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Abstract

Subset logic programming is a paradigm of programming with subset

and equality assertions, and whose execution model is based on associative-

commutative (a-c) matching and innermost reduction. SEL (Set Equational

Language) is a language that has been proposed to illustrate this approach.

This thesis describes the design and implementation of a system that com-

piles SEL programs into an instruction set similar to the Warren Abstract

Machine instructions for Prolog. The novel aspects of our implementation

include the compilation of a-c matching, backtracking upon failure and suc-

cess, and the implementation of quantifiers over sets. This implementation

has been completed and will run under any Unix system.



Acknowledgements

I would like to thank Dr. Jayaraman for his tireless and excellent advice and overall

support throughout my work. Without his help and guidance this thesis could not

have been done.

I would like to thank Frank Silbermann for reading the thesis and suggesting

improvements. Thanks also to Gopal Gupta for all the tidbits of information which

made the implementation easier.

Thanks to Alice, too.

ii



To Amy

iii



Contents

1 Introduction 1

2 SEL: The Language 3

2.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Informal Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Quantifiers over sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Distribution over Union . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.6 Avoiding Check for Duplicates . . . . . . . . . . . . . . . . . . . . . . 11

2.7 Error Trapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 The User Interface 13

3.1 Entering and Leaving the System . . . . . . . . . . . . . . . . . . . . 13

3.2 Compiling Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Obtaining One Solution . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Timing Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.5 Error Handling and Tracing . . . . . . . . . . . . . . . . . . . . . . . 15

3.6 Hints on Programming . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Execution of SEL 18

4.1 Flattening Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Basic Execution Model . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3 Data Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4 Data Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.5 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.6 Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.7 Examples of Compiled Code . . . . . . . . . . . . . . . . . . . . . . . 27

4.8 The Instruction Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.8.1 Control Instructions . . . . . . . . . . . . . . . . . . . . . . . 30

4.8.2 Get instructions . . . . . . . . . . . . . . . . . . . . . . . . . . 32

iv



4.8.3 Put Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.8.4 Store Indirect Instructions . . . . . . . . . . . . . . . . . . . . 34

4.8.5 Match and Store Instructions . . . . . . . . . . . . . . . . . . 35

4.8.6 Indexing Instructions . . . . . . . . . . . . . . . . . . . . . . . 36

4.9 Comparison with Prolog . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Conclusions 38

A UNIX Man Page 40

B A Sample Session 42

C Prolog Programs 44

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

v



1 Introduction

Logic programming has gained a lot of popularity in the last decade largely due

to its declarative style of programming and the success of Prolog. Prolog is based

on predicate logic programming, and its success has made the term “logic pro-

gramming” to be synonymous with “predicate logic programming.” However, in re-

cent years researchers have experimented with new forms of logic programming, no-

tably constraint logic programming [JL87] and equational logic programming [O85].

In this thesis, we explore yet another approach, called subset logic programming

[JP87,JN88].

The primary motivation for subset logic programming was to give a correct and

efficient basis for programming with sets. Although set constructs are to be found

in existing functional and logic languages (e.g., the “setof” construct of most Prolog

systems [N85] and the relative-set construct in Miranda [T85]), these constructs do

not support true sets. These languages have sacrificed clean semantics in incorpo-

rating sets as extra features.

The practicality of predicate logic programming has been enhanced by recent

advances in compilation [W83], i.e., techniques for compiling unification and the

control strategy of Prolog (depth-first search with backtracking). Compilation has

speeded up the execution of predicate logic programs by at least an order of mag-

nitude over interpreting.

This thesis presents similar efficient ways of compiling subset logic programs. We

describe the implementation of a subset logic language called SEL (Set Equational

Language) [JP87,JN88]. A SEL program consists of equality and subset assertions,

and is executed using innermost reduction and restricted associative-commutative

matching. These features are compiled into an instruction set similar to the Warren

Abstract Machine (WAM) used for Prolog [W83].

The rest of this document is organized as follows. Chapter 2 describes the SEL

language informally and gives a few examples. Chapter 3 describes the SEL system

that has been implemented and guidelines for using it efficiently. Chapter 4 describes

the two phases of the implementation: compilation to WAM-like instructions and

emulation of the instruction set by software. Chapters 2 and 3 should serve as a
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users’ manual for the system, while Chapter 4 should serve as an implementors’

manual. Chapter 5 presents a brief summary and directions for further work.

We assume that the reader has some familiarity with Prolog terminology (e.g.,

unification) and the basic implementation issues involved in Prolog.



2 SEL: The Language

This chapter gives the syntax and informal semantics of SEL programs, along

with examples.

2.1 Syntax

In the following BNF description of the syntax for SEL, we use the typewriter font

for keywords and literals.

rules ::= rule | rule rules

rule ::= equation . | subset .

equation::= function( terms ) = expr

subset ::= function( terms ) contains expr

terms ::= term | term , terms

term ::= boolean | integer | atom | variable | listterm | setterm

listterm ::= [ ] | [ term | term ] | [ terms ]

setterm ::= { } | { term | term } | { terms }

expr ::= term | function ( exprs ) | if expr then expr else expr

exprs ::= expr | expr , exprs

The data objects of SEL are booleans, integers, atoms, lists, and sets. The

current implementation of SEL provides only integer numbers, e.g. 10, -3999, etc;

real numbers are not supported. The booleans are true and false. Any sequence of

characters enclosed within single quotes is taken to be an atom, e.g., ’apple’, ’also

an atom’, etc. Note that SEL does give significance to the case of the alphabet,

e.g., the atom ’a’ is different from ’A’. A variable is any sequence of alphanumeric

characters starting with an alphabet. It could start with upper or lower case (unlike

Prolog), e.g., index, ELEMENT etc. A list [1,2,3] is syntactic sugar for [1 | [ 2 |

[ 3 | [ ] ] ] ]. The list pattern [h | t] is used to match the head and tail of a

list, as in Prolog. Similarly a set {1,2,3} is syntactic sugar for {1 | { 2 | { 3 |

{ } } } }. A set pattern{x | t} matches a set by matching x against one element
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of the set and t against the rest of the set. The “ ” symbol represents the “don’t

care” variable, as in Prolog.

2.2 Informal Semantics

SEL programs consist of equality and subset assertions. At the top level the user

enters an expression, referred to as the goal. The goal has to be a ground expression,

i.e., an expression with no variables in it. Its value is obtained by reducing the ex-

pression in leftmost innermost order. Since arguments to functions must be ground

terms, function application requires one-way matching, rather than unification. The

matching operation is actually a restricted form of associative-commutative match-

ing [JN88].

Associative commutative matching [P72] can be used to match ground terms

(possibly sets) against patterns (possibly set patterns). For example, if a set {1,2,3}

is matched against the pattern {h|t}, it produces three matchings, viz., {h← 1, t←

{2,3}}, {h ← 2, t ← {1,3}}, and {h ← 3, t ← {1,2}}. Note that all set patterns

are of the form { term1 | term2 } rather than the more general term1 ∪ term2.

Patterns of the form x ∪ y are useful in iterating over all subsets of a set, but they

are computationally expensive and do not occur frequently in practice; hence we do

not support them. Patterns of the form {x | t}, on the other hand are useful for

iterating over all elements of a set and are needed often. The complete matching

algorithm is described by the following Prolog program. The first argument of match

is a possibly non-ground term, representing the head of an assertion, and the second

argument is a ground term, representing the arguments of a function call.

match(A,A) :- atomic(A), !.

match([],[]).

match({},{}).

match(V,Arg) :- var(V), !, V = Arg.

match([T1|T2], [Arg1|Arg2]) :-

match(T1,Arg1), match(T2,Arg2).

match({Elem1|Set1},Argset) :-

generate(Argset,Elem2,Set2),

match(Elem1,Elem2),

match(Set1,Set2).
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generate({Elem|Set},Elem,Set).

generate({Elem|Set},Elem2,{Elem|Set2}) :-

generate(Set,Elem2,Set2).

It is important to note that we do not follow this recursive algorithm literally in our

implementation. The main purpose of compilation is to avoid the general matching

algorithm in the simpler cases.

Now we describe the meaning of equality and subset rules. If an innermost

expression matches an equality rule, it is replaced by the body of the rule (r.h.s.)

after substituting for the variables on the left hand side suitably. Note that if more

than one equality rule matches or if one equality rule matches in more than one

way, any one match is used to reduce the body of the rule. Thus, the programmer

has to make sure that the result is independent of which match is chosen. If the

expression matches a subset rule, the right hand side is reduced for each different

a-c match, and the expression is reduced to the union of the sets obtained for each

a-c match. If none of the subset rules match, the expression is reduced to the null

set. If more than one subset rule matches, the expression is reduced to the union of

the right hand sides of all matching rules. This behaviour follows from the closed

world assumption of SEL, i.e., a set is completely defined by its subsets; there are

no other elements in the set than the ones specified.

A non-set valued function is undefined (denoted by ?) if there are no equality

rules defining it or if none of the equality rules match. The undefined set, on the

other hand, is the empty set. We also define {?} = {}. That is, an undefined value

as an element of a set can be dropped from the set. This captures the notion of

“emptiness as failure”.

The conditional expression if e1 then e2 else e3 reduces to e2 if e1 reduces to

true, and to e3 if e1 terminates but is not true. That is, the conditional captures

a form of “negation by failure”.

2.3 Examples

The standard LISP-like definition of the “append” of two lists can be defined using

the following equality rules.
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append([],y) = y.

append([h|t],y) = [h|append(t,y)].

The following assertions illustrate the use of subset rules to define the cross-product

and intersection of two sets. Note that no assertion is needed when one of the

argument sets is empty. The result is the empty set in these cases, by the closed

world assumption discussed earlier.

crossproduct({x| },{y| }) contains {[x|y]}.

intersect({h| },{h| }) contains {h}.

The “permutations” example below illustrates recursive subset rules. Note that

perms takes a set as argument and returns a set of lists.

perms({ }) = {[ ]}.

perms({x|t}) contains distr(x,perms(t)).

distr(x,{y| }) contains {[x|y]}.

The “8-queens” program below shows how SEL can be used to formulate fairly

complex problems easily. The queens function, when invoked at the top level as

queens(1,{}) returns the set of all solutions to the 8-queens problem.

queens(col,safeset) = if eq(col,9)

then {safeset}

else placequeen(col,{1,2,3,4},safeset).

placequeen(col,{row| },safeset) contains

if safe([col|row],safeset)

then queens(col+1,{[col|row]|safeset})

else {}.

safe([c1|r1],{}) = true.

safe([c1|r1],{[c2|r2]|s}) = (abs(c1 - c2) <> abs(r1 - r2))

and (r1 <> r2) and safe([c1|r1],s) .
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2.4 Quantifiers over sets

SEL provides the ifall and ifone constructs in order to simulate quantifiers over

sets. For example, the predicate

p(s) = (∀x ∈ s)q(x)

can be defined in SEL as

p({x| }) ifall q(x).

Similarly, the predicate

p(s) = (∃x ∈ s)q(x)

can be defined as

p({x| }) ifone q(x).

Operationally, the ifall rule says that the predicate being defined is true if for all

a-c matches of the head, the body of the rule reduces to true. The ifone rule says

that the predicate is true if for any one match the body of the rule reduces to true.

For example, we can define the function disjoint of two sets using the following

definition.

disjoint({x| },{y| }) ifall x <> y.

The default cases of the ifall and ifone rules should be noted. When a ifone rule

defines a predicate and there are no matches for the rule, the default returned value

is false. But when a ifall rule defines a predicate and there are no matches for

the rule, then the default returned value is “true”. The current implementation also

allows a predicate to be defined using multiple ifall rules or multiple ifone rules.

When multiple ifall rules define a predicate, execution chains through them until

one of the right hand sides reduces to a non-true value. However, when multiple

ifone rules define a function, execution chains through them until one of the right

hand sides reduces to true in which case the result is true. Note: It is illegal to

use both ifall and ifone rules in defining a predicate, because the default for the

ifall conflicts with that of the ifone rule.
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2.5 Distribution over Union

We now discuss an important property of certain SEL functions, which has implica-

tions for considerable performance improvement. A function f is said to distribute

over union in some argument iff

f(. . . , x ∪ y, . . .) = f(. . . , x, . . .) ∪ f(. . . , y . . .)

There are some important benefits if we know which functions have this property.

For example, in computing f (. . . , g(. . .), . . .) we need not compute the entire set that

g(. . .) stands for; instead we can compute one element of g(. . .) at a time and apply

f to each one of these singleton sets and propagate the union. We save time by

computing one element at a time because we avoid checking for duplicates of the

intermediate set. We also save space because we avoid accumulating a possibly large

intermediate set. (This optimisation is similar to the transformation in functional

languages that avoids the creation of intermediate lists.) In the current system,

we assume that the programmer annotates programs indicating which functions

distribute over union in which argument. For example, in the perms definition of the

previous section, the distr function distributes over union in its second argument.

This can be annotated as

distr(x,{y| }) contains {[x|y]}. distribute(distr,2).

The distribute annotation must appear after the definition of the function. In the

current implementation, multiple distribute annotations must be used to specify

that a function distributes over union in more than one argument.

When a function is called to produce one subset at a time rather than the

entire set, we say that the function is called in “call-one” mode. When it is called

to return the entire set, we say the function is called in “call-all” mode. In the

permutations example, we find that the perms function can be invoked in “call-one”

mode. Although there appears to be a big advantage of using call-one, in this case

it turns out that the advantage is not much because of the following trade-off. If we

call perms in call-one, each call to distr will distribute a constant over a one element

set, resulting in many more calls to distr compared with invoking perms with call-

all mode. Thus the cost of extra function calls nearly equals the cost of checking for

duplicates and forming intermediate sets. In this example, there are n ∗ n! calls to
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distr if it is called in call-one mode, whereas there are only n+n∗ (n−1)+ . . .+n!

calls to distr if it is called in call-all mode. For a 5 element set, this means that

there are 5 ∗ 5!− (5 + 5 ∗ 4 + . . .+ 1) = 600− 325 = 275 calls more calls to distr.

A trace of call-one against call-all for the goal perms({1,2,3}) is given below to

clarify this point. Note that distr is always called with a singleton set in the left

column.

perms({1,2,3}) with distribute(distr,2) perms({1,2,3})

Call to perms({1,2,3}). Call to perms({1,2,3}).

Call to perms({2,3}). Call to perms({2,3}).

Call to perms({3}). Call to perms({3}).

Call to perms({}). Call to perms({}).

Call to distr({[]},3). Call to distr({[]},3).

Call to distr({[3]},2). Call to distr({[3]},2).

Call to distr({[2,3]},1). Call to perms({2}).

Call to perms({2}). Call to perms({}).

Call to perms({}). Call to distr({[]},2).

Call to distr({[]},2). Call to distr({[2]},3).

Call to distr({[2]},3). Call to distr({[3,2],[2,3]},1).

Call to distr({[3,2]},1). Call to perms({1,3}).

Call to perms({1,3}). Call to perms({3}).

Call to perms({3}). Call to perms({}).

Call to perms({}). Call to distr({[]},3).

Call to distr({[]},3). Call to distr({[3]},1).

Call to distr({[3]},1). Call to perms({1}).

Call to distr({[1,3]},2). Call to perms({}).

Call to perms({1}). Call to distr({[]},1).

Call to perms({}). Call to distr({[1]},3).

Call to distr({[]},1). Call to distr({[3,1],[1,3]},2).

Call to distr({[1]},3). Call to perms({2,1}).

Call to distr({[3,1]},2). Call to perms({1}).

Call to perms({2,1}). Call to perms({}).

Call to perms({1}). Call to distr({[]},1).
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Call to perms({}). Call to distr({[1]},2).

Call to distr({[]},1). Call to perms({2}).

Call to distr({[1]},2). Call to perms({}).

Call to distr({[2,1]},3). Call to distr({[]},2).

Call to perms({2}). Call to distr({[2]},1).

Call to perms({}). Call to distr({[1,2],[2,1]},3).

Call to distr({[]},2).

Call to distr({[2]},1).

Call to distr({[1,2]},3).

The following table shows the time taken by the two approaches for all permu-

tations of a 3,4,5, and 6 element set. All time measurements are in milliseconds.

Number of elements in the set

3 4 5 6

call-all 42 183 1500 27300

call-one 42 166 1350 23200

It turns out that the call-one mechanism provides a limited form of lazy eval-

uation. To understand this point, we must examine call-one further. When a

function is called using call-one, it computes one subset of the solution, suspends

the other matches, and returns to the caller. When resumed later (due to failure or

success), the suspended computation produces a new subset derived from the next

a-c match.

Call-one can also be used to implement a form of “generate and test.” Suppose,

in the program below, the function test fails if its argument set does not satisfy

some conditions. Then we can define test as distributing over union, and test can

act on one element of generate at a time. If none of the elements produced by

generate is accepted by test, then test returns undefined.

generate(...) contains ....

test({x| },...) = ....

distribute(test,1).
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SEL does not support infinite objects. But we can use the control behaviour of

call-one as a programming trick to define functions that potentially accept infinite

sets as arguments. Below, function f works element-at-a-time, and hence it can

accept an infinite set as an argument. The details of predicate p are not relevant

here.

natural(x) contains {x}.

natural(x) contains natural(x+1).

f({y| }) = p(y).

distribute(f,1).

For example, if the top-level goal is f(natural(10),...), natural will generate

subsets {10}, {11}, . . . until we get one on which p will not fail.

Note that in the previous two examples, the functions f and test are not set-

valued functions and they do not truly have the property of distributing over union,

but they do “distribute” in a more general sense.

2.6 Avoiding Check for Duplicates

Checking for duplicates is the most time consuming operation when computing with

sets in a programming language. In many practical uses, the sets defined by multiple

subset assertions are found to be disjoint. In these cases, SEL allows the programmer

to request bypassing the check for duplicates by using annotations. For example,

the definition for product of two sets does not produce duplicates, and hence can

be annotated to prevent checking for duplicates as follows:

product({x| },{y| }) contains {[x|y]}.

nodup(product).

The annotation nodup(product) may appear anywhere after the definition of

product. Among the examples in the previous chapter, functions intersect, queens,

perms, distr do not generate duplicates, and could each be annotated with the

“nodup” clause. A performance comparison for computations with and without

duplicate checking is given in the following table. All times are in milliseconds.
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goal With duplicate Without duplicate

checking checking

perms of a 5 element set 1500 916

all solutions to the 8 queens problem 78000 75000

product of two 10 element sets 416 133

the power set of a 6 element set 350 96

2.7 Error Trapping

The “emptiness as failure” notion provides a limited way to trap errors. For example,

a function f(x) that returns ? (undefined) on certain inputs can be augmented to

give an error message in the following way:

trap(x) contains {f(x)}.

action({},x) = [’bad’,’input’,x].

action({x}, ) = x.

toplevel(x) = action(trap(x),x).

Now, toplevel(x) would return the same value as f(x) if f(x) is defined, but

would return an error message if f(x) is not defined. Note, that general exception

handling is much more powerful.



3 The User Interface

This chapter describes the user interface and special features of the current imple-

mentation, and offers some hints for debugging and writing more efficient programs.

3.1 Entering and Leaving the System

To invoke the system, type sel along with any flag options from the Unix shell (see

appendix A). The interpreter responds as follows:

SEL Version 1.0

sel>

Upon receiving the prompt, the user can type in any goal terminated with a period

and carriage return. For example the query

sel> 3 * 4.

results in

12

sel>

To exit the interpreter, type CTRL-d at the prompt. The interpreter responds with

SEL Execution halted

and exits back to the shell. To abort a run-away computation or to suspend SEL,

use the regular shell kill characters. SEL does not trap any of these interrupts. A

sample of a complete session with the system is given in appendix B.
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3.2 Compiling Files

The only way to access and execute user-defined functions in SEL is by placing the

definitions in a file and compiling them with the compile command. For example,

to execute the append function, enter its definition in a Unix file, say append.sel,

and compile it as follows.

sel> compile(’append.sel’).

SEL will respond with a list of functions that are now defined,

[append]

sel>

Now the append function can be invoked by typing

sel> append([1,2],[3,4]).

SEL responds with

[1,2,3,4]

sel>

In the current implementation, there is no facility to redefine functions or to type

in rules interactively. The only way to do this is to leave the system and to edit the

files containing the definitions and by starting the system all over again. The user

can keep definitions in multiple files and compile these files as needed.

The user can optionally type an optimise flag after the filename to get SEL to

compile set patterns, so that sets are adjusted in O(n) space and time, rather than

making n different copies of the remainder of an n-element set (see section 4.1. para.

6). For example, compile(’foo’,$opt) would result in all set patterns in the file

foo to be compiled with this optimisation.
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3.3 Obtaining One Solution

As discussed in the previous chapter, a function that distributes over union calls

its argument function using call-one. The any system call can be used if the user

wants to call the top-level goal using call-one. If the function is defined using a

subset rule, it would return to the top level after one subset is computed, rather

than try all a-c matches. For example, after compiling the perms example, we can

call the goal perms({1,2,3}) using call-one by typing

sel> any(perms(1,2,3)).

The response of the system would be

{[1,2,3]}

3.4 Timing Goals

To time a goal, we provide the built-in function cputime. It returns the number

of milliseconds used by cpu for the SEL process so far. For example, the goal

rev([1,2,3,4,5,6,7]) can be timed the following way.

sel> cputime()

50

sel> rev([1,2,3,4,5,6,7]).

[7,6,5,4,3,2,1]

sel> cputime()

66

This means that the goal took 66 - 50 = 16 ms to execute.

3.5 Error Handling and Tracing

Error handling is rather primitived in SEL. All lexical errors and syntactic errors

are caught by the parser, which has been written using the Unix tools, “lex” and
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“yacc”. The parser reports the line numbers on which errors occurred and the

token near which the error occurred. On encountering an error, the entire rule or

goal in which the error occurred is discarded. The most common syntax errors are

due to using keywords as variable or function names. The following the keywords

are reserved in SEL: or, and, not, lessp, greaterp, numberp, listp, gretereq,

lesseq, eq, neq, null, atom, plus, minus, times, divide, mod, div, abs, if, then,

else, true, false, compile, contains , ifall, ifone, nodup, distribute, any,

cputime, trace.

In order to assist debugging, SEL has a trace feature that will show the calls

being made along with the arguments. The only way to see the results of the

function call is to see where the result of that function call is used. If it is passed

as an argument to another function, look at the arguments of that function call.

Tracing can be switched on by typing

sel> trace.

Selective tracing can be specified by providing the name of the function as an ar-

gument to trace. For example, to see the calls to some two functions f and g, but

not any other functions type

sel> trace(f).

sel> trace(g).

To switch off tracing once again type

sel> trace.

3.6 Hints on Programming

We first offer a few hints on making SEL programs a little more efficient. The

compiled code does clause indexing among multiple definitions of a function based

on the first argument. For such a function, it is preferable, if possible, to rearrange

arguments so that they differ in the first argument.

The two kinds of set-patterns {x|y} and {x| } work with different efficiencies. If

a function does not need the remainder of a set, use {x| }, rather than {x|y}, as

{x| } avoids constructing the remainder of the set.
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The current implementation is not true to the semantics of SEL in a few respects.

The behaviour {?} = {} is achieved only if the set-valued function is defined using

subset rules. If an equality rule defines a set-valued function and an element of the

set turns out to be undefined (?), then the function returns ?, rather than the set

with all the remaining elements. The current implementation is also not completely

correct with respect to the semantics of if-then-else. If the condition evaluates

to ?, the conditional expression reduces to ?, rather than to the value of the else

clause.

The compiler does not check for the confluence of program assertions, and hence

the order in which the equality assertions are placed is significant.



4 Execution of SEL

This chapter describes the abstract machine model used in implementing SEL,

We assume that the reader has some familiarity with implementation issues in Prolog

and the WAM (Warren Abstract Machine)[W83].

4.1 Flattening Expressions

The execution of SEL programs can be separated into two steps: compilation, fol-

lowed by interpretation of the compiled code. Before compilation, all expressions

are flattened to reflect leftmost innermost reduction order. This converts the body

of each rule to a series of function calls. For example, shown below are the flattened

forms of the append and perms definitions of Chapter 2.

append([ ], y) = y.

append([h|t], y) = [h|t1] :- append(t,y) = t1.

perms({}) = {[ ]}.

perms({x|t}) contains v1 :- perms(t) contains v2,

distr(x , v2) = v1.

Note that contains is used in flattening perms in the r.h.s because distr distributes

over union in its second argument. A nested SEL definition of the form

f(x) = g(h(i(x)))

gets flattened into a series of goals

f(x) = z :- i(x) = w, h(w) = y, g(y) = z.

The result of each function call can viewed as an extra argument of a Prolog-like

definition. For example, the above may be viewed as

f(x,z) :- i(x,w), h(w,y), g(y,z).
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4.2 Basic Execution Model

A function application is initiated by a call instruction. It is first matched against

all equality rules defining the function. If there is a successful match and if the

matching equality rule has permanent variables, an environment record is created

on the control stack for the call. Control then transfers to the execution of the

body of the equality rule. Once the body is executed, this rule is exited and control

goes back to the caller of this function. If there are no equality rules defining the

function or if none of them matches, then we try to match this call against any

subset rules defining the function. If none of the rules match, failure-backtracking

is initiated. The multiple subset rules that match a given call and the multiple a-c

matches within any subset rule are attempted sequentially in a depth-first order.

When entering a subset rule, a choice point is created on the control stack to keep

track of rules not yet tried. A choice point is also saved when a subset rule matches,

so as to try all possible matches within the rule. In this case, the choice point can

have multiple branch points, one to record each occurrence of a set pattern in the

head. (Note: this choice point is created only if the body of the call involves a

function call, otherwise the rule is executed like local nested loops.)

As discussed in Chapter 2, a function can be called in two ways: call-one or

call-all. If a subset assertion is called using call-all, each successful completion

of the rule causes success-backtracking to the most recent choice point. If it is

called using call-one, each successful completion causes an exit to the caller. The

environment record is not deleted at this time. Once all branch points have been

exhausted, the next subset assertion is attempted and the current environment is

deleted. As each subset is computed it is added to the overall set after removing

duplicates.

The actions on success and failure backtracking are nearly the same. The most

recent choice point is retrieved and computation resumes from the information in

the choice point. The effect of the backtracking is to produce the next subset. The

difference between failure and success backtracking is that the subset computed

from the current path is considered empty and hence neglected in the case of failure

backtracking, whereas it is collected in the case of the success backtracking.

The control behaviour of ifall and ifone rules is a little different from that

of the subset rules. If there are no equality rules, or if none of the equality rules
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match, then the ifall and ifone rules would be tried sequentially in a depth-

first fashion. The difference from a subset rule is that if the body of a ifone (resp.

ifall) reduces to a value true (resp. other than true) then control returns to the

caller. The remaining matches and the remaining rules are not tried.

The instructions used to compile the various cases in a-c matching are similar

to the ones used in WAM for unification. One of the main differences is that we

can identify the terms that are going to be bound at compile time. This means that

we can identify the read and write modes of WAM’s unify instructions. We use the

match and store instructions for the two cases respectively. The different actions

taken by the WAM’s get instructions when the argument is bound and unbound can

also be recognized at compile time. We use the get and store indirect instructions

for the two cases. Note that the only unbound argument is the result of the function

call, and the store indirect instructions are used to return the result of function

calls.

In order to deal with sets in a-c matching, we have introduced instructions to

match sets against set patterns and to adjust the sets to produce different matches.

The | set constructor is represented as a cell of two pointers, one to the head of the

list and one to the rest of the cell. This is the structure that has to be “adjusted”

to provide the different representations. There are three ways of adjusting sets. For

example, if a set {1,2,3} pointed to by register A1 is matched against {h| }, after

the first match (where h gets 1), we can adjust A1 to point to {2,3} (Fig. 4.1).

This operation is performed by the adj set head instruction. If the set pattern is

of the form {h|t}, we can construct the n remainders of an n-element set in O(n)

space, using destructive modification (Fig. 4.2). Note that this adjust operation is

a constant time operation. This can be done only in the case where t is not being

returned (either directly or indirectly) as part of the answer. Detecting this case

needs global data-flow analysis, which is not supported in the compiler yet. If the

remainders do become part of the answer, we have to use the adj set with copy

instruction. This makes n copies for the n remainders and takes O(n2) space. The

adj set with copy instruction is used by default for set patterns of the form {x|t}

(see section 3.2).
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4.3 Data Objects

Every term in SEL is represented by a word containing a value and a tag. The types

of data objects allowed presently include atoms, boolean values, integers, variables,

lists and sets. Lists and sets are represented using a sequence of tagged pointer

pairs, for the “head” and “tail” of the list or set.

4.4 Data Areas

The main data areas consist of the code area, the stack and the heap. The code area

holds all the compiled code. The stack is used to allocate environments for function

calls and choice points for backtracking. An environment allocated on the stack

stores all permanent variables associated with a rule. It also has a continuation

consisting of a continuation code pointer and a continuation environment pointer.

A choice point is created if there are multiple subset rules to be tried or if a call is

made as call-one. A choice point contains all information necessary to restore an

earlier state of computation. The information stored includes a pointer to the other

subset rule or the branch pointers B1...Bm, all argument registers A1...An, the

continuation program pointer CP, CE the current environment pointer, LCP the last

choice point and M the mode register. These are described in the next section in a

little more detail. The heap is used to store all structured objects. Once structures

are created on the heap, they are not retracted as is in the case in Prolog.

4.5 Registers

The registers that are used to store the current state of a SEL program in execution

are:

P program pointer (to the code area)

CP continuation program pointer (to the code area)

CE current environment (on the local stack)

LCP last choice point (on the local stack)

H top of heap
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S structure pointer (to the heap)

CB current branch point register

M mode register

A1,A2. . . An argument registers

X1,X2. . . Xn temporary registers

B1,B2. . . Bn branch pointers (to the code area)

As in the WAM, the A registers and X registers are identical; the different names

merely reflect their different usages. The A registers are used to pass the arguments

of a function call. The X registers are used to hold the values of temporary variables.

4.6 Compilation

SEL programs are compiled into instructions for an abstract machine. These in-

structions are then emulated in software. In general, each SEL symbol corresponds

to one instruction. An instruction consists of an opcode with one, two or three

operands. The opcode generally encodes the type of SEL symbol along with the

context in which it occurs. An operand is either a constant, e.g., an integer or

atom, a register, or an address.

The entire instruction set can be divided into a number of classes, viz., the get

instructions, the store indirect instructions, the match instructions, the put in-

structions, the store instructions, the procedural instructions and the indexing

instructions. We describe the compilation of SEL programs by describing each class

of instructions.

The get instructions correspond to the terms in the head of a rule, and are

responsible for matching the rule against the arguments of the function call, which

are in the A registers. For example, if a [] in the head of a rule is to be matched

against the third argument of a function call, it would get compiled into get nil

A3. The get variable instruction is used for the first occurrence of a variable in

the head. If it is not the first occurrence of the variable, the get value instruction

is used. The get instructions are:
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get variable Vn,Ai get value Vn,Ai

get constant C,Ai get nil Ai

get list Ai get set Ai,Vn

Note: Here and in the descriptions that follow, Ai represents an argument regis-

ter, Vi represents a variable (which could be a temporary register Xi or a permanent

variable Yi), and C represents a constant.

The store indirect instructions are used to return the result of the function

call, and is generated for the last argument of a function. The argument that is being

matched against is sure to have a reference to an unbound variable. For example, if

the result of a two-argument function call is the constant 5, then it is compiled to

store ind const 5,A3. The store indirect instructions are:

store ind nil Ai store ind phi Ai

store ind const C,Ai

store ind list Ai store ind set Ai

store variable Ai store ind value Ai

If the body of a rule is a variable (note: it cannot be the first occurrence), then the

store ind value instruction is used. The store variable instruction is used for

all subset rules and for all equality rules with a function as the body of the rule.

The match instructions are used to match arguments of lists or sets in the head

of a rule. This instruction is always preceded by a get list or get set instruction.

For example, if a list pattern [h|t] is to be matched against the third argument of

a function call, it would get compiled into

get list X3 % [

match variable Vi % h |

match variable Vj % t ]

This example assumes it is the first occurrence of the variables h and t, and that

there values are stored in variables Vi and Vj. Note: Here and in all following

descriptions, we annotate the compiled code with the corresponding program text,

as comments at the end of each line.
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The match instructions are:

match variable Vn match value Vn

match nil match phi

match const C

The put instructions are used to load the registers with the arguments before a

function call is made. For example, if the second argument to a function call is the

null set, then the corresponding compiled code for that would be put phi A2. The

put instructions are:

put nil Ai put phi Ai

put const C,Ai

put variable Yn, Ai put value Vn, Ai

put list Ai put set Ai

The put variable instruction is used only to load the address of the place where

the result of the function call should go.

The store instructions are used to load arguments of lists and sets. They follow

either a put list, put set, store ind list or a store ind set instruction. For

example, if the first argument to a function call is [2|h], it would get compiled into

put list A1 % [

store const 2 % 2 |

store value Vi % h ]

The store instructions are:

store nil store phi

store const C

store variable Vn store value Vn

The store variable instruction is used only when the argument to the list or set

constructor is a function call.
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The procedural instructions are responsible for control transfer, environment

allocation, and function invocation. The procedural instructions are:

allocate deallocate

execute P proceed

call all P,N call one P,N

save choice point? collect? Vm,Vn

ifone Vm,Vn ifall Vm,Vn

if false jump Vn,Ptr jump Ptr

where P represents the code pointer of a function, N is the number of variables (still

in use) in the environment, and Ptr is a pointer in the code for an if-then-else

statement.

The allocate instruction appears at the beginning of any equality rule that has

two function calls in its body (in its flattened form), or any subset rule that has one

function call. The deallocate rule appears before the call to the last function in an

equality rule. In the case of the subset rule, the collect does the deallocation too.

The execute instruction is used to call the last function in the body of an equality

rule. This is how last-call optimisation is achieved. The proceed instruction ends

an equality rule with no function calls in its body. All functions in the body of a

subset rule and all functions in an equality rule except the last one is invoked with

a call instruction. The call-one instruction is used if we have distribution over

union. The call-all instruction is used for all other cases. The first argument

for all these instructions is the pointer to the code of the function that is called.

The second argument is the number of variables that are still in use in the current

environment. This facilitates environment trimming. The collect? instruction

appears at the end of each subset rule. The first argument is the destination of

the result of the function call (the union of all subsets) and the second argument is

where each subset gets stored. The save choice point? instruction appears after

the head and before the body of each subset rule. The ifone and ifall instructions

appear at the end of an ifone and ifall rule respectively. The if false jump and the

jump instructions are used to compile the control of an if-then-else in the body.

The indexing instructions are used to index among the definitions for one func-

tion. The indexing instructions are:
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try equ else P try sub and P

switch on ground term Lc,Ll,Ls

The try equ else instruction appears before every equality rule which has another

equality rule, with the same type of first argument, following it. The try sub and

instruction precedes the definition of every rule which has a subset rule, with the

same type of first argument, following it. Note that all equality rules will be tried

first and the sunset rules after. In both these case the argument is the code pointer

for the next rule. The switch on ground term Lc,Ll,Ls is used to do clause index-

ing. This instruction appears at the beginning of any function that is defined with

multiple rules having different first arguments. Lc, Ll, Ls are the addresses of the

definitions which have a constant, a list or a set as their first argument respectively.

4.7 Examples of Compiled Code

Now we present a few examples of programs with their complete compiled code.

First we give the SEL definitions and follow it with the compiled code with each

instruction commented with the corresponding symbol in the SEL program in its

flattened form. The append and qsort examples should illustrate the basic use of

most instructions.

append([],y) = y.

append([h|t],y) = [h|append(t,y)].

switch on ground term L1,L2,fail

L1: get nil A1 % append ([ ],

get variable X4, A2 % y )

store ind value X4,A3 % = y

proceed % .

L2: get list A1 % append( [

match variable X4 % h |

match variable X5 % t ],

get variable X6, A2 % y )

store ind list A3 % = [
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store value X4 % h |

store variable X7 % z ]

put value X5, A1 % where append( t,

put value X6, A2 % y )

put value X7, A3 % = z

execute append/2 % .

qsort([]) = [].

qsort([p|l]) = q2(p, partition(l,p)).

switch on ground term L1,L2,fail

L1: get nil A1 % qsort([])

store ind nil A2 % = []

proceed % .

L2: allocate

get list A1 % qsort( [

match variable Y1 % p |

match variable Y2 % l ] )

get variable Y3, A3 % = z

put value Y2, A1 % where partition( l,

put value Y1, A2 % p)

put variable Y4, A3 % = y ;

call all partition, 4 %

put value Y1, A1 % q2( p,

put value Y4, A2 % y)

put value Y3, A3 % = z

deallocate %

execute q2 % .

The intersect and perms examples should illustrate the use of set patterns and

subset rules.

intersect({h| },{h| }) contains {h}.
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get set A1, X4 % intersect( {

adj set head X4 %

match variable X5 % h | } ,

get set A2, X5 % {

adj set head X5 %

match value X5 % h | } )

save choice point? % ⊇

store ind set X6 % {

store value X5 % h |

store phi % {} }

collect? A3, X5 % .

perms({}) = {}.

perms({h|t}) contains distr(perms(t),h).

distribute(distr,1).

switch on ground term L1,fail,L2

L1: get phi A1 % perms()

store ind set A2 % = {

store nil % [] |

store phi % {} }

proceed % .

L2: get set A1, Y1 % perms({

adj set Y1 %

match variable Y2 % h |

match variable Y3 % t }

get variable Y4, A2 % ⊇ v1

save choice point? % where

put value Y3, A1 % perms(t)

put variable Y5, A2 % ⊇ v2 ;

call one perms, 6 %
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put value Y5, A1 % distr( v2,

put value Y2, A2 % h)

put variable Y6, A3 % ⊇ v3

call all distr, 6 % .

collect? Y4, Y6 % v1 = v1 ∪ v3

4.8 The Instruction Set

This section describes the actions taken on executing each instruction. Note: In the

following descriptions, Vn is generically used to denote a permanent variable Yn, or

a temporary variable Xn. Instructions marked with an asterisk are similar to those

of the WAM [W83].

4.8.1 Control Instructions

allocate* This instruction appears at the beginning of a rule that has at least

one permanent variable. A frame is allocated on the top of the stack after

the last choice point or environment. The continuation is saved in the new

environment and the environment pointer CE is set to this frame.

deallocate* This instruction appears before the last call of a rule that has perma-

nent variables. The previous environment is restored from the continuation

and the current environment is discarded.

call all Proc, N* This instruction appears if there is a function call on the right

hand side of a rule. If the function call is an argument to another function

and if that function distributes over union, then call one is used instead of

call all. The continuation pointer CP is set to the following code and control

is transferred by setting the program counter P to Proc. N is the number of

variables in the current frame that may be used after this call. The mode

register M, is set to the allmode.

call one Proc, N This instruction is used to invoke a function that appears as an

argument of another function that distributes over union in this argument.
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collect? Vm, Vn This instruction occurs at the end of every subset rule. It has

serves both control and data functions, which depend on the mode in which

the rule was called. If the mode is allmode, it computes the union of Vm and

Vn by assigning the tail of the set pointed to by Vn to Vm, and assigns the

result to Vm. Control passes to the most recent choice point or to any branch

point within this rule. If the mode is onemode, Vm is set to Vn and control goes

back to the caller. This is done by setting the environment pointer CE and the

program counter P from the continuation.

ifone Vm,Vn This instruction occurs at the end of every “ifone” rule. If the body

of the rule reduced to a value other than true (Vn has a value other than

true), control passes to the most recent choice point or to any branch point

within this rule if it exists. If Vn has the value true, Vm is set to true, the

current branch point CB is set to 0, and control goes back to the caller.

ifall Vm,Vn This instruction occurs at the end of every “ifall” rule. If the body of

the rule reduced to a value true (Vn has a value true) then control passes to

the most recent choice point or to a branch point within this rule if it exists.

If Vn has a value other than true then Vm is set to false, the current branch

point CB is set to 0, and control goes back to the caller.

execute Proc* This instruction makes the outermost function call of the body of

an equality assertion. The program counter P is set to Proc.

proceed* If the right-hand side of a rule does not have a function call, then it

is terminated with this instruction. The program counter P is set to the

continuation pointer CP.

save choice point? This instruction appears after the head of every subset rule.

Its action is also dependent on the mode in which the rule is called. If the rule

was called in allmode then no choice point is created. If the rule was called

in onemode then a new choice point is created and all registers A1...An, all

branch registers B1...Bm, the last choice point LCP, the environment register

CE, the mode register M, are saved in the choice point.

if false jump Vn, Code This instruction appears after the condition in an if-

then-else in the body. If the value in variable Vn is not true, the program

pointer P is set to Code.
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jump Code This instruction appears after the then clause of an if-then-else in the

body. This instruction sets the program pointer P unconditionally to Code.

4.8.2 Get instructions

The get instructions are used to match the arguments of a call against the head

of a rule. They are different from the WAM get instructions because Prolog does

unification rather than matching, and hence the arguments of a call in Prolog could

have unbound variables. In SEL, checking if the value in the register is an unbound

variable is unnecessary because all SEL arguments must be ground terms.

get variable Vn, Ai This instruction appears if the term in the head of the rule

is a variable and it is the first occurrence of that variable. The instruction

simply assigns the value in register Ai to variable Vn.

get value Vn, Ai This instruction appears if the term in the head of the rule is

a variable and it is not the first occurrence of that variable in the rule. The

instruction checks if the values in register Ai and variable Vn match. If it does

not, it sets the fail flag.

get nil Ai This instruction appears if the term in the head is []. The instruction

checks if register Ai holds the null list. If it does not then it sets the fail flag.

get phi Ai This instruction appears if the term in the head is {}. The instruction

checks if register Ai holds the null set. If it does not, it sets the fail flag.

get const C, Ai This instruction appears if the term in the head is an integer,

atom or boolean. The instruction checks if register Ai has the value C. If it

does not, it sets the fail flag.

get list Ai This instruction is used when a list-pattern appears in the head of a

rule. It checks if register Ai is pointing to a list. If so, it assigns the structure

pointer S to it. If it does not, the fail flag is raised.

get set Ai, Vn This instruction followed by an “adjust” instruction are used when

a set-pattern appears in the head of a rule. The instruction checks if register

Ai holds a set. If it does, the variable Vn gets the value of Ai; otherwise the

fail flag is set.
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adj set head Vn This instruction appears after a get-set instruction if there is a

set-pattern with the don’t-care variable “ ” following the “|” in the set pattern.

This “ ” variable indices that the remainder of the set does not have to be

constructed. The structure pointer S gets the value of Vn, and Vn is adjusted to

point to the remainder of the set. The current branch pointer CB is incremented

by one and the branch register B(CB) (the CB-th branch register) is made to

point to this instruction.

adj set Vn This instruction appears after a get set instruction if the remainder

is a variable and the remainder does not have to be copied. The structure

pointer gets the value of Vn and Vn is adjusted to point to the next element

of the set as head and tail. The current branch pointer is incremented by one

and the branch register B(CB) is made to point this instruction.

adj set with copy Vn This instruction is just like the adj set except that the tail

of the set is copied each time the set is adjusted.

4.8.3 Put Instructions

The put instructions are used to load the registers with the arguments of a call.

These instructions are similar to the put instructions of the WAM.

put nil Ai* This instruction appears if the argument to a call is the null list. It

loads the register Ai with [].

put phi Ai This instruction appears if the argument to a call is the null set. It

loads the register Ai with {}.

put const C,Ai* This instruction appears if the argument to a call is a integer,

atom or boolean. It loads the register Ai with the constant C.

put variable Yn, Ai* This instruction is used only to load the location for the

result of a function call. A pointer to Yn (address of Yn) is stored in register

Ai.

put value Vn, Ai* This instruction is used for the second or later occurrence of

a variable as an argument to a function call. The instruction assigns the value

in variable Vn to register Ai.
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put list Ai* This instruction is used if the argument to a function call is a list.

The instruction puts a list pointer to the top of heap in Ai.

put set Ai This instruction is used if the argument to a function call is a set. The

instruction puts a set pointer to the top of heap in Ai.

4.8.4 Store Indirect Instructions

The store indirect instructions are used to return values. If we view the location

where the answer is returned as an extra argument of the corresponding Prolog

predicate, these instructions are the WAM’s get instructions. The difference is that

here we know at compile time when the register is going to have an unbound variable.

store ind nil Ai This instruction is used if the right hand side of a rule is the null

list. It sets the variable pointed to by Ai equal to [].

store ind phi Ai This instruction is used if the right hand side of a rule is the null

set. It assigns the null set to the variable pointed to by Ai.

store ind const C,Ai This instruction is used if the right hand side of a rule is

an integer, atom or boolean. It assigns the constant C to the variable pointed

to by Ai.

store ind list Ai This instruction is used if the right hand side is a list. It sets

the variable pointed to by Ai to a list pointer pointing to top of heap.

store ind set Ai This instruction is used if the right hand side is a set. It sets the

variable pointed to by Ai to a set pointer pointing to top of heap.

store ind value Vn, Ai This instruction is used if the right hand side of a rule is

a variable. The instruction makes the value of the variable pointed to by Ai

equal to that of the value in Vn.

store ind variable Vn,Ai This instruction is used if the right hand side of a rule

is a function call or if it is a subset rule. The instruction stores the reference

to the unbound variable in Ai, in Vn.
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4.8.5 Match and Store Instructions

These instructions are used to match nested patterns and to load nested arguments.

These are the WAM’s unify instructions in read and write mode. Note that there is

no need for an instruction similar to the WAM’s unify local value.

match variable Vn This instruction is used if there is a variable within a list or

set pattern in the head and it is the first occurrence of that variable in the

rule. The instruction gets the value pointed to by the structure pointer S, and

stores it in Vn. S is incremented by 1.

match value Vn This instruction is used if there is a variable within a list or set

pattern in the head and it is not the first occurrence of that variable in the

rule. The instruction checks if the value pointed to by the structure pointer

matches the value in Vn. If it does not, the fail flag is set. S is incremented by

1.

match nil This instruction is used if [] occurs within a list or set pattern in the

head of a rule. If the value pointed to by the structure pointer S is not equal

to [], then the fail flag is set.

match phi This instruction is used if {} occurs within a list or set pattern in the

head of a rule. If the value pointed to by the structure pointer S is not equal

to the null set, then the fail flag is raised.

match const C This instruction is used if there is an integer, boolean or atom

in alist or set pattern in the head of a rule. If the value pointed to by the

structure pointer S is not equal to C, the fail flag is assigned true.

store nil This instruction is used if the null list is part of the structure that is an

argument to a function call. The null list is pushed on top of heap.

store phi This instruction is used if {} is part of the structure that is an argument

to a function call. The null set is pushed on top of heap.

store const C This instruction is used if there is an integer, boolean or atom as

part of a structure that is an argument to a function call. The constant C is

pushed on to the heap.
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store variable Vn This instruction is used if there is a function call as part of

a structure that is an argument to another function call. A new unbound

variable is pushed on top of heap and a reference to it is stored in Vn.

store value Vn This instruction is used if there is a variable as part of a structure

that is an argument to a function call. The value in Vn is pushed on top of

heap.

4.8.6 Indexing Instructions

There are fewer indexing instructions here than in the WAM.

try equ else Proc This instruction precedes every equality rule that has at least

one more rule with the same first argument in the rule head. Proc is the

address of the following rule. All registers are stored in an alternate register

set to try the other rule if this fails to match. The alternate program counter

is set to Proc.

try sub and Proc This instruction precedes every subset rule that has at least one

more subset rule with the same kind of first head argument. A choice point

is created and all registers A1...An, the last choice point LCP, the current

environment pointer CE and the continuation pointer CP etc are saved in the

choice point.

switch on ground term Lc,Ll,Ls This instruction is used to switch control to

different groups of clauses dependent on the first argument of the function

call. The program pointer P is set to Lc, Ll or Ls depending on whether the

register A1 holds a constant, list or set.

4.9 Comparison with Prolog

In the following table, we compare our implementation with a couple of Prolog

implementations. The table gives the time taken in milliseconds (on a Sun 3/60)

for a few programs run under the C-prolog interpreter, the Quintus Prolog compiler

and the SEL interpreter. The actual Prolog programs used are given in appendix

C. Note that when “setof” operations are used the SEL interpreter is faster than
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C-Prolog, but slower than Quintus Prolog. This is because of the highly optimised

code generated and runtime emulation by Quintus Prolog.

goal C-Prolog Quintus Prolog SEL

reverse of a 30 element list 166 33 266

prod of 2 20-element sets 250 84 416

perms of a 6 element sets 16350 2200 5866

all solutions to the 8-queens 173633 33766 75000

subset testing of two 20 element sets 150 17 66



5 Conclusions

This thesis has presented techniques similar to the WAM [W83] for compiling subset

logic programs. We have described instructions for the compilation of restricted a-c

matching and the compilation of the depth-first control strategy. The multiple a-c

matches are represented by multiple “branch-points” within WAM’s choice point. A

distinct feature of the control is that we have backtracking on failure (as in Prolog)

as well as on success (to collect all elements of a set).

The property of functions “distributing over union” was made use of in the im-

plementation by providing two modes of calling a function: call-one and call-all.

It was found that this property does aid in reducing execution time (because it ob-

viates duplicate checking), but the extent of improvement is usually diminished by

the increase in the number of function calls to be performed. Explicitly annotating

functions to bypass duplicate checking has also been found very useful.

In the process of undertaking this implementation, we found that the basic com-

putational model for subset assertions could be readily adapted to support quanti-

fiers over sets (the ifall and ifone constructs). From our experience using them,

we found that they lead to short programs that are also efficient.

This thesis has concentrated on run-time issues rather than compile-time issues.

There appears to be many opportunities for global compile time analysis. For ex-

ample, the compiler should be able to check in many cases the confluence of equality

assertions and also the property of distribution over union. It is also desirable to

have methods that could tell us which definitions could possibly generate duplicate

elements in a set and do duplicate checking only in those cases. These are proba-

bly undecidable issues, but partial (correct) information could be provided which is

better than no information. Global analysis is also required to determine when a-c

matching may destructively “adjust a set” and when it has to make separate copies

of remainder sets. Type inference is another area to be investigated which could

lead to substantial savings in run time error checking of operations such as union of

sets and arithmetic.

The current implementation does not perform garbage collection of the heap,

which would be desirable in an improved version. Runtime extensions are also
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needed to support set closures [JP88].



A UNIX Man Page

SEL(1) UNIX Programmer’s Manual SEL(1)

NAME

sel - interpreter for SEL

SYNOPSIS

sel [ option ]

DESCRIPTION

SEL is a subset logic language designed for

programming with sets. It uses equality and

subset assertions to define functions.

The system (SEL Version 1.0) consists of a

compiler that compiles SEL programs into an

instruction set for an abstract machine, and

an emulator for the instruction set. It is

an integrated package to experiment with

SEL programs. It features some elementary

trace facilities and integer arithmetic.

The following options are recognized.

-a Prints the assembled instructions

of the abstract machine for each

rule and goal

-I Prints runtime statistics at the

instruction level

-C Generates call-all at the outermost

level
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AUTHORS

The system was written by Anil Nair using

lex, yacc and C.

SEE ALSO

Subset Logic Programming: Application and

Implementation

B.Jayaraman and Anil Nair, In Fifth

Int’l Logic Programming Conference,

pp. 843-858, Seattle, 1988.

Compilation of Subset Logic Programs

Anil Nair (M.S. Thesis), UNC, Chapel Hill,1988.

BUGS

Report to bj@cs.unc.edu.



B A Sample Session

unc % sel

SEL Version 1.0

sel> compile(’queens’).

[iota, queens, solve, placequeen, safe, ]

sel> cputime().

66

sel> solve(4).

{{[4|3],[3|1],[2|4],[1|2]},{[4|2],[3|4],[2|1],[1|3]}}

sel> cputime().

250

sel> trace(queens).

sel> solve(4).

Call to queens(4,1,{},{4,3,2,1}).

Call to queens(4,2,{[1|4]},{4,3,2,1}).

Call to queens(4,3,{[2|2],[1|4]},{4,3,2,1}).

Call to queens(4,3,{[2|1],[1|4]},{4,3,2,1}).

Call to queens(4,4,{[3|3],[2|1],[1|4]},{4,3,2,1}).

Call to queens(4,2,{[1|3]},{4,3,2,1}).

Call to queens(4,3,{[2|1],[1|3]},{4,3,2,1}).

Call to queens(4,4,{[3|4],[2|1],[1|3]},{4,3,2,1}).

Call to queens(4,5,{[4|2],[3|4],[2|1],[1|3]},{4,3,2,1}).

Call to queens(4,2,{[1|2]},{4,3,2,1}).

Call to queens(4,3,{[2|4],[1|2]},{4,3,2,1}).

Call to queens(4,4,{[3|1],[2|4],[1|2]},{4,3,2,1}).

Call to queens(4,5,{[4|3],[3|1],[2|4],[1|2]},{4,3,2,1}).

Call to queens(4,2,{[1|1]},{4,3,2,1}).

Call to queens(4,3,{[2|4],[1|1]},{4,3,2,1}).

Call to queens(4,4,{[3|2],[2|4],[1|1]},{4,3,2,1}).

Call to queens(4,3,{[2|3],[1|1]},{4,3,2,1}).

{{[4|3],[3|1],[2|4],[1|2]},{[4|2],[3|4],[2|1],[1|3]}}
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sel> ^D

SEL execution halted

unc %



C Prolog Programs

This appendix gives the listings of the Prolog programs used in section 4.9.

rev([], []).

rev([H|T], Z) :- rev(T, Y), append(Y, [H], Z).

append([], X, X).

append([H|T], Y, [H|Z]) :- app(T, Y, Z).

prod([],Y,[]).

prod([X|Y],S,T) :- distr(X,S,U),prod(Y,S,V),append(U,V,T).

distr(X,[],[]).

distr(X,[H|T],[[X|H]|Z]) :- distr(X,T,Z).

perm([], []).

perm(L, [E|X]) :- select(E, R, L), perm(R, X).

select(X, L, [X|L]).

select(Y, [X|L2], [X|L]) :- select(Y, L2, L).

allperms(L, P) :- setof(X, perm(L, X), P).

solve(Board_size, All_Soln) :-

bagof(Soln,queens(Board_size, [], Soln),All_Soln).

% queens accumulates the positions of occupied squares

queens(Bs, [square(Bs, Y) | L], [square(Bs, Y) | L]) :- size(Bs).

queens(Board_size, Initial, Final) :-

place(Initial, Next),

queens(Board_size, [Next | Initial], Final).
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% place generates legal positions for next queen

place([], square(1, X)) :- snint(X).

place([square(I, J) | Rest], square(X, Y)) :-

X is I + 1,

snint(Y),

not(threatened(I, J, X, Y)),

safe(X, Y, Rest).

not(G) :- G,!,fail.

not(G).

% safe checks whether square(X, Y) is threatened by any

% existing queens

safe(X, Y, []).

safe(X, Y, [square(I, J) | L]) :-

not(threatened(I, J, X, Y)),

safe(X, Y, L).

% threatened checks whether squares (I, J) and (X, Y)

% threaten each other

threatened(I, J, X, Y) :- (I = X), !.

threatened(I, J, X, Y) :- (J = Y), !.

threatened(I, J, X, Y) :- (U is I - J), (V is X - Y), (U = V), !.

threatened(I, J, X, Y) :- (U is I + J), (V is X + Y), (U = V), !.

snint(1). snint(2). snint(3). snint(4).

snint(5). snint(6). snint(7). snint(8).

size(8).
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mem(H,[H|_],t).

mem(H,[X|Y],t) :- mem(H,Y,t).

subset([],X,t).

subset([H|T],S,t) :- mem(H,S,t),subset(T,S,t).

subset(X,Y,f).
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