextvertex; 

     column Pc; 

     real X,Y,Z; 

    constraints  

     Nextvertex.X = X; 

     Nextvertex.Y = Y; 

    constructors 

     vertex(V,C,X1,Y1,Z1){ 

          Nextvertex = V; 

          Pc = C; 

          X = X1; 

          Y = Y1; 

          Z = Z1; 

    } 

} 


