Modeling Engineering Structures with Constrained Objects!

Bharat Jayaraman
Pallavi Tambay

Department of Computer Science and Engineering
State University of New York at Buffalo
Buffalo, NY 14260-2000

E-Mail: {bharat,tambay}@cse.buffalo.edu
Phone: (716) 645-3180 x 111
Fax: (716) 645-3464

Abstract. We present a novel programming language based on the concept of constrained objects for
compositional and declarative modeling of engineering structures. A constrained object is an object
whose internal state is governed by a set of (declarative) constraints. When several constrained objects
are aggregated to form a complex object, their internal states might further have to satisfy interface
constraints. The resultant behavior of the complex object is obtained by a process of logical inference
and constraint satisfaction. Thus, constrained objects are a declarative counterpart of traditional objects
(found in object-oriented languages). Our modeling paradigm supports constraints, including quantified
and conditional constraints, as well as preferences. We show via several examples that, for the domain
of engineering modeling, the paradigm of constrained objects is superior to both a pure object-oriented
language as well as a pure constraint language. The current prototype includes tools for authoring the
constrained-object class definitions using a modeling tool called CUML (Constraint-based UML); a com-
piler that translates a CUML specification into an executable CLP(R) program; and a domain-specific
visual interface for building and testing constrained objects for the domain of electric circuits. We believe
that such tools can be used for pedagogic purposes as well as for more advanced modeling applications.

Keywords : Constrained Objects, Modeling, Object-oriented, Constraint Logic Programming

1 Introduction

In this paper we present a programming language and execution environment that will facilitate a principled
approach to the modeling of complex systems. A domain of particular interest is that of engineering entities
such as circuits, trusses, gears, mixers, separators, etc. Modeling such entities involves the specification of both
their structure and behavior. In modeling structure, it is natural to adopt a compositional approach since a
complex engineering entity is typically an assembly of many components. From a programming language
standpoint, we may model each component as an object, with internal attributes that capture the relevant
features that are of interest to the model. The concepts of classes and hierarchies found in object-oriented (OO)
languages, such as C++, Java, and Smalltalk, are appropriate to model the categories of components. However,
in modeling the behavior of complex engineering entities, the traditional OO approach of using procedures
(or methods) is inappropriate, because it is more natural to think of each component as being governed by
certain laws, or invariants. From a programming language standpoint, we may express such behavioral laws
by constraints over the attributes of an object. When such objects are aggregated to form a complex object,
their internal attributes might further have to satisfy interface constraints. In general, the resultant state of
a complex object can be deduced only by satisfying both the internal and the interface constraints of the
constituent objects. We refer to this paradigm of objects and constraints as constrained objects, and it may be
regarded as a declarative approach to object-oriented programming.

To illustrate the notion of constrained objects, consider a resistor in an electric circuit. (This is a classic
example in CLP(R) but there are advantages offered by a constrained object representation, as discussed

! This research was partially supported by grants from the National Science Foundation and the Xerox Foundation.

further below.) Its state may be represented by three variables V, I, and R, which represent respectively
its voltage, current, and resistance. However, these state variables may not change independently, but are
governed by the constraint V.= I * R. Hence a resistor is a constrained object. When two or more constrained
objects are aggregated to form a complex object, their internal states may be subject to one or more interface
constraints. For example, if two resistor objects are connected in series, their respective currents should be
made equal. Similarly, in the civil engineering domain, we can model the members and joints in a truss as
objects and we can express the laws of equilibrium as constraints over the various forces acting on the truss.
In the chemical engineering domain, constrained objects can be used to model mixers and separaters, and
constraints can be written to express the law of mass balance.

Constraints and Preferences. Sometimes there could be multiple solutions to constraints, and we
are interested in the optimal solutions. This in turn necessitates some means specifying preferences that guide
the determination of optimal solutions. To take an example from the engineering context, suppose we model a
gear train and its constituent gears as objects whose attributes represent the input and output torques, angular
speeds, and transmission powers. The efficiency of the gear train can be given in terms of these attributes
by a constraint. In addition to these constraints, one may want to specify a preference that the transmission
power be as close to 12hp (horse power) as possible and the efficiency be maximized. In our paradigm, such
preferences can be specified declaratively using a preference clause.

Domain Specific Visual Inter faces. In the paradigm of constrained objects that we present, a com-
plex object may also have a visual representation, such as a diagram. This visual representation is compositional
in nature; that is, each component of the visual form can be traced back to some specific object in the under-
lying constrained object model. An end-user, i.e., modeler, will be able to access and modify the underlying
model using the visual representation. This capability may be contrasted with currently available tools for
engineering design such as AutoCAD, Abaqus, etc., where the visual representation contains only geometric
information but does not provide access to the underlying logic or constraints. We expect to have different
visual interfaces for different domains but a common textual language (described in section 3) for defining the
classes of constrained objects.

Modeling Scenario. We expect a modeler to first define the classes of constrained objects, by spec-
ifying the attributes of the various objects, as well as their internal and interface constraints. These classes
may be organized into an inheritance hierarchy. Once these definitions have been completed, the modeler can
build a specific complex object, and execute (solve) it to observe its behavior. This execution will involve a
process of logical inference and constraint satisfaction [4,5,8,11,20]. We expect that a modeler will then need
to go through one or more iterations of modifying the component objects followed by re-execution. Such mod-
ifications could involve updating the internal states of the constituent objects, as well as adding new objects,
replacing existing objects, etc. The complex object can be queried to find the values of attributes that will
satisfy some given constraints in addition to the ones already present in the constrained objects.

Constrained Objects > Constraints + Objects. Earlier we explained why the paradigm of constrained
objects is preferable to the traditional paradigm of imperative objects for engineering modeling. It is also the
case that, for the domain of engineering modeling, the paradigm of constrained objects is preferable to a
traditional constraint language or constraint logic programming language (such as CLP(R)): (i) It is more
natural to model an engineering artifact as a complex object than as a complex constraint. An object has a
direct counterpart in the physical world. (ii) The diagrammatic representation can be more easily traced back
to an object representation rather than a constraint representation. (iii) Object structure can help in reporting
the cause of model inconsistency, and we believe it will also obtain efficiency in constraint solving, especially
incremental solving (when a model is revised).

Prototype Implementation. We currently have developed three tools: (i) A Constraint-based UML
tool for authoring Cob class diagrams. This tool allows one to define the classes of constrained objects using
a graphical notation a la UML [18] and generates a set of textual Cob class definitions. (ii) A translator
that takes Cob class definitions as input and generates equivalent CLP(R) predicates as output. We use the
underlying CLP(R) engine for constraint handling. (iii) A domain-specific visual interface (a palette of buttons
and drawing primitives) for building electric circuits and generating equivalent executable Cob code.

In this paper we describe a programming language and execution environment called Cob (Constrained
Object) and its use in engineering modeling. While the idea of constrained objects has been discussed to some
extent in the literature [3,2,10,13], we extend earlier work by providing a richer set of features for modeling,
especially conditional constraints, preferences, and logic variables at the modeling level. We have developed a
formal declarative and operational semantics of Cob, but space precludes their description in this paper. The
remainder of this paper is organised as follows: Section 2 briefly surveys related work and provides comparisons.
Section 3 outlines the syntax of Cob and presents several motivating examples. Section 4 briefly describes the
current Cob programming environment. Finally, section 5 describes our current and future research plans.

2 Related Research

Constraints Research. Our approach to constraints and preferences builds upon our earlier work [8,
7], and subsumes the paradigms of CLP as well as HCLP (Hierarchic CLP) [8]. Firstly, CLP does not support
conditional constraints or preferences. Our paradigm of preferences is based upon the notion of stratified
preference logic programs [8], which effectively allow an easy simulation of constraint hierarchies, as shown in
[8,7]. Also, our provision of conditional constraints allows object creation to take place dynamically and be
controlled by constraint satisfaction. Research at the UNH Constraints Computation Center under Freuder
is closely related to our efforts (http:www.cs.unh.edu/ccc). From a language standpoint, there are two
important differences: (i) we integrate the concepts of object and constraint, and (ii) we adopt the more
general CLP paradigm as opposed to a pure constraint language.

Constrained Objects. An early forerunner in the area of constrained objects is the work of Alan Born-
ing on ThingLab, a constraint-based simulation laboratory [3] intended for interactive graphical simulations.
Another work aimed at graphics applications is the language Bertrand. This work was extended by Bruce Horn
in his language Siri, which uses the notion of event pattern to declaratively specify state changes: by declaring
what constraints must hold after the execution of a method, and also specifying which attributes may and
may not change during the method execution. Compared to our language, these approaches provide only a
limited capability for expressing constraints, and also provide no support for handling multiple solutions to
constraints. (Although ThingLab has a preference construct it orders constraints and not their solutions.)

Constraint Imperative Programming. The Kaleidoscope ’91 [2] language integrates constraints and
object-oriented programming for interactive graphical user interfaces. This ‘constraint imperative language’
uses constraints to simulate imperative constructs such as updating, assignment, and object identity. For the
class of modeling applications that we target, it is not essential for us to consider such imperative concepts.
These are important issues in an constraint imperative language [6,14], but not for a declarative object-
oriented language such as Cob. In our modeling scenarios, model execution and the model revision are carried
out in mutual exclusion of one another. Changes are made at the level of the modeling environment. Thus we
have a clear separation of the declarative and procedural parts of a constrained object.

Logic and Objects. The Prolog++ language [17] adds to logic programming by allowing storage and
modification of the state of a system by providing constructs for classes, methods and assignment. Another
approach to integrating logic with object-oriented programming is the Object Logic Integration (OLI) design
methodology [12] which allows programming in either or mixed paradigm. From the object point of view, the
logic part of OLI is an object with logic programs as states and methods performing logical deduction. The
mixed paradigm allows the usual class definitions and methods can be written as queries. However, no notion
of constraints is supported by either of these two languages. Two other related logic-based languages are LIFE
[1] and Oz [19]. LIFE combines logic with inheritance, however, it does not deal with full-fledged constraints
as we do. Oz is a language combinining constraints and concurrency as well as objects. Both these languages
do not support the notion of preference nor do they consider engineering applications.

Constraint-based Specifications. For the sake of completeness, we also mention software specification
languages that make use of constraints. The need for a formal representation of constraints in object-oriented

programming is illustrated by the development of the Object Constraint Language [21]. For practitioners of
object-oriented design and analysis, constraints provide an unambiguous and concise tool for expressing the
relations between objects. OCL is a specification language that helps in making explicit these relations that
would otherwise be implicit in the code but not apparent to the programmer who reads or modifies it. Eiffel
is another language which employs constraints for specifying pre- and post-conditions that must hold on the
operations of an object [16]. These languages use constraints as specifications; no constraint solving is done
at run-time in order to deduce the values of variables. Contracts [9] provide a formal language for specifying
behavioral compositions in object oriented systems. They promote an interaction-oriented design instead
of class-based design. A contract defines a set of communicating participant classes and their contractual
obligations as constraints. A class conforming to a contract must implement the methods exactly as specified
in the contract.

3 Cob: An Informal Introduction

Syntax The grammar below outlines the overall structure of a Cob program. A Cob program is essentially
a sequence of class definitions, and each constrained object is an instance of some class. The body of a
class definition consists of the attributes, constraints, predicates, preferences, and constructors. Each of these
constituents is optional, and we permit an empty class definition as a degenerate case.

program = class_definition™
class_definition ::= [abstract | class class_id [extends class_id | { body }
body ::= [attributes attributes | [constraints constraints]

=
[predicates pred_clauses | [preferences pref _clauses]
[

constructors constructor_clause]

For the purpose of this paper, we limit attention to single inheritance of classes and at most one constructor
for each class. An abstract class is a class without any constructor, and hence cannot be instantiated. Not all
of the syntactic details are presented here; a more complete description of the syntax of constraints is given
in Appendix A. Below we briefly discuss the more novel aspects of the language.

constraint ::= creational_constraint | quantified_constraint | simple_constraint

creational_constraint ::= attribute = new class_id(terms)

quantified_constraint ::= forall var in enum : constraint | exists var in enum : constraint

simple_constraint ::= constraint_atom | conditional_constraint

constraint_atom ::= term relop term | constraint_predicate_id(terms)
relop i==|1=|>|<|>=]<=
term = constant | var | attribute | (term) | function_id(terms)
| sum var in enum : term | prod var in enum : term
| min var in enum : term | max var in enum : term
conditional _constraint ::= constraint_atom : — literals

A constraint can be either creational, simple or quantified, where the quantification ranges over an enumeration
(referred to as enwm) which may be the indices of an array or the elements of an explicitly specified set. A
simple constraint can either be a constraint atom or a conditional constraint. A constraint atom is essentially a
relational expression of the form term relop term, where term is composed of functions/operators from any data
domain (e.g. integers, reals, etc.) as well as constants and attributes. A conditional constraint is a constraint
atom that is predicated upon a conjunction of literals each of which is a (possibly negated) ordinary atom or
a constraint atom.

Often we would like to augment a predicate definition with preference criteria for determining the
best solution(s) to goals that make use of this predicate. In Cob, a preference clause is of the form
p(sl) < p(s2) :- clause_body,

and it states that the solution s is less preferred than solution s2 for predicate p if the condition specified by
clause_body is true. We also provide min and max constructs to model optimization problems. The paper [8]
provides a more detailed account of this construct.

Date as a Constrained Object Our first example illustrates the basic features of the language, including the
use of conditional constraints.

class Date {

attributes
int day, month, year
constraints
1 < year.
1 < month. month < 12.
1 < day. day < 31.

day < 30 :- member(month, [4,6,9,11]).
day < 29 :- month = 2, leap(year).
day < 28 :- month = 2, not leap(year)
predicates
member (X, [X]]).
member (X, [_|T]) :- member(X,T).
leap(Y) :- Y mod 4 = 0, Y mod 100 <> 0.
leap(Y) :- Y mod 400 = 0
constructors Date(d, m, y) { day = d, month = m, year = y }

}

We employ Prolog-like syntax for defining predicates and conditional constraints. For example, the
conditional constraint
day < 29 :- month = 2, leap(year)
requires day < 29 if the month is February and the year is a leap year. Computationally, an important
difference between a conditional constraint and a Prolog rule is the following: If the head of a conditional
constraint evaluates to true, then the body need not be evaluated; and, if the head evaluates to false, the body
must fail in order for the conditional constraint to be satisfied. In contrast, in Prolog, if the head of a rule
unifies with a goal, then the body of the rule must be evaluated; and, if the head does not unify, then the
body need not be evaluated.

The above definition can be used to validate a given combination of day, month, and year values, and
also be used to generate, for example, a range of month values for a given a combination of day and year. For
example, if the day is set to 31 and the year to 1999, the set of possible values for month can be deduced to
be any integer between 1 and 12 but not 4, 6, 9, 11, or 2. While 1 < month < 12 is directly obtained from
the unconditional constraints for month, our computational model can deduce, by a process of constructive
negation of the goal member (month, [4,6,9,11]), that month is not 4, 6, 9, or 11. And, it can deduce that
month is not equal to 2 from the conditional constraint day < 28 :- month = 2, not leap(year).

Conditional constraints can be used to control object creation dynamically. For example, consider the
following conditional constraints over attributes x, y, and shape of a certain class:

shape = Rectangle(x, y) :- input = ’rectangle’

shape = Circle(x, y) :- input = ’circle’

Together, they can be used to set a shape attribute of, for example, a node of a binary tree. In the above
example, x and y stand respectively for the width and height inputs of the Rectangle constructor; and they
stand respectively for the center and radius attributes of the Circle constructor.

Non-Series/Parallel Circuits To further illustrate the syntax of Cob and the use of equational and quantified
constraints, we present the well-known example of a non-series/parallel electrical circuit (see figure 4 appendix
C). We model the components and connections of such a circuit as objects and their properties and relations
as constraints on and amongst these objects. The component class models any electrical entity (e.g resistor,
battery) that has two ends (referred to as 1 and 2). The attributes of this class represent the currents and
voltages at the two ends of the entity. The constraint in class resistor represent Ohm’s law. The class
componentEnd represents a particular end of a component. We use the convention that the voltage at end
1 of a component is V1 (similarly for current). A node is a collection of componentEnds. When the ends of
components are placed together at a node, their voltages must be equal and the sum of the currents through
them must be zero (Kirchoff’s law). Notice the use of the quantified constraints (forall) to specify these
laws. Using these classes we can model any non-series/parallel circuit. Given initial values for some attributes,
this model can be used to find out values of the remaining attributes (e.g. the current through a particular
component). Appendix C shows a sample circuit built from these classes.

class componentEnd {

abstract class component { attributes

attributes component C
real V%, vz, I1, I2 real End, V, I
constraints constraints
I1 + I2 =
} 0 V=C.Vl :- End = 1.
V=C.V2 :- End = 2.
I =C.I1 :- End = 1.

class resistor extends component { I =C.I2 :- Fnd = 2

ttribut

areii ; es constructors componentEnd(C1l, E) {
, C=Cl, End = E }

constralnts }

Vi - V2 =11 xR

}constructors resistor(D) { R =D } class node {

attributes

tEnd Ce.
class battery extends component { componentEnd [] Ce

i real V
attributes ‘
real V constraints
constraints sum C in Ce: C.I = 0.
V2 = 0 forall C in Ce: C.V =V
constructors node(L) { Ce = L }

constructors battery(X) { V1 = X }

} }

Simple Truss To illustrate the use of constrained objects in engineering design, we model a simple truss
structure shown in figure 1. A truss consists of bars placed together at joints. The constraints in the bar class
express the standard relations between its modulus of elasticity (E), yield strength (Sy), dimensions (L, W, H),
bending, buckling, and tension forces (F_bn, F_bk, F_t), and stress (Sigma). Depending upon the direction of
the force in a bar (inward or outward), it acts as either a buckling force or a tension force. This relation is
expressed as conditional constraints in the bar class. A beam is a bar placed at an angle (4) and a load is a
force applied at an angle (A). The joint class aggregates an array of beams and and an array of loads (that
are incident at the joint) and its constraints state that the sum of the forces in the horizontal and vertical
directions respectively must be 0. The Cob classes defined here can model a truss with loads and may be used
to determine the dimensions of the bars such that they can support the loads. These conditions are taken from
the text by Mayne and Margolis [15].

class bar {
attributes
Real E, Sy, L, W, H, Fbn, F bk, Ft, Sigma, I, F

L1 L2

Fig.1. A Simple Truss

constraints
Pi = 3.141 .
I = Fbk *x L xL. /Pi * PixE.

I=Wx*xHxxH=*H/ 12.
Ft = Sy * W * H.
Sigma = (H * L x Fbn)/ (8 * I).
Ft=F :-F >0.
Fbk =F :-F <0
constructors bar(E1,Sy1,L1,Ww1,H1,F bnl,F bk1,F t1,Sigmal,I1,F1)
{ E=E1, Sy=Syl, L=L1, H=H1, W=W1, F_bn=F_bni,
F_bk=F bk1l, F_t=F_tl1, Sigma=Sigmal, I=I1, F=F1 }
}

class beam { class load {
attributes attributes
bar B. Real A % bar B placed at angle A Real F. Real A
constraints constraints
0 <= A. A <= 360 0 <= A. A <= 360
constructors beam(B1, A1) constructors load(F1, A1)
{B=B1, A =411} {F=F1, A=A1}

} }

class joint {

attributes

beam [] Beams. load [] Loads

constraints

sum X in Beams: (X.B.F * sin(X.A)) + sum L in Loads: (L.F * sin(L.A)) = 0.
sum Y in Beams: (Y.B.F * cos(Y.A)) + sum M in Loads: (M.F * cos(M.A)) =0

constructors joint(B1, L1) { Beams = B1l, Loads = L1 }

}

Separators and Mizers A common problem in chemical engineering, is the use of a combination of mixers
and separators to produce a chemical that has specific ingredients in a certain proportion. The arrangement
of mixers and separators shown in figure 2 has two input raw material streams R1 and R2. Each of these
streams has certain ingredients in different concentrations. R1 and R2 are split and a part of each (I1 and 12
respectively) is sent to a separator which separates its ingredients. Each separator supplies certain proportion
of each ingredient to the mixer which combines them to produce the desired chemical G. W1 and W2 are
the waste streams from the separators. The problem is to produce G while minimizing I1 and 12 thereby
minimizing the cost of processing material in the separators.

Waste W1 w2

Ravw material Ravw material
jl R2
S s2 l

Splitt

Separtor
1 Spado
N

M1
Mixer

s

Fig. 2. A Separation Flow Sheet

Figure 2 describes a typical scenario, and we present below some of the key classes needed for this
example. A stream is modeled by the class stream with attributes for its rate of flow FlowRate and the
concentrations of its ingredients (Concentrations is an array of reals indexed by the ingredients of the stream).
The concentrations of all the ingredients of a stream must sum up to 1. The class equipment models any piece
of equipment having some input streams and output streams. Every equipment that processes streams is
constrained by the law of mass balance. Separators, mixers and splitters are instances of the equipment class.
The class representing figure 2 (not shown here) will have the preference min I1 +I2.

class stream {
attributes
real FlowRate. real [] Concentrations
constraints
sum C in Concentrations : C = 1
constructors stream(Q, C) { FlowRate = Q, Concentrations = C }

}

class equipment {

attributes
stream [] inStream, outStream. int nIngedients
constraints
forall I in 1..nIngredients :
(sum J in inStream : (J.FlowRate * J.Concentrations[I])) = % law of mass balance

(sum K in outStream: (K.FlowRate * K.Concentrations[I]))

constructors equipment(In,Out,NumIng) {
inStream = In, outStream = Out, nIngredients = NumIng }
}

Heat Transfer in a Plate This is another classic program in CLP(R). The problem is to model a plate in which
the temperature of any point in the interior of the plate is the average of the temperature of its neighbouring
four points. This can be stated mathematically by using 2d Laplace’s equations. The Cob representation is
shown below in a class called heatplate. The constructor initializes the temperature of the border of the 11
x 11 plate. Compared to its CLP(R) representation, the Cob representation of this problem is very concise,
owing to the use of quantified constraints. The Cob class below calculates the heat at all the interior points.

class heatplate {

attributes
Real [][] Plate
constraints
forall I in 2..10:
forall J in 2..10:
4 * Plate[I,J] =
(Plate[I-1,J] + Plate[I+1,J] + Plate[I,J-1] + Platel[I,J+1])
constructors heatplate(4,B,C,D) {
forall M in 1..11: Plate[1,M] = A,
forall N in 1..11: Plate[11,N] = B,
forall K in 2..10: Plate[K,1] = C,
forall L in 2..10: Plate[L,11] =D

Gear Train We now present a more detailed illustration of constrained objects. The design of a gear train is
a problem from the industrial engineering context. A gear train is a special kind of drive whose purpose is
to transmit rotary power between shafts while reducing angular speed. It consists of an assembly of pairwise
engaged gears (meshes) enclosed in a gear box. The efficiency (E) of a drive is given as a relation between
its input and output torques, angular speeds and transmission powers. We model this as a constraint in the
Drive class. The attributes and constraints of the remaining Cob classes are described in the class diagram
in figure 3. The problem is to design a gear train that meets the designer’s constraints and preferences while
maximizing its efficiency (which is stated as a preference in the Drive class). The Cob model of figure 3 can
be used to solve this problem. Given values for Tin, Hin, and Nin, the underlying Cob computational model
calculates the numer of meshes and teeth(of a gear) required to maximize the efficiency of the drive. Then
using the number of meshes and teeth obtained earlier, the values of P (diameteral pitch), d (pitch diameter)
and F (face width) are computed.

Document Representation The use of constrained objects to model documents brings up the need for constraint
optimization and relaxation. In a simplified version of this problem, a book may be thought of as a complex
object that aggregates many chapters, each of which aggregates many sections. Each section in turn aggregates
many paragraphs, and each paragraph aggregates many words. Thus, the elements of a book, namely, chapter,
section, and paragraph become the basic classes of objects in the Cob model. Suppose we are interested in
formatting the contents of the book. We may think of a format predicate within each class of book-element
(chapter, section, etc.), whose purpose is to obtain the optimal (best) layout for the element (The reason
for having a predicate, instead of a method, will become clear below.) Each formatted element would have a
measure of how good or bad its formatting is, viz., its so-called badness. We assume that the format predicate
incorporates some such method for calculating its badness. Also, the format predicate of one element would
invoke the format predicate of its constituent elements in order to construct its optimal layout.

In this example, there are certain important constraints, namely: no section shall begin on the last line
of a page, and no section shall end on the first line of a page. Such restrictions are better specified separately
from the formatting algorithm, since the algorithm may be modified independently while these still hold. The
constraints clause is used for specifying these restrictions. Now suppose the formatting algorithm comes up
with a format that violates one of these constraints, it would then need to produce another format which
will satisfy all constraints. (This is why having a format predicate is more convenient than a method.) Of
course, this assumes that such a format exists; otherwise, we need some means of relaxing the constraints. The
possibility of multiple solutions necessitates a preference criterion for choosing the best (most preferred) one.
This is shown in the class Para, where we state that the format with lesser badness is the preferred one:

format (L1, B1l) < format(L2, B2) :- B1 > B2.

Drive

Tin, Tout, Hin, Hout, Nin, Nout, E, R

Tin=63025* Hin/ Nin
Tout = 63025 * Hout/Nout
E<1

E =Hout/ Hin

R =Nin/ Nout

max E

1

1

Tin : Input torque

Hin : Input transmission power

Nin : Input angular speed

E : Efficiency

P : Diametral pitch

N : Number of teeth

d : Pitch diameter

F: Face width

Ngi : Number of teeth of the gear in mesh i
Npi : Number of teeth of the pinionin mesh i

R : Speed reduction ratio
\Ri : Speed reduction ratio of mesh i

Chain_drive

gbox

i 1
Gear_box
Nb, Ns, Ng, I, w, h
Nb=2* Ns

Epicyclic_train

Belt_drive Gear_Train
gbox, mesh
R =prod min mesh: m.r
forall min mesh :
mesh 1 m.g2.s = next(m).gl.s
n
Mesh
01,92, r
gl.N>=17
r=g2.N/glN
glP=g2.P Reverted_train | Compound_train
glF=g2F
gl.PA = g2.PA
r<=5
Max r
o
Gear .
Notation :
P,N,d,F,PA, s
class_name
P=N/d —
N >= 18 attributes
member(PA, [14.5, 20, 25]) constraints
9/P<=F<=13/P preferences

A gear train isaspecia type of drive whose purpose isto transmit rotary power
between shafts while reducing angular speed. A pair of gears engaged together
form amesh; agear train is an assembly of meshes enclosed in a gear box.
Constrained objects can be used to help an engineer design a drive that meets
the client’ s constraints and preferences(e.g. maximize efficiency).

A —» B

Class A isasubclass of class Binheritance

A O—O B

Class A aggregates class B

Fig. 3. Gear Train as Constrained Objects

10

class Section {

attributes
Para[] paras.
int begin_1ln, end_1n

constraints
begin_1n mod 50 != 49.
end_1n mod 50 != 1.
begin In = first(paras).begin 1n.
end 1n = last(paras).end ln.

forall p in paras: (p.end 1ln + 1 = next(p).beginln) :- not is_last(p))
predicates
format (Sec_lines) :- format(paras, Sec_lines, Badness).

format ([1, [1, 0).
format ([P|Paras], [L|Lines], Badness) :-
P.format(L,Badness’),
format (Paras, Lines, Badness’’),
Badness = Badness’ + Badness’’.
}
class Para {
attributes
int begin 1ln, end_1n, Numlines.
string[] words

constraints

end_ln = begin_1n + Numlines.

width = 30
predicates

format(Lines, Badness) :- ... details omitted ...
preference

format (L1, Bl) < format(L2, B2) :- B1 > B2.

4 Cob Programming Environment

Compiler. We have developed formal declarative and operational semantics of Cob. For the interested reader,
we highlight /summarize the rules for operational semantics of Cob in appendix B. In order to validate the
language and its semantics, we have developed a prototype Cob compiler that translates a Cob program
into a CLP(R) program. Essentially each class definition translates to one predicate clause. The constraints
and constructor clauses of all classes are translated to appropriate CLP(R) constraints. Since conditional
constraints do not have a direct equivalent in CLP(R), we have implemented them separately. Disequations
(=) and constructive negation are handled through special predicates. Inheritance and compound attributes
are translated by expanding the attributes of a class to include the attributes of its superclass. Quantified and
aggregation constraints (forall, sum, etc.) are translated to predicate clauses that iterate over elements of an
enumerated type. We use the underlying CLP(R) engine for constraint handling. We are presently extending
the tool to handle preferences.

CUML. We have developed a constraint-based extention of the Unified Modeling Language [18]. This ex-
tension, called CUML, allows one to define attributes, constraints, and preferences associated with every
constrained object class definition. The tool generates textual equivalent of the CUML specification. Fig-
ure 3 illustrates the CUML notation for the gear train example. CUML facilitates quick and error-free code
development. The notation being employed is explained at the bottom of Figure 3.

Domain Specific Visual Inter face. Currently we have a domain-specific visual interface tool for building
electric circuits and generating textual Cob code that instantiates the appropriate classes. This interface is a

11

palette of buttons and drawing primitives for creating instances of electrical components like batteries, resistors
and wires. Each component has a predefined Cob class definition and the value of any of its attributes (e.g.,
current through a wire or voltage of a battery), can be specified through this interface. The components
can be placed in any desired configuration and the appropriate classes representing this configuration are
automatically instantiated. Once a model/configuration is created, it is translated using the Cob compiler to
CLP(R) code. The constraints of the model are then solved, and values of attributes of all the components
are displayed. If the model has an inconsistency (some constraint cannot be satisfied), it is detected during
this execution of the model. Code generation and model execution are important capabilities of this tool not
present in drawing tools like AutoCAD.

5 Conclusions, Status, and Further Work

The concept of constrained objects is broadly applicable in the modeling of complex engineering structures.
We have illustrated this point in this paper through a variety of examples. We believe the Cob definitions
presented are concise and clear. With the aid of domain-specific visual interfaces, the resulting paradigm has
considerable potential for both pedagogic purposes as well as for more advanced applications. On a technical
level, our language advances previous work by showing the use of a number of new features in modeling,
especially conditional and quantified constraints, as well as preferences.

We are working on a number of modeling applications with researchers in the civil, chemical, computer,
mechanical, and industrial engineering departments in the University at Buffalo. These applications include:
rapid product configuration in agile manufacturing, constraint-based product design, physically-based model-
ing, hierarchic modeling in chemical process synthesis, and structural design. Experience gained in these areas
will in turn help refine and advance the paradigm, making it a more robust platform for engineering modeling
and design.

We are presently investigating a few important issues relating to this paradigm: (i) inconsistency
detection, (ii) incrementality, (iii) abstraction. When the state of a model violates its constraints, a response
to the effect that an error has occured is often not sufficient. The underlying computational engine should be
able to provide a narrow range of possible places where the programmer can look for and correct the error.
It is also possible sometimes that there are no solutions to the constraints, and the modeler is interested in
understanding the cause of this inconsistency. This is also referred to as an over-constrained system [5] in
the literature. A constraint violation could occur due to an incorrectly stated constraint, or an inconsistent
value assigned to an attribute and can be corrected with the help of the programer. In conjunction with a
visual representation for constrained objects, it is possible to develop techniques showing where the constraint
violation occurred.

Another issue of special interest is incrementality. Since a modeler will typically make several changes
to an initial model, it is important to support incremental constraint satisfaction, i.e., we should try to compute
the new state of the complex object without re-solving all the constraints. When complex object is very large
(i.e., consists of many subobjects), it may be very time-consuming to do a detailed simulation. In this case
it may be necessary to work with a simplified model, i.e., a “cross-section” of the model so as to get an
approximate answer in reasonable time. This problem may be called model abstraction.

References

[usy

. H. Ait-Kaci and A. Podelski. Towards a Meaning of LIFE. Journal of Logic Programming, 16(3):195-234, 1993.

2. A. Borning B. N. Freeman-Benson. Integrating Constraints with an Object Oriented Language. In Proc. European
Conference On Object-Oriented Programming, pages 268—286, 1992.

3. A. Borning. The Programming Language Aspects of Thinglab, A Constraint-Oriented Simulation Laboratory.
ACM TOPLAS, 3(4):252-287, 1981.

4. E.C. Freuder. Partial Constraint Satisfaction. In Proc. 11th Intl. Jt. Conf. on Artificial Intelligence, pages 278-283,

1989.

12

10.

11.

12.

13.
14.

15.
16.
17.
18.

19.

20.
21.

E.C. Freuder and R.J. Wallace. Heuristic Methods for Over-Constrained Constraint Satisfaction Problems. In
Proc. CP’95 Workshop on QOuerconstrained Systems, 1995.

A. Borning G. Lopez, B. N. Freeman-Benson. Constraints and Object Identity. In Proc. European Conference On
Object-Oriented Programming, 1994.

K. Govindarajan. Optimization and Relazation in Logic Languages. PhD thesis, Department of Computer Science,
SUNY - Buffalo, 1997.

K. Govindarajan, B. Jayaraman, and S. Mantha. Optimization and Relaxation in Constraint Logic Languages. In
Proc. 28rd ACM Symp. on Principles of Programming Languages, pages 91-103, 1996.

R. Helm, I. Holland, and D. Gangopadhyay. Contracts: Specifying Behavioural Compositions in Object-Oriented
Systems. In Proc. Object-Oriented Programming, Systems, and Applications (OOPSLA), 1990.

B. Horn. Constraint Patterns As a Basis For Object Oriented Programming. In Proc. Object-Oriented Programminyg,
Systems, and Applications (OOPSLA), 1992.

J. Jaffar and J. L. Lassez. Constraint Logic Programming. In Proc. 14th ACM Symp. on Principles of Programming
Languages, pages 111-119, 1987.

J.H.M. Lee and P.K.C. Pun. Object Logic Integration: A Multiparadigm Design Methodology and a Programming
Language. Computer Languages, 23(1):25-42, 1997.

W.J. Leler. The Specification and Generation of Constraint Satisfaction Systems. Addison-Wesley, 1987.

G. Lopez. The Design and Implementation of Kaleidoscope, A Constraint Imperative Programming Language. PhD
thesis, University of Washington, 1997.

R. Mayne and S. Margolis. Introduction to Engineering. McGraw-Hill, 1982.

B. Meyer. FEiffel: The Language. Prentice-Hall, 1992.

C. Moss. Prolog++: The Power of Object-Oriented and Logic Programming. Addison-Wesley, 1994.

James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling Language Reference Manual. Addison-
Wesley, 1998.

G. Smolka. Constraint Programming in Oz (Abstract). In Proc. Intl. Conference on Logic Programming, pages
37-38, 1997.

P. van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press, 1989.

Warmer, J., Kleppe, A. The Object Constraint Language. Addison-Wesley, 1999.

Appendix A: Cob Syntax

selector_id ::=

attributes = decl [. decl |*
decl ::= type id_list
type = primitive_type_id | class_id | type]]
primitive_type_id := Real | Int | Bool | Char | String
id_list = attribute_id | , attribute_id |*
constraints = constraint [. constraint |*
attribute ::= selector|.selector]™ | attribute[term]
selector ::= attribute_id | selector_id(terms)

first | next | last

terms = term [, term |*
literals literal [, literal |*
literal ::= [not | atom
atom = predicate_id(terms) | constraint_atom

pred_clauses

pred_clouse ::
pred_clause ::

clause_head ::=

clause_body
goal

= pred_clause . [pred_clause .

I+
clause_head : — clause_body

clause_head

predicate_id(terms')

= goal [, goal |*
::= [not | predicate_id(terms')

13

terms' == term' [, term' |*
term' = constant | var' | attribute | function_id(terms’)
pref _clauses ::= pref _clause . [pref _clause . |*
pref _clause ::= predicate_id(terms') < predicate_id(terms') : — clause_body

| min term | max term

Appendix B : Cob Operational Semantics

The top down execution of a Cob program C translated to a CLP program P, is described in terms of a
sequence of transitions on states. A state is represented by the tuple < A, E,I,D,C,8, N >, where A is
a multiset of atoms and constraints and E,I,D,C,0, N are respectively multisets of equations, inequations,
disequations(!=), conditional constraints, valuations (attribute value pairs), and negated conjunction of atoms.
Given a goal G = new c(), the start state is < G, ¢, @, ¢, d, d,¢ >. Note that G is an appropriate translation
of new c(t) to a CLP goal. There is also a state called fail. A transition changes one state to another. The
types of transitions that may be applied to a given state is described below as a case analysis on the state.

1. <AUaq,E,I,D,C,6,N >>,< AUB,EU{t; =t},I,D,C,0,N >
if a is an atom selected by the computation rule and h < B is a rule of P and a and h have the same
outermost predicate and a = p(t;) and h = p(ts).
2. <AUa,E,I1,D,C,0,N >—, fail
if @ is an atom selected by the computation rule and there does not exist a rule h + B of program P such
that a and h have the same outermost predicate and a = p(t;) and h = p(t2)
3. <A,EUcI,D,C,0,N > if ¢ is an equation
<AUcE,I,D,C,0,N > —. <A/E,IUc¢,D,C,0,N > if c is an inequation
<AE I,DUcC,0,N > if ¢ is a disequation
<A/E I,D,CUc80,N > if ¢ is a conditional constraint
4. < A E,I,D,C,0,N >

—.< A, E',I,D,C,0 U0 N > where (6', E') = solve.(E)
—ie< A,EUE'I''D,C,0U0'" N > where (¢!, E', I") = solve;(I)
—4< A E,I,D',C,0,N > where D' = solveq(D)

=< A, EUE,IUI',DUD',CUC'",0U0',N' > see details of —.. below

solve.(E) is an equation solver that returns attribute-value pairs and a simplified set of equations E' such
that D =60 U E' iff U E
solve;(I) is an inequation solver that returns attribute value pairs 8’ and simplified sets of equations E’
and inequations I' such that D ' UE' UI' iff UEU I
solvey tries to verify a set of disequations, and returns those disequations that cannot be verified.
5. <AE,I,D,CU{p:—¢q},0,LN> —
<AEI,D,C,0,N > if D EV(
<AEI,D,C,0,NU{~q}> ifDEVY(
<AEUp,I,D,C,H,N > if D |=V(q + (EUIUD) and p is an equation
<A,E,IUp,D,C,0,N > if D =V(q+ (EUIUD) and p is an inequation
<A E,I,DUp,C,0,N > if D =V(q+ (EUIUD) and p is a disequation
6. <AEID,C0,N >=,< A E,I,D,C,0,N > if consistent(E, I, D)
< A,E,I1,D,C,0, N >— fail if —~consistent(E, I, D)

p+ (EUIUD)

A computation rule selects a type of transition and an approriate element of A to compute the next state in
the sequence. A derivation for a goal G w.r.t. a program P is a finite sequence of transitions starting at the
start state < G, ¢, P, P, P, p, ¢ >, where successive states are obtained by the application of computation rules.

14

If a derivation for a goal G w.r.t. a program P ends in the state < ¢, E,I,D,C,8, N > such that
consistent(E, I, D, C), we say that the derivation is successful, the valuation 0 is the computed answer and
E,I,D,C and N are the answer constraints.

Appendix C: Cob model of a Non-Series/Parallel Circuit

The circuit in Figure 4 can be modeled in cob by the class samplecircuit given below. Given the resistance
of each resistor and the volate of the battery, the cob model calculates the current flowing through every
component and the voltage at every node of the circuit.

N2
10 10 _
N1 %5ﬂ N4
10 5 _
N3
i
10V

Fig. 4. A Non-series/parallel circuit

class samplecircuit {
attributes
resistor R12, R13, R23, R24, R34. battery B. node N1, N2, N3, N4.
componentEnd Rel21, Rel122, Rel31, Rel32, Re231,Re232 , Re241, Re242, Re341, Re342, Bel, Be2
constructors samplecircuit(X) {
R12 = new resistor(10), R13 = new resistor(10),
R23 = new resistor(5), R24 = new resistor(10), R34 = new resistor(b),
Rel121 = new componentEnd(R12, 1), Rel22 = new componentEnd(R12, 2),
Re131 = new componentEnd(R13, 1), Rel32 = new componentEnd(R13, 2),
Re231 = new componentEnd(R23, 1), Re232 = new componentEnd(R23, 2),
Re241 = new componentEnd(R24, 1), Re242 = new componentEnd(R24, 2),
Re341 = new componentEnd(R34, 1), Re342 = new componentEnd (R34, 2)
B = new battery(10), Bel = new componentEnd(B, 1), Be2 = new componentEnd(B, 2),
N1 = new node([Re121, Bel, Rel131]), N2 = new node([Rel122, Re241, Re231]),
N3 = new node([Re132, Re232, Re341]), N4 = new node([Re242, Re342, Be2])

b}

15

