
The Lambda Calculus

Bharat Jayaraman

Department of Computer Science and Engineering

University at Buffalo (SUNY)

January 2010

The lambda-calculus is of fundamental importance in the study of programming languages.

It was founded by Alonzo Church in the 1930s well before programming languages or even

electronic computers were invented. Church’s thesis is that the computable functions are

precisely those that are definable in the lambda-calculus. This is quite amazing, since the

entire syntax of the lambda-calculus can be defined in just one line:

T ::= V | λV.T | (T T)

The syntactic category T defines the set of well-formed expressions of the lambda-calculus,

also referred to as lambda-terms. The syntactic category V stands for a variable; λV.T is

called an abstraction, and (T T) is called an application. We will examine these terms in more

detail a little later, but, at the outset, it is remarkable that the lambda-calculus is capable of

defining recursive functions even though there is no provision for writing recursive definitions.

Indeed, there is no provision for writing named procedures or functions as we know them

in conventional languages. Also absent are other familiar programming constructs such as

control and data structures. We will therefore examine how the lambda-calculus can encode

such constructs, and thereby gain some insight into the power of this little language.

In the field of programming languages, John McCarthy was probably the first to rec-

ognize the importance of the lambda-calculus, which inspired him in the 1950s to develop

the Lisp programming language. Lisp may be regarded as the synthesis of two key ideas:

the use of lambda-terms for representing functions, and the use of a built-in list abstract

datatype for constructing structured data objects. In the 1960s, Peter Landin showed how

the statically scoped procedural language Algol 60 could be translated into the lambda-

calculus, hence showing that the semantics of imperative languages could be reduced to the

semantics of the lambda-calculus. In the 1970s, the lambda-calculus received increased at-

tention, soon after Dana Scott showed how to give mathematical semantics (or “models”)

for the lambda-calculus. This result in fact provided a mathematical basis for all program-

ming languages—earning Scott the prestigious ACM Turing Award in 1976—but it especially

motivated interest in functional programming languages with higher-order functions and lazy

evaluation. These topics continue to be of great interest today.

The language of lambda-terms referred to above is also called the untyped lambda-

calculus, meaning that no type information is associated with variables. There are two

interesting variants of the untyped lambda-calculus: the simply typed lambda-calculus, and

the second-order typed lambda-calculus. (One encounters the latter in the study of ML, a

1

higher-order functional programming language.) It suffices for now to note that the differ-

ence between them is that second-order types can contain type variables but simple types

cannot. Second-order types are also referred to as “polymorphic” types or “generic” types.

Both these calculi require each variable to have a type, and application terms must respect

this type information. As an interesting consequence, both calculi are strictly less powerful

than the untyped lambda-calculus, and they also have different expressive powers. The type

requirements effectively prevent a simply typed or second-order typed lambda-term from

representing a nonterminating program.

Typed lambda-calculi are currently a very active topic of research. There are close

connections between the structure of proofs in certain systems of logic and that of typed

lambda-terms, and this idea has prompted research in extracting (typed functional) pro-

grams from proofs (of certain logical statements). Recently, an interesting language called

λProlog—essentially Prolog with typed lambda-terms replacing first-order terms—was shown

to have potential use in such diverse areas as proof systems, natural language analysis, and

program transformation and synthesis. Thus typed lambda-calculi appear to be a unifying

force between theories of functions and logics.

We provide an introduction to the untyped and typed lambda-calculi. Section 1 covers

syntactic issues, including bound and free occurrences of variables, as well as substitutions.

Section 2 presents the reduction rules of the lambda-calculus, and shows how computation

is modeled in terms of reduction. This section also states the well-known Confluence and

Church-Rosser properties of the lambda-calculus. Section 3 shows how to encode various pro-

gramming language constructs in the lambda-calculus, especially data types, control struc-

tures, and recursive definitions. Section 4 introduces the typed lambda-calculi, and briefly

covers simple and second-order types.

A good introductory treatment of the lambda-calculus can be found in the book “Pro-

gramming Language Theory and its Implementation,” by M.J.C. Gordon, published by

Prentice-Hall. A more advanced treatment, covering the theory of fixed-points and mod-

els of the lambda-calculus, is in the book “Denotational Semantics,” by J. Stoy, published by

MIT Press. “Lambda Calculus - its Syntax and Semantics,” by H.P. Barendregt, published

by North-Holland, is an advanced, encyclopaedic treatment of the subject. The simple and

second-order typed lambda-calculi are discussed in the paper by S. Fortune, D. Leivant, and

M.J. O’Donnell, “The Expressiveness of Simple and Second-Order Type Structures,” Journal

of the ACM, vol. 30, no. 1, pp. 151-185, 1983. A more introductory treatment of this topic

is in the ACM Computing Surveys article, “On Understanding Types, Data Abstraction,

and Polymorphism,” by L. Cardelli and P. Wegner, vol. 17, no. 4, 1985.

1. Syntactic Issues

As noted earlier, the set of well-formed lambda-terms is given by the grammar:

T ::= V | λV.T | (T T)

2

where V stands for a variable term, λV.T stands for an abstraction term, and (T T) stands

for an application term. The variable V in λV.T will be referred to as a binder variable.

Our convention in these notes will be to write variables using lowercase letters, possibly

subscripted, e.g. x, y, z, x1, x2, y1, We will use T, T1, T2, . . . to stand for an arbitrary

lambda-term, and V, V1, V2, . . . to stand for an arbitrary variable.

Abstraction terms (or abstractions) are of the form λV.T where T is any term. Examples

are:

λx.y

λx.x

λx.(x x)

λx.(x y)

λx.λy.x

λx.λy.y

λf.λx.(f x)

λf.λx.(f (f x))

. . .

Application terms (or applications) are of the form (T1 T2) where T1 and T2 are any terms.

Examples are:

(x y)

((x y) z)

(x (y z))

(λx.x y)

((λf.λy.(f (f y)) λz.z) w)

(λx.λy.x λw.y)

. . .

Thus, abstractions and applications can be arbitrarily nested inside one another.

Some intuition underlying this unusual syntax is probably necessary at this point: Since

the lambda-calculus was designed to be a theory of functions, lambda-terms must somehow

encode the essential features of functions. Towards this end, abstractions serve as way of

encoding (or writing) function definitions†, and applications serve to encode the application

† The difference between a definition of a function and the function per se should be noted. For example,

there are many different ways—indeed, infinitely many ways—of defining, say, the factorial function, but the

factorial function itself is specified by the set of ordered pairs {0 7→ 1, 1 7→ 1, 2 7→ 2, 3 7→ 6, . . .}.

3

of a function to its arguments. More precisely, an abstraction λV.T defines a function of one

argument V and whose result is defined by T . In programming language terminology, λV.T

can be thought of as a (nameless) function with one formal parameter V and whose result

expression is given by T ; and (F T) can be thought of as a call to function F with actual

parameter T . Thus, for example,

λx.x

is an encoding of the identity function. The abstraction

λx.λy.x

encodes a function that takes two arguments, and returns the first. The abstraction

λf.λx.(f x)

encodes a function of two arguments, f and x, whose result is that of applying f to x. These

examples illustrate two points:

1. A multi-argument function can be encoded in the lambda-calculus by “cascading” a

series of single-argument functions. For example, λx.λy.T actually encodes a function

that takes one argument x and returns a function that takes the second argument y

and has body T . It follows that the application of a multi-argument function to actual

parameters must be accomplished in the lambda-calculus through a series of single-

argument applications.

2. The lambda-calculus is a higher-order language. For example, λf.λx.(f x) represents a

function that takes another function f as argument and returns the function λx.(f x)

as its result.

1.1 Bound and Free Occurrences of Variables

An occurrence of a variable V in a lambda-term is said to be bound if it lies within the lexical

scope of a surrounding abstraction of the form λV.T ; otherwise the variable occurrence is

free. The notion of a free occurrence of a variable is similar to that of a non-local occurrence

of a variable in a lexically-scoped programming language. For example, in the following term,

λx.(x y)

in which variable occurrences are underlined, the occurrence of y is free, but the occurrence

of x is bound by the surrounding abstraction. In the term

(λx.y λy.y)

the first occurrence of y is free, but the second is bound. In the term

λx.(λy.x λx.(y x))

4

the two occurrences of x are bound by two different abstractions, but the occurrence of y is

free. Note that the occurrence of y above is not within the scope of the term λy.x.

A more precise specification of a free occurrence of a variable is provided by the following

infix binary relation occurs free in, which is a case analysis of the three syntactic categories

of lambda-terms (note that V and V1 range over variables in the lambda-calculus, whereas

T , T1 and T2 range over arbitrary lambda-terms):

V occurs free in V1 ↔ V = V1

V occurs free in λV1 . T ↔ V 6= V1 ∧ (V occurs free in T)

V occurs free in (T1 T2) ↔ (V occurs free in T1) ∨ (V occurs free in T2)

Exercise 1: Write a function, free(T), that returns the set of all free occurrences of variables in a

lambda-term T.

1.2 Substitution

In preparation for the next section, we explain how to substitute some term T1 for all free

occurrences of a variable V in a term T2. We write this substitution operation as follows†:

T2[V ← T1].

For example, the result of substituting λw.w for all free occurrences of f in λx.(f (f λf.(f x)))

is λx.(λw.w (λw.w λf.(f x))), i.e.,

λx.(f (f λf.(f x))) [f ← λw.w] = λx.(λw.w (λw.w λf.(f x))).

Note that the occurrence of f inside λf.(f x) is bound, and hence it is not replaced. From

the above example, it appears that the substitution could be achieved by a straightforward

textual replacement. Therefore we might try to define the substitution operation recursively

as follows (assuming, as before, that V and V1 range over variables in the lambda-calculus,

and T , T1 and T2 stand for arbitrary lambda-terms):

V [V ← T] = T

V1 [V ← T] = V1, if V 6= V1

(T1 T2) [V ← T] = (T1[V ← T] T2[V ← T])

λV.T1 [V ← T] = λV.T1

† Another way of writing the substitution operation is [T1/V]T2.

5

λV1.T1 [V ← T] = λV1.T1[V ← T], if V 6= V1

The above definition of substitution is, however, deficient in one crucial respect. To see

the problem, let us reconsider the earlier example, but now suppose we wish to substitute

the term λw.(w x) for all free occurrences of f in λx.(f (f λf.(f x))). According to the

above recursive specification of substitution, our result will be:

λx.(λw.(w x) (λw.(w x) λf.(f x))).

Note that, in this result, the free occurrence x in λw.(w x) has become bound to the sur-

rounding abstraction λx. . . . in the resulting term. This problem is referred to as the variable

capture problem. Precisely why this outcome is unsatisfactory will become clearer when we

examine the reduction rules in the next section. For now, we simply prevent such free vari-

ables from becoming bound during substitution by replacing the last case of the recursive

specification of substitution by the following two cases:

λV1.T1 [V ← T] = λV1.T1[V ← T], if V 6= V1 ∧ ¬(V1 occurs free in T)

λV1.T1 [V ← T] = λV2.T1[V1 ← V2][V ← T], if V 6= V1 ∧ (V1 occurs free in T)

∧ ¬(V2 occurs free in T)

∧ ¬(V2 occurs free in T1)

The first case above simply says that we may substitute, as before, T for V in λV1.T1 as

along as the V1 does not occur free in T . If V1 does occur free in T , the second case specifies

that we first construct the term λV2.T1[V1 ← V2] by renaming the binder variable V1 by a

variable V2—which does not occur free in T or T1—and replacing all free occurrences of V1

in T1 by V2, and we then replace T for V in the constructed term. For example, the result of

substituting the term λw.(w x) for all free occurrences of f in λx.(f (f λf.(f x))) is obtained

by first renaming the binder variable x in the outer abstraction by a new variable. This new

variable should not be free in λw.(w x) or (f (f λf.(f x))). That is, it can be any variable

other than f or x. Suppose we choose y. We first construct the term λy.(f (f λf.(f y))),

and substitute λw.(w x) for all free occurrences of f in this term. Our result therefore is:

λy.(λw.(w x) (λw.(w x) λf.(f y))).

If, on the other hand, we wished to substitute λw.(w z) for all free occurrences of f in

λx.(f (f λf.(f x))), no renaming is necessary to obtain the correct answer:

λx.(λw.(w z) (λw.(w z) λf.(f x))).

Finally, consider the following substitution operation:

λy.(f (y λy.(y f)))[f ← λw.(w y)]

6

Following the last case of the definition of the substitution operation, we must first rename

the outer binder variable y to (say) y1. Hence the above substitution operation is equivalent

to:

λy1.(f (y1 λy.(y f)))[f ← λw.(w y)].

In applying the substitution recursively to the subterms, the binder variable y gets renamed

to y2, and hence the result is:

λy1.(λw.(w y) (y1 λy2.(y2 λw.(w y)))).

Exercise 2: Following the definition of the substitution operation, determine the result of the fol-

lowing expression:

(i) λx.x [x← a].

(ii) λy.(x λz.(z x))[x← z].

(iii) λy.(x λz.(z (x y))) [x← λz.(z (x y))].

Exercise 3: Prove that T [x ← T1][y ← T2] = T [y ← T2][x ← T1[y ← T2]], assuming that

x 6= y and ¬(x occurs free in T2).

2. Reduction and Equality of Lambda Terms

2.1 Reduction

The following are the three famous reduction rules of the lambda-calculus:

1. α-reduction: λx.T −→ λy.T [x← y], if ¬(y occurs free in T).

2. β-reduction: (λx.T1 T2) −→ T1[x← T2].

3. η-reduction: λx.(T x) −→ T , if ¬(x occurs free in T).

Computation is modeled in the lambda-calculus by the notion of a reduction sequence. In

preparation for the definition of a reduction sequence, we first define a reduction step as:

T1 =⇒ T2

if T1 and T2 are obtained as a direct instance of one of the three reduction rules or T2 is the

result of replacing some subterm of T1 according to one of the reduction rules—the latter

case is referred to as subterm-replacement.

7

Examples of α-reduction steps:

λx.x =⇒ λy.y

λx.(f (f x)) =⇒ λy.(f (f y))

λf.λx.(f (f x)) =⇒ λf.λy.(f (f y)) (subterm-replacement)

The α-reduction rule basically states that systematic renaming of a binder variable in

an abstraction produces an equivalent lambda-term. Note that λx.((x (f y)) x) 6=⇒
λy.((y (f y)) y)), because y occurs free in the term on the left. That is, renaming is

permissible only if this does not cause a free variable to be bound (or “captured”) by the

new binder variable.

Examples of β-reduction steps:

(λx.x a) =⇒ a

(λf.λx.(f (f x)) λx.x) =⇒ λx.(λx.x (λx.x x))

(λf.λx.(f (f x)) λy.(x y)) =⇒ λx2.(λy.(x y) (λy.(x y) x2))

λy.(λx.(f (f x)) a) =⇒ λy.(f (f a)) (subterm-replacement)

The β-reduction rule models function application. It basically states that function application

involves the replacement of all occurrences of the formal parameter in the body of the function

definition by the actual parameter. This replacement is given by the substitution operation

defined in the previous subsection. The parameter transmission mode can be seen to be

similar to call-by-name.

Examples of η-reduction steps:

λx.(f x) =⇒ f

λy.((f x) y) =⇒ (f x)

(λy.λx.(f x) z) =⇒ (λy.f z) (subterm-replacement)

The η-reduction rule is related to the rule of extensionality, which states that two functions

are equivalent if they return the same results for all arguments (see exercise 8). For example,

suppose that the lambda-terms λx.(f x) and f are applied to some arbitrary term T . These

applications are represented by (λx.(f x) T) and (f T). Since the latter is the result of

β-reducing the former, the terms λx.(f x) and f are taken to be equivalent. In other words,

f is a more compact (or reduced) form of λx.(f x). Note that λx.((f x) x) 6=⇒ (f x) by

η-reduction since the subterm (f x) of λx.((f x) x) contains an occurrence of x free in it.

In order to define a reduction sequence, we define

8

T1 =⇒∗ T2

as the reflexive, transitive closure of =⇒, and take a reduction sequence to be all terms that

appear in a derivation of =⇒∗. Examples:

x =⇒∗ x (reflexive rule)

λx.(f x) =⇒∗ λx.(f x) (reflexive rule)

λx.λy.(x y) =⇒∗ λp.λq.(p q) (transitive rule, two α-reduction steps)

((λx.λy.(x y) a) b) =⇒∗ (a b) (transitive rule, two β-reduction steps)

λx.λy.((f x) y) =⇒∗ f (transitive rule, two η-reduction steps)

Exercise 4: Show the sequence of reduction steps to prove the following:

(λt.(λw.(w t) λp.p) p) =⇒∗ p

Exercise 5: In view of the reduction rules, explain why the substitution operation was defined so as

to avoid the “variable capture” problem.

2.2 The Confluence Property

We will say that a lambda-term T is reducible if it is (or contains a subterm) of the form

(λx.T1 T2) or of the form λx.(T3 x), with x not occurring free in T3; otherwise we will say

that T is irreducible. A subterm of the form (λx.T1 T2) or λx.(T3 x), with x not occurring

free in T3, is called a redex. In general, a term may contain more than one redex, and this is

the reason that we might have different reduction sequences starting from some lambda-term.

An irreducible term is said to be in normal form, or βη-normal form. If T1 =⇒∗ T2 and T2 is

in normal form, we will say that T2 is a normal form of T1. If a reduction sequence is thought

of as representing a computation, then the computation “terminates” when a normal-form

term appears at the end of the sequence.

Two questions arise in connection with normal forms:

Does every lambda-term have a normal form?

Is the normal form for a term unique (assuming it exists)?

The first question is equivalent to asking: Does the computation arising from every lambda-

term terminate? In view of our opening remark that the lambda-calculus can represent

any computable function, one should expect that the answer to this question is ‘no’. As a

concrete example, below is a nonterminating reduction sequence:

(λx.(x x) λx.(x x))

9

=⇒ (λx.(x x) λx.(x x))

=⇒ (λx.(x x) λx.(x x))

=⇒ ...

(An application such as (x x) is called self application. It is because of such terms that

nontermination is possible in the lambda-calculus. In typed lambda-calculi, such terms are

prohibited because it is not possible to assign a type to x—the type of a function is necessarily

different from the types of its arguments.)

To get a feel for the question on the uniqueness of normal forms, let us examine the

following reduction sequence.

Reduction Sequence 1:

(λx.(λf.(f x) λz.z) λy.(f y))

=⇒ (λf2.(f2 λy.(f y)) λz.z) (β-reduction)

=⇒ (λz.z λy.(f y)) (β-reduction)

=⇒ λy.(f y) (β-reduction)

=⇒ f (η-reduction)

Firstly, it is clear that the η-reduction which was performed in the last step could have been

performed at any earlier step without altering the final outcome. Assuming that we leave

the η-reduction to the last step, there still are two other possible reduction sequences, as

shown below. At each step, the underlined subterm is the redex that is reduced:

Reduction Sequence 2:

(λx.(λf.(f x) λz.z) λy.(f y))

=⇒ (λx.(λz.z x) λy.(f y)) (β-reduction)

=⇒ (λx.x λy.(f y)) (β-reduction)

=⇒ λy.(f y) (β-reduction)

=⇒ f (η-reduction)

Reduction Sequence 3:

(λx.(λf.(f x) λz.z) λy.(f y))

10

=⇒ (λx.(λz.z x) λy.(f y)) (β-reduction)

=⇒ (λz.z λy.(f y)) (β-reduction)

=⇒ λy.(f y) (β-reduction)

=⇒ f (η-reduction)

Although the three reduction sequences from the term (λx.(λf.(f x) λz.z) λy.(f y)) do

not make the same choice for the redex to be reduced at each step, the normal-form of this

term is the same. But consider the reduction sequence from (λx.λf.(f x) (f y)). There

are infinitely many normal forms for this term:

λf1.(f1 (f y)),

λf2.(f2 (f y)),

λf3.(f3 (f y)),

...

However, these terms are all α-reducible to one another, and hence they may be regarded as

essentially identical. The lambda-calculus has the property that the normal form for every

term is unique up to α-reduction, if the normal form exists. We are now ready to state the

first major theorem of the lambda-calculus:

Theorem 1 (Confluence Property): If T =⇒∗ T1 and T =⇒∗ T2, then there is a term U

such that T1 =⇒∗ U and T2 =⇒∗ U .

The Confluence Property states that whenever a term can be reduced to two different terms,

these two terms can be reduced to a common term. Using this property, it is easy prove

that the normal form of a term is unique (modulo α-reduction) if it exists: Suppose that a

term T has two normal forms T1 and T2, i.e., T =⇒∗ T1 and T =⇒∗ T2. By the Confluence

Property, there is a term U such that T1 =⇒∗ U and T2 =⇒∗ U . Since T1 and T2 are normal

forms, it must be the case that, if T1 and T2 are not identical, they could be related to U

only by α-reduction. Hence T1 and T2 are identical modulo α-reduction.

Given that nonterminating reduction sequences are possible, how should we carry out

reductions so that a normal-form term is produced whenever one exists? To appreciate this

question, consider the term:

((λx.λy.x a) (λx.(x x) λx.(x x))).

Since the subterm (λx.(x x) λx.(x x)) can be reduced ad infinitum, there is a nonterminating

reduction sequence from the given term. However, there is also a reduction sequence leading

to the normal form, as follows:

11

((λx.λy.x a) (λx.(x x) λx.(x x)))

=⇒ (λy.a (λx.(x x) λx.(x x))

=⇒ a

In general, a normal form can be produced if the leftmost redex is chosen at each reduc-

tion step. The leftmost redex of a lambda-term, assuming it has a redex, can be defined

recursively. The main cases are as follows (the full definition is left as an exercise):

i. if the term is a variable V , it has no redex;

ii. if the term is of the form λV.(T V) and V does not occur free in T , then it is λV.(T V);

for all other abstractions of the form λV.T , it is the leftmost redex of T .

iii. if the term is of the form (λV.T U), it is (λV.T U); otherwise, assuming the term is of

the form (T1 T2), it is the leftmost redex of T1 if there is a redex in T1, otherwise it is

the leftmost redex of T2.

Exercise 6: Define a function lm(T) that returns the leftmost redex of a term T if one exists;

otherwise returns a special symbol, say none. Write your definition similar to that of substitution

operation.

While the leftmost reduction strategy avoids nontermination, it does not guarantee that

the reduction sequence will be the shortest possible one. For example, consider the following

two reduction sequences:

Leftmost strategy:

(λx.(x (x a)) λx.(f x))

=⇒ (λx.(f x) (λx.(f x) a))

=⇒ (f (λx.(f x) a))

=⇒ (f (f a))

Another strategy:

(λx.(x (x a)) λx.(f x))

=⇒ (λx.(x (x a)) f)

=⇒ (f (f a))

The leftmost strategy ended up taking more steps. The reason is that β-reduction of a

term such as (λx.T1 T2) involves substituting T2 for all occurrences of x in T1. Thus, after

substitution, the term T2 may be reduced multiple times within the body of T1. This situation

12

is similar to name parameters vs value parameters in conventional languages†. While the use

of a name parameter avoids simplification of the corresponding actual parameter expression

if it is not needed in a particular call, its use might result in the argument expression being

simplified more than once. For lambda-terms, although there are techniques, such as graph

reduction, which avoid re-simplifying the argument term, the problem of devising an optimal

reduction strategy, i.e., one that finds the shortest reduction sequence for an arbitrary lambda-

term, still remains an open problem in the field.

2.3 The Church-Rosser Property

The reduction rules implicitly define certain lambda-terms to be equal to one another. While

the α- and η-reduction rules serve as a basis for defining which function definitions are equal

(because these rules are defined for abstractions), the β-reduction rule (which is defined for

applications) serves to define which function applications are equal to other terms. We make

this connection more explicit as follows. We first define

T1 ⇐⇒ T2

if T1 =⇒ T2 or T2 =⇒ T1. If T1 ⇐⇒ T2, we say that they are related to one another by a

conversion step. We then take the desired equality between lambda-terms to be

T1 ⇐⇒∗ T2

which is the reflexive, symmetric, and transitive closure of ⇐⇒. Note that the symmetry

rule is used in the definition of ⇐⇒∗, and this is the main difference between equality and

reduction. Below are examples of terms that related by zero or more conversion steps, i.e.,

zero or more applications of the ⇐⇒ relation:

x⇐⇒∗ x (reflexive rule)

λx.(f x)⇐⇒∗ λx.(f x) (reflexive rule)

(f λx.x)⇐⇒ (f λy.y) (α-conversion step)

(f a)⇐⇒ (f (λx.x a)) (β-conversion step)

f ⇐⇒ λx.(f x) (η-conversion step)

(a b)⇐⇒∗ ((λx.λy.(x y) a) b) (transitive rule, two β-conversion steps)

f ⇐⇒∗ λx.λy.((f x) y) (transitive rule, two η-conversion steps)

Having introduced the notion of equality between lambda-terms, we can state the second

major theorem of the lambda-calculus:

† We can now see that reduction order and parameter transmision in the lambda-calculus differs from

that in Lisp. Instead of using leftmost(-outermost) reduction, Lisp adopts innermost reduction as the default

parameter transmission mode. And, instead of using call-by-name, Lisp uses call-by-value

13

Theorem 2 (Church-Rosser Property): If T1 ⇐⇒∗ T2 then there is a term U such that

T1 =⇒∗ U and T2 =⇒∗ U .

The Church-Rosser property relates the notion of equality of lambda-terms (⇐⇒∗) with the

notion of reduction (=⇒∗). It states that any two terms that are equal can be reduced to

a common term. Note T1 ⇐⇒∗ T2 does not imply T1 =⇒∗ T2 or T2 =⇒∗ T1: For example,

we might have T1 =⇒ U and T2 =⇒ U , from which it follows that T1 ⇐⇒∗ T2, but it does

not follow that T1 =⇒∗ T2 or T2 =⇒∗ T1. Although it is relatively easy to show that the

Confluence and Church-Rosser properties are equivalent to one another, proving either of

them independently of the other is quite hard†.

Exercise 7a: Prove that the Church-Rosser property implies the Confluence property.

Exercise 7b: Prove that the Confluence property implies the Church-Rosser property. Hint:

Use induction on the length of a ⇐⇒∗ derivation.

Exercise 8: The extensionality rule can be formally stated as follows: (T1 x) = (T2 x) →
T1 = T2, for any x. Prove that this rule equivalent to the rule of η equality, i.e., λx.(T x) = T

if x does not occur free in T . Note: Treat = as ⇐⇒∗.

3. Representation of Programming Constructs

3.1 Data Types

We begin by noting that a type is characterized by its operations. That is, it does not

matter how we represent data values as long as the semantics of the operations of the type

are preserved. In representing various data types using lambda-terms, we will justify the

chosen representations by showing that the semantics of the operations of these types are

preserved. Still, we need a way to represent data values, and the first idea is that a finite set

of n values can be represented by n abstraction terms, each with n binders such that the ith

value is represented by returning the ith binder. For example, a set of three values may be

represented as follows:

λv1.λv2.λv3.v1

λv1.λv2.λv3.v2

λv1.λv2.λv3.v3

The boolean type may thus be represented as:

† Because of this equivalence, some authors refer to the Confluence property as the Church-Rosser prop-

erty. But it is important to note that they are two distinct properties.

14

let true = λx.λy.x

let false = λx.λy.y

The identifiers true and false are mere abbreviations for the respective lambda-terms to

which they are equated. These abbreviations are written in boldface so as to distinguish

them from lambda-terms. Henceforth we will use these abbreviations with the understanding

that the reader substitutes the terms to which they are equated. The simplest operation on

a boolean is negation, which may be encoded as:

let not = λb.((b false) true)

The correctness of this definition may be verified by proving the following equalities which

express the properties of the negation operation:

(not true) =⇒∗ false

(not false) =⇒∗ true

We illustrate the proof of the first equality:

(not true)

= (λb.((b false) true) true)

= (λb.((b false) true) λx.λy.x)

=⇒ ((λx.λy.x false) true)

=⇒ (λy.false true)

=⇒ false

Another basic operation on booleans is the conditional if, defined as:

if(true, T1, T2) = T1

if(false, T1, T2) = T2

The representation of if in the lambda-calculus is as follows:

let if = λb.λx.λy.((b x) y)

The correctness of this definition can be easily verified since (((if true) T1) T2) =⇒∗ T1
and (((if false) T1) T2) =⇒∗ T2. For the sake of readability, henceforth we will write

lambda-terms so that the application of a function abbreviation such as if to its arguments

is written as (if B T1 T2) rather than as (((if B) T1) T2).

Exercise 9: Devise lambda-term representations for the boolean operations and and or.

15

Now let us turn our attention to representing a type with infinitely many values—the

natural number (or non-negative number). From the study of data types, we know that these

values can be represented in terms of two constructors, zero and succ (for successor), as

follows:

zero, succ(zero), succ(succ(zero)), succ(succ(succ(zero))), ...

Using lambda-calculus notation, these terms can be re-stated as follows:

zero, (succ zero), (succ (succ zero)), (succ (succ (succ zero))), ...

To arrive at the desired representation for natural numbers, we note that the names zero

and succ are not significant. We therefore abstract these names using lambda-abstraction,

as follows:

λs.λz.z, λs.λz.(s z), λs.λz.(s (s z)), λs.λz.(s (s (s z)))), . . .

The precise motivation for abstracting these names will be clear when operations on numbers

are defined. This idea of representing the natural numbers is due to Alonzo Church, and

these representations are hence referred to as Church numerals. It is easy to see that this

idea generalizes to any data type, e.g. lists, trees, etc., which are represented by a finite set

of constructors.

To understand how simple arithmetic operations are defined, it is worth examining

closely the definition of the successor function on Church numerals:

let succ = λn.λf.λx.((n f) (f x))

This function takes as input a Church numeral n, which would be of the form λs.λz. . . ., and

returns a new Church numeral of the form λf.λx. . . . (using two constructors f and x). The

body of this new numeral is obtained by replacing s by f and z by (f x) in the body of the

input numeral. This replacement is done by applying n to the arguments f and (f x) as

shown in the definition of succ. This example should make it clear why abstractions were

introduced in the representation of natural numbers. To see how the above definition works,

let us reduce the term (succ 0), where 0 abbreviates λs.λz.z:

(succ 0)

= (λn.λf.λx.((n f) (f x)) λs.λz.z)

=⇒ λf.λx.((λs.λz.z f) (f x))

=⇒ λf.λx.(λz.z (f x))

=⇒ λf.λx.(f x)

The idea used in the definition of the succ definition can be readily generalized to define the

addition and multiplication operations on two Church numerals, as follows:

16

let add = λn1.λn2.λf.λx.((n1 f) ((n2 f) x))

let mult = λn1.λn2.λf.λx.((n1 (n2 f)) x)

Exercise 10: Which arithmetic operation on Church numerals does the following lambda-term rep-

resent?

λn1.λn2.(n2 n1)

The following is a definition for the operation iszero which returns a boolean indicating

whether the input Church numeral represents the number zero or not.

let iszero = λn.((n λx.false) true)

The correctness of this definition can be easily verified by showing that (iszero λs.λz.z) =⇒∗

true, and (iszero N) =⇒∗ false for any Church numeral N 6= λs.λz.z.

Before proceeding to representation of recursive definitions, we show how to represent

the familiar Lisp primitives for building and accessing components of binary trees:

let cons = λl.λr.λc.((c l) r)

let car = λc.(c λl.λr.l)

let cdr = λc.(c λl.λr.r)

It can easily be verified that (car (cons l r)) =⇒∗ l and (cdr (cons l r)) =⇒∗ r.

Exercise 11: Devise a representation for the predecessor function, pred, on Church numerals.

Note: This representation is not so obvious. Hint: Suppose that we want to find the

predecessor of Church numeral n. First define a function that maps cons(i, j) to

cons(i + 1, i), then compose this function n times on the input cons(0, 0), and fi-

nally select out the desired answer.

3.2 Recursive Definitions

The representation of recursive function definitions in the lambda-calculus is one of the most

intriguing ideas in programming languages. Consider the following recursive definition of

the multiplication operation (ignore that we already have a nonrecursive definition for this

operation):

letrec times = λn1.λn2.(if (iszero n1) 0 (add n2 (times (pred n1) n2)))

We use “letrec” instead of “let” to emphasize that the definition is recursive. If it were not

for the use of times on the right-hand side, the right-hand side term can be translated into

17

a lambda-term in a straightforward way (assuming, of course, that a definition of pred is

available to us). In order to obtain a definition in the lambda-calculus, we first abstract the

name times on the right-hand side as follows:

let t = λf.λn1.λn2.(if (iszero n1) 0 (add n2 ((f (pred n1)) n2)))

Note that the definition of t is not equivalent to the definition of times. In order to obtain the

desired non-recursive definition of times, we need to find the fixed point of the transformation

defined by t. The fixed point is a function g such that (t g) = g. It should be clear

that this fixed point would also satisfy the original recursive definition. In the general

case, a transformation could have many fixed points, and here we would be interested in

the least fixed point. Multiple fixed points could arise when the function being defined is

nonterminating on some inputs. The least fixed point simply avoids making arbitrary choices

on such inputs, whereas other fixed points could. To keep these notes brief, we do not delve

into the theory of fixed-points; the interested reader would find a readable account in Stoy’s

book on Denotational Semantics.

The following is a definition of a general fixed-point operator:

let Y = λf.(λx.(f (x x)) λx.(f (x x)))

For any lambda-term T , the term (Y T) gives a fixed point of T , i.e.,

(Y T)⇐⇒∗ (T (Y T)).

When a leftmost reduction strategy is used, (Y T) would in general reduce to the least

fixed-point of T . For our transformation t given earlier, the desired fixed point is given by

(Y t). Since Y and t are non-recursive, (Y t) is a non-recursive equivalent of the times

definition! Before we test this claim, first let us prove that Y is indeed a fixed point operator:

(Y T)

= (λf.(λx.(f (x x)) λx.(f (x x))) T)

⇐⇒ (λx.(T (x x)) λx.(T (x x)))

⇐⇒ (T (λx.(T (x x)) λx.(T (x x))))

⇐⇒ (T (Y T))

Returning to the non-recursive equivalent of times, let us reduce the following expression to

normal form, to see how the Y operator works:

(((Y t) 1) k)

The above expression represents the multiplication of 1 and k, where 1 stands for λs.λz.(s z),

and k is the Church numeral representation of some number k. We expect k to be result.

18

The reduction sequence (choosing leftmost redexes) that represents this computation is as

follows:

(((Y t) 1) k)

=⇒ (((t (Y t)) 1) k)

= (((λf.λn1.λn2.(if (iszero n1) 0 (add n2 ((f (pred n1)) n2))) (Y t)) 1) k)

=⇒ ((λn1.λn2.(if (iszero n1) 0 (add n2 (((Y t) (pred n1)) n2))) 1) k)

=⇒ (λn2.(if (iszero 1) 0 (add n2 (((Y t) (pred 1)) n2))) k)

=⇒ (if (iszero 1) 0 (add k (((Y t) (pred 1)) k)))

=⇒ (((iszero 1) 0) (add k (((Y t) (pred 1)) k))))

=⇒∗ ((false 0) (add k (((Y t) (pred 1)) k))))

= ((λx.λy.y 0) (add k (((Y t) (pred 1)) k))))

=⇒∗ (add k (((Y t) (pred 1)) k))

The derivation is continued in a similar manner: since (pred 1) =⇒∗ 0 and (((Y t) 0) k)

=⇒∗ 0, it is easy to see that (add k 0) =⇒∗ k. Note the importance of choosing the leftmost

redex at each step. It is possible to choose the inner redex (Y t) at every step, but doing

so would lead to a nonterminating reduction. By uniformly choosing the leftmost redex at

each step, we indeed obtain the least fixed-point.

Exercise 12: Devise a representation for a list datatype over the constructors nil and cons(elem, list)

with operations first, rest, null. Given this representation, translate the following definition into

a non-recursive form and test it to append two lists:

letrec append = λl1.λl2.if(null(l1), l2, cons(first(l1), append(rest(l1), l2))).

We digress briefly to make some remarks on the combinator calculus: A lambda-term that

has no free variables is called a closed term, and is also referred to as a combinator. There

are three famous combinators, called S, K, and I:

S = λf.λg.λx.((f x) (g x))

K = λx.λy.x

I = λx.x

The combinator calculus (also called combinatory logic) is interesting because terms built up

of S, K, variables and application can represent any computable function. (The I combinator

19

is not needed because I = (S K K).) The use of combinators also avoids the variable-capture

problem of lambda-abstractions. As a historical note, combinators were first introduced by

Moses Schönfinkel in the 1920s and later developed by Haskell B. Curry. Curry also influenced

the development of the lambda-calculus, by suggesting the use of Greek letters for the names

of conversion rules—Church’s original name for α-conversion was Rule of procedure I, and for

β-conversion was Rule of procedure II. In the late 1970s, David Turner showed how to compile

functional programming languages using a combinator-based instruction set. This idea was

developed further in the 1980s, and it underlies the implementation techniques for modern

functional languages.

Expressions built up from S, K and I tend to be rather huge. For example, the Y

operator introduced earlier, also called the fixed-point combinator, can be defined in terms of

S, K and I as follows:

Y = (S (S (S (K S) (S (K K) I)) (K (S I I)))

(S (S (K S) (S (K K) I)) (K (S I I))))

There is a systematic way to translate a lambda-term into a combinator expression;

the reader may consult one of the references cited earlier for this translation. The following

combinators are useful in obtaining more compact representations of functions, but they can

also be defined in terms of S and K:

B = λx.λy.λz.(x (y z))

C = λx.λy.λz.((x z) y)

Exercise 13: Prove the following equalities:

I = (S K K)

B = (S (K S) K)

C = (S ((B B) S) (K K))

3.3 Imperative Constructs

We now examine how to encode imperative programming constructs in the lambda-calculus.

Since we have already seen how to represent data types and recursive definitions, we focus

now on programs made up of assignment statements, sequencing, and other simple control

structures. The basic idea is to represent each statement s of an imperative program by

a function φs and to represent the entire program by composing the constituent functions

together in some way. This raises two issues:

What is the input and output of φs?

20

How do we compose the constituent φsi functions together?

It should be clear that the input to φs should at the very least consist of the values of the

variables occurring in the statement s. To have a uniform scheme, we make φs a function of all

the variables in the program. We will refer to these variables collectively as the environment.

To see what should be the output of φs, note that the effect of statement s would be to

produce new bindings for some of the variables in the environment. Hence the output of φs
can also be thought of as an environment. In order to compose the constituent functions for

individual statements together, we use the concept of the continuation of a program. For any

statement s in a program, the continuation of s is a function Φ that represents the remainder

of the program, i.e., the continuation carries out the remaining computation after statement

s finishes, assuming that s provides it with suitable inputs. To obtain a uniform scheme, we

make φs also take in the continuation as an additional argument, and this continuation is

invoked with the environment at the end of s.

We make the above ideas more concrete by discussing lambda-term representations for

the assignment statement and control structures.

3.3.1 Assignments and Sequencing

Assuming that the environment consists of n variables v1, . . ., vn, an assignment statement

of the form

vi := expr

is represented by the lambda-term

λΦ.λv1.λvn.(. . . ((((. . . (Φ v1) . . .) vi−1) expr) vi+1) . . . vn)

This term expresses the idea that the continuation Φ of the assignment statement is invoked

with a new environment in which all variables remain unchanged except that vi has the value

expr, which is the lambda-term representation of expr.

Assuming that statements s1, s2, . . ., sn are represented respectively by s1, s2, . . ., sn,

a sequence of n statements

begin s1; s2; . . . sn end

can be represented by the lambda-term

λΦ.(s1 (s2 . . . (sn Φ) . . .)).

This composition expresses our intention of passing the continuation Φ to the function sn

corresponding to the last statement.

We illustrate the above ideas by showing the representation for the following sequence

of three assignment statements (refer to the previous subsection for the definitions of 0, 1,

and add):

21

Program Fragment Statement Representations

begin

a := 0; let s1 = λΦ.λa.λb.((Φ 0) b)

b := a+ 1; let s2 = λΦ.λa.λb.((Φ a) (add a 1))

a := a+ b let s3 = λΦ.λa.λb.((Φ (add a b)) b)

end

The representation of the statement a := 0 basically takes as input a continuation and

invokes this continuation with a replaced by 0 and b replaced by b, i.e., b is left unaltered.

The representations of statements a := a + 1 and a := a + b are similarly constructed. The

composition of the constituent functions s1, s2 and s3 gives the representation for the entire

sequence:

let s = λΦ.(s1 (s2 (s3 Φ))).

Let us reduce the above term to normal form (choosing leftmost redexes) to see how it works:

λΦ.(s1 (s2 (s3 Φ)))

= λΦ.(λΦ.λa.λb.((Φ 0) b) (s2 (s3 Φ)))

=⇒ λΦ.λa.λb.(((s2 (s3 Φ)) 0) b)

= λΦ.λa.λb.(((λΦ.λa.λb.((Φ a) (add a 1)) (s3 Φ)) 0) b)

=⇒∗ λΦ.λa.λb.(((s3 Φ) 0) (add 0 1))

= λΦ.λa.λb.(((λΦ.λa.λb.((Φ (add a b)) b) Φ) 0) (add 0 1))

=⇒∗ λΦ.λa.λb.((Φ (add 0 (add 0 1))) (add 0 1))

=⇒∗ λΦ.λa.λb.((Φ 1) 1)

The above normal form represents a function that takes a continuation Φ in which variables

a and b will both be substituted by the value 1. It is clear that this term correctly models

the program fragment shown, since variables a and b will both hold the value 1 at the end

of that fragment.

3.3.2 Conditionals and Iteration

The representation of conditional statements is based upon the representation of boolean

operations and the if abbreviation introduced in section 3.1. Thus, if the representation of

the condition b is b and that of statement s1 is s1 and that of statement s2 is s2, then we

have the following representations for the two types of conditional statements (note that I

= λΦ.Φ and v̄ stands for the list of variables v1, . . ., vn):

if b then s1 else s2 λΦ.λv̄.(((if b s1 s2) Φ) v̄)

22

if b then s1 λΦ.λv̄.(((if b s1 I) Φ) v̄)

The above definitions basically use the if function to select out the representation for the

then or else part. The continuation Φ is then passed on to the selected representation. Note

that the representation b of the predicate could contain free occurrences of the variables in

v̄. To illustrate the above scheme, we develop the representation for the following program:

begin

y := 0;

if y = 0 then x := 1 else x := 0

end

Let s1 be y := 0, s2 be if y = 0 then x := 1 else x := 0, s3 be x := 1, and s4 be x := 0.

We then have the following representations for these statements:

s1 = λΦ.λx.λy.((Φ x) 0)

s2 = λΦ.λx.λy.((((if (iszero y) s3 s4) Φ) x) y)

s3 = λΦ.λx.λy.((Φ 1) y)

s4 = λΦ.λx.λy.((Φ 0) y)

Let us reduce the term λΦ.(s1 (s2 Φ)) to understand the above representations better:

λΦ.(s1 (s2 Φ))

= λΦ.(λΦ.λx.λy.((Φ x) 0) (s2 Φ))

=⇒ λΦ.λx.λy.(((s2 Φ) x) 0)

=λΦ.λx.λy.(((λΦ.λx.λy.((((if (iszero y) s3 s4) Φ) x) y) Φ) x) 0)

=⇒∗ λΦ.λx.λy.((((if (iszero 0) s3 s4) Φ) x) 0)

=⇒∗ λΦ.λx.λy.(((s3 Φ) x) 0)

= λΦ.λx.λy.(((λΦ.λx.λy.((Φ 1) y) Φ) x) 0)

=⇒∗ λΦ.λx.λy.((Φ 1) 0)

The resulting term represents the correct final state in which variable x has value 1 and y

has value 0.

To represent an iterative statement of the form

23

while b do s

we first give a recursive definition assuming, as before, that b is represented by b and s is

represented by s:

letrec whiledo = λΦ.λv̄.((if b (s (whiledo Φ)) Φ) v̄)

This recursive definition states that, if the condition b reduces to true, the statement s

is performed, followed by a re-execution of whiledo with the same continuation Φ; if the

condition b reduces to false, the continuation Φ is invoked. A non-recursive definition can

now be obtained by abstracting the while on the right-hand side and taking the fixed point

of the resulting term with the help of the Y combinator:

let while = λw.λΦ.λv̄.((if b (s (w Φ)) Φ) v̄)

Then (Y while) represents the desired representation of the while-do statement.

Exercise 14: Show the representation for the following program, and reduce it to normal form:

begin

(f, n) := (1, 3);

while not(n = 0) do

f := f ∗ n;

n := n− 1

end

end

Exercise 15: Devise a representation for the repeat-until statement.

4. Typed Lambda Calculi

Church introduced typed lambda calculi in the 1940s in recognition of the semantic difficulties

with the untyped calculus. To appreciate these difficulties, consider, for example, the untyped

lambda-term

λx.(x (x x))

What function does it stand for? Consider the third underlined occurrence of x and suppose

the type of x were taken to T . Considering the second underlined occurrence of x, its type

must be of the form T → U for some type U . And considering the first underlined occurrence

of x, its type must be of the form U → V for some type V . Since a variable can have only

one type, all these three types must be made compatible, and thus the type T must be made

compatible with the type T → T . If we regard types as sets and functions as sets of ordered

24

pairs—the prevalent view in the 1940s—we need to construct a set T that is isomorphic to

the set of functions T → T . If the size of T is n, the size of T → T , i.e., the number of

functions in this set, is nn. Since n 6= nn (for all n > 1), we cannot assign a reasonable

set-theoretic meaning to the above lambda-term.

Thus, while the lambda-calculus had a clear operational semantics (in terms of the

reduction rules), in the 1940s no one could give a denotational semantics (in terms for

mathematical functions). In fact, the lambda-calculus was believed not to have a denotational

semantics, i.e., the lambda-calculus was believed to be inconsistent. This impasse was broken

by Dana Scott in the early 1970s who showed that if a type T is not thought of as an arbitrary

set, but instead as a structured set, also called a domain, and if T → T is not thought of as

the set of arbitrary functions but instead as the set of continuous functions from domain T

to itself, then we can make T isomorphic to T → T . This result was significant because the

semantics of nearly all procedural and functional languages can be reduced to that of the

lambda-calculus. A very readable account of these details is in Stoy’s book on Denotational

Semantics. This result earned Scott the ACM Turing Award in 1976.

4.1 Simply Typed Lambda Calculus

The simply-typed lambda-calculus was proposed by Church in the early 1940s as a way to

circumvent the semantic problems with the untyped lambda-calculus. The key idea was to

introduce types with all variables. Given a set B of basic types, the set of simple types is

defined as

τ ::= B | τ → τ

Suppose i and o are basic types—Church referred to them as ‘iota’ and ‘omicron’, for the

types of individuals and propositions respectively. The following are examples of simple types,

where → associates to the right:

i→ o

i→ i→ o

(i→ o)→ o

The simple types basically define a hierarchy of functional types starting from some

basic types B. The basic types are any pre-existing sets. Simple types are formulated with

the idea that types are sets and functions are mappings between sets. (This view, of course,

does not work for the untyped lambda-calculus.) A simple type is also called a monotype,

i.e., no polymorphism is permitted. In the simply-typed lambda-calculus, an application

(f e) is said to be well-typed if f : τ1 → τ2 and e : τ1 for some simple types τ1 and τ2. In

this case (f e) : τ2.

Note that self-application terms such as (x x) cannot be given a simple type because,

given the set-theoretic basis for simple types, a simple type α → β is necessarily different

from the simple types α and β. As a consequence of banishing terms such as (x x), one can

25

show that all reductions from every simply-typed lambda-term terminate. This is called the

strong normalization property. If every program in a programming language terminates, the

language does not have the full computational power of Turing machines or the (untyped)

lambda-calculus. Thus, we may ask: how expressive is the simply-typed lambda-calculus?

The paper by Fortune, Leivant, and O’Donnell (JACM , 1983) discusses this issue in some

detail. We give one of their results, without going into the details:

Theorem: Consider a basic type i and Church numerals of type n = (i→ i)→ (i→ i).

The functions representable by simply-typed terms of type

(n→ (n→ . . . (n→ n) . . .))

are exactly the functions generated by constants 0 and 1 using the operations addition,

multiplication, and conditional. These are the multivariate polynomials extended with

the conditional function.

It is interesting to note that exponentiation and the predecessor function can be represented

only if different Church numerals may have different types (over B). And subtraction cannot

be represented at all!

Exercise 16: To get a feel for the restriction imposed by types, enumerate all possible closed terms

of types: i→ i, i→ (i→ i), (i→ i)→ i, etc.

4.2 Second-Order Typed Lambda-Calculus

The second-order typed-lambda-calculus was invented in order to expand the expressiveness

of the simply-typed calculus. (A standard reference is the book Type Theory with Type

Variables, by P.B. Andrews, North-Holland publishers, 1965.) The term second-order applies

to the type system. We may call the type system of the simply-typed lambda-calculus first-

order because it has no type variables: a simple type is either a type constant (i.e., a member

of the basic type) or a function type that is built up from type constants. Given a set B of

basic types and a set V of type variables, the set of second-order types is defined as

τ ::= B | V | τ → τ | ∀t.τ

where t in the above definition is a type variable. In addition, we require every variable

occurring in a type expression to lie in the lexical scope of a surrounding universal quantifier.

Examples of second-order types are given below (assuming o is a basic type).

∀t.t→ t

∀t.t→ t→ o

∀t.(t→ t)→ (t→ t)

∀t1.∀t2.∀t3.(t1→ t2)→ (t2→ t3)→ (t1→ t3)

Let us see why second-order types are needed. Consider the untyped λ-term

26

λf.λx.(f (f x)).

In order for this term to be meaningful, the variable f cannot stand for arbitrary functions,

but must stand for functions that have identical input and output types. To express this

constraint on the type of f , we write a second-order typed term as follows:

let twice = Λt. λf : t→ t. λx : t. (f (f x))

Here, Λ stands for type abstraction. It introduces a type variable t which is used subsequently

giving the types for f and x. Just as we have abstraction and application at the term-level,

we also have abstraction and application at the type-level. The notation for type application

is [t1 t2]. The function twice has a second-order type

∀t. (t→ t)→ (t→ t).

This type is also referred to as a universal type due to the use of the universal quantifier.

Despite the increased expressiveness of the second-order-typed lambda-calculus, all re-

ductions from every second-order typed lambda-term terminate. We provide below a couple

of examples to illustrate reduction of second-order typed lambda-terms. In the first example,

we see one use of type application, [twice int]. In the second example, we see that the type

abstraction Λt in the definition of twice is applied in two different ways: once with a type

constant, [twice int], and a second time with a functional type, [twice int→ int].

Example 1 (let succ : int→ int and 0 : int)

(([twice int] succ) 0)

⇒ ((λf : int→ int. λx : int. (f (f x)) succ) 0)

⇒ (λx : int. (succ (succ x)) 0)

⇒ (succ (succ 0))

⇒∗ 2

Example 2

((([twice int→ int] [twice int]) succ) 0)

⇒ (((λf : (int→ int)→ (int→ int).

λx : int→ int. (f (f x)) [twice int]) succ) 0)

⇒∗ (([twice int] ([twice int] succ)) 0)

⇒∗ (λx : int. (([twice int] succ) (([twice int] succ) x)) 0)

27

⇒ (([twice int] succ) (([twice int] succ) 0))

⇒∗ (([twice int] succ) 2)

⇒∗ 4

Using Church numerals of the form

Λt. λf : t→ t. λx : t. (f . . . (f x) . . .)

exponentiation and subtraction can be represented as uniformly as addition, multiplication,

etc. The expressiveness of the second-order typed lambda-calculus is given by the following

theorem due to Fortune, Leivant, and O’Donnell.

Theorem: If f : N → N is representable in the second-order-typed λ-calculus, then so

is any function g : N → N computable by a Turing machine in time bounded by f .

We can use the second-order types to express the types of a polymorphically typed program-

ming language. A type definition such as

list(α) ::= nil | cons(α, list(α))

induces second-order types for the constructors nil and cons:

nil: ∀t. list(t)
cons: ∀t. t× list(t)→ list(t)

Type applications are specified by type definitions such as

type intlist = list(int)

which induces the following simple types:

nil: list(int)

cons: int× list(int)→ list(int)

28

