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Abstract

This dissertation considers the problem of synthesizing mappings from syntactic struc-

tures to meaning representations given a grammar and sample sentence-meaning pairs.

The motivation for this work stems from the potential use of such techniques in the

development of natural-language front-ends, e.g., natural query languages. The cen-

tral technical problem addressed in the dissertation is the mechanical transformation

of a context-free grammar (CFG) into a de�nite clause grammar (DCG) using sam-

ple sentence-meaning pairs of the form hs; mi, where s is a sentence belonging to the

language de�ned by CFG and m is the semantic representation (meaning) of s. The

resulting DCG would be such that it could be executed, by the interpreter of a logic

programming language, to compute the semantic representation(s) for every sentence

of the original CFG. Two important assumptions underlie the proposed approach: (i)

the semantic representation language is the simply typed lambda-calculus, and (ii) the

semantic representation of a sentence can be obtained from the semantic representations

of its parts (compositionality).

The basic technique involves an enumeration of a representative �nite set of sen-

tences and formation of a corresponding set of equations over (typed) function variables.

Each function variable represents the meaning of a particular grammar rule, and e�ec-

tively serves to augment the original CFG in order to derive a higher-order DCG. The

main research topics investigated in this disseration are: (i) formulation of a solution

technique using a variant of Huet's uni�cation procedure for the simply-typed lambda-

calculus; (ii) e�cient implementation of the solution using constraints from multiple

examples, \macro" substitution rules that package common sequences of more basic

substitutions, and a dependency-directed backtracking search; (iii) development of a

provably-correct partial execution procedure to convert the constructed higher-order

DCG into a �rst-order DCG, for more e�cient execution; and (iv) the application of the

entire methodology for developing a natural query language|a variant of the CHAT-80

query language|starting from a grammar and sample sentence-meaning pairs.
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1. Introduction

1.1. The Problem and Its Signi�cance

The two de�nitive properties of a language are its syntax and semantics. At the

outset, I should clarify that I use the term language in a broad sense, and include the

kinds of formal languages that one encounters in automata theory, conventional pro-

gramming language constructs, and certain restricted subsets of natural languages. The

term syntax refers to the structure of well-formed sentences of a language, whereas the

term semantics refers to the meaning of well-formed sentences. The syntax of the kinds

of languages considered in this dissertation is fairly well-understood, that is, it is rela-

tively straightforward to de�ne the set of well-formed sentences of such languages using

context-free grammars

1

or Backus-Naur Form (BNF). However, the formal semantics of

a language is harder to specify, and numerous approaches have been proposed in the

literature, e.g., denotational, axiomatic, operational, etc. (Gordon 1988).

This dissertation is concerned with the problem of inferring semantics of a language

from examples, assuming that we are already given its syntax. More precisely, I as-

sume that the syntax is given using an unambiguous context-free grammar, although

the proposed techniques also apply to certain attribute grammars, where the attributes

specify context-sensitive features such as number or gender agreement, and can be ex-

tended to apply to ambiguous grammars. There are several semantic representation

languages, �rst-order logic (FOL), �-calculus, semantic networks (Brachman 1979),

etc. (For brevity, I will use the term `semantics' and `semantic representations' as syn-

onyms throughout this dissertation.) Given an unambiguous grammar, the problem of

inferring its meaning from examples is one of �nding the mapping (i.e., function) from

sentences to their meanings on the basis of sample sentence-meaning pairs. More speci�-

cally, the goal of this research is to develop a system that takes as input an unambiguous

context-free grammar (CFG) and a �nite set of pairs hs; mi, where s is a sentence

belonging to the language de�ned by the context-free grammar and m is the semantics

1

Context-free grammars are clearly insu�cient to specify the complete syntax of a natural language

or even a programming language. I therefore limit attention to restricted subsets of these languages. See

section 1.3 for further discussion.
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of s, and will produce as output a de�nite clause grammar (DCG) (Pereira and Warren

1980) that will compute the semantics of every sentence of the input grammar. A DCG

is essentially a CFG wherein each nonterminal symbol has been enhanced with a param-

eter that provides semantic information. A DCG can be directly converted into a logic

program which can then be executed to perform parsing or generation. This dissertation

shows that in many practical cases such a mapping can be automatically inferred from a

representative �nite set of examples. The next subsection will clarify the precise sense in

which this problem can be solved and the research issues it raises, but �rst I will discuss

the signi�cance of this problem:

(1) Why is it desirable to automatically generate a DCG from a CFG?

(2) What are the applications of such a system?

It is not easy to manually augment a CFG with semantic constructors to obtain a

DCG because the task of building a correct and e�cient DCG requires a fair amount

of search, the process being tedious and error-prone. Even for the small grammars

considered in later chapters of this dissertation, it is not obvious what the semantic

constructors should be. However, it is easy to give sample sentence-meaning pairs, and

often the semantic representation of a sentence is systematically composed from those

of the phrases that constitute the sentence. Therefore it natural to seek a mechanical

procedure that will compute (induce) the semantics of all sentences of a given CFG on

the basis of a representative set of sentence-meaning pairs.

Another motivation for a mechanical transformation procedure from a CFG to a

DCG is to accommodate changes quickly and correctly. For example, in the context of

natural query languages, it will be a fairly common task to change an interface to another

language or another dialect or jargon, but to keep the semantic representations the same.

In general this requires a complete redesign of the grammar, a task that would be easily

accomplished by the proposed system, whereas conventional methods would require a

substantial amount of programming e�ort, the result of which will likely be error-prone

and not as general.

The proposed system would facilitate rapid prototyping of natural language inter-

faces for database systems or customizing such interfaces for speci�c applications (Ve-

lardi 1989, Wallace 1984), since the interface could be obtained merely by de�ning the

grammar and typical sentence-meaning pairs. Both the conversion of the natural lan-

guage query into this representation and the conversion from this representation back

8



into natural language would be handled by the generated interface|the latter operation

would be achieved by applying the de�nite-clause grammar in the reverse direction to

the semantic representations. Reversible execution of DCGs is possible because they

are essentially logic programs. Since the DCGs considered in this dissertation are me-

chanically generated, they have a more restricted form compared with arbitrary logic

programs, or for that matter arbitrary DCGs. This in turn makes them more amenable

to reversible execution than for arbitrary logic programs or DCGs.

The techniques developed in this dissertation may provide a new approach to machine

learning and program synthesis from examples. Similar techniques have recently been

explored by Hagiya (1990). For example, program synthesis from examples is related to

our stated problem in the following way: the CFG is analogous to a program schema; the

resulting DCG is analogous to the program to be synthesized; and, the sample sentence-

meaning pairs are analogous to the sample input-output pairs of the program to be

synthesized. However, program synthesis is the harder of the two problems because it

also involves the determination of the right schema. This topic is discussed further in

chapter 2.

1.2. Approach and Technical Results

An arbitrary transformation (i.e., an arbitrary in�nite mapping) cannot be inferred from

�nitely many examples, and hence it is necessary to impose additional constraints on

our problem. We make the following two assumptions in order to facilitate the mechan-

ical transformation of a CFG to a DCG: (i) the semantic representation language is the

simply typed �-calculus (Church 1940); (ii) the semantic representation of a sentence is

systematically constructed from those of its phrases (compositionality). These assump-

tions are not unusual, since such assumptions have been adopted, for example, by R.

Montague for a proper treatment of quanti�cation of English (Montague 1974, Dowty et

al. 1981). To illustrate, consider the following CFG rule,

sentence ! nounphrase; verbphrase

which speci�es that a sentence is composed of a noun phrase followed by a verb phrase

(sentence, nounphrase and verbphrase are nonterminals). A key idea of my approach

is to exploit the compositionality principle to enhance the rules as follows:

sentence((F X Y ))! nounphrase(X); verbphrase(Y )

where uppercase letters are variables. That is, if variables X and Y represent respectively

the meanings of the nonterminals nounphrase and verbphrase, then the meaning of
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nonterminal sentence is obtained by applying some function F toX and Y . The function

variable F is a term in the simply typed �-calculus, and must be determined by the

system based upon the �nite set of input examples. The semantic representations of the

terminal symbols of the CFG are the other unknowns to be determined by the system.

The compositionality principle e�ectively means that the grammatical structure con-

strains the allowable semantics. The choice of the simply-typed �-calculus as the seman-

tic representation language drastically reduces the search space of allowable solutions,

as we shall later see. Under these two assumptions, it can be seen that the stated prob-

lem is recursively enumerable in that, if there exists a DCG satisfying the �nitely many

examples, it is possible to systematically �nd it; if there is no solution, the search may

sometimes be nonterminating. The typed �-calculus is particularly suitable for analyzing

and synthesizing semantic representations. It e�ectively allows us to reduce the gener-

alization problem to a uni�cation problem over simply-typed terms. This uni�cation

problem is called higher-order uni�cation because variables may range over functions.

A semi-decidable solution procedure for this problem was �rst described by Huet (1975).

Briey, my technique is to enumerate sentences in a certain order, query the user

for the semantic representation of each of the generated sentences, formulate a set of

equations over the unknown function variables, and solve these equations using a vari-

ant of Huet's uni�cation procedure. The solutions for these function variables serve to

augment the original CFG in order to derive the �nal DCG.

Referring to the grammar rule given above, if the solution for F was �A:�B:(B A),

then the grammar rule would become

sentence((�A:�B:(B A) X Y ))! nounphrase(X); verbphrase(Y )

which is equivalent to

sentence((Y X))! nounphrase(X); verbphrase(Y ).

It turns out that Huet's procedure cannot be directly used to solve the kinds of

equations that arise in our context. The reason is that this procedure requires that the

types for all terms are known in advance; however, in the synthesis scheme, in general

only some of the types are known when the equations are set up. It therefore becomes

necessary to augment his procedure with two important operations|type inference and

type enumeration.
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1.2.1. E�cient Synthesis

In order to achieve acceptable performance for realistic grammars, the search has to

make e�ective use of the constraints from multiple examples. Thus the proposed system

marks an interesting point of departure from �Prolog (Nadathur and Miller 1988) both

with respect to the uni�cation procedure as well as the search regime. (This is the

reason that the synthesis system was implemented from scratch rather than on top of

�Prolog.) Another di�erence from �Prolog arises from the fact that the right-hand

sides of all equations generated from the examples are ground (i.e., do not contain any

free variables). Thus higher-order uni�cation reduces to higher-order matching in this

context. As the decidability of general higher-order matching still remains an open

problem, in this dissertation I will adapt the (semi-decidable) uni�cation procedure of

Huet, exploiting where possible the fact that all right-hand sides are ground. To speed

up the synthesis of common types of substitution terms, I also explore the use of \macro"

substitution rules, which are certain combinations of Huet's substitution rules without

any free variables. In this way the kinds of substitutions needed in the context of DCG

synthesis can be enumerated more e�ciently. The approach of simultaneously solving a

set of higher-order equations also facilitates an e�ective scheme of dependency directed

backtracking. If a substitution causes failure in a particular equation, backtracking can

be restricted to substitutions that have inuenced that equation.

Unlike �rst-order uni�cation, the uni�cation of simply-typed �-terms can yield more

than more one solution. However, these solutions do not necessarily result in DCGs

that implement di�erent sentence-meaning functions. But if the problem is undercon-

strained by providing too few examples, the resulting DCGs need not be equivalent. If

more examples are provided than necessary, there may be no solution at all if the exam-

ples are inconsistent, or unnecessary computations may be performed when solving the

equations.

2

Therefore one should use as few examples as are necessary to guarantee a

unique solution (sentence-meaning function). I derived a set of criteria for determining

whether a set of examples has this property. These criteria ensure that the grammar rules

are exposed to as many variations of sentences as are necessary to enforce maximally

general semantic rules. An important technique in this context is to change one word

of a sentence at a time, so that it can be uniquely determined which words contribute

2

This problem is analogous to the linear algebra problem of determining a plane by specifying a set

of points in space; at least three points are necessary to �x a (two-dimensional) plane. Specifying less

than three points allows many di�erent planes, whereas specifying more than three points can make a

solution impossible.
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which subterms of the semantic representation. Further performance improvements can

be achieved by presenting shorter training instances before longer ones. The equations

corresponding to shorter training instances are easier to solve, and the constraints intro-

duced by them reduce the search for substitutions of subsequent equations.

1.2.2. E�cient Execution

While higher-order logic is useful for reasoning about and synthesizing programs, it is

not very amenable to e�cient execution. To achieve acceptable performance for larger

grammars, the constructed higher-order DCG should be converted into a �rst-order DCG

where possible. A �rst-order DCG is also more amenable to reversible execution than

a higher-order DCG. I have investigated a technique called partial execution, which

e�ectively replaces �-terms by �rst-order terms, and therefore replaces higher-order uni-

�cation by (the more e�cient) �rst-order uni�cation. The use of �rst-order uni�cation

to simulate certain cases of �-reduction was �rst introduced by Colmerauer (1978), and

the connection between partial execution of predicates and Colmerauer's method for do-

ing semantic interpretation in a logic grammar was made explicit by Pereira & Shieber

(1987). I have developed a specialized version of partial execution that automatically

converts a higher-order DCG into a �rst-order DCG guided by the set of examples that

were used to derive the higher-order DCG.

The partially executed DCG works in the forward direction (i.e., computing the se-

mantic representation of a sentence) by using �rst-order matching instead of �-reduction,

and works in the reverse direction (i.e., computing the sentence(s) for a given semantic

representation) by using �rst-order uni�cation instead of higher-order uni�cation. A

simple form of partial execution is possible for the class of DCGs where all application

terms are reduced during execution and the bodies of semantic terms do not have mul-

tiple occurrences of variables. If these assumptions do not hold, tracing the execution

of the training instances can be used to determine which application terms should be

partially executed. Copy operations may be necessary if a variable occurs more than

once in a semantic term.

Even though one can construct pathological grammars and semantic representations

where this scheme of partial execution fails, it appears to be applicable for most practical

applications, and I have shown its correctness in those cases. Higher-order DCGs for

which I could not �nd a satisfactory solution are those where a particular application

term is reduced for some sentences but not for others. However, usually such grammars
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can be easily rewritten into a more natural form that avoids this problem. For cases

where the partially executed DCG fails to compute the correct answer in the reverse

direction, I have developed a simple enhancement that will restore correctness.

E�cient forward execution of DCGs has received considerable attention in the lit-

erature (e.g., see Matsumoto (1983) and references therein), but techniques for e�cient

reverse execution are also important. It turns out that a partially executed DCG is par-

ticularly well-suited for reverse execution, since �rst-order uni�cation is more e�cient

than higher-order uni�cation. I have implemented an interpreter for reverse execution

of a partially executed DCG that uses a selection strategy that ensures that at each

step constraints from the semantic representation are utilized, so that nondeterminism

is minimized.

1.2.3. Application to Natural Query Languages

In order to demonstrate the viability of my approach for larger grammars, I applied my

techniques to synthesize a variant of the CHAT-80 natural query language (Warren and

Pereira 1980). The grammar de�ning the syntax of queries contained about 90 rules

(excluding terminals). This exercise helped develop a methodology for generating large

DCGs: I have found that the best way to synthesize a large DCG is to group the given

syntactic rules into independent modules that can be \trained" individually, and to in-

crementally add new rules. Such an approach also ensures that the number of variables

to be solved for at each incremental step is small, by taking advantage of the results

from previous steps. This in turn helps keep the search space for solutions small. The

implemented system also permits the semantics for grammar rules and terminals to be

optionally speci�ed along with the syntactic rules, if they are known. This incremental

approach is also useful if the syntactic rules need to be modi�ed to maintain composi-

tionality. My schemes for partial execution and reverse execution of DCGs have proved

to be e�ective for all test cases the system was applied to.

1.3. Scope and Outline of the Dissertation

The objective of this research di�ers from those of Berwick (1985), Ishizaka (1990) and

others, who are concerned with inferring a grammar (syntax) from example sentences.

Instead, given the grammar, my objective is to infer the semantics of sentences from

examples. Natural languages are of interest in my work since they are good examples

of languages whose semantics require the use quanti�ed terms and hence the full use
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of the typed �-calculus. However, my work is not directly concerned with devising

suitable semantics for natural languages; it is the user's responsibility to construct both

the grammar as well as the semantic representation for typical sentences in the typed

�-calculus.

This dissertation is concerned with that subset of natural languages that can be ade-

quately described with CFGs and the typed �-calculus. For applications such as natural

query languages, it seems feasible to describe the language with a context-free grammar

and also to insist on sentences with unambiguous meanings. However, the techniques

apply equally to CFGs that have been extended with additional arguments to control

rule application, which makes them e�ectively context sensitive. It appears that issues

related to pronoun resolution can be separated from those related to generalization of

semantics. Therefore I restrict my attention to languages without pronouns or anaphora.

In this dissertation I am not concerned with the issues related to resolution of ambigu-

ities, but the present system can be extended to handle certain types of syntactic and

semantic ambiguity. Suggestions on how that might be done are given in chapter 9.

The remainder of this dissertation is organized as follows: Chapter 2 surveys related

research; chapters 3 and 4 review the typed �-calculus and de�nite-clause grammars re-

spectively (these chapters are provided in order to make the dissertation self-contained);

chapter 5 describes the basic techniques underlying the synthesis of a higher-order DCG;

chapter 6 describes how to improve the e�ciency of the synthesis procedure; chapter 7 de-

scribes how to convert the higher-order DCG into a �rst-order DCG by partial execution,

and shows the correctness of the partially executed DCG under appropriate conditions;

chapter 8 describes the application of the foregoing techniques to the synthesis of natural

query languages; and chapter 9 presents conclusions, contributions, possible extensions,

and areas of further work.
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2. Related Research

I am not aware of any published research that meets the stated objectives of the previous

chapter, but there are several closely related research areas. I briey survey these research

areas below and mention their relationship to my work.

2.1. Automatic Synthesis of Semantics

In order to partially automate the synthesis of semantics, various formalisms have been

developed within the logic grammar framework, e.g., modi�er structure grammars, re-

striction grammars, discontinuous grammars, and puzzle grammars (Abramson and

Dahl 1989). These grammars provide the user with means for specifying guidelines which

a system could consult in order to construct the �nal representation. That is, the user

speci�es the desired type of semantic representation in some high-level language, and the

system then translates these speci�cations into constructors which can be incorporated

into the executable grammar rules. It appears that the only types of semantic represen-

tations that could be completely automated with these approaches are parse trees, since

their representations follow exactly the history of rule application.

Hauptmann (1991) discusses the automatic acquisition of semantic interpretation

rules which convert syntactic tree-structures (the output of an ATN syntactic parser)

into tree structured frame representations (of the KL-ONE knowledge representation

system). The basic ideas behind his approach are similar to those discussed in this

dissertation, but his generalization and induction processes are much more heuristic and

ad hoc compared with my proposed approach based upon higher-order uni�cation. As a

result, his system is more restrictive and probably harder to generalize beyond the speci�c

types of transformations discussed in his thesis. For example, his approach assumes

that the lexical mapping rules are already known; i.e., the semantic representations

of all the individual words must be given to the system, whereas the system discussed

in this dissertation can infer them from the examples. He uses various heuristics, for

example, speci�c mapping rules are generalized by allowing a certain substitution because

\all other critical parts of the rule are identical and the embedded concept that was

substituted is su�ciently similar to the original one, based on a de�nition of similarity

which exploits the frame hierarchy." His system also does not appear to be reversible.

15



The reason why no heuristics are needed in the system discussed in this dissertation

is because the constraints are collected in a set of higher-order equations to be solved

simultaneously, so that once a solution has been found there are no other constraints

that could invalidate the solution. Whereas when one tries to generalize locally without

taking all the other restrictions into account, similarity heuristics are needed to control

the search.

2.2. Program Synthesis by Examples

A de�nite clause grammar can be viewed as a program that takes as input a sentence

and computes its semantic representation (see section 4 for details). Therefore the aug-

mentation process discussed in this dissertation can be considered a type of automatic

program synthesis from examples (Summers 1977, Bauer 1979, Kodrato� 1979, Bier-

mann et al. 1984 ). Programming by examples, on the other hand, is a special case of

inductive inference, since the synthesis of a program generally involves the inference of

an extended pattern of program behavior from the patterns discovered in the examples|

computability theory has shown that it is possible to infer large useful classes of programs

simply from examples of input/output behavior (Gold 1967, Blum 1975, Barzdin 1977).

A common way to deal with the search problem in automatic program synthesis from

examples is to use program schemata to constrain the way in which the control struc-

tures and data operators of the chosen programming language are used (Smith 1984). In

this dissertation, the parsing grammar provided to the system can be considered such a

program schema.

Until recently, research in program synthesis from examples has not considered the

kind of input/output pairs with quanti�ed terms and types. Hagiya (1991) extends the

simply typed �-calculus with inductive de�nitions, providing a formalism for solving

both inductive learning (\programming by example") as well as deductive learning

(\proving by example") problems. Both types of problem are formulated as equations

in a typed �-calculus. However, in order to avoid combinatorial explosion when solving

such equations, appropriate program or recursion schemata must be provided. These

schemata can also be formulated in the calculus introduced by Hagiya and could in

principle be inferred through higher-order uni�cation.
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2.3. Machine Learning

The use of the typed �-calculus and higher-order uni�cation can be thought of as car-

rying out inductive learning (programming by examples). There is a strong similarity

to deductive learning (proving by example) as well: if the semantics for the terminal

symbols of the grammar are given, the correct substitutions for the remaining function

variables can be considered a proof that a particular sentence has a particular seman-

tic representation as speci�ed by an example. Generalization takes place in that once

a function substitution has been determined by a set of examples, the corresponding

semantics is determined for all sentences that use the rule with that substitution during

parsing. The problem of inferring these substitutions is made tractable in our case by

the fact that syntactic structure is prede�ned, thus providing an appropriate program

schema.

Proving by examples is known more commonly as explanation-based learning (EBL)

(Shavlik 1990, Hagiya 1991). EBL has been investigated mainly in the area of theorem

proving, although the same mechanism underlies much of the work in other �elds such

as skill acquisition and automatic programming. EBL can be considered as the general-

ization of a given proof, so that theorems that are \similar" to the one derived by that

proof can be derived more e�ciently. The initial proof that is used to guide the gen-

eralization in EBL corresponds to semitraces in the area of programming by examples

(Smith 1984), and the general proof in EBL corresponds to the synthesized program. In

our work, the analysis of a particular sentence and its representation corresponds to the

initial proof and is used to guide the augmentation of the grammar.

Determining the association between terminal symbols (words) and their semantic

representations using anti-uni�cation can be considered a generalization of learning con-

cepts from examples. Anti-uni�cation is essentially the dual of uni�cation; that is, U

A

is

an \anti-uni�er" of two terms t

1

and t

2

, if U

A

can be uni�ed with t

1

and with t

2

. Instead

of using an expressive description language to formulate possible generalizations, as in the

version-space approach (Mitchell 1978), anti-uni�cation generalizes only by turning con-

stants or terms into variables, thus facilitating e�cient implementation. Anti-uni�cation

is implicitly handled in my system by the higher-order uni�cation procedure. By suc-

cessively considering example sentences whose sentences di�er in only one word from

the sentence of the \main" example sentence, my system e�ectively incorporates the

powerful concept of near misses (Winston 1975) in its generalization process.
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2.4. Natural Language Learning

Lehnert (1987) discusses a system that uses limited syntactic knowledge expressed in

a chart parser and relevant conceptual case frame representations as the basis to learn

semantic representations of natural language sentences from examples. The system is

illustrated by using an \approximation" of conceptual dependency as sample represen-

tation (Schank 1975). In order to determine the associations between the words of the

sentence and the fragments of the semantic representation, Lehnert's system uses lexi-

cal matches; i.e., the word has to appear explicitly in the representation, otherwise the

association has to be provided by the user in the form of a conceptual de�nition. The

semantic representations that can be learned by Lehnert's system are also restricted by

the fact that they must be non-recursive case-frame representations.

Other research projects in the area of natural language learning, e.g., (Anderson

1981) and (Selfridge 1986), combine the acquisition of syntactic and semantic knowl-

edge. A major objective of those projects is to explain the characteristics of human

language learning. Anderson (1977) discusses a system that infers augmented transition

networks given pairs of sentences and structures representing their meanings. The type

of meaning representation used by Anderson's system is a propositional semantic net-

work. The augmented transition network inferred by the system can be used for both

converting sentences into their semantic representations and vice versa; however, two

separate interpreters are required for these two modes of operation, whereas in the case

of de�nite clause grammars only one is needed due to the reversibility property. Over-

all, Anderson takes a very heuristic approach to language learning, in contrast to the

systematic techniques discussed in this dissertation.

Selfridge (1986) discusses a program that acquires word meanings and language struc-

ture from examples of sentences and their corresponding meaning representations using

conceptual dependency (Schank 1973). It is an attempt to model the development of

language comprehension in a child. Word meanings are learned either by providing the

association between a particular word and its meaning representation to the program

directly, or by providing pairs of whole phrases and their meaning representations and

then factoring out the parts already known to the program and associating the unknown

parts of the phrases with the unknown parts of the representations.

The approach discussed in this dissertation is essentially a generalization of the sec-

ond method (using complete sentences). By systematically varying sentences the word

meanings can be inferred with maximum e�ciency and precision, whereas Selfridge's

program may temporarily undergeneralize or make wrong associations.
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Since the sentences handled by Selfridge's program are quite simple and the vocabu-

lary very limited, no formalism like ATN's or DCG's is required. It can learn how to �ll

the slots of the representations of certain actions using various heuristics, but does not

handle more complex sentences involving quanti�cation or recursive grammar structures,

whereas the DCG formalism in conjunction with higher-order uni�cation can handle such

applications. Selfridge's program uses a separate procedure for language generation. It

converts a meaning representation into a phrase (not necessarily a complete sentence) in

a heuristic fashion, whereas the DCG's constructed by the proposed system are suitable

for both e�cient parsing and e�cient generation.

Selfridge's system is restricted to a �xed set of frames of the conceptual dependency

knowledge representation system, whereas the the proposed system can handle any con-

sistent representation expressible in the typed �-calculus.
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3. Typed �-Calculus:

Equality and Uni�cation

This chapter gives an overview of the simply typed �-calculus and discusses two impor-

tant operations, reduction and uni�cation, following the notation and terminology from

Huet (1975). Reduction of �-terms is fairly well known, but (higher-order) uni�cation

is not as well understood. This chapter presents the uni�cation procedure along with

examples.

3.1. Typed �-terms

Types

The typed �-calculus is based on Church's simple theory of types (Church 1940). Each

well-formed expression (term) of this language has an unambiguous type that indicates

its position in a functional hierarchy.

De�nition 3.1: Assuming T

0

is a �nite set of elementary types (also called primitive

types), the set T of types is de�ned as the smallest superset of T

0

closed under the binary

operator `!':

�; � 2 T ) (�! �) 2 T .

If A is a set of elements of type �, and B a set of elements of type �, then �! � denotes

the type of functions with domain A and range B. Types are designated by the Greek

letters �, �, , etc. A colon is used to indicate the type of a term; e.g., t : � means that

the term t has type �.

�-Terms

There are basically four kinds of terms in the typed �-calculus: variables, constants,

abstractions, and applications. Variables and constants are also referred to as atoms.

For every � 2 T there is a denumerable set V

�

of variables of type �. The elements of

the set C of constants have arbitrary given types. All sets V

�

and C are pairwise disjoint.

De�nition 3.2: The set A of atoms is de�ned as:
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A = C [ V , where V =

S

�2T

V

�

.

In this section, variables are written in lowercase letters x, y, : : : , f, g, : : : , constants are

written in capitals A, B, : : : , F, G, : : : , and atoms written using the symbols @, @

0

, : : : .

De�nition 3.3: If e

1

is a term of type (�! �), and e

2

a term of type �, then the term

(e

1

e

2

) is an application of type �.

(The outermost parentheses of a term are often omitted; i.e., (e

1

e

2

) is the same as e

1

e

2

.

The application operator is left-associative; i.e., ((e

1

e

2

) e

3

) is the same as e

1

e

2

e

3

.)

De�nition 3.4: If e is a term of type �, and x 2 V

�

, then the term �x:e is an

abstraction of type �! �. The variable x is called a binder variable, or pre�x variable

of the term e.

Therefore, the set of terms is de�ned as the smallest superset of A closed by appli-

cation and abstraction. Terms are denoted by e, e

0

, : : : , E, E

0

, : : : , which may have

subscripts. The type of a term e is denoted by �(e).

De�nition 3.5: The relation subterm of is de�ned as the reexive and transitive

closure of:

8

<

:

e

1

and e

2

are subterms of (e

1

e

2

),

e is a subterm of �x:e .

E [e] denotes a term that has a subterm e, and E [e

0

] denotes the term obtained by replacing

all occurrences of e by e

0

in E (if �(e

0

) = �(e)).

De�nition 3.6: Let E = E [�x:e]. An occurrence of x in �x:e is bound in E.

De�nition 3.7: Let E = E [�x:e]. A non-bound occurrence of x in E is free in E.

F(E) denotes the set of variables having a free occurrence in E.

Assuming �(e) = �(x), S

x

e

(E) denotes the term obtained by substituting e for every

free occurrence of x in E, taking care to rename variables of E as necessary to avoid

\capture" of free (occurrences of) variables in e by pre�x variables of E.
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3.2. Equality between �-terms

The following three conversion rules de�ne equality between �-terms.

De�nition 3.8: �-conversion: E [�y:S

x

y

(e)] = E [�x:e], for any y 62 F(e) such that

�(y) = �(x), assuming that the same subterm position is being referred to on both sides

of the equality.

De�nition 3.9: �-conversion: E [S

x

e

(e

0

)] = E [(�x:e

0

e)] assuming that the same subterm

position is being referred to on both sides of the equality.

De�nition 3.10: �-conversion: E [�x:(e x)] = E [e], where x 62 F(e), assuming that the

same subterm position is being referred to on both sides of the equality.

De�nition 3.11: �-conversion is the reexive, symmetric, and transitive closure of �-,

�-, and �-conversion.

Informally, �-conversion is simply variable renaming. That is, two terms are equiv-

alent if they can be made identical by appropriately renaming variables. �-conversion

can be used to simplify an application term ((�V:E

1

) E

2

) by removing the left-most

pre�x variable V of the function, and the right-most argument E

2

, and at the same time

replacing all free occurrences of V in E

1

with E

2

. This use of �-conversion is referred

to as �-reduction. An abstraction �V:(E V ) can be simpli�ed through �-conversion by

removing the left-most pre�x variable and the right-most argument of the function E if

they are identical and if V has no free occurrences in E.

Example 3.2.1:

Examples of �-conversion:

�x:x = �y:y

�x:�y:((x y) a) = �x:�z:((x z) a)

Example 3.2.2:

Examples of �-conversion (assuming �(x) = �(a) and �(y) = �(b)):

(�x:�y:(f (g x y)) a) = �y:(f (g a y))

(�x:�y:(f (g x y)) a b) = (f (g a b))

Note that (g x y) is equivalent to ((g x) y).
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Example 3.2.3:

Examples of �-conversion:

�y:((g a b) y) = (g a b)

�x:�y:(f x y) = f

Note that types are preserved during �-conversion.

De�nition 3.12: A term is said to be in normal form i� it is a �-term but not of the

form E [(�x:e

1

e

2

)].

Theorem 3.2: For every term e there exists a term e

0

in normal form derivable from e

by �-conversion. This term e

0

is unique modulo �-conversion, and is called the normal

form of e.

Proof: see Fortune et al. (1983), page 158.

De�nition 3.13: Let e be the term �x

1

:�x

2

: : : :�x

n

:(@ e

1

e

2

: : : e

p

). Then the head

of e is the atom @, and the heading of e is the term �x

1

:�x

2

: : : :�x

n

:@. e is called rigid

if @ 2 C [ fx

1

; : : : ; x

n

g, and exible otherwise.

De�nition 3.14:

A substitution pair is a pair hx; ei where x 2 V ; e 6= x; �(x) = �(e) and e is reduced

to normal form. We say this substitution pair pertains to x. A substitution is a �nite

set of substitution pairs pertaining to distinct variables:

� = fhx

i

; e

i

ij1 � i � ng 8(1 � i; j � n)(x

i

= x

j

)) (i = j)

We de�ne x � as

8

<

:

e if hx; ei 2 �,

x otherwise.

If T denotes the set of terms in normal form, x� can be interpreted as a type-

preserving mapping from V to T . We extend this mapping in the following way: For all

E 2 T , the application of � to E, written as E �, is de�ned as the normal form of the

term ((�x

1

; : : : ; �x

n

:E) (e

1

; e

2

; : : : ; e

n

)).

Notational Conventions:

In computer implementations of higher-order uni�cation, the in�x symbol \\" is used

instead of the combination of the Greek letter � and the period. From now on, we also

adopt the convention that symbols starting with capital letters are variables and symbols

starting with lower case letters are constants, to be consistent with the Prolog-based
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implementation of the system. For example, the term �X:�Y:(loves X Y ) is represented

as X\Y\(loves X Y). The standard way to express the relationship between operators or

predicates (which are all considered constants in the �-calculus) and their arguments is

pre�x-notation. For example, (X + Y) would be written as (+ X Y). (Cambridge pre�x

notation is used for all terms; e.g., (loves X Y) is used instead of loves(X,Y).) The

above conventions will be used throughout the remainder of this dissertation.

3.3. Representation of Mathematical Objects

There are many ways to represent numbers, functions, truth values, data structures,

and other objects in the typed �-calculus. Numbers, for example, can be represented as

\Church numerals" in the following way:

0 = F\X\X

1 = F\X\(F X)

2 = F\X\(F (F X))

3 = F\X\(F (F (F X)))

etc.

Assuming i is a primitive type, each such Church numeral can by assigned the simple

type (i! i)! i! i (note that the ! operator is right-associative).

Arithmetic functions like the successor function, the addition function, the multipli-

cation function, or the conditional function can be implemented in the typed �-calculus

using the Church numerals and the function de�nitions given below. Such arithmetic

operations can thus be performed using the conversion rules of the typed �-calculus

discussed above.

succ = N\F\X\(N F (F X))

add = M\N\F\X\(M F (N F X))

mult = M\N\F\X\(N (M F) X)

cond = M\N\O\F\X\(M Y\(N F X) (O F X))

Let I = (i ! i) ! (i ! i). Then �(succ) = I ! I , �(add) = I ! I ! I , �(mult) =

I ! I ! I , and �(cond) = I ! I ! I ! I . Application of the conditional function

(cond m n o), where m, n, and o are Church numerals, reduces to n if m is greater than

zero and to o if m is equal to zero.
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Considering only natural number representations over a domain B, where B is a

primitive type, the functions representable in the simply typed �-calculus can be char-

acterized in the following way:

Theorem 3.3: The functions representable by �-expressions of the type (I ! (I !

: : : (I ! I) : : :)), where I = (B ! B) ! (B ! B), where B is a primitive type, are

exactly the functions generated by the constants 0 and 1 using the operations add,

mult, and cond.

Proof: see Fortune et al. (1983), page 161.

Shown below are representations of the booleans along with typical operations. Suitable

types can be given, but are omitted here for brevity.

true = X\Y\X

false = X\Y\Y

not = T\(T false true )

iszero = N\(N (X\false) true)

if-then-else = (A B C)

and = A\B\(A B X\Y\Y)

Even though any recursive function can be represented by a �-expression (Gordon

1988), the typed �-calculus is not powerful enough for representing all of them; instead,

the untyped �-calculus must be used in many cases. For example, the or function de�ned

below cannot be assigned simple types since it contains a \self-application" term, i.e.,

application term of the form (x x). Self-application terms are not legal in the typed

�-calculus since they cannot be assigned any type.

or = A\B\((A A) B)

3.4. Higher-Order Uni�cation

3.4.1 Motivation

The uni�cation of typed �-terms is referred to as higher-order uni�cation. It is the

process of �nding substitutions for variables (some of which may denote functions) such

that the terms are equal by �-conversion. As an example, consider the following two

terms:
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(1) X\Y\(foo (a X Y) H)

(2) X\Y\(foo (G Y X) 2)

By replacing G by P\Q\(a Q P) and replacing H by 2, the two resulting terms are equal

by the �-conversion rules:

(1) X\Y\(foo (a X Y) 2)

(2) X\Y\(foo (P\Q\(a Q P) Y X) 2)

= X\Y\(foo (Q\(a Q Y) X) 2) (�-conversion)

= X\Y\(foo (a X Y) 2) (�-conversion)

However, the following two terms cannot be uni�ed:

(3) X\Y\(f X Y)

(4) X\Y\(g X Y)

There are also no unifying substitutions for the two terms below,

(5) X\Y\(a Y)

(6) X\Y\(F X)

because (a Y) contains the pre�x variable Y, but the substitution for the function variable

F is independent of Y since F is applied only to X.

In general, a pair of typed �-terms may not have a most general uni�er. For example,

(F a) and a have two uni�ers (assuming, for example, that �(a) = i, and �(F ) = i! i):

F  X\a

F  X\X

neither one of which is more general than the other, i.e., one cannot be obtained from

the other by a substitution to some of its free variables. Similarly, (F a) and (g a a)

have four uni�ers (assuming, �(a) = i, �(F ) = i! i, and �(g) = i! i! i):

F  X\(g a X)

F  X\(g X a)

F  X\(g X X)

F  X\(g a a)
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It is even possible that two terms have countably in�nite uni�ers. The higher-order

uni�cation problem is only semi-decidable: While there is a procedure that always �nd

a uni�er if one exists, it is in general impossible to determine that there is no uni�er. A

systematic search procedure for uni�ers was �rst given by Huet (1975). A simple example

to motivate Huet's uni�cation procedure is given below. The procedure is discussed in

detail in the next section. Suppose that we want to unify (X Y Z) with (foo a b)

(assuming suitable types). One may attempt to do that by having the head of the �rst

term, X, \imitate" the head of the second term, foo. Thus the substitution for X is

constructed as follows:

X  V1\V2\(foo (H1 V1 V2) (H2 V1 V2))

Note that the arguments for foo are terms built up of function variables (H1 and H2)

applied to the sequence of binder variables. Such a substitution expresses a general form

for the imitation. The introduction of new variables is a key reason for the potential

nontermination of the uni�cation process (contrast this situation with that of the �rst-

order uni�cation algorithm). Under this imitition substitution for X, the term (X Y Z)

becomes

(V1\V2\(foo (H1 V1 V2) (H2 V1 V2)) Y Z)

which by �-reduction is equal to

(foo (H1 Y Z) (H2 Y Z)).

Now, in order to unify (foo (H1 Y Z) (H2 Y Z)) with (foo a b) we have to unify

each of their arguments: First we need to unify (H1 Y Z) with a. It is possible to

attempt an imitation substitution, as before, for variable H1. However, it is also possible

to construct a function that will return one of the arguments Y or Z, which in turn is to

be uni�ed with a. This is the idea behind the \projection" substitutions. Let us attempt

the following projection:

H1  V1\V2\V1

Now (H1 Y Z) becomes (V1\V2\V1 Y Z), which is equal to Y. Obviously the imitation

substitution Y  a takes care of the rest. Unifying the second arguments (H2 V1 V2)

and b can be done similarly.
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3.4.2. Higher-order uni�cation procedure

Suppose that we are given a �nite set of pairs of terms of the same type to be uni�ed:

fhu

1

; v

1

i; : : : ; hu

n

; v

n

ig.

The higher-order uni�cation problem involves �nding a substitution � such that u

i

� is

�-convertible to v

i

� by the rules of �-conversion de�ned earlier. We assume each term

is represented in head-normal form, as:

�x

1

: : : : ; �x

n

:(A t

1

: : : t

m

),

where A is a constant or variable of type �

1

! : : :! �

m

! �. Given two rigid terms

�x

1

: : : : :�x

n

:(F

1

s

1

: : : s

i

) and �x

1

: : : : :�x

n

:(F

2

r

1

: : : r

i

)

of the same type, they are uni�able only if F

1

and F

2

are identical, and they can be

reduced to:

fh�x

1

: : : :�x

n

:s

1

; �x

1

: : : : :�x

n

:r

1

i; : : : ; h�x

1

: : : : :�x

n

:s

i

; �x

1

: : : : :�x

n

:r

i

ig:

Huet observed that either such a set of pairs has no uni�er or it can be reduced (by

procedure SIMPL de�ned further below) to another set, having the same set of uni�ers,

in which each pair has at least one exible term. For a set consisting only of exible-

exible pairs, a uni�er can be trivially constructed. For a exible-rigid pair, Huet has

shown that two kinds of substitutions are possible: imitation and projections.

De�nition 3.15: Let F = �x

1

: : : : ; �x

n

:(f t

1

: : : t

k

) and R = �x

1

: : : : :�x

n

; (c s

1

: : : s

j

)

respectively be the exible and rigid terms in head normal form; and let the type of f

be �

1

! : : :! �

k

! �. Then, if c is a constant, the imitation substitution is de�ned

as:

f  �w

1

: : : :�w

k

:(c (h

1

w

1

: : : w

k

) : : : (h

j

w

1

: : : w

k

)),

where the h

i

's are new variables of appropriate types.

De�nition 3.16: If �

i

is of the form �

1

! : : :! �

l

! �, the i

th

projection substitution,

for 1 � i � k, is de�ned as:

f  �w

1

: : : :�w

k

:(w

i

(h

1

w

1

: : : w

k

) : : : (h

l

w

1

: : : w

k

)),

where the h

i

's above are new variables of appropriate types. Note that these substitutions

are determined entirely by the heads of the exible and rigid terms.

Higher-order uni�cation procedures can be conveniently described in terms of the

function SIMPL (Huet 1975, Nadathur & Miller 1990).
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De�nition 3.17: The function SIMPL on sets of disagreement pairs D is de�ned as

follows (a sequence of pre�x variables x

i

is denoted by ~x).

(1) If D = � then SIMPL(D) = �.

(2) If D = fhF

1

; F

2

ig, and

(a) if F

1

is exible then SIMPL(D) = D; otherwise

(b) if F

2

is exible then SIMPL(D) = fhF

2

; F

1

ig;

(c) otherwise F

1

and F

2

are both rigid. Let F

1

= �~x:(C

1

A

1

: : : A

r

) and let F

2

=

�~x:(C

2

B

1

: : : B

s

). If C

1

6= C

2

then SIMPL(D) fails; otherwise SIMPL(D) =

SIMPL(fh�~x:A

i

; �~x:B

i

ij1 � i � rg).

(3) Otherwise D has more than one equations. Let D = fhF

i

; G

i

ij1 � i � ng.

(a) If SIMPL(fhF

i

; G

i

ig) fails for some i, then SIMPL(D) fails;

(b) Otherwise SIMPL(D) =

S

n

i=1

SIMPL(fhF

i

; G

i

ig).

A higher-order uni�cation procedure would iteratively select an applicable substitu-

tion according to some scheme, reduce some or all terms to normal form, and simplify

the result using SIMPL.

Example 3.4.1:

We illustrate how the imitation and projection substitutions and the SIMPL function can

be used to resolve the set of equations (disagreement pairs) from the example in section

5.1. We have not yet speci�ed how equations from this set are selected for substitutions,

or in which order substitutions are enumerated. For the present we just assume that the

set of equations is ordered and we always select the �rst one to be processed next. We

also assume that substitutions are enumerated in some order of increasing complexity.

A more precise higher-order uni�cation procedure is given in section 5. Let D be the

current set of disagreement pairs initialized to the following set:

{F1 = F\X\X,

(F2 F1) = F\X\(F X),

(F2 (F2 F1)) = F\X\(F (F X))}

We assume type (i! i)! i! i for each term on the right-hand side, and assume that

all other terms have appropriate types. The type of F1 is assumed to be (i! i)! i! i,
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and that of F2 assumed to be ((i ! i) ! i ! i) ! (i ! i) ! i ! i. (For readability,

types are omitted in the following discussion.) Selecting the �rst equation, we need to

�nd a substitution for F1. Only projection substitutions are applicable since X, the head

of the right hand side term, is not a constant. The two simplest applicable projection

substitutions are K\L\L and K\L\K. The �rst term clearly is the right choice and converts

the �rst equation to:

K\L\L = F\X\X.

After �-conversion both sides of this equation are identical. According to SIMPL this

equation is now removed from the D, and there are no equations added since the heads

of these terms have no arguments. Therefore D becomes:

{(F2 F1) = F\X\(F X),

(F2 (F2 F1)) = F\X\(F (F X))}

After substituting for all F1's in D and simplifying all terms we get:

{(F2 K\L\L) = F\X\(F X),

(F2 (F2 K\L\L)) = F\X\(F (F X))}

Next, a substitution for F2 needs to be found. Applicable substitutions are:

(1) F2 <- K\L\M\(M (H1 K L M) (H2 K L M))

(2) F2 <- K\L\M\(L (H1 K L M) (H2 K L M))

(3) F2 <- K\L\M\(K (H1 K L M) (H2 K L M))

Selecting the �rst substitution above, D is converted to:

{(K\L\M\(M (H1 K L M) (H2 K L M)) K\L\L) = F\X\(F X),

(K\L\M\(M (H1 K L M) (H2 K L M))

(K\L\M\(M (H1 K L M) (H2 K L M)) K\L\L)) = F\X\(F (F X))}

The �rst equation can be simpli�ed through �-reduction to the following:

L\M\(M (H1 A\B\B L M) (H2 A\B\B L M)) = F\X\(F X)

Since the head of the left hand side term is a di�erent pre�x variable than the head

of the right hand side term, SIMPL fails, and another substitution must be tried. The

second choice will lead to failure as well. Using the third substitution D is converted to:
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{(K\L\M\(K (H1 K L M) (H2 K L M)) K\L\L) = F\X\(F X),

(K\L\M\(K (H1 K L M) (H2 K L M))

(K\L\M\(K (H1 K L M) (H2 K L M)) K\L\L)) = F\X\(F (F X))}

which, after reducing all terms to normal form, becomes:

{A\B\(H1 K\L\L A B) = F\X\(F X),

A\B\(H1 K\L\L (H2 K\L\(H1 M\N\N K L) A B)

(H1 K\L\(H1 M\N\N K L) A B)) = F\X\(F (F X))}

The only viable substitution for H1 now is K\L\L, converting D to:

{A\B\(A B) = F\X\(F X),

A\B\(H2 K\L\(K L) A B (A B)) = F\X\(F (F X))}

Applying �-conversion:

{F\X\(F X) = F\X\(F X),

F\X\(H2 K\L\(K L) F X (F X)) = F\X\(F (F X))}

Since the headings of the �rst equation are identical, it is removed from D and another

equation made from the argument of the heads is added as speci�ed by SIMPL:

{F\X\X = F\X\X,

F\X\(H2 K\L\(K L) F X (F X)) = F\X\(F (F X))}

The new equation is also removed, and the only equation remaining in D is:

{F\X\(H2 K\L\(K L) F X (F X)) = F\X\(F (F X))}

The next substitution would be:

H2 <- K\L\M\N\(L (H3 K L M N))

converting D to:

{F\X\(F (H3 K\L\(K L) F X (F X))) = F\X\(F (F X))}

which according to SIMPL is simplied to:

{F\X\(H3 K\L\(K L) F X (F X)) = F\X\(F X)}
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Finally, substituting K\L\M\N\N for H3 yields:

{F\X\(F X) = F\X\(F X)}

= {F\X\X = F\X\X}

= {}

After substituting and reducing all terms, the �nal unifying substitutions are:

F1 <- K\L\L

F2 <- K\L\M\(K L (L M))

H1 <- K\L\L

H2 <- K\L\M\N\(L N)

H3 <- K\L\M\N\N

Example 3.4.2:

Next we give a somewhat larger example to illustrate the use of both imitation and

projection substitutions. In this example we want to �nd substitutions for F1, F2, F3,

F4, F5, and F7 so that (F1 (F2 F4) (F3 F7 (F2 F5))) = (saw mike mary). The

sequence of steps needed to �nd a uni�er is shown below. Note that a single equation

does not provide enough constraints to restrict the number of possible uni�ers to one.

The derivation below represents only one solution path in the derivation tree. The

derivation is presented in terms of triples of the form < T1 , T2 , Subst >, where T1

and T2 the two higher-order terms to be uni�ed, and Subst is the set of substitutions

applied so far.

< (F1 (F2 F4) (F3 F7 (F2 F5))) , (saw mike mary) , {} >

Projection: { F1 <- U1\U2\(U1 (H1 U1 U2)) }

----> < (F2 F4 (H1 (F2 F4) (F3 F7 (F2 F5)))) , (saw mike mary) ,

{ F1 <- U1\U2\(U1 (H1 U1 U2)) } >

Projection: { F2 <- U1\U2\(U2 (H2 U1 U2)) }

----> < (H1 ... (F3 F7 (F2 F5)) (H2 F4 (H1 ... (F3 F7 (F2 F5))))) ,

(saw mike mary) ,

{ F1 <- U1\U2\(U1 (H1 U1 U2)),

F2 <- U1\U2\(U2 (H2 U1 U2)) } >

Projection: { H1 <- U1\U2\U3\(U2 (H3 U1 U2 U3)) }

----> < (F3 F7 (F2 F5) (H3 ... (F3 F7 (F2 F5)) (H2 F4 ...))) ,

(saw mike mary) ,

{ F1 <- U1\U2\(U1 W3\(U2 (H3 U1 U2 W3))),

F2 <- U1\U2\(U2 (H2 U1 U2)) } >

Projection: { F3 <- U1\U2\U3\(U2 (H4 U1 U2 U3)) }
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----> < (F2 F5 (H4 F7 (F2 F5) (H3 ... ... (H2 F4 ...))) ,

(saw mike mary) ,

{ F1 <- U1\U2\(U1 W3\(U2 (H3 U1 U2 W3))),

F2 <- U1\U2\(U2 (H2 U1 U2)),

F3 <- U1\U2\U3\(U2 (H4 U1 U2 U3)) } >

Apply substitution for F2:

----> < (H4 F7 ... (H3 ... ... (H2 F4 ...)) (H2 F5 ...)) ,

(saw mike mary) ,

{ F1 <- U1\U2\(U1 W3\(U2 (H3 U1 U2 W3))),

F2 <- U1\U2\(U2 (H2 U1 U2)),

F3 <- U1\U2\U3\(U2 (H4 U1 U2 U3)) } >

Projection: { H4 <- U1\U2\U3\U4\(U1 (H5 . . U3 .) (H6 . . . U4)) }

----> < (F7 (H5 . . (H3 ... ... (H2 F4 ...)) .)

(H6 . . . (H2 F5 ...))) ,

(saw mike mary) ,

{ F1 <- U1\U2\(U1 W3\(U2 (H3 U1 U2 W3))),

F2 <- U1\U2\(U2 (H2 U1 U2)),

F3 <- U1\U2\U3\(U2 W4\(U1 (H5 U1 U2 U3 W4)

(H6 U1 U2 U3 W4))) } >

Imitation: { F7 <- U1\U2\(saw (K1 U1 U2) (K2 U1 U2)) }

----> < (saw (K1 (H5 . . (H3 . . (H2 F4 .)) .) (H6 . . . (H2 F5 .)))

(K2 (H5 . . (H3 . . (H2 F4 .)) .) (H6 . . . (H2 F5 .)))) ,

(saw mike mary) ,

{ F1 <- U1\U2\(U1 W3\(U2 (H3 U1 U2 W3))),

F2 <- U1\U2\(U2 (H2 U1 U2)),

F3 <- U1\U2\U3\(U2 W4\(U1 (H5 U1 U2 U3 W4)

(H6 U1 U2 U3 W4))),

F7 <- U1\U2\(saw (K1 U1 U2) (K2 U1 U2)) } >

Now unify first argument:

----> < (K1 (H5 . . (H3 . . (H2 F4 .)) .) (H6 . . . (H2 F5 .))) ,

mike ,

{ F1 <- U1\U2\(U1 W3\(U2 (H3 U1 U2 W3))),

F2 <- U1\U2\(U2 (H2 U1 U2)),

F3 <- U1\U2\U3\(U2 W4\(U1 (H5 U1 U2 U3 W4)

(H6 U1 U2 U3 W4))),

F7 <- U1\U2\(saw (K1 U1 U2) (K2 U1 U2)) } >

Projection: { K1 <- U1\U2\U1 }

Projection: { H5 <- U1\U2\U3\U4\U3 }

Projection: { H3 <- U1\U2\U3\U4\U3 }

Projection: { H2 <- U1\U2\U1 }

----> < F4 , mike ,

{ F1 <- U1\U2\(U1 W3\(U2 W3)),

F2 <- U1\U2\(U2 U1),

F3 <- U1\U2\U3\(U2 W4\(U1 U3 (H6 U1 U2 U3 W4))),
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F7 <- U1\U2\(saw U1 (K2 U1 U2)) } >

Imitation: { F4 <- mike }

Unify second argument:

< (K2 (H5 . . (H3 . . (H2 F4 .)) .) (H6 . . . (H2 F5 .))) ,

mary ,

{ F1 <- U1\U2\(U1 W3\(U2 W3)),

F2 <- U1\U2\(U2 U1),

F3 <- U1\U2\U3\(U2 W4\(U1 U3 (H6 U1 U2 U3 W4))),

F7 <- U1\U2\(saw U1 (K2 U1 U2)),

F4 <- mike } >

Projection: { K2 <- U1\U2\U2 }

Projection: { H6 <- U1\U2\U3\U4\U4 }

Projection: { H2 <- U1\U2\U1 }

----> < F5 , mary ,

{ F1 <- U1\U2\(U1 W3\(U2 W3)),

F2 <- U1\U2\(U2 U1),

F3 <- U1\U2\U3\(U2 W4\(U1 U3 W4)),

F7 <- U1\U2\(saw U1 U2),

F4 <- mike } >

Imitation: { F5 <- mary }

Applying �-conversion to the substitutions for F1 and F3 we obtain the �nal set of

substitutions:

{ F1 <- U1\U2\(U1 U2),

F2 <- U1\U2\(U2 U1),

F3 <- U1\U2\U3\(U2 (U1 U3)),

F7 <- U1\U2\(saw U1 U2),

F4 <- mike,

F5 <- mary }

Example 3.4.3:

If there is no uni�er the search may not terminate. For example, trying to unify the

terms (F a) and (b (F a)) would lead to an in�nite computation:
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(F a) = (b (F a))

Imitation: F ! W n(b (H1 W))

�! (b (H1 a)) = (b (b (H1 a)))

�! (H1 a) = (b (H1 a))

Imitation: H1 ! W n(b (H2 W))

�! (b (H2 a)) = (b (b (H2 a)))

�! (H2 a) = (b (H2 a))

etc.
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4. Higher-Order De�nite Clause

Grammars

Higher-order de�nite clause grammars (DCGs) are a generalization of �rst-order DCGs,

which are based on de�nite (clause) programs. DCGs are a special case of metamor-

phosis grammars (Colmerauer 1978). The rules of metamorphosis grammars are of the

form:

S�! �

where S is a nonterminal grammar symbol, � is a string of terminals and nontermi-

nals and � is a string of terminals, nonterminals and procedure calls. Metamorphosis

grammars are a type of logic grammar (Abramson 1989). Logic grammars comprise

generalized type-0 rewriting rules like ordinary grammars, but their grammar symbols

may include arguments representing trees. They also di�er from traditional grammars

in the use of variables and uni�cation, and the possibility of including tests in grammar

rules. In addition, logic grammars can be endowed with procedural semantics through

processors based on specialized theorem provers.

Other logic grammars, e.g. extraposition grammars (Pereira 1981), include special

mechanisms to capture certain linguistic phenomena, but are equivalent in terms of com-

putational power. Compared with other logic grammars, the main advantage of DCGs is

that they can be easily and e�ciently implemented. Since symbols can have arguments,

DCGs can also describe type-0 languages, but in general not as straightforwardly as

other grammar types due to the restrictions on the DCG rules discussed below.

4.1. De�nite Clause Programs

In this section we de�ne de�nite-clause programs and state the correctness theorems

for their execution. Following the notation and terminology of Lloyd (1987), we start

by de�ning �rst-order terms. The de�nitions below assume an alphabet consisting of

variables, constants, function symbols, predicate symbols, connectives (including  �, _,

and � (negation)), quanti�ers (including 9 and 8), and usual the punctuation symbols.

De�nition 4.1 A (�rst-order) term is de�ned inductively as follows:

(a) a variable is a term;
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(b) a constant is a term;

(c) if f is an n-ary function symbol and t

1

; : : : ; t

n

are terms, then f(t

1

; : : : ; t

n

) is a term.

De�nition 4.2 If p is an n-ary predicate symbol, and if t

1

; : : : ; t

n

are terms, then

p(t

1

; : : : ; t

n

) is an atomic formula or simply atom.

3

De�nition 4.3 A literal is an atom or the negation of an atom. A positive literal is an

atom. A negative literal is the negation of an atom.

De�nition 4.4 A clause is a formula of the form 8x

1

: : :8x

s

(L

1

_ : : :_L

m

), where each

L

i

is a literal and x

1

; : : : ; x

s

are all the variables occurring in L

1

_ : : :_L

m

. The empty

clause is denoted by 2 and corresponds to the case where m = 0; it can be interpreted

as contradiction.

De�nition 4.5 A de�nite program clause is a clause of the form A_ � B

1

_: : :_ � B

n

,

where A and each B

i

is a positive literal (universal quanti�cation is assumed). It is more

usual to write such a clause as A  � B

1

; : : : ; B

n

. A is therefore called the head of the

program clause, and B

1

; : : : ; B

n

is called the body of the program clause.

De�nition 4.6 A de�nite-clause program (also called de�nite program) is a �nite set

of de�nite program clauses.

De�nition 4.7 A de�nite goal is a clause of the form  � B

1

; : : : ; B

n

(which is equiv-

alent to � B

1

_ : : :_ � B

n

with all variables universally quanti�ed).

De�nition 4.8 A substitution � is a �nite set of the form fv

1

=t

1

; : : : ; v

n

=t

n

g, where

each v

i

is a variable, each t

i

is a term distinct from v

i

, and the variables v

1

; : : : ; v

n

are

distinct. Each element v

i

=t

i

is called a binding for v

i

.

De�nition 4.9 An expression is either a term, a literal, or a conjunction or disjunction

of literals.

De�nition 4.10 Two expressions E and F are variants if there exist substitutions �

and � such that E = F� and F = E�.

De�nition 4.11 Let P be a de�nite program and G a de�nite goal. An answer for

P [ fGg is a substitution for variables of G.

3

The term `atom' here should not be confused with atom in Chapter 3.
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De�nition 4.12 Let P be a de�nite program, G a de�nite goal � A

1

; : : : ; A

k

, and � an

answer for P[fGg. We say that � is a correct answer for P[fGg if 8((A

1

^: : :^A

k

)�) is a

logical consequence of P . (8(T ) means that all variables of T are universally quanti�ed.)

De�nition 4.13 Let G be � A

1

; : : : ; A

m

; : : : ; A

k

and C be � B

1

; : : : ; B

q

. Then G

0

is

derived from G and C using the most general uni�er (mgu) � if the following conditions

hold:

(a) A

m

is an atom, called the selected atom, in G;

(b) � is an mgu of A

m

and A;

(c) G

0

is the goal  � (A

1

; : : : ; A

m�1

; B

1

; : : : ; B

q

; A

m+1

; : : : ; A

k

)�.

G

0

is called a resolvent of G and C.

De�nition 4.14 Let P be a de�nite program and G a de�nite goal. An SLD-derivation

4

of P [ fGg consists of a sequence G

0

= G;G

1

; G

2

; : : : of goals, a sequence C

1

; C

2

; : : : of

variants of program clauses of P , and a sequence �

1

; �

2

; : : : of mgu's such that each G

i+1

is derived from G

i

and C

i+1

using �

i+1

.

De�nition 4.15 An SLD-refutation (also called SLD-resolution) of P [fGg is a �nite

SLD-derivation of P[fGg which has the empty clause 2 as the last goal in the derivation.

If G

n

= 2, we say the refutation has length n.

De�nition 4.16 Let P be a de�nite program and G a de�nite goal. A computed answer

� for P [ fGg is the substitution obtained by restricting the composition of �

1

: : : �

n

to

the variables of G, where �

1

: : : �

n

is the sequence of mgu's used in an SLD-refutation of

P [ fGg.

Theorem 4.17 (Soundness of SLD-Resolution)

Let P be a de�nite program and G a de�nite goal. Then every computed answer for

P [ fGg is a correct answer for P [ fGg.

Proof: see Lloyd (1987), page 43.

Theorem 4.18 (Completeness of SLD-Resolution)

Let P be a de�nite program and G a de�nite goal. For every correct anwer � for P [fGg,

there exists a computed answer � for P [ fGg and a substitution  such that � = �.

Proof: see Lloyd (1987), page 49.

Below is a simple de�nite clause program for converting a list of English words into a

list of French words, or vice versa. (Symbols starting with capital letters denote variables;

\cons" and \nil" are arbitrary function symbols; clauses are delimited by periods.)

4

SLD stands for Linear resolution for De�nite clauses with Selection function.

38



Example 4.1 (Sterling 1986)

translate(cons(Word,Words),cons(Mot,Mots)) �

dict(Word,Mot), translate(Words,Mots).

translate(nil,nil).

dict(the,le).

dict(dog,chien).

dict(chases,chasse).

dict(cat,chat).

A possible query (goal) for the program would be:

(1) translate(cons(the,cons(dog,cons(chases,cons(the,cons(cat,nil))))),Ms)

which would bind \Ms" to the corresponding list with French words:

(2) cons(le,cons(chien,cons(chasse,cons(le,cons(chat,nil)))))

The �rst step of this derivation involves unifying the query (1) with the head of

a variant of the �rst program clause for \translate". Let the following clause be this

variant:

translate(cons(Word1,Words1),cons(Mot1,Mots1)) �

dict(Word1,Mot1), translate(Words1,Mots1).

Then \Word1" is uni�ed with \the", and \Words1" is uni�ed with

cons(dog,cons(chases,cons(the,cons(cat,nil)))).

With these bindings the subgoals \dict(Word1,Mot1)" and \translate(Words1,Mots1)"

are executed next. Subgoal \dict(the,Mot1)" uni�es with the �rst program clause for

\dict" binding \Mot1" to \le". Subgoal \translate(cons(dog,: : :)),Mots1)" recursively

invokes the �rst program clause for \translate" unifying with another variant of it. The

process terminates when the last element \nil" of the input term is reached and the

second program clause for \translate" is applied. At this point \Ms" of the original

query has been bound to (2).
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4.2. First-Order De�nite Clause Grammars

De�nite-clause grammars can be thought of as context free grammars (CFGs) aug-

mented with parameters which specify semantic information. Below is a simple example

illustrating our notation for a CFG. The start symbol of the grammar is the nonterminal

on the left-hand side of the �rst production rule, and a terminal symbol is an identi�er

enclosed within [ and ].

Example 4.2

sentence ! np, vp.

np ! pn.

vp ! tv, np.

pn ! [julia].

pn ! [tom].

tv ! [hates].

A de�nite clause grammar (DCG) combines the concept of a CFG and a de�nite

clause program. A DCG allows us to specify the syntax of a language using CFG-like

rules and the semantics of the language using the terms of de�nite clause programs. A

DCG enhances a CFG in three important ways: (1) grammar nonterminal symbols may

include arguments; (2) rules may include predicates (for imposing conditions) in their

bodies;

5

and (3) invocation of grammar rules requires uni�cation of these arguments.

Syntax of (�rst-order) DCGs:

DCG ::= clause

DCG ::= clause;DCG

clause ::= rule

clause ::= fact

rule ::= head! body

head ::= posliteral

body ::= posliteral

body ::= posliteral; body

5

This feature is omitted from most of the discussion in this dissertation, since it does not a�ect the

major techniques of my thesis.
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fact ::= posliteral

posliteral ::= functor(arg; : : : ; arg)

functor ::= h constant i

arg ::= h �rst-order term i

Arguments may be used to enforce context-sensitive features of the language or to build

structures, such as parse trees, during parsing.

Example 4.3

sentence(sent(N,V))! nounphrase(N, Num),

verbphrase(V, Num).

nounphrase(np(D,N), Num) ! determiner(D, Num),

nounphrase2(N, Num).

nounphrase(np(N), Num) ! nounphrase2(N, Num).

nounphrase2(np2(A,N), Num) ! adjective(A),

nounphrase2(N, Num).

nounphrase2(np2(N), Num) ! noun(N, Num).

verbphrase(vp(V), Num) ! verb(V, Num).

determiner(det(the), Num) ! [the].

determiner(det(a), singular) ! [a].

noun(n(computer), singular) ! [computer].

noun(n(computers), plural) ! [computers].

adjective(adj(super))! [super].

adjective(adj(mini))! [mini].

adjective(adj(micro))! [micro].

verb(v(runs), singular) ! [runs].

verb(v(run), plural) ! [run].
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Example 4.3 shows a de�nite clause grammar for a trivial subset of English that illus-

trates parse tree construction and simple check for number agreement. (Square brackets

[: : :] are a notational variant of the \dot" functor .(: : :), used to contruct lists.) Each

grammar rule can be read declaratively. For example, the �rst rule states that a sentence

is composed of a noun phrase followed by a verb phrase, that the semantic representa-

tion of a sentence is composed from the semantic representations of the constituent noun

phrase and verb phrase, and that the noun phrase and verb phrase have the same number

(singular or plural); the second rule states that a noun phrase is composed of a deter-

miner followed by another type of noun phrase (as de�ned by the rules for nounphrase2);

etc. Disjunction is expressed by having more than one rule for a particular grammar

constituent. Each nonterminal grammar symbol can have arguments which may contain

variables (symbols that start with capital letters are variables). The scope of a variable

is the rule in which it occurs. Note that, as with CFGs, terminal symbols are of the form

[Word], where Word is a word of the sentence being parsed.

Transformation from DCGs to de�nite clause programs:

To execute the above DCG as a relational program, two additional arguments are added

to each grammar symbol in order to keep track of how much of the input sentence has

been processed. In the following description, the notation

�

t

i

is used to denote a sequence

of terms. Rules of the form

a(

�

t) �! b

1

(

�

t

1

); b

2

(

�

t

2

); : : : , b

k

(

�

t

k

):

are converted into

a(

�

t; P

0

; P

k

) :- b

1

(

�

t

1

; P

0

; P

1

); b

2

(

�

t

2

; P

1

; P

2

); : : : , b

k

(

�

t

k

; P

k�1

; P

k

):

And terminals

a(

�

t) �! [word]:

are converted into

a(

�

t; [wordjRest]; Rest):

We use the symbol :- as a variant of a left arrow to separate the head from the body

in de�nite clauses.

6

The notation [W jR] denotes a list whose �rst element is W and

6

This is also the symbol used by Prolog interpreters.
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the remainder R. Using a straightforward inductive argument, one can show that the

resulting de�nite-clause program correctly parses the sentences of the language de�ned

by the corresponding DCG. In order to do so, the semantics of DCGs is �rst de�ned as

follows:

(1) For all ground instances a(

�

t) �! [word] of some rule,

�

t is a semantic represen-

tation for the sentence [word].

(2) For all ground instances a(

�

t) �! b

1

(

�

t

1

),: : : ,b

k

(

�

t

k

), if s

1

,: : : , s

k

are sentences deriv-

able from nonterminals b

1

,: : : , b

k

respectively, and

�

t

1

,: : : ,

�

t

k

are their respective

semantic representations, then

�

t is a semantic representation for s

1

s

2

: : : s

k

(i.e.

the concatenation of these sentences).

Theorem 4.1: Let D be a DCG and P the program obtained from D using the trans-

formation described earlier. Then P correctly parses and computes the semantics of

sentences of D.

Proof: Since there is a 1-1 correspondence between the DCG rules in D and the de�nite

clauses in P , there is for any sentence s a 1-1 correspondence between a parse tree PT

produced by D for s and a derivation tree DT produced by P for s. In order to show

that the semantic representation computed by P for s is the same as that de�ned by D

for s we need to show (1) that the sequence of terminals derived by DT is equal to that

parsed in PT , and (2) that the semantic representation computed for the root of DT is

correct with respect to the semantic representation at the root of PT .

Proof of (1): We need to prove that the sequence of terminals (leaf nodes) below each

node of PT is exactly the di�erence between the input and output list of the correspond-

ing literal in DT after it has been resolved. We prove this by induction on the height

of the subtree corresponding to a node: It is obviously true for all nodes with subtree

height 0 (leaf nodes), because leaf nodes are of the form:

a

0

(

�

t; [Word jRest ];Rest),

where Word is a word of category a

0

. Induction step: Assume it is true for all nodes

with subtree height n or less. Then it is also true for all nodes with subtree height n+1

because all clauses are of the form:

a

0

(

�

t; P

0

; P

k

) :- a

1

(

�

t

1

; P

0

; P

1

); a

2

(

�

t

2

; P

1

; P

2

); : : : ; a

k

(

�

t

k

; P

k�1

; P

k

).

43



If in a particular derivation the subtree corresponding to a

0

has height n, then the sub-

trees corresponding to a

1

; a

2

; : : :will have at most height n�1. Therefore, by hypothesis,

the di�erence between P

0

and P

1

is the list of words corresponding to a

1

, the di�erence

between P

1

and P

2

is the list of words corresponding to a

2

, etc. Therefore, the di�erence

between P

0

and P

k

is the concatenation of the sublists corresponding to each constituent

on the right-hand side.

Proof of (2): This can also be shown by induction on the length of a derivation, in a

manner identical to the soundness of SLD-resolution (theorem 7.1, Lloyd 87). Q.E.D.

The DCG shown earlier is converted, by the transformation just described, into the

following de�nite clause program:
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sentence(sent(N,V), P0, P1) :- nounphrase(N, Num, P0, P2),

verbphrase(V, Num, P2, P1).

nounphrase(np(D,N), Num, P0, P1) :- determiner(D, Num, P0, P2),

nounphrase2(N, Num, P2, P1).

nounphrase(np(N), Num, P0, P1) :- nounphrase2(N, Num, P0, P1).

nounphrase2(np2(A,N), Num, P0, P1) :- adjective(A, P0, P2),

nounphrase2(N, Num, P2, P1).

nounphrase2(np2(N), Num, P0, P1) :- noun(N, Num, P0, P1).

verbphrase(vp(V), Num, P0, P1) :- verb(V, Num, P0, P1).

determiner(det(the), Num, [the|P1], P1).

determiner(det(a), singular, [a|P1], P1).

noun(n(computer), singular, [computer|P1], P1).

noun(n(computers), plural, [computers|P1], P1).

adjective(adj(super), [super|P1], P1).

adjective(adj(mini), [mini|P1], P1).

adjective(adj(micro), [micro|P1], P1).

verb(v(runs), singular, [runs|P1], P1).

verb(v(run), plural, [run|P1], P1).

To execute this program, one may enter a query such as:

(1) sentence( LF, [a,micro,computer,runs], [ ] ),

which matches the left-hand side (head) of the �rst rule, instantiating

7

LF to sent(N,V),

P0 to [a,micro,computer,runs], and P1 to the empty list [ ]. Note that variables

like N and V are renamed at each invocation of a rule. Next, the two subgoals on the

right-hand side of that rule will be executed. When these two executions are completed,

N will be bound to

7

For logical variables the term \instantiating" is commonly used instead of \binding".
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np(det(a),np2(adj(micro),np2(n(computer))))

and V will be bound to vp(v(runs)). So, the �nal binding of LF is the following parse

tree:

sent(np(det(a),np2(adj(micro),np2(n(computer)))), vp(v(runs))).

In order to see how these variables were instantiated, we give below a trace for the

above query (see explanation following this trace):

?- sentence(LF,[a,micro,computer,runs],[]).

(1) 0 Call: sentence(L1,[a,micro,computer,runs],[]) ?

(1) 1 Head [1]: sentence(L1,[a,micro,computer,runs],[]) ?

(2) 1 Call: nounphrase(L2,N1,[a,micro,computer,runs],W1) ?

(2) 2 Head [1->2]: nounphrase(L2,N1,[a,micro,computer,runs],W1) ?

(3) 2 Call: determiner(L3,N1,[a,micro,computer,runs],W2) ?

(3) 3 Head [1->2]: determiner(L3,N1,[a,micro,computer,runs],W2) ?

(3) 3 Head [2]: determiner(L3,N1,[a,micro,computer,runs],W2) ?

(3) 2 Done: determiner(det(a),singular,[a,micro,computer,runs],

[micro,computer,runs]) ?

(4) 2 Call: nounphrase2(L4,singular,[micro,computer,runs],W1) ?

(4) 3 Head [1->2]: nounphrase2(L4,singular,[micro,computer,runs],W1) ?

(5) 3 Call: adjective(L5,[micro,computer,runs],W3) ?

(5) 4 Head [1->2]: adjective(L5,[micro,computer,runs],W3) ?

(5) 4 Head [2->3]: adjective(L5,[micro,computer,runs],W3) ?

(5) 4 Head [3]: adjective(L5,[micro,computer,runs],W3) ?

(5) 3 Done: adjective(adj(micro),[micro,computer,runs],[computer,runs]) ?

(6) 3 Call: nounphrase2(L6,singular,[computer,runs],W1) ?

(6) 4 Head [1->2]: nounphrase2(L6,singular,[computer,runs],W1) ?

(7) 4 Call: adjective(L7,[computer,runs],W4) ?

(7) 5 Head [1->2]: adjective(L7,[computer,runs],W4) ?

(7) 5 Head [2->3]: adjective(L7,[computer,runs],W4) ?

(7) 5 Head [3]: adjective(L7,[computer,runs],W4) ?

(7) 4 Fail: adjective(L7,[computer,runs],W4) ?

(6) 4 Head [2]: nounphrase2(L6,singular,[computer,runs],W1) ?

(8) 4 Call: noun(L7,singular,[computer,runs],W1) ?

(8) 5 Head [1->2]: noun(L7,singular,[computer,runs],W1) ?

(8) 4 Exit: noun(n(computer),singular,[computer,runs],[runs]) ?

(6) 3 Exit: nounphrase2(np2(n(computer)),singular,

[computer,runs],[runs]) ?
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(4) 2 Exit: nounphrase2(np2(adj(micro),np2(n(computer))),singular,

[micro,computer,runs],[runs]) ?

(2) 1 Exit: nounphrase(np(det(a),np2(adj(micro),np2(n(computer)))),

singular,[a,micro,computer,runs],[runs]) ?

(9) 1 Call: verbphrase(L8,singular,[runs],[]) ?

(9) 2 Head [1]: verbphrase(L8,singular,[runs],[]) ?

(10) 2 Call: verb(L9,singular,[runs],[]) ?

(10) 3 Head [1->2]: verb(L9,singular,[runs],[]) ?

(10) 2 Exit: verb(v(runs),singular,[runs],[]) ?

(9) 1 Exit: verbphrase(vp(v(runs)),singular,[runs],[]) ?

(1) 0 Exit: sentence(sent(np(det(a),np2(adj(micro),np2(n(computer)))),

vp(v(runs))),[a,micro,computer,runs],[]) ?

LF = sent(np(det(a),np2(adj(micro),np2(n(computer)))),vp(v(runs)))

The nodes of the derivation tree are numbered sequentially in the order in which

they are called|we assume a Prolog-like, depth-�rst search strategy with backtracking.

This number is indicated in this trace by the �rst number (given in parentheses). During

backtracking, this number is decremented accordingly. The second number is the level

(depth) of that node in the current derivation tree. Trace steps preceded by Call show

the subgoal to be resolved. Steps preceded by Head indicate which clauses are being

tried. The notation [1->2] means that the �rst clause for a particular goal is tried,

and if this fails, the second clause is tried next. Fail means that this goal failed, and

backtracking is initiated. Done means that this goal succeeded and there are no choice

points left. Exit also indicates successful completion but other choice points remain in

case of subsequent failure.

The reversibility property of a DCG is illustrated by the query

sentence(sent(np(det(a),np2(micro,np2(n(computer)))),

vp(v(run))), P0, []),

which returns the sentence

[a,micro,computer,runs]

by binding this list to the variable P0 of the query. The last argument in this query is

again the empty list, since we require that the list returned by P0 is a complete sentence;

that is, there should be nothing left after it is parsed by the grammar.
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4.3. Higher-Order De�nite Clause Grammars

4.3.1. Higher-order de�nite clauses

The extension of �rst-order de�nite clauses to higher-order de�nite clauses is straightfor-

ward. The terms are now simply typed �-terms, which can be considered a generalization

of �rst-order terms. Essentially, �rst-order uni�cation will be replaced by higher-order

uni�cation. The semantics of the resulting higher-order de�nite clause programs can

be thought of as a special case of a theory of complete logic programs with equality as

discussed by Ja�ar, Lassez, and Maher (1984), who proved soundness and completeness

for such systems. The conversion rules of the �-calculus e�ectively serves as the equality

theory that is of interest here. Below is a simple example of higher-order de�nite clause

program:

Example 4.4

event((L2 L3 L1))  � subject(L1), predicate(L2), object(L3).

subject(julia).

object(tom).

predicate(XnYn(hates Y X)).

predicate(XnYn(loves Y X)).

Executing this program on the goal event(X) will result in one of the following two

bindings for X (assuming all terms are reduced to their normal forms).

(hates julia tom)

(loves julia tom)

4.3.2. Higher-order DCGs

Higher-order DCGs are a generalization of �rst-order DCGs in the same way as higher-

order de�nite clause programs are a generalization of �rst-order de�nite clause programs;

that is, the terms that grammar symbols can have as arguments are now terms of the

simply typed �-calculus. We illustrate below the use of higher-order DCGs for translating

sentences into their logical form (semantic representation). Consider the sentence:

Every man loves a woman.

In �rst-order logic, the semantic representation of this sentence might be:
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8X(manp(X)� 9Y (womanp(Y ) ^ lovesp(X; Y )))

8

The �-calculus representation is very similar to that of �rst-order logic, except that

quanti�ers are treated as non-logical constants and are separated from their variables:

(all X\(implies (manp X)

(exists Y\(and (womanp Y) (lovesp X Y)))))

The following is a higher-order DCG that synthesizes such logical forms for the

sentences that it can parse.

sentence((P1 P2)) --> np(P1), vp(P2).

np((P1 P2)) --> det(P1), noun(P2).

np(P) --> prop_noun(P).

vp(X\(P2 (P1 X))) --> trans_verb(P1), np(P2).

det(P1\P2\(all X\(implies (P1 X) (P2 X)))) --> [every].

det(P1\P2\(exists X\(and (P1 X) (P2 X)))) --> [a].

noun(manp) --> [man].

noun(womanp) --> [woman].

prop_noun(P\(P johnp)) --> [john].

prop_noun(P\(P maryp)) --> [mary].

trans_verb(lovesp) --> [loves].

As in the case of �rst-order DCGs, each grammar symbol must be extended with

two more arguments for manipulating the sentence and its components, so that it can

be executed as a de�nite clause program. Therefore, the above higher-order DCG would

be converted into the set of clauses listed below.

sentence((P1 P2),In,Out) :- np(P1,In,J), vp(P2,J,Out).

8

The p-su�x is a standard way of naming predicate symbols in Lisp. In the above formula manp,

womanp, and lovesp denote predications on individuals. It also emphasizes that these are arbitrary

symbols that have nothing to do with the words `man', `woman', and `loves'.
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np((P1 P2),In,Out) :- det(P1,In,J), noun(P2,J,Out).

np(P,In,Out) :- prop_noun(P,In,Out).

vp(X\(P2 (P1 X)),In,Out) :- trans_verb(P1,In,J),

np(P2,J,Out).

det(P1\P2\(all X\(implies (P1 X) (P2 X))), [every|Out], Out).

det(P1\P2\(exists X\(and (P1 X) (P2 X)))), [a|Out], Out).

noun(manp, [man|Out], Out).

noun(womanp, [woman|Out], Out).

prop_noun(P\(P johnp), [john|Out], Out).

prop_noun(P\(P maryp), [mary|Out], Out).

trans_verb(lovesp, [loves|Out], Out).

An example of a query for this program would be

sentence(L, [john,loves,a,woman], []).

The execution of the program using this query would instantiate L to

(exists X\(and (womanp X) (lovesp johnp X))).

We explain below how this answer is obtained. The query

sentence(L, [john,loves,a,woman], []).

matches the head (left-hand side) of the �rst rule:

(1) sentence((P1 P2), In, Out) :- np(P1, In, J), vp(P2, J, Out).

Therefore, this rule is activated and its body (right-hand side) executed (note that all

variables of a rule are appropriately renamed for each activation). We therefore obtain

the following instantiation of this rule:

(1) sentence((P1 P2), [john,loves,a,woman], []) :-

np(P1, [john,loves,a,woman], J), vp(P2, J, []).
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Next, the subgoal:

(2) np(P1, [john,loves,a,woman], J)

is executed. This matches both rules for np; the �rst rule is initially tried (shown below

is its instantiation):

(3) np((P1 P2), [john,loves,a,woman], Out) :-

det(P1, [john,loves,a,woman], J), noun(P2, J, Out).

The next subgoal to be executed therefore is:

(4) det(P1, [john,loves,a,woman], J).

There are two facts for det. The �rst one requires that the �rst word of the input list

(second argument) is every; the second one requires that the �rst word is a. Neither

of them matches the word john, the �rst word of the input list. Therefore, subgoal

(4) fails. Since all subgoals of a rule must succeed in order for the head of the rule to

succeed, (3) fails as well. Therefore, the second rule for np is instantiated next:

(5) np(P, [john,loves,a,woman], Out) :-

prop_noun(P, [john,loves,a,woman], Out).

The next subgoal would be:

(6) prop_noun(P, [john,loves,a,woman], Out)

which matches the �rst fact for prop_noun:

prop_noun(P\(P johnp), [john|Out], Out)

==> (6) prop_noun(P\(P johnp), [john,loves,a,woman],

[loves,a,woman])

==> (5) np(P\(P johnp), [john,loves,a,woman], [loves,a,woman]) :-

prop_noun(P\(P johnp), [john,loves,a,woman],

[loves,a,woman]).

==> (2) np(P\(P johnp), [john,loves,a,woman], [loves,a,woman])

==> (1) sentence((P\(P johnp) P2), [john,loves,a,woman], []) :-

np(P\(P johnp), [john,loves,a,woman], [loves,a,woman]),

vp(P2, [loves,a,woman], []).
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Now the second subgoal of (1) is activated:

(7) vp(P2, [loves,a,woman], []).

The instantiated rule for vp is as follows:

(8) vp(X\(P2 (P1 X)),[loves,a,woman],[]) :-

trans_verb(P1,[loves,a,woman],J), np(P2,J,[]).

Therefore, the next subgoal is:

(9) trans_verb(P1,[loves,a,woman],J).

This process continues by activating the fact for trans_verb:

(10) trans_verb(lovesp, [loves|Out], Out)

==> (9) trans_verb(lovesp, [loves,a,woman], [a,woman]).

==> (8) vp(X\(P2 (lovesp X)),[loves,a,woman],[]) :-

trans_verb(lovesp,[loves,a,woman],[a,woman]),

np(P2,[a,woman],[]).

The second subgoal of (8) now is:

(11) np(P2,[a,woman],[])

The �rst rule for np is now instantiated:

(12) np((P1 P2),[a,woman],[]) :- det(P1,[a,woman],J), noun(P2,J,[]).

The next subgoal is:

(13) det(P1,[a,woman],J)

Only the second rule for det matches, because the �rst word of the input sentence is a:

(13) det(P1\P2\(exists X\(and (P1 X) (P2 X))), [a,woman], [woman]).

(12) np((P1\P2\(exists X\(and (P1 X) (P2 X))) P2),[a,woman],[]) :-

det(P1\P2\(exists X\(and (P1 X) (P2 X))),[a,woman],[woman]),

noun(P2,[woman],[]).
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The last subgoal thus is:

(14) noun(P2,[woman],[]).

This goal instantiates the rule:

(15) noun(womanp, [woman|[]], []).

==> (14) noun(womanp,[woman],[]).

(12) np((P1\P2\(exists X\(and (P1 X) (P2 X))) womanp), [a,woman],[]) :-

det(P1\P2\(exists X\(and (P1 X) (P2 X))),[a,woman],[woman]),

noun(womanp,[woman],[]).

The �rst argument of np in (12) can be reduced as follows:

==> (12) np(P2\(exists X\(and (womanp X) (P2 X))),[a,woman],[]) :-

det(P1\P2\(exists X\(and (P1 X) (P2 X))),[a,woman],[woman]),

noun(womanp,[woman],[]).

==> (8) vp(X\(P2\(exists Y\(and (womanp Y) (P2 Y))) (lovesp X)),

[loves,a,woman],[]) :-

trans_verb(lovesp,[loves,a,woman],[a,woman]),

np(P2\(exists X\(and (womanp X) (P2 X))),[a,woman],[]).

where variables have been renamed appropriately. The �rst argument of vp can likewise

be reduced:

==> (8) vp(X\(exists Y\(and (womanp Y) (lovesp X Y))),

[loves,a,woman],[]) :-

trans_verb(lovesp,[loves,a,woman],[a,woman]),

np(P2\(exists X\(and (womanp X) (P2 X))),[a,woman],[]).

==> (1) sentence((P\(P johnp) X\(exists Y\(and (womanp Y)

(lovesp X Y)))),

[john,loves,a,woman], []) :-

np(P\(P johnp), [john,loves,a,woman], [loves,a,woman]),

vp(X\(exists X\(and (womanp X) (lovesp X))) (lovesp X)),

[loves,a,woman], []).
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Applying two �-reductions to the �rst argument yields the �nal semantic representation

for the complete sentence (\john loves a woman"):

(P\(P johnp) X\(exists Y\(and (womanp Y) (lovesp X Y))))

= (X\(exists Y\(and (womanp Y) (lovesp X Y))) johnp)

= (exists Y\(and (womanp Y) (lovesp johnp X)))
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5. Synthesizing Higher-Order

DCGs from Examples

This chapter forms the core of this dissertation: it presents the basic technique for

generalizing semantic representations from examples. Section 5.1 describes the general

technique; variations of this scheme are possible, and some are discussed later. I de-

scribe this technique in terms of four procedures, called SYNTH, SOLVE, SUBST, and

CHECK. SYNTH is the main routine, which collects the examples and passes on to

SOLVE a resulting set of higher-order equations. This set is solved by calling SUBST,

which determines the next substitution to be performed. Procedure CHECK decomposes

equations into simpler equations where possible, and determines whether the set of equa-

tions derived so far is consistent. Section 5.2 illustrates di�erent features of the technique

with the aid of two small examples. Section 5.3 discusses the notion of compositional-

ity, which is crucial for the applicability of this technique; and Section 5.4 discusses the

implications when multiple solutions exist for the set of higher-order equations.

5.1. Basic Technique

Below is the pseudo-code for procedure SYNTH, which takes as input a CFG along with a

set of examples and returns a higher-order DCG. I assume, for simplicity of presentation,

that a CFG rule has either a single terminal on its right-hand side or a sequence of one

or more nonterminals (in practice, both terminals and nonterminals are permitted on

the right-hand side).

5.1.1. Procedure SYNTH(G)

1. Let G be an unambiguous CFG having n rules, with start symbol s.

2. Construct the higher-order DCG as follows:

If the i-th CFG rule is a

i

--> b

i1

: : : b

ik

i

, the i-th DCG rule will be

a

i

((F

i

V

1

: : : V

k

i

)) --> b

i1

(V

1

); : : : b

ik

i

(V

k

i

),

where F

i

is a function variable and each V

i

is a variable.

If the i-th CFG rule is a

i

--> [t], the i-th DCG rule will be

a

i

(F

i

) --> [t].
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3. Determine the values for the function variables F

i

in the above DCG as follows.

E  �; done false;

WHILE not done DO

a. Generate a set of new sentences se

i

, 1 � i � k, for some �nite k (selection

strategy for these sentences is discussed in Chapter 6). Query the user for the

semantic representation of each se

i

; let the user's input be n

i

, assumed to be a

typed �-term.

9

b. Execute the goal s(M; se

i

; [ ]), 1 � i � k, using the constructed DCG of step 2,

but treating each F

i

as a constant (the F

i

are existential variables across the entire

DCG). Let m

i

, 1 � i � k, be the term computed for variable M .

c. E  E [ fm

i

= n

i

j1 � i � kg

d. Call SOLVE(E) to solve for the function variables F

i

(see next section). In

general, SOLVE may produce multiple maximally general solutions in case it suc-

ceeds. Assign done  true if either uni�cation fails, or uni�cation succeeds and

all sentences of the CFG have been enumerated, or uni�cation succeeds and the

user accepts the resulting DCG after replacing all variables F

i

in the DCG of step

2 according to one of the uni�ers of E and reducing all �-terms to their normal

forms.

END WHILE

4. If uni�cation failed in step 3d, print \no solution", else print the DCG found.

5.1.2. Procedure SOLVE(E)

Procedure SOLVE tries to solve the set of higher-order equations E  E by attempting

to �nd substitutions for the free variables occurring in E.

1. Let F be the set of function variables (F

i

) occurring in E.

2. Let �  ;, the empty substitution.

3. WHILE E 6= ; DO

9

Chapter 8 discusses a scheme for automatic type assignment that allows the user to enter untyped

�-terms as semantic representations
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a. Select an equation e

1

from E, and call SUBST(e

1

). If SUBST succeeds, it

returns a substitution term t for the variable V at the head position of the left-

hand side term of e

1

.

b. �  �fhV; tig (composition of substitutions).

c. E  CHECK(E�) (see below).

END WHILE

4. Return � " F (the restriction of � to F ).

5.1.3. Procedure SUBST(e)

Procedure SUBST selects a substitution for the head of the left-hand side term of the

input equation in the following way. Let e e = he

1

; e

2

i, where

e

1

= �u

1

; : : : ; �u

n

:(f g

1

g

2

: : : g

p

),

e

2

= �v

1

; : : : ; �v

m

:(@ h

1

h

2

: : : h

q

),

and m � n (in order for a unifying substitution to exist). First, �-expand e

1

as follows:

e

1

 �u

1

; : : : ; �u

n

:�u

n+1

; : : :�u

m

:(f g

1

g

2

: : : g

p

u

n+1

u

m

).

1. Nondeterministically select a substitution � according to the following options:

a. Projection substitutions. Projection substitutions are of the form:

f  �w

1

: : : :�w

k

:(w

i

(h

1

w

1

: : : w

k

) : : : (h

l

w

1

: : : w

k

)), for each 1 � i � k,

where the type of f , �(f) = �

1

! �

2

! : : : ! �

k

! �, and �(w

i

) = �

i

(the �

i

are type variables). The following parameters are chosen nondeterministically: (i)

k, the number of pre�x variables; (ii) w

i

, the head of the substitution term; (iii) l,

the number of arguments of w

i

.

b. Imitation substitution. The applicable imitation substitution would be:

f  �w

1

: : :�w

p

:�v

n+1

: : :�v

m

:(@ E

1

E

2

: : : E

q

), where

E

i

= (h

i

w

1

: : : w

p

v

n+1

: : : v

m

), for 1 � i � q, and �(f) = �

1

! �

2

! : : : !

�

p+m�n

! �. The type of the constant @ in the substitution term must be the

same as the type of the atom @ in e

2

.

2. Return the selected substitution �.
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5.1.4. Function CHECK(E)

The function CHECK takes as input a set of equations E, and is de�ned as follows. Types

are assumed to be maintained in a global environment that is updated by procedure

unify(x,y). A sequence of pre�x variables x

i

is denoted by ~x.

(1) If E = ; then return ;.

(2) If E = fht

1

; t

2

ig, unify(�(t

1

),�(t

2

)), and

(a) if t

1

is exible then return E;

(b) otherwise t

1

and t

2

are both rigid. Let t

1

= �~x:(@

1

A

1

: : : A

r

) and let

t

2

= �~x:(@

2

B

1

: : : B

s

). If @

1

6= @

2

then fail; otherwise unify(�(A

i

),�(B

i

))

for 1 � i � r, and return CHECK(fh�~x:A

i

; �~x:B

i

ij1 � i � rg).

(3) Otherwise E has more than one equation. Let E = fhF

i

; G

i

ij1 � i � ng.

(a) if CHECK(fhF

i

; G

i

ig) fails for some i, then CHECK(E) fails;

(b) otherwise return

S

n

i=1

CHECK(fhF

i

; G

i

ig).

5.2. Two Examples of Synthesis

5.2.1. The Successor Function

Below is a very simple grammar which generates sentences of the form [a], [a,a],

[a,a,a], etc. The derivation of a higher-order DCG by procedure SYNTH is illustrated

as follows.

(Step 1.) The input CFG is:

s ! [a].

s ! [a], s.

(Step 2.) The CFG augmented with function variables is:

s(F1) ! [a].

s(F2 A) ! [a], s(A).

(Step 3a.) Suppose we wanted the following semantics: [a] means 0; [a,a] means

1; [a,a,a] means 2; and so on, the meaning of a sequence of length n is the number

n � 1. Suppose further that we use Church numerals (see section 3.2) to encode these

numbers: 0 = F\X\X, 1 = F\X\(F X), 2 = F\X\(F (F X)), etc. We will see that the

desired DCG can be obtained with just three examples:
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[a],

[a,a],

[a,a,a]

Next, the user is asked for the corresponding semantic representations, which would be

respectively:

FnXnX,

FnXn(F X),

FnXn(F (F X))

(Step 3b.) Executing the above DCG on the sentence [a], the constructed semantic

representation will be F1.

(Step 3c.) Therefore, the equation

(e0) F1 = F\X\X

is added to E. Similarly, the following equations are added to E:

(e1) (F2 F1) = F\X\(F X)

(e2) (F2 (F2 F1)) = F\X\(F (F X))

(Step 3d.) The higher-order uni�cation procedure SOLVE is called next. For readability

I indicate types only for selected terms and variables in the derivation below (only one

elementary type i is used). In this example types are provided by the user as follows:

�(FnXnX) = (i! i) ! i ! i, �(FnXn(F X)) = (i! i) ! i ! i, and �(FnXn(F (F X)))

= (i! i)! i! i.

Given the initial set of equations,

{F1 = F\X\X,

(F2 F1) = F\X\(F X),

(F2 (F2 F1)) = F\X\(F (F X))}

the types of the other terms are inferred in the following way: F1, (F2 F1), and (F2

(F2 F1)) must have type (i ! i) ! i ! i as well. Since we now know the types of

both F1 and (F2 F1), the type for F2 is inferred as �(F2) = ((i ! i) ! i ! i) !

((i! i) ! i ! i), which, due to the right-associativity of the ! operator, is the same

as ((i! i)! i! i)! (i! i)! i! i.

The following projection substitution immediately solves the �rst equation:
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F1 <- K\L\L

The remaining equations to be solved are:

{(F2 K\L\L) = F\X\(F X),

(F2 (F2 K\L\L)) = F\X\(F (F X))}

The following projection substitution is next attempted for F2:

F2 <- K\L\M\(K (H2 K L M) (H1 K L M))

This yields the following reduced equation set:

{A\B\(H1 K\L\L A B) = F\X\(F X),

A\B\(H1 K\L\L (H2 K\L\(H1 M\N\N K L) A B)

(H1 K\L\(H1 M\N\N K L) A B)) = F\X\(F (F X))}

Next, the following projection substitution is chosen for H1:

H1 <- K\L\L

which solves the �rst equation, so that the only remaining equation is:

{A\B\(H2 K\L\(K L) A B (A B)) = F\X\(F (F X))}

The correct projection substitution for H2 now is:

H2 <- K\L\M\N\(L (H3 K L M N))

leading to:

{A\B\(H3 K\L\(K L) A B (A B)) = F\X\(F X)}

Finally, the substitution

H3 <- K\L\M\N\N

solves the remaining equation. After substituting and reducing all terms, the �nal sub-

stitutions are:

F1 <- K\L\L

F2 <- K\L\M\(K L (L M))

H1 <- K\L\L

H2 <- K\L\M\N\(L N)

H3 <- K\L\M\N\N
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Procedure SOLVE returns the substitutions for F1 and F2 to procedure SYNTH:

(Step 4.) The resulting (higher-order) DCG is:

s(A\B\B) --> [a].

s(A\B\C\(A B (B C)) D) --> [a], s(D).

where the term A\B\C\(A B (B C)) in the second rule essentially performs the successor

operation. For example, in order to parse the sentence [a,a], the second rule is invoked

�rst, which then calls the �rst rule instantiating D to A\B\B. Therefore, the argument of

the head of the second rule becomes

(A\B\C\(A B (B C)) A\B\B)

= B\C\(D\E\E B (B C))

= B\C\(B C)

which is the Church numeral for the number 1.

Even though this is a very simple example, it shows how an in�nite language can be

inferred from a few examples. This small example makes use only of projection substi-

tutions. The next example involves both projection and imitation substitutions.

5.2.2. Search Constraints through Multiple Examples

The example below illustrates how multiple examples constrain the search space. It

also demonstrates the use of the imitation substitution rule and the type enumeration

scheme.

(Step 1.) The CFG is given by the following rules:

s ! pn, iv.

pn ! [shrdlu].

pn ! [eliza].

iv ! [runs].

iv ! [halts].

(Step 2.) The rules are augmented with function variables as follows:

s((F1 A B)) ! pn(A),iv(B).

pn(F2) ! [shrdlu].
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pn(F3) ! [eliza].

iv(F4) ! [runs].

iv(F5) ! [halts].

(Step 3a.) Using the CFG from step 1, the system generates the following training

sentences: [shrdlu,runs], [eliza,runs], and [shrdlu,halts], for which the user

provides the corresponding semantic representations: (run shrdlu), (run eliza), and

(halt shrdlu), where �(run) = i ! i, �(halt) = i ! i, �(shrdlu) = i, and �(eliza)

= i.

(Step 3b.) Executing each of these sentences on the skeletal DCG of step 2, the following

terms are respectively obtained: (F1 F2 F4), (F1 F3 F4), and (F1 F2 F5).

(Step 3c.) The set of higher-order equations is as follows (for readability I indicate the

types only selectively in this derivation):

{(F1 F2 F4) = (run shrdlu),

(F1 F3 F4) = (run eliza),

(F1 F2 F5) = (halt shrdlu)}.

(Step 3d.) This set of equations is passed on to procedure SOLVE:

Since F1 is at the head position of the �rst equation, a substitution is sought for F1. It

can be easily seen that an imitation substitution won't work. There is only one applicable

imitation substitution: K\L\(run (H1 K L)). However, applying this substitution in the

third equation will put the constant run at the head position of the left-hand side term

which is incompatible with the head of the right-hand side term. Thus, a projection

substitution must be attempted. The simplest projection substitutions in this case would

be K\L\L or K\L\K, both of which would lead to failure because they would require that

either F4 or F2 will be bound to two di�erent ground terms. The correct projection

substitution is:

F1 <- K\L\ (L (H1 K L))

The type of F1 would be �

1

! �

2

! i, where �

1

is the type of F2, and �

2

the type of

F4. Both �

1

and �

2

are variables at this stage that will be instantiated later.

Replacing all occurrences of F1 in the above equations with its substitution and

simplifying leads to the following set of equations:

62



{(F4 (H1 F2 F4)) = (run shrdlu),

(F4 (H1 F3 F4)) = (run eliza),

(F5 (H1 F2 F5)) = (halt shrdlu)}

Now F4 is the head of the �rst equation and we need to �nd a substitution for it. The

following imitation substitution is applicable:

F4 <- K\ (run (H2 K))

The type �

2

of F4 therefore is �

3

! i, which further instantiates the type of F1 to

�

1

! (�

3

! i) ! i. The type of the argument (H2 K) of run is also inferred at

this point: it must be of the same type as the corresponding argument of run in the

right-hand side terms, namely i.

Replacing all occurrences of F4 by its substitution and simplifying results in the

following set of equations:

{(run (H2 (H1 F2 K\(run (H2 K))))) = (run shrdlu),

(run (H2 (H1 F3 K\(run (H2 K))))) = (run eliza),

(F5 (H1 F2 F5)) = (halt shrdlu)}

Applying CHECK to the above equation set we get:

{(H2 (H1 F2 K\(run (H2 K)))) = shrdlu,

(H2 (H1 F3 K\(run (H2 K)))) = eliza,

(F5 (H1 F2 F5)) = (halt shrdlu)}

Choosing projection substitution K\K for H2 transforms the equations to:

{(H1 F2 run) = shrdlu,

(H1 F3 run) = eliza,

(F5 (H1 F2 F5)) = (halt shrdlu)}

Likewise, the projection substitution K\L\K for H1 yields:

{F2 = shrdlu,

F3 = eliza,

(F5 F2) = (halt shrdlu)}

This implies that both F2 and F3 are of type i, which implies H1 is of type i ! i ! i.

This in turn instantiates the type of H2 to i ! i, and the type of F4 to i ! i.

Therefore, F1 will have type i ! (i ! i) ! i. The obvious choices for F2 and F3 now

are shrdlu and eliza, respectively, which leaves only one equation:
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{(F5 shrdlu) = (halt shrdlu)}

The type of F5 is easily inferred to be i! i. F5 will be replaced by K\(halt (H3 K)):

{(H3 shrdlu) = (shrdlu)}

The projection substitution K\K for H3 completes the derivation. The �nal substitutions

with their types are:

F1:(i! (i! i)! i) = KnLn(L K)

F4:(i! i) = run

H2:(i! i) = KnK

H1:(i! i) = KnLnK

F2:i = shrdlu

F3:i = eliza

F5:(i! i) = halt

H3:(i! i) = KnK

(Step 4.) Substituting these in the grammar from step 2 yields the following higher-order

DCG:

s((KnLn(L K) A B)) ! pn(A), iv(B).

pn(shrdlu) ! [shrdlu].

pn(eliza) ! [eliza].

iv(run) ! [runs].

iv(halt) ! [halts].

In this example three training instances (higher-order equations) are su�cient to guaran-

tee a unique solution, where unique means that the DCGs corresponding to each solution

of the set of equations are equivalent in terms of input/output behavior.

5.3. Compositionality

5.3.1. Signi�cance of Compositionality

It has been generally recognized that compositionality plays an important role in lan-

guage semantics, and the technique discussed in this dissertation exploits composition-

ality to generalize semantic representations from examples. However, until recently, the
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notion of compositionality was mostly intuitively de�ned as some functional dependence

of the meaning of an expression on the meanings of its parts. But, as pointed out �rst

by van Benthem (1986) and later by Zadrozny (1992), this de�nition is meaningless if

there are no restrictions imposed on the types of functions being used for computing

the meaning of an expression from the meanings of its parts. One can always �nd such

functions, no matter what the meanings of the whole expression and its parts are.

Theorem (Zadrozny 1992) : Let L be a language and G

L

a grammar describing how

the sentences of L are composed from phrases and words. If m is a function that maps

each sentence of L and its parts (phrases and words) on to some semantic representation

(meaning), then there exists a function � which computes the meaning of any sentence

or phrase from the meanings of its parts.

Meaningful restrictions would be, for example, allowing only polynomial functions of

a certain degree, or functions that can be expressed in the typed �-calculus. Such restric-

tions are not only natural for certain domains, but they also allow a unique (presumably

the correct) compositional semantics to be de�ned by specifying relatively few values

(examples). Computability by itself would not be a meaningful restriction, because,

if the meaning function is computable, then the corresponding composition function is

computable as well (Zadrozny 1992).

The following example (due to Zadrozny) illustrates how appropriate restrictions can

make the inference of a composition function tractable:

N --> N, D.

N --> D.

D --> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9.

For this grammar, the meaning of any numeral can be expressed as a polynomial in two

variables with coe�cients in natural numbers:

�(N D) = 10 � �(N) + �(D)

By restricting the meaning functions to polynomials of degree 1, a unique compositional

semantics is de�ned by specifying the semantics for three sentences.

In this dissertation, the typed �-calculus has been used for representing and com-

posing meanings. That is, we have restricted the possible meaning functions to those

that can be expressed by the typed �-calculus. In general, any such restriction will work

well only for limited domains. For example, polynomials may be suitable for certain as-

pects of mathematics, and the typed �-calculus for certain aspects of natural language.
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In addition, when we talk about compositional semantics, we expect the function that

composes the meanings to be \simple" or easily de�nable.

The following example illustrates how our intuitive understanding of compositionality

for certain aspects of natural language can be expressed in terms of boolean operations

on sets. The grammar rule

NP --> Adj, N

can be interpreted compositionally by mapping adjectives and nouns into sets of objects

with the corresponding properties, and by mapping concatenation into set intersection.

This would provide the intuitively correct semantics for expressions such as \tall tree"

or \blue bag". In the typed �-calculus, sets can be expressed as terms of the form

X\(property X). For example, X\(blue X) would represent the set of all blue objects,

and the set of all objects that are bags would be represented by X\(bag X). These two

sets can be intersected by combining the corresponding terms such that the scope of

their variables includes both terms, e.g., X\(and (bag X) (blue X)).

However, in order to use such restrictions, it is sometimes necessary to enlarge the

set of syntactic constructions (grammar rules) to distinguish those cases for which no

single function (representable in the chosen formalism) exists which can handle all cases.

For example, I have found that often certain grammar rules must be added in order to

use the typed �-calculus for semantic representations. Increasing the vocabulary poses

a problem only if the semantic representations associated with the additional words are

of di�erent types than the words already in the grammar, in which case operations such

as type raising are needed. These issues are discussed further in Chapter 8.

5.3.2. Can Compositionality be Expected?

As mentioned earlier, any grammar is compositional with respect to any semantics if

arbitrary functions are allowed for computing the meaning of an expression from the

meanings of its parts. Compositionality becomes meaningful only if the semantics is

expressed through relatively simple functions such as those expressible by the typed �-

calculus. In order for a solution to exist for a particular synthesis problem, the grammar

must be compositional with respect to the typed �-calculus; that is, the composition

functions must be expressible in the typed �-calculus. Even though in many cases there

is more than one CFG to express a particular language, in general the most natural

grammar is one that possesses the kind of simple compositionality discussed above.
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For example consider the language of arithmetic expressions containing expressions

such as 12+3, 78-413*9, 67/5+851*10, etc. This language could be generated by the

grammar:

expr --> digits.

expr --> digits, a, digits.

a --> op.

a --> op, digits, op.

digits --> digit.

digits --> digits, digit.

digit --> [0] | [1] | [2] | [3] | ... | [9].

op --> [+] | [-] | [*] | [/].

Assuming the semantics of such an expression is its numeric value, a semantic aug-

mentation for the above grammar would be hard to �nd. However, if the same language is

de�ned by the following grammar, which decomposes expressions into meaningful subex-

pressions taking into account the precedence of operators, a semantic augmentation can

be found quite easily.

expr --> term.

expr --> term, add_op, term.

term --> number.

term --> number, mult_op, term.

number --> digit.

number --> digit, number.

digit --> [0] | [1] | [2] | [3] | ... | [9].

add_op --> [+] | [-].

mult_op --> [*] | [/].

Since it can be assumed that grammar writers are familiar with the semantics of

the corresponding languages, it would be natural for them to write grammars that are

compositional in the sense discussed above.

5.4. Multiple Solutions

In general, the set of higher-order equations generated from a particular CFG and a

set of training sentences has many solutions. However, some of these solutions may be
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equivalent in the sense that the resulting DCGs have the same input/output behavior;

that is, even if two DCGs are not identical, they may still produce the same semantic

representations for all the sentences accepted by the grammar.

5.4.1. Equivalent solutions

Consider the following CFG and sentence-meaning pairs:

s --> pn, vp.

vp --> tv, pn.

pn --> [mike].

pn --> [mary].

pn --> [john].

tv --> [saw].

tv --> [visited].

Sentence Semantic representation

[mike,saw,mary] (saw mike mary)

[john,saw,mary] (saw john mary)

[mike,visited,mary] (visited mike mary)

[mike,saw,john] (saw mike john)

The following two DCGs can be derived from the above CFG and training instances:

(1) s((D C)) --> pn(C), vp(D).

vp(C\(D C E)) --> tv(D), pn(E).

pn(mike) --> [mike].

pn(mary) --> [mary].

pn(john) --> [john].

tv(saw) --> [saw].

tv(visited) --> [visited].

(2) s((D C)) --> pn(C), vp(D).

vp((B C)) --> tv(B), pn(C).

pn(mike) --> [mike].

pn(mary) --> [mary].

pn(john) --> [john].

tv(A\B\(saw B A)) --> [saw].

tv(A\B\(visited B A)) --> [visited].
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The di�erence between the two DCGs is that the arguments of the semantic repre-

sentations of the verbs are in a di�erent order (note that saw can be expanded to

A\B\(saw A B) through �-conversion). This is compensated for by appropriately modi-

fying the semantics of the verb phrase rule, as can be seen in the following derivations:

Using DCG (1):

s

(saw john mary)

. &

pn vp

john Cn(saw C mary)

. &

tv pn

saw mary

Using DCG (2):

s

(saw john mary)

. &

pn vp

john Bn(saw B mary)

. &

tv pn

AnBn(saw B A) mary

Even though the semantic representation of tv is saw in DCG (1) and AnBn(saw B A)

in DCG (2), the semantic representations of the complete sentence, [john saw mary],

are identical in both cases, namely (saw john mary).

5.4.2. Solutions leading to distinct DCGs

If the problem is underconstrained, that is, if insu�cient training instances are provided,

there may be several solutions which lead to DCGs that do not compute the same

semantic representations for all sentences of the language. For example, consider the

DCG for the successor function mentioned in section 5.2.:

s --> [a].

69



s --> [a], s.

If only the following two training instances are used, both DCGs listed below can be

derived.

Sentence Semantic representation

[a] FnXnX

[a,a] FnXn(F X)

(1) s(A\B\B) --> [a].

s(A\B\C\(B C) D) --> [a],s(D).

(2) s(A\B\B) --> [a].

s(A\B\C\(A B (B C)) D) --> [a],s(D).

Even though both DCGs compute the same semantic representations for the two training

sentences given above, they compute di�erent semantic representations for the sentences

[a,a,a], [a,a,a,a], etc.: DCG (1) will compute B\C\(B C) for all such sentences,

whereas DCG (2) computes F\X\(F (F X)), F\X\(F (F (F X))), etc. That is, DCG

(1) e�ectively computes a constant function, whereas DCG (2) computes a linear func-

tion.

Section 6.1. discusses criteria that can be used to determine whether a set of training

sentences is complete, that is, whether all DCGs that can be derived from them by

SYNTH are equivalent.

5.5. Summary

This chapter has described the basic procedure for generating a higher-order DCG from

a CFG and sample sentence-meaning pairs. The main steps of this synthesis procedure

involve generating a set of representative sentences from the input CFG, asking the user

for their semantic representations, forming a set of higher-order equations over function

variables, and using the solution for these variables in order to construct a higher-order

DCG. This chapter has also discussed the signi�cance and plausibility of compositional-

ity. When applying this technique to grammars more complex than those mentioned in

this chapter, various optimizations are required to contain the nondeterminism inherent

in the higher-order uni�cation procedure. Such optimizations are discussed in Chapter

6. Chapter 7 is concerned with e�cient execution of the synthesized DCGs.
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6. E�cient Synthesis

The previous chapter introduced the basic technique for synthesizing de�nite clause

grammars. This chapter investigates various techniques for increasing the e�ciency of

the synthesis process. Not surprisingly, choosing the right training sentences in the right

order can be crucial for achieving acceptable performance. I will show that signi�cant

improvements in performance can also be achieved by adjusting the basic higher-order

uni�cation procedure to our problem domain, and by using a suitable search strategy.

6.1. Generation of Training Instances

The objective of this section is to develop criteria that can be used to determine whether

a given set of training instances is \complete" for a given CFG, that is, whether all

higher-order DCGs that can be inferred from these training instances and the given CFG

implement the same sentence-meaning function. Even though training instances can be

provided incrementally, it is in general more e�cient to process all training instances si-

multaneously. However, using more training instances than necessary is counterproduc-

tive, since additional computations would have to be performed without further reducing

the search space. Therefore, it is desirable to have criteria for determining a minimal set

of sentences such that their semantic representations induce a unique solution.

The underlying assumption in this section is that for any given CFG and sentence-

meaning function, there exists a DCG that computes the correct semantic representations

for all sentences of the language. Thus, the question is how many and which training

sentences are required to uniquely determine such an augmentation. First I show that,

even for CFGs generating in�nite languages, there is a �nite set of training instances

guaranteeing a unique solution. Then I discuss how many training instances one can

expect to be su�cient for a unique solution in relation to the size of the grammar.

Finally I will discuss criteria that I believe are su�cient to characterize a complete set

of training instances for realistic applications.

Theorem 6.1. Let G be an unambiguous CFG and m a meaning function

10

that

maps sentences of G to their semantic representations. Let D be the smallest

11

higher-

order DCG that computes m. There exists an integer k such that D can be identi�ed by

10

By \meaning functions" I mean functions that map sentences to semantic representations.

11

A suitable measure for size would be the number of symbols in a DCG; other measures are possible

as well.
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comparing its output with the value de�ned by m on at most k sentences of the language

L(G) de�ned by G.

Proof: Let the enumeration of DCGs in order of increasing size be D

0

; D

1

; : : :. There-

fore D is D

i

for some i. Since it is the smallest DCG computing the meaning function

m, its meaning function di�ers from that of each DCG in D

0

; D

1

; : : : ; D

i�1

. Let

s

0

be the smallest sentence in L(G)|using for example the lexicographic ordering of

words|whose meaning as given by D

0

di�ers from that as given by D

i

. Similarly, let

s

1

; s

2

; : : : ; s

i�1

be the corresponding (smallest) sentences that distinguish respectively

D

1

; D

2

; : : : ; D

i�1

from D

i

. Then the integer k satisfying the theorem is the index of

the largest sentence in the set fs

0

; s

1

; : : : ; s

i�1

g. Q.E.D.

While Theorem 6.1 states that there is a �nite minimal set of training instances, one

can show along the lines of Budd and Angluin (1982) that this k is not computable.

The reason is that the computability of k is equivalent to the problem of deciding the

equivalence of two higher-order DCGs. Since even �rst-order DCGs have the power of

Turing machines (Pereira and Warren 1980), clearly there is no algorithm to decide the

equivalence of two higher-order DCGs. Hence k is not computable. This result in turn

means that one cannot preprocess a grammar in order to determine k. Instead one should

be content with an interactive process of generating examples until the user is satis�ed

with the generated DCG after some point. Notwithstanding this result, for practical

applications, it may be that such sets are reasonably small. Intuitively it is clear that

the larger the size k of the set of training instances is, compared with the size/footnoteA

suitable measure for the size of terms would again be the number of symbols. of the

terms representing the meaning function, the higher the probability that the (unique)

correct meaning function has been found. For example, it is unlikely that a meaning

function m

1

of size 10 (i.e., the smallest representation of the meaning function has size

12

10) computes the correct meanings for all sentences of size

13

< 1000000, but computes

an incorrect meaning for some sentence of size > 1000000. Even though in principle it

is possible that m

1

turns out to be incorrect after testing it on some sentence of size >

1000000, it is highly unlikely one can obtain such a function as a higher-order DCG.

For each DCG rule, only a small number of decisions regarding the processing of

the semantic terms returned by each nonterminal needs to be made, since these terms

are built up from �-abstraction and application. Since each training instance in general

contributes several constraints, one can expect the size of a minimal set of training

12

Again measured as the number of symbols.

13

Measured as the number of words in a sentence.
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instances to be of the same order as the number of grammar rules. This observation

has been con�rmed by the numerous grammars on which the system has been tested.

The number of training instances can be reduced by using longer sentences, so that

each training instance covers more rules and contributes more constraints. However,

using longer sentences has negative implications for the complexity of the search, since

inconsistent substitutions cannot be detected as early.

6.1.1. Criteria for selecting training instances

Under additional assumptions, it seems possible to determine a complete set of training

sentences. In order to do so, I assume that the grammar has no chain rules

14

(and all

unreachable

15

rules are deleted). Furthermore, I assume the following:

1. The semantic terms of each grammar rule with nonterminals on the right-hand side

do not discard any of the semantic terms returned by those non-terminals (that is,

each pre�x variable must occur at least once in the body of the �-term).

2. The semantic terms corresponding to all uses of a particular grammar symbol

(terminal or nonterminal) have the same type.

What follows is a set of criteria that can be used to identify a complete set of training

sentences.

De�nition 6.1. A semantic rule corresponding to a syntactic (CFG) rule is a substi-

tution found by SYNTH for the function variable corresponding to that rule.

Conjecture: Let L be the language generated by the given grammar G, and let TS =

fs

1

; s

2

; : : :g be a set of training sentences. Then TS guarantees a unique solution if it

satis�es the following criteria:

(1) Each grammar rule must be used by at least one training instance.

(2) For each use of a grammar rule a --> b1, ..., bn by some training instance,

there is for each nonterminal bi another use of that grammar rule (by the same or

di�erent training instance) such that the terminals (phrase) being parsed by each

14

A chain rule is a rule whose left-hand side is a nonterminal that does not form the left-hand side of

any other rule, and whose right-hand side consists of a single nonterminal.

15

A rule r is said to be unreachable if there exists no parse tree (with the start symbol as root) involving

r.
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bj 6= bi are identical in the two uses, and those being parsed by bi are di�erent

in such a way that the corresponding semantic term is also di�erent from that of

bi (if such a use is possible).

(3) For each nonterminal a occurring on the left-hand side of k > 1 grammar rules,

there must be k training instances involving a whose parse trees are identical

except for the subtree corresponding to a. This subtree is varied according to the

k di�erent rules for a. If these training instances involve more than one application

of a rule with left-hand side a only one of these rule applications should be varied.

(4) Training sentences should not be derived by applying recursive rules unless neces-

sary to satisfy condition (2).

(5) A sentence with repeated occurrences of terminals should be omitted if possible.

Informal Justi�cation: Let l

0

be the semantic term corresponding to some use u

0

of grammar rule g

0

. Then, varying a string of terminals W being parsed by g

0

and

the corresponding semantic terms as described in the conjecture de�nes a semantic rule

m

0

for g

0

that is unique, except possibly for variable ordering (changing the order of

the pre�x variables without changing the body of a term) and constant terms that are

independent of W for the following reasons:

Criterion (2) ensures that the semantic representation returned by each nonterminal

bi is correctly incorporated into the semantic representation of the head a of each rule.

In the case that the semantic representation of bi is part of the semantic representation

of the complete sentence, this criterion also ensures that the term returned by bi is not

discarded and incorrectly reconstructed for example by \hard coding" it into the rule.

Criterion (3) ensures that the semantic terms of the heads of the k rules headed by a are

of the same type, use the same variable orderings, and handle constants in the same way.

At the same time it forces the semantic rule of the head of the grammar rule that contains

the nonterminal a in its body to be general enough to correctly handle all possible

semantic terms that can be returned by a. Criterion (4) ensures that the semantic term

of the head of a recursive rule is not speci�c to certain kinds of semantic terms returned

by nonterminals in the body of the rule only periodically. For example, a particular

nonterminal may return a certain kind of semantic term only for an even number of

recursive calls, in which case semantic rules may be inferred that are too speci�c if the

training instances don't include cases involving both, odd and even number of recursive

calls. Given criterion (2), criterion (5) doesn't seem to be required for correctness, but it
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avoids unnecessary training instances and unnecessary computations during higher-order

uni�cation.

The reason why variable ordering or constant terms may not be uniquely determined

is that �xed combinations of grammar rules may compensate these factors in such a way

that their combined behavior is identical even though the semantic rules of the individual

grammar rules may vary (see section 5.4). That is, there may be some exibility for

the semantic rules of individual grammar rules of a �xed combination, but the overall

behavior of such a combination is uniquely determined. Since the training instances

de�ne a unique semantic function for all such �xed combinations, any two grammars

augmented using TS have the same input/output behavior.

6.1.2. E�ciency issues

The examples below illustrate important factors in choosing training instances (sentence-

meaning pairs).

� To achieve optimal performance, training instances must be as small as possible.

� The set of training instances should be considered an ordered set, since the per-

formance of the uni�cation procedure crucially depends on the order in which

substitutions are assigned to the variables occurring in the training instances. In

particular, small training instances should come before larger ones, since inconsis-

tent substitutions can be ruled out sooner in small equations.

� If larger training instances are needed to satisfy the criteria given in the previous

section, it is bene�cial to put smaller training instances that exercise the rules also

used by the larger ones �rst.

� Even though redundant small training instances may reduce the search space con-

siderably if processed before larger training instances that use the same rules, using

unnecessary training instances at the end can signi�cantly increase time and space

complexity, especially if recursive rule applications are involved.

Example 6.1.1:

In the example below the �rst training instance isn't really needed to ensure a correct

augmentation. However, the search space expands considerably if the �rst training in-

stance is left out, because, using the �rst training instance, the semantic augmentation

for the �rst rule can be determined independently of the second rule.
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s --> [0]. train(1,[0],F\X\X).

s --> [succ], s. train(2,[succ,0],F\X\(F X)).

train(3,[succ,succ,0],F\X\(F (F X))).

Example 6.1.2:

Consider the grammar in example 6.1. augmented with function variables:

s(F1) --> [0].

s(F2 A) --> [succ], s(A).

Assume this DCG is executed on the additional training sentence [succ, succ, succ,

0]. The DCG would return the term (F2 (F2 (F2 F1))); that is, the function variable

F2 is repeated for each recursive call. This means, each time a substitution is tried for

F2 all occurrences of F2 must be replaced by that substitution and the corresponding

�-reductions must be performed. This can be disastrous if substitutions like Huet's

projection substitutions are allowed. For example, the substitution

F2 <- X\Y\Z\(X (H1 X Y Z) (H2 X Y Z))

would convert the term (F2 (F2 (F2 F1))) to

(X1\Y1\Z1\(X1 (H1 X1 Y1 Z1) (H2 X1 Y1 Z1))

(X2\Y2\Z2\(X2 (H1 X2 Y2 Z2) (H2 X2 Y2 Z2))

Y3\Z3\(F1 (H1 F1 Y3 Z3) (H2 F1 Y3 Z3))))

=

(X1\Y1\Z1\(X1 (H1 X1 Y1 Z1) (H2 X1 Y1 Z1))

(Y2\Z2\(Y3\Z3\(F1 (H1 F1 Y3 Z3) (H2 F1 Y3 Z3))

(H1 Y4\Z4\(F1 (H1 F1 Y4 Z4) (H2 F1 Y4 Z4)) Y2 Z2)

(H2 Y5\Z5\(F1 (H1 F1 Y5 Z5) (H2 F1 Y5 Z5)) Y2 Z2))))

=

(X1\Y1\Z1\(X1 (H1 X1 Y1 Z1) (H2 X1 Y1 Z1))

(Y2\Z2\(F1 (H1 F1 (H1 Y4\Z4\(F1 (H1 F1 Y4 Z4) (H2 F1 Y4 Z4)) Y2 Z2)

(H2 Y5\Z5\(F1 (H1 F1 Y5 Z5) (H2 F1 Y5 Z5)) Y2 Z2))

(H2 F1 (H1 Y6\Z6\(F1 (H1 F1 Y6 Z6) (H2 F1 Y6 Z6)) Y2 Z2)

(H2 Y5\Z5\(F1 (H1 F1 Y5 Z5) (H2 F1 Y5 Z5)) Y2 Z2)))))

=

(X1\Y1\Z1\(Y2\Z2\(F1 (H1 F1 (H1 Y4\Z4\(F1 (H1 F1 Y4 Z4) (H2 F1 Y4 Z4)) Y2 Z2)

(H2 Y5\Z5\(F1 (H1 F1 Y5 Z5) (H2 F1 Y5 Z5)) Y2 Z2))

(H2 F1 (H1 Y6\Z6\(F1 (H1 F1 Y6 Z6) (H2 F1 Y6 Z6)) Y2 Z2)

(H2 Y5\Z5\(F1 (H1 F1 Y5 Z5) (H2 F1 Y5 Z5)) Y2 Z2)))

(H1 Y2\Z2\(F1 (H1 F1 (H1 Y4\Z4\(F1 (H1 F1 Y4 Z4) (H2 F1 Y4 Z4)) Y2 Z2)
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(H2 Y5\Z5\(F1 (H1 F1 Y5 Z5) (H2 F1 Y5 Z5)) Y2 Z2))

(H2 F1 (H1 Y6\Z6\(F1 (H1 F1 Y6 Z6) (H2 F1 Y6 Z6)) Y2 Z2)

(H2 Y5\Z5\(F1 (H1 F1 Y5 Z5) (H2 F1 Y5 Z5)) Y2 Z2))) Y1 Z1)

(H2 Y2\Z2\(F1 (H1 F1 (H1 Y4\Z4\(F1 (H1 F1 Y4 Z4) (H2 F1 Y4 Z4)) Y2 Z2)

(H2 Y5\Z5\(F1 (H1 F1 Y5 Z5) (H2 F1 Y5 Z5)) Y2 Z2))

(H2 F1 (H1 Y6\Z6\(F1 (H1 F1 Y6 Z6) (H2 F1 Y6 Z6)) Y2 Z2)

(H2 Y5\Z5\(F1 (H1 F1 Y5 Z5) (H2 F1 Y5 Z5)) Y2 Z2))) Y1 Z1)))

That is, the size of the resulting term increases exponentially with the number of occur-

rences of the variable being replaced and the number of arguments of the head of the

substitution term.

Example 6.1.3:

Consider the following grammar augmentation:

CFG Training instances

s --> [0]. [0] FnXnX

s --> [s,0]. [s,0] FnXn(F X)

s --> [s,s,0]. [s,s,0] FnXn(F (F X))

s --> [s,s,s], s. [s,s,s,0] FnXnX

[s,s,s,s,0] FnXn(F X)

The correct higher-order DCG can be found with the above training instances:

s(A\B\B) --> [0].

s(A\B\(A B)) --> [s],[0].

s(A\B\(A (A B))) --> [s],[s],[0].

s(A\B\C\(A B C) D) --> [s],[s],[s],s(D).

However, if [s,s,s,s,s,0], F\X\(F (F X)) is used instead of the �rst training in-

stance, execution time will be much longer since the intermediate terms produced by

that training instance would be much larger than that of the �rst training instance.

Providing semantic rules with the syntactic rules:

Complexity can also be reduced by specifying the semantic rules directly with the cor-

responding syntactic rules if they are known to the user. Also, incremental synthesis of

semantics by breaking down a large grammar into independent smaller ones can be used

to control time and space complexity (see discussion in chapter 8).
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6.2. Search Control and Combination Rules

The nondeterministic selection of substitution terms is implemented by backtracking.

The fact that all right-hand side terms are known to be ground can be exploited to

improve the search procedure in various ways (see below). Without these optimizations

a simple depth-�rst search procedure is incomplete, since there could be, in general,

in�nite branches. This is because the projection and imitation substitutions in Huet's

procedure can introduce new variables that in general have no restrictions. Therefore, in

order to ensure exhaustive traversal of the search space, an upper limit is placed on the

depth of the nesting of terms and on the number of arguments a function can have, and

this limit is successively increased until a solution is found (a term has \nesting of depth

n" if it has n nested parentheses). If there is no solution, the search may not terminate.

Therefore the function SUBST must be augmented in such a way that the number

of arguments and the depth of nesting of terms doesn't exceed the limit value lim: Let

N(V ) denote the depth of nesting of variable V in the original equation.

1. Input a higher-order equation e. If N(V ) > lim then fail.

2. Nondeterministically select a substitution S according to the following options:

a. Projection substitutions. Projection substitutions are of the form:

f  �w

1

: : : :�w

k

:(w

i

(h

1

w

1

: : : w

k

) : : : (h

l

w

1

: : : w

k

)), for each 1 � i � k, where

�(f) = �

1

! �

2

! : : :! �

k

! �, and �(w

i

) = �

i

(the �

i

are type variables). The

following parameters are chosen nondeterministically: (i) k � lim, the number of

pre�x variables (see discussion on type inference below); (ii) w

i

, the head of the

substitution term; (iii) l � lim, the number of arguments of w

i

, which is often

determined through uni�cation of w

i

with the corresponding argument to which

the substitution term is being applied.

b. Imitation substitution. Imitation substitution are of the form of the form:

f  �w

1

: : : :�w

k

:(c (h

1

w

1

: : : w

k

) : : : (h

j

w

1

: : : w

k

)), where �(f) = �

1

!

�

2

! : : : ! �

k

! �. The number k of pre�x variables is equal to the number

of arguments of f , except if the right-hand side term is a �-abstraction, i.e., has

additional pre�x variables. In that case the number of pre�x variables of the

substitution term must be increased accordingly. The number of arguments j and

the type of the constant c obviously must be the same as that of the constant being

imitated.
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3. Return the selected substitution S.

If only Huet's imitation and projection substitutions are allowed, the enumeration

procedures are comparatively simple (as described above). However, the price one pays

for simplicity of enumeration procedures is increased complexity in search. By using sim-

pler substitution rules (which can be thought of as precompiled combinations of Huet's

imitation and projection substitutions), and by using more sophisticated enumeration

procedures, time and space complexity can be reduced dramatically, especially if com-

bined with other optimization techniques that take into account the fact that one side is

ground, because the semantic representations provided by the user are usually ground.

Huet's imitation and projection substitutions require that if the head of the substitu-

tion term has one or more arguments, then a new function variable must be introduced

which is applied to all pre�x variables. This implies that long \detours" must be taken

in order to synthesize even simple terms (see for example the case discussed in Appendix

D). A more direct way to resolve higher-order equations is possible if the kinds of sub-

stitutions discussed below are used instead of the imitation and projection substitutions

of Huet's procedure.

6.2.1. More E�cient Substitutions

Specifying abstractions of substitutions

For debugging purposes or for assisting the system in resolving a set of higher-order

equations, it is useful to be able to specify abstractions of substitutions at various levels.

For example, sometimes one would like to specify that a projection substitution has three

pre�x variables, without knowing anything else about this substitution. Or sometimes

one would like to specify that a projection substitution with three pre�x variables takes

the second pre�x variable as its head without knowing the type of that variable.

The following notation is used to specify such abstractions. The term used by the

system to characterize the projection substitutions of Huet's procedure is proj(L,M,N),

where L is the number of pre�x variables of the substitution term, M speci�es which pre�x

variable is chosen as head of the substitution term, and N is the number of arguments of

that head. For example, the substitution term

A\B\C\(C (H1 A B C) (H2 A B C))

would be characterized as proj(3,1,2), meaning that there are three pre�x variables

A\B\C\, the �rst pre�x variable C (counting from right to left) is chosen as the head
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which has two arguments. By replacing one or more arguments with variables, one

obtains partial speci�cations of substitutions. E.g., proj(3,X,Y) only speci�es that it

is a projection substitution with three pre�x variables. Other uses of this notation are

discussed in the section on debugging and diagnostics in the appendix. Apart from

debugging and analysis purposes, this compact notation is also convenient for discussing

classes of substitutions.

The term used by the system to characterize the imitation substitutions of Huet's

procedure is imitation(L), where L is the number of pre�x variables of the substitution

term. For example, the substitution term

A\B\C\(and (H1 A B C) (H2 A B C))

would be characterized as imitation(3). The number of arguments of the head `and'

does not need to be speci�ed since it is determined by the term on the right-hand side

of the higher-order equation (disagreement pair), which is always ground.

Variable-free substitution rules

If the following three classes of substitution rules are used instead of Huet's imitation and

projection rules, the type of higher-order equations arising in our synthesis are resolved

much more e�ectively, since these substitutions do not introduce any new free variables.

(1) Closed projection substitutions:

Linear substitutions without vacuous abstractions (i.e., each pre�x variable occurs

exactly once) are common, e.g., A\B\(A B). If one is restricted to the substitutions

used by Huet's procedure, the following sequence of substitutions is needed to

obtain the above term:

(1) V <- A\B\(A (H1 A B))

(2) H1 <- A\B\B

Substituting for H1 in (1) and simplifying the result A\B\(A (X\Y\Y A B)), the

desired substitution for V is obtained. This type of combination of substitution

rules is necessary for constructing almost any substitution term: �rst new vari-

ables that are dependent on all pre�x variables are introduced, and then suitable

projection substitutions are used to discard \unwanted" terms. However, these

combinations involve a lot of overhead because, for nontrivial substitutions, many
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copies of large terms have to be temporarily stored and manipulated until they are

�nally discarded.

Therefore it would clearly be desirable to have the search procedure directly gen-

erate substitutions like A\B\(A B). A procedure for generating such substitutions

has been implemented and is termed cproj(L,M,N) (the arguments L, M, and N

have the same meaning as in the proj(L,M,N)-case discussed above). Instead of

introducing new function variables with unnecessary arguments, it directly gen-

erates arguments that are made up of only the pre�x variables. An additional

restriction is that each pre�x variable occurs exactly once in the body of the sub-

stitution term (linearity). It is straightforward to enumerate such substitutions as

there are no in�nite branches; that is, for any given values of L, M, and N, that are

only a small, �nite number of substitutions.

Clearly, these substitution rules are not as general as Huet's projection substitution

rules; however, in conjunction with the other two classes of substitution rules

discussed below, they are su�cient for the kinds of uni�cation problems that arise

from non-pathological DCG synthesis tasks.

Example 6.2.1:

Here are some examples (in no particular order) of substitutions the closed projec-

tion rules would generate.

cproj(1,1,0): V <- A\A

cproj(2,2,1): V <- A\B\(A B)

cproj(3,3,2): V <- A\B\C\(A C B)

cproj(2,1,1): V <- A\B\(B A)

cproj(3,2,2): V <- A\B\C\(B A C)

cproj(3,2,1): V <- A\B\C\(B (A C))

cproj(4,4,3): V <- A\B\C\D\(A C D B)

cproj(4,4,2): V <- A\B\C\D\(A (C D) B)

Note that, when the types are known, most substitutions are immediately elimi-

nated, since the types restrict the number of pre�x variables as well as the number

of arguments a function can have. For example, assume a substitution is to be

found for V in the term (V X Y), and the types for V, X, and Y are known to be
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(i! o)! i! o, i! o, and i, respectively. Then the only possible closed projec-

tion substitution is A\B\(A B), since the type of V restricts the number of pre�x

variables to two, and the head of the substitution term must be a function type.

(2) Imitation-projection substitutions:

In order to synthesize a term such as A\B\C\(and (A C) (B C)) using Huet's

imitation and projection substitutions, the following sequence of substitutions is

needed:

(1) V <- A\B\C\(and (H1 A B C) (H2 A B C))

(2) H1 <- A\B\C\(A (K1 A B C))

(3) K1 <- A\B\C\C

(4) H2 <- A\B\C\(B (K2 A B C))

(5) K2 <- A\B\C\C

However, performing these substitutions and simplifying involves a complex deriva-

tion with a lot of overhead. Hence, as in the previous case, it would be desirable

to have the search procedure generate those terms directly. A procedure for gen-

erating such substitutions has been implemented and is termed imit_proj(N),

where N is the number of pre�x variables. This procedure doesn't introduce new

variables, but selects pre�x variables nondeterministically to serve as functions at

the argument positions. The remaining pre�x variables are used as arguments to

those functions. A pre�x variable can occur at most once in a function position,

but any number of times as an argument. (I refer to this as the almost-linear

restriction.) It is also possible to introduce free variables as arguments.

Example 6.2.2:

Examples of substitutions generated by this procedure are (the constants appearing

in these substitutions would in general be determined from the matching ground

term):

imit_proj(3): V <- A\B\C\(and (A C) (B C))

imit_proj(3): V <- A\B\C\(not (A C B))

imit_proj(3): V <- A\B\C\(and (B D) (A D C))

imit_proj(2): V <- A\B\(latitude A B)

imit_proj(4): V <- A\B\C\D\(and (B C) (A C D))
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imit_proj(0): V <- 2

imit_proj(5): V <- A\B\C\D\E\(and (B E C) (A D E))

imit_proj(3): V <- A\B\C\(setof (A C) B)

imit_proj(4): V <- A\B\C\D\(and (B E C) (A E D))

imit_proj(3): V <- A\B\C\(numberof (A C) B)

imit_proj(2): V <- A\B\(not (A B))

imit_proj(4): V <- A\B\C\D\(and (A D E) (B E C))

Again, the number of possible substitution terms for any �xed number of pre�x

variables is relatively small. There are no new variables introduced as in the case

of Huet's imitation and projection substitutions, and the duplication of variables

is also very limited. Therefore, even if there appear to be a larger choice of sub-

stitutions the overall complexity is signi�cantly reduced as no new variables are

being introduced for which viable substitutions have to be found.

(3) Generalized imitation-projection substitutions:

In order to synthesize substitution terms of arbitrary nesting, e.g.,

A\B\(exists X\(and (A X) (B X))),

a generalized version of the imitation-projection rule is needed. These rules are

similar to Huet's imitation substitution rules except that the new function vari-

ables being introduced may not have all of the pre�x variables as arguments. This

enhancement makes it possible to altogether disallow substitutions that discard ar-

guments (like A\B\C\C, or A\B\C\(A C) ). Substitutions that discard arguments

are usually only needed to remove extraneous subterms in a derivation. However,

the use of generalized imitation-projection substitutions makes it possible to avoid

the generation of extraneous subterms in the �rst place. This property in turn

implies a certain monotonicity during the resolution process, which allows further

optimizations as discussed below.

The term used by the system for this class of substitutions is imitation(N), where

N again is the number of pre�x variables.

Example 6.2.3:

Typical substitutions of this type are:

imitation(2): V <- A\B\(setof (H1 A) (H2 B))
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imitation(3): V <- A\B\C\(numberof (H1 A B C) H2)

imitation(3): V <- A\B\C\(setof (H1 A B) (H2 C))

imitation(3): V <- A\B\C\(exists (H1 A B C))

Since the generalized imitation-projection substitutions introduce new variables and

therefore have a potentially high branching factor, the closed projection substitutions

and the imitation-projection substitutions should be tried �rst. Many equations occur-

ring during the resolution of a set of higher-order equations can be solved without the

generalized imitation-projection substitutions.

6.2.2. E�ect of Combination Rules on Search Complexity

As noted earlier, if only the basic projection and imitation substitutions are used, the

size of the terms increases exponentially with the number of pre�x variables and the

number of occurrences of a variable in the term. Even for simple grammars terms can

grow very large. As a result the execution time increases exponentially as well.

Example 6.2.4:

CFG:

s --> [0].

s --> [s], s.

Training instances:

train(1,[0],X\Y\X).

train(2,[s,0],X\Y\Y).

train(3,[s,s,0],X\Y\X).

train(4,[s,s,s,0],X\Y\Y).

Sequence of substitutions:

s(A) --> [0].

s(D E) --> [s],s(E).

[[A,I\J\I],

[D A,I\J\J],

[D (D A),I\J\I],

[D (D (D A)),I\J\J]]

proj(2,2,0): A <- B4\C4\B4
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[[D K\L\K,A\B\B],

[D (D M\N\M),A\B\A],

[D (D (D O\P\O)),A\B\B]]

proj(3,3,2): D <- Y3\Z3\A4\ (Y3 (Q Y3 Z3 A4) (Z Y3 Z3 A4))

[[Q R\S\R A B,B],

[Q T\U\T (Q V\W\ (Q X\Y\X V W) A B) (Z A1\B1\ (Q C1\D1\C1 A1 B1) A B),A],

[Q E1\F1\E1 (Q G1\H1\ (Q I1\J1\I1 G1 H1) (Q K1\L1\ (Q M1\N1\M1 (Q O1\P1\

(Q Q1\R1\Q1 O1 P1) K1 L1)

(Z S1\T1\ (Q U1\V1\U1 S1 T1) K1 L1)) A B) (Z W1\X1\ (Q Y1\Z1\Y1 (Q A2\B2\

(Q C2\D2\C2 A2 B2) W1 X1)

(Z E2\F2\ (Q G2\H2\G2 E2 F2) W1 X1)) A B)) (Z I2\J2\ (Q K2\L2\K2 I2 J2)

(Q M2\N2\ (Q O2\P2\O2 (Q Q2\R2\ (Q S2\T2\S2 Q2 R2) M2 N2) (Z U2\V2\ (Q

W2\X2\W2 U2 V2) M2 N2)) A B)

(Z Y2\Z2\ (Q A3\B3\A3 (Q C3\D3\ (Q E3\F3\E3 C3 D3) Y2 Z2) (Z G3\H3\ (Q

I3\J3\I3 G3 H3) Y2 Z2)) A B)),B]]

proj(3,1,0): Q <- V3\W3\X3\X3

[[Z K3\L3\L3 A B,A],

[Z M3\N3\N3 B (Z O3\P3\ (Z Q3\R3\R3 O3 P3) A B),B]]

proj(3,2,0): Z <- S3\T3\U3\T3

[]

A = B4\C4\B4

D = Y3\Z3\A4\ (Y3 A4 Z3)

Q = V3\W3\X3\X3

Z = S3\T3\U3\T3

As can be seen at the substitution proj(3,3,2), because of the multiple occurrences of

the pre�x variables in the projection substitution, a term can be duplicated m �n times,

where m is the number of occurrences of the variable being substituted for, and the n is

the number of times a pre�x variable occurs in the substitution term.

Example 6.2.5:

The substitution rules itpr below are combinations of projection rules such that no new

variables are introduced and no variables are duplicated or omitted.

s(A B C) --> pn(B),vp(C).

vp(G H I) --> tv(H),pn(I).
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pn(M) --> [mike].

pn(P) --> [mary].

pn(S) --> [john].

tv(V) --> [saw].

tv(Y) --> [visited].

[[A M (G V P),saw mike mary],

[A S (G V P),saw john mary],

[A M (G Y P),visited mike mary],

[A M (G V S),saw mike john]]

cproj(2,1,0): A <- U1\V1\(V1 U1)

[[G V P M,saw mike mary],

[G V P S,saw john mary],

[G Y P M,visited mike mary],

[G V S M,saw mike john]]

cproj(3,3,0): G <- R1\S1\T1\(R1 T1 S1)

[[V M P,saw mike mary],

[V S P,saw john mary],

[Y M P,visited mike mary],

[V M S,saw mike john]]

imitation(2): V <- P1\Q1\(saw (C1 P1 Q1) (B1 P1 Q1))

[[B1 M P,mary],

[C1 M P,mike],

[B1 S P,mary],

[C1 S P,john],

[Y M P,visited mike mary],

[B1 M S,john],

[C1 M S,mike]]

proj(2,1,0): B1 <- N1\O1\O1

[[P,mary],

[C1 M P,mike],

[P,mary],

[C1 S P,john],

[Y M P,visited mike mary],

[S,john],

[C1 M S,mike]]
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imitation(0): P <- mary

[[C1 M mary,mike],

[C1 S mary,john],

[Y M mary,visited mike mary],

[S,john],

[C1 M S,mike]]

proj(2,2,0): C1 <- L1\M1\L1

[[M,mike],

[S,john],

[Y M mary,visited mike mary],

[S,john],

[M,mike]]

imitation(0): M <- mike

[[S,john],

[Y mike mary,visited mike mary],

[S,john]]

imitation(0): S <- john

[[Y mike mary,visited mike mary]]

imitation(2): Y <- J1\K1\(visited (E1 J1 K1) (D1 J1 K1))

[[D1 mike mary,mary],

[E1 mike mary,mike]]

proj(2,1,0): D1 <- H1\I1\I1

[[E1 mike mary,mike]]

proj(2,2,0): E1 <- F1\G1\F1

[]

A = U1\V1\(V1 U1)

G = R1\S1\T1\(R1 T1 S1)

V = P1\Q1\(saw P1 Q1)

B1 = N1\O1\O1

P = mary
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C1 = L1\M1\L1

M = mike

S = john

Y = J1\K1\(visited J1 K1)

D1 = H1\I1\I1

E1 = F1\G1\F1

6.2.3. Monotonicity and Linearity

Since the higher-order equations obtained by equating the terms that result from exe-

cuting sentences on an augmented DCG with the terms (semantic representations) that

the user provides always have one side ground, the higher-order uni�cation problem is

actually a higher-order matching problem. Even though decidability of higher-order

matching is still an open problem, in enumerating matching substitutions various opti-

mizations of the uni�cation search procedure are possible for this subclass of uni�cation

problems. Such optimizations can best be achieved by using a set of substitution rules

that observe the following condition.

De�nition 6.3.1: A set of substitutions satis�es the monotonicity condition if none

of them contains vacuous abstractions; i.e., all pre�x variables of an abstraction must

occur at least once in the body of the term.

This condition implies that terms introduced by previous substitutions cannot be dis-

carded later on.

Obviously, completeness is lost under this condition if one is limited to Huet's imita-

tion and projection substitutions. Therefore new substitution rules must be introduced

which satisfy the monotonicity condition without giving up completeness. These alter-

native substitutions can still be classi�ed as imitation and projection substitutions, as

they are essentially precompiled combinations of Huet's imitation and projection sub-

stitutions, but using at most one imitation substitution. (Section 6.2.1 discusses these

alternative substitution rules in more detail.)

De�nition 6.3.2: A �-abstraction is said to be linear if each of its pre�x-variables

occurs at most once in its body.

De�nition 6.3.3: A �-abstraction is said to be almost-linear if all pre�x-variables that

are used at function positions in the body of the �-abstraction occur at most once.

Given monotonicity and linearity, the fact that the right-hand side of each equation is
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ground allows to predict the number of imitation substitutions required to make the

left-hand side term identical to the right-hand side term:

Proposition 6.3.4: If monotonicity and linearity hold, the number of imitation substi-

tutions needed to convert the left-hand side term of an equation into the right-hand side

term is computed by subtracting the number of constants occurring in the right-hand

side term from the number of constants occurring in the left-hand side term.

Proof: Due to linearity, each imitation substitution introduces exactly one constant,

and due to monotonicity, none of these constants will be discarded later. Since the left-

hand side term may already contain constants, the number of imitation substitutions is

determined as speci�ed in the proposition. Q.E.D.

This is an important constraint which helps to reduce the search space. However, in

many cases the linearity constraint has to be relaxed, since the duplication of individuals

in natural language is fairly common, for example, when using reexives. Therefore,

we have to allow almost-linear substitutions, in which case the number of imitation

substitutions must be reduced accordingly.

The number of projection substitutions cannot be predicted as accurately, but it is

constrained in the following way. The number of projection substitutions is equal to the

total number of free variables in the left-hand side term plus the number of free variables

being introduced by substitution rules minus the number of imitation substitutions (as

discussed above).

6.3. Dependency Directed Backtracking

During the process of solving a set of higher-order equations many substitutions are tried

for each variable until a consistent set of substitutions is found. If failure occurs for a

particular set of substitutions, the equation at which the failure occurred can be easily

located. For example, after a particular substitution has been made in some equation

e

1

, the heads of the left-hand-side term and right-hand-side term of another equation

e

2

may be di�erent constants; that is, e

2

cannot be resolved with the current set of

substitutions. Being able to localize failure in this way allows the system to analyze the

cause of that failure and continue the search such that only those substitutions which

have contributed to the failure are changed.

The procedure described below is a re�nement of depth-�rst search, and is therefore

applicable only for (higher-order) uni�cation problems for which depth-�rst search is a
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complete search strategy. Such uni�cation problems arise for example if at least one

side of each equation is ground, and if the substitution rules satisfy the monotonicity

condition, i.e., none of the substitution rules discards any of its arguments.

Basic Idea:

For example, consider the set of equations below. (e(V11,V12,...) represents an

equation containing variables V11,V12,...):

e(V11,V12),

e(V21,V22),

e(V11,V31,V32),

e(V21,V41,V42),

The equations are organized on a stack. If the head of the top-most equation is a

variable, it will get a substitution by one the substitution rules. Note that in this

example, variables V12 and V22 do not occur in the third equation. Now assume all

variables until V32 have obtained a substitution; also assume that after V32 is assigned,

failure occurs in the third equation. It would not make sense to backtrack for example

to V12 or V22 as they have no inuence on the equation in which the failure occurred;

instead the system should backtrack to the assignment of V11.

Method:

The scheme for dependency-directed backtracking described here is based on the concept

of an inuence set. There is an inuence set for each equation, which is initially de�ned

as the variables occurring in the equation. If an equation is decomposed, each of the

generated equations inherits the inuence set of the original equation. If a substitution

introduces new variables, these new variables are added to the inuence sets of the

equations in which the substitutions took place (note that all occurrences of a particular

variable in the set of equations are replaced simultaneously). As soon as failure is

detected in an equation E, the set of variables of the inuence set of E that have already

been bound is asserted as \backtrack set". The backtrack set indicates to which variable

assignments one should backtrack to try to overcome the failure. The backtrack set is

removed as soon as one of its variables obtained a new assignment.

Example 6.4.1:

Below is a set of equations that arises while processing a small grammar.
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1 [[A (B C) (D E),sings mary],

2 [A (B F) (D E),sings john],

3 [A (B C) (D G),sleeps mary],

4 [A (B C) (H (I (J K))),girl mary],

5 [A (B C) (H (I (J L))),student mary],

6 [A (B C) (H (I (M (N O) K))),and (girl mary) (good mary)],

7 [A (B C) (H (I (M (N P) K))),and (girl mary) (smart mary)],

8 [A (B C) (H (I (M (Q O (N P)) K))),and (girl mary) (and (good mary) (smart mary))],

9 [A (B F) (R S (B C)),saw john mary],

10 [A (B F) (R T (B C)),visited john mary],

11 [A (U V (I (J K))) (D E),exists W\(and (girl W) (sings W))],

12 [A (U X (I (J K))) (D E),all W\(implies (girl W) (sings W))],

13 [A (B F) (R S (U V (Y (J K) (Z A1 (D E))))),exists W\(and (and (girl W) (sings W))

(saw john W))],

14 [B1 (C1 (B C) (D1 E1)) (F1 (B F)),saw john mary],

15 [B1 (C1 (B C) (D1 G1)) (F1 (B F)),visited john mary]]

If equation 11 fails due to a substitution for example to K in equation 4, a backtrack

set is de�ned as the set of variables occurring in equation 11 that have been assigned

so far, which would be fA,D,E,I,Jg. This means it only makes sense to backtrack to one

of these variable assignments, and not for example to B, C, F or G, since these variables

have no inuence on equation 11 where the failure occurred.

6.4. Summary

This chapter discussed optimizations of the synthesis procedure given in Chapter 5. The

e�ciency of DCG synthesis can be increased by:

� using training instances that contribute a su�cient number of constraints; the

training sentences should be as short as possible, and no unnecessary training

instances should be included;

� presenting shorter training instances before longer ones such that the constraints

introduced by the short training instances constrain the search for substitutions in

the longer training instances;

� using suitable combinations of substitution rules during higher-order uni�cation;

� using the constraints provided by the fact that the right-hand sides of the higher-

order equations are always ground (higher-order matching);
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� incorporating a scheme for dependency directed backtracking in the higher-order

uni�cation procedure.
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7. E�cient Execution

The higher-order DCGs of Chapter 5 are not as e�cient as equivalent �rst-order

DCGs, since the complexity of applying �-conversion rules is greater than the complexity

of �rst-order uni�cation. However, it turns out that for most practical cases higher-

order DCGs can be converted into �rst-order DCGs by precompiling all �-reductions

involved in the execution of the DCGs. This conversion can be considered a form of

partial execution. Partial execution means that a program is partly executed at compile

time, which requires that the operations performed during partial execution must be

independent of any input data. A simple example of partial execution is \constant

folding" or \strength reduction" in traditional compilers, e.g., the replacement of the

term x+0 by the term x. In general, declarative programming languages o�er more

opportunities for partial execution than procedural languages, since the former are free

from the complexities of side-e�ects and control. This topic has been explored to some

extent in functional programs (Burstall 1977, Kahn 1982) and logic programs (Clark

1977, Tamaki 1984, Takeuchi 1985).

Below I describe a novel technique for partially executing a higher-order DCG and

show that the resulting �rst-order DCG correctly computes the semantic representations

for all sentences. The basic idea is to replace �-reduction by �rst-order uni�cation for

\forward execution," i.e., computing the semantic representation of a given sentence.

For \reverse execution" of the DCG, additional checks are imposed to ensure correct-

ness. Nevertheless, the e�ciency of both forward and reverse execution of the partially

executed DCG is better than those of the corresponding higher-order DCG. In fact the

e�ciency improvement for reverse execution is more dramatic since we are e�ectively

replacing higher-order uni�cation by �rst-order uni�cation.

Section 7.1 gives the basic procedure for partial execution and discusses its correct-

ness and limitations. Section 7.2 introduces various enhancements of the basic partial

execution procedure, and Section 7.3 analyzes the implications of partial execution on

reversibility.

7.1. Basic Procedure for Partial Execution

The input to the partial execution procedure is a higher-order DCG, i.e., the output of

procedure SYNTH of Chapter 5. The terms to be considered for partial execution are

the application terms occurring on the left-hand sides of DCG rules. To simplify the
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initial presentation, the following two assumptions will be made, which will be relaxed

later on:

Assumption 7.1. All application terms or subterms are reduced in computing

the semantic representation of the sentence being parsed, unless the term at the

function position (of the application term) is a constant.

Assumption 7.2. A pre�x variable x must occur at most once in the body t of a

term xnt unless that pre�x variable remains a variable during grammar execution.

Procedure for basic partial execution

Under the above two assumptions, a higher-order DCG is partially executed as follows:

(1) Rename variables such that all pre�x variables of each rule are distinct;

(2) FOR EACH rule r DO

FOR EACH application term (t

1

t

2

) in r DO

IF t

1

is a variable THEN

(a) replace all occurrences of t

1

in r by an abstraction X\Y, where X and Y are new

variables;

(b) replace (X\Y t

2

) by Y and all occurrences of X in r by t

2

.

End of Procedure.

In this partially executed form, the symbol \ is simply an in�x binary constructor, and

therefore can now take structured terms in both of its argument positions. It is possible

to express steps (a) and (b) above in a more compact manner, but the above form makes

it easier to demonstrate correctness in the next section.

Example 7.1.1:

Partial execution is illustrated for the following DCG:

(r1) s((A B)) --> np(A), vp(B).

(r2) np(Y\(Y A)) --> pn(A).

(r3) vp(Z\(B (A Z))) --> tv(A), np(B).

(r4) pn(mike) --> [mike].

(r5) pn(mary) --> [mary].

(r6) pn(john) --> [john].
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(r7) tv(A\B\(saw A B)) --> [saw].

(r8) tv(A\B\(visited A B)) --> [visited].

The semantic terms of all rules are in normal form. Rule (r1) is partially executed in

the following way:

s((A B)) --> np(A), vp(B).

= s((C\D B)) --> np(C\D), vp(B).

= s(D) --> np(B\D), vp(B).

Rule (r2) can be similarly converted:

np(Y\(Y A)) --> pn(A).

= np((B\C)\(B\C A)) --> pn(A).

= np((A\C)\C) --> pn(A).

Likewise rule (r3):

vp(Z\(B (A Z))) --> tv(A), np(B).

= vp(Z\(B (C\D Z))) --> tv(C\D), np(B).

= vp(Z\(B D)) --> tv(Z\D), np(B).

= vp(Z\(E\F D)) --> tv(Z\D), np(E\F).

= vp(Z\F) --> tv(Z\D), np(D\F).

As there are no applications satisfying assumption 7.1 in the semantic representations

of the terminal symbols here, the following �rst-order DCG is obtained:

(r1) s(A) --> np(B\A), vp(B).

(r2) np((A\B)\B) --> pn(A).

(r3) vp(A\B) --> tv(A\C), np(C\B).

(r4) pn(mike) --> [mike].

(r5) pn(mary) --> [mary].

(r6) pn(john) --> [john].

(r7) tv(A\B\(saw A B) --> [saw].

(r8) tv(A\B\(visited A B) --> [visited].

The following diagram shows the expanded parse tree for the sentence "mike saw mary",

indicating how its semantic representation is computed through �rst-order uni�cation.
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s(A0) -->

np( B0 \A0)

np((mike\B1)\B1) -->

pn(mike)

pn(mike) --> [mike]

vp( B0 )

vp(A2\B2) --> tv(A2\ C2 ),

tv(A \B\(saw A B)) --> [saw]

np( C2 \B2)

np((mary\B3)\B3) --> pn(mary)

pn(mary) --> [mary]

C2 is �rst uni�ed with B\(saw A B) and then with mary\B3, which assigns mary to B

and (saw A mary) to B3. The term A2\B2, which now denotes A\mary\(saw A mary) is

then uni�ed with B0 which has been bound to (mike\B1). Therefore A is bound to mike.

Finally, when B0\A0 is uni�ed with mike\mary\(saw mike mary), we obtain (saw mike

mary) as the semantic representation A0 of the input sentence. Note that, since \ is an

in�x binary constructor, its use in terms such as A\mary\(saw A mary) is legal.

7.1.1. Correctness of Partial Execution

Theorem 7.1.1: Under the two assumptions 7.1 and 7.2 given earlier, the partially

executed DCG obtained using the procedure given above computes the same semantic

representations for all sentences as the corresponding higher-order DCG.

Proof: We need to show (1) that all terms produced by a partially executed DCG are

correct in the sense that they can be converted (using the �-conversion rules) into the

semantic representation that would be returned by the corresponding higher-order DCG;

(2) that the semantic representations produced by the partially executed DCG are in

normal form, that is, all �-reductions have been performed.

In order to show these two points we need to show (a) how �-calculus terms and

�-calculus substitution can be correctly simulated by �rst-order terms and �rst-order

substitution; (b) how �-reduction can be correctly simulated in FOL; and (c) how normal

forms can be correctly simulated in FOL.

(a) Simulating �-calculus terms and substitution correctly:

Let sub(t,X,u) abbreviate the operation of substitution. In a �rst-order language, it

refers to the result of textually replacing all occurrences of variable X in t by u. In
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�-calculus, it refers to the result of a similar replacement except that variables in t may

have to be renamed to avoid variable capture. There are two restrictions under which

�-terms may be simulated by �rst-order terms (in which all pre�x variables are treated as

logical variables) and �-calculus substitution simulated by �rst-order substitution (where

renaming is absent): (i) all pre�x variables must have distinct names, and (ii) each pre�x

variable may occur at most once in the body of the �-term (linearity). (To see what goes

wrong without distinct pre�x variables, consider the result of sub(X\(foo Y), Y, X\X).

The result X\(foo X\X) is incorrect as a �rst-order term, since all occurrences of X would

refer to the same object. The result of sub(Z\(foo Z Y Y), Y, X\X) illustrates what

can go wrong without linearity. The result Z\(foo Z X\X X\X) again is incorrect as a

�rst order term.) Restrictions (i) and (ii) are su�cient for correct simulation of �-calculus

terms and substitution since they ensure that each pre�x variable occurs at most once

in a term, thus avoiding the problem that in a �rst-order term all pre�x variables with

the same name are bound to each other.

(b) Simulating �-reduction correctly:

�-reduction makes use of substitution to reduce an application term of the form (X\T B)

to sub(T,X,B). Simulating �-reduction in a �rst-order setting reduces to correct simu-

lation of substitution. Since these �-terms are used in the context of a DCG, we must

ensure that the two requirements for correct simulation of substitution are met in the

partially executed DCG. We guarantee distinct pre�x variables through a combination

of compile-time variable renaming and the use of SLD-resolution which makes distinct

variants of clauses at each step. Semantic terms returned by di�erent nonterminals on

the right-hand side of a rule cannot have any variables in common since distinct variants

of clauses are used for each call. Linearity ensures that distinct pre�x variables occur

within each such term. We guarantee linearity by explicitly requiring it or by using an

expensive \copying" mechanism (see section 7.2.2).

(c) Correctness of Normal Forms:

If each �-reduction step is correctly simulated, all we need to ensure now is that all �-

reduction steps and only the needed �-reduction steps are applied; but this is assumption

7.1. The operations necessary for correct simulation of �-reduction are performed by a

DCG if the arguments for the semantic representations are structured appropriately:

Let t be the semantic term of the head of a DCG rule. Assume (A B) is an application

occurring in t, and assume that A is a function variable. We consider the two cases, where

A is a pre�x variable of t, A is a free variable in t but occurring in one of the semantic terms

on the right-hand side of the rule. In case 1, t is of the form ...\A\...(...(A B)...).
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The operations for �-reduction can now be performed by binding the pre�x variable A to

a term X\Y, where X and Y are new variables, unifying X with B, and replacing (A B) by

Y, so that the reduced version becomes ...\(B\Y)\...(...Y...). Therefore, no matter

what the pre�x variable A is bound to when t is applied to some argument at execution

time, the term Y will be the reduced term, and the pre�x variable will be removed. The

reduced term is then returned in the head of the rule that removes this pre�x variable.

In case 2, t contains a term (A B), where A is a function variable occurring on the

right-hand side of the rule, i.e., the rule is of the form

a(...(A B)...) --> ..., b(A), ...

The operations of �-reduction are now implemented by replacing this rule with a rule

that is identical except for the terms indicated:

a(...Y...) --> ..., b(B\Y), ...

As can be easily veri�ed, at execution time Y will become the reduced version of (A B).

Note that this operation e�ectively removes the pre�x variable of A after unifying it with

B so that the same term Y is returned on the left-hand side as the term that would be

produced by �-reduction of (A B).

Therefore, under assumptions 7.1 and 7.2, the scheme for partial execution described

above ensures that all �-reductions are correctly simulated when the DCG is executed.

Q.E.D.

Note that the procedure for basic partial execution need not distinguish between the

two cases considered in case (c)|the proof of construction of the normal forms|since

the uni�cation and replacement operations speci�ed in the procedure have the intented

e�ect in both situations.

Example 7.1.2:

In order to illustrate case 1 and case 2 of the proof, we partially execute the following

higher-order DCG, which extends the grammar of the previous example with determiners

and nouns:

(r1) s((A B)) --> np(A), vp(B).

(r2) np(Y\(Y A)) --> pn(A).

(r3) np(Z\(A Z B)) --> det(A),n(B).

(r4) det(A\B\(exists C\(and (B C) (A C)))) --> [a].
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(r5) det(A\B\(all C\(implies (B C) (A C)))) --> [every].

(r6) vp(Z\(B (A Z))) --> tv(A), np(B).

(r7) pn(mike) --> [mike].

(r8) pn(mary) --> [mary].

(r9) pn(john) --> [john].

(r10) n(A\(student A)) --> [student].

(r11) n(A\(professor A)) --> [professor].

(r12) tv(A\B\(saw A B)) --> [saw].

(r13) tv(A\B\(visited A B)) --> [visited].

Rules (r1), (r2) and (r6) are partially executed as shown in Example 7.1.1. Rule (r3)

is executed as follows:

np(Z\(A Z B)) --> det(A),n(B)

= np(Z\(U\V Z B)) --> det(U\V),n(B)

= np(Z\(V B)) --> det(Z\V),n(B)

= np(Z\(K\L B)) --> det(Z\K\L),n(B)

= np(Z\L) --> det(Z\B\L),n(B)

Case 1 is illustrated by the terminal rules for the determiners a and every, in which the

function variables of the applications being reduced are pre�x variables. For example,

the rule for determiner a is partially executed in the following way:

det(A\B\(exists C\(and (B C) (A C)))) --> [a].

= det((K\L)\B\(exists C\(and (B C) (K\L C)))) --> [a].

= det((C\L)\B\(exists C\(and (B C) L))) --> [a].

= det((C\L)\(M\N)\(exists C\(and (M\N C) L))) --> [a].

= det((C\L)\(C\N)\(exists C\(and N L))) --> [a].

The rule for determiner every is converted similarly:

det(A\B\(all C\(implies (B C) (A C)))) --> [every].

= det((C\L)\(C\N)\(all C\(implies N L))) --> [every].

Therefore, the complete partially executed DCG is:

(r1) s(A) --> np(B\A), vp(B).

(r2) np((A\B)\B) --> pn(A).

(r3) np(A\B) --> det(A\C\B),n(C)
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(r4) det((C\A)\(C\B)\(exists C\(and B A))) --> [a].

(r5) det((C\A)\(C\B)\(all C\(implies B A))) --> [every].

(r6) vp(A\B) --> tv(A\C), np(C\B).

(r7) pn(mike) --> [mike].

(r8) pn(mary) --> [mary].

(r9) pn(john) --> [john].

(r10) n(A\(student A)) --> [student].

(r11) n(A\(professor A)) --> [professor].

(r12) tv(A\B\(saw A B)) --> [saw].

(r13) tv(A\B\(visited A B)) --> [visited].

This scheme for partial execution e�ectively shifts the �-reductions into the argu-

ment positions of the grammar constituents. This is crucial for e�cient reversibility

because it enforces the constraints provided by the semantic representation as soon as

each constituent is invoked, rather than to wait until all constituents have been executed

nondeterministically.

7.2. Enhanced Partial Execution Procedure

7.2.1. Improved Treatment of Application Terms

The basic procedure of section 7.1 needs to be enhanced to take into consideration

that not all applications with function variables should be reduced. For example, in

representations such as Church numerals, the applications occurring in the numerals

should not be partially executed, e.g., F\X\(F X) to (X\B)\X\B. The solution to this

problem is to trace the �-reductions performed in the higher-order DCG (for the training

sentences) to see which applications actually need to be reduced.

For each application (A B) occurring in the semantic terms of the grammar rules,

we have to consider the following cases. Since all such terms are assumed to be reduced

to normal form, A is either a constant or a variable, but not an abstraction. During

execution of the grammar we can therefore distinguish the following two cases: (1)

A remains a variable in the �nal semantic representation; (2) A will be bound to an

abstraction so that the application (A B) will be reduced eventually. Assuming that

such an application (A B) is either reduced in all training instances or is never reduced,

one can distinguish accordingly which applications can be partially executed and which

cannot.
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Example 7.1.3:

Consider the following CFG:

s --> [0].

s --> [s,0].

s --> [s,s], s.

Using the training instances

Sentence Semantic representation

[0] FnXnX

[s,0] FnXn(F X)

[s,s,0] FnXnX

[s,s,s,0] FnXn(F X)

the following higher-order DCG is obtained:

s(A\B\B) --> [0].

s(A\B\(A B)) --> [s],[0].

s(A\B\C\(A B C) D) --> [s],[s],s(D).

There is one application in the second rule, and three applications in the third rule. Only

the applications in the third rule are actually �-reduced, as can be seen by executing the

DCG on the training sentences. The �rst training sentence, [0], uses only the �rst rule

which has no applications. The second training sentence, [s 0], uses only the second

rule, which provides the correct semantic representation, F\X\(F X), without reducing

the application occurring in it. The third training sentence uses the third rule and the

�rst rule. In order to obtain its semantic representation in reduced form, F\X\X, all

applications in the third rule have to be reduced:

(A\B\C\(A B C) D)

= (A\B\C\(A B C) F\X\X)

= B\C\(F\X\X B C)

= B\C\(X\X C)

= B\C\C

Therefore, the third rule can be partially executed accordingly:
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s(A\B\C\(A B C) D) --> [s],[s],s(D).

s(B\C\(D B C)) --> [s],[s],s(D).

s(B\C\(K\L B C)) --> [s],[s],s(K\L).

s(B\C\(L C)) --> [s],[s],s(B\L).

s(B\C\F) --> [s],[s],s(B\C\F).

In certain cases a particular application is reduced in parsing certain sentences but

not others.

Example 7.1.4:

Consider the following DCG:

s(A\B\B) --> [0].

s(A\B\(A B)) --> [s],[0].

s(A\B\B) --> [s],[s],[0].

s(A\B\C\(A D\C (B C)) E) --> [s],[s],[s],s(E).

This higher-order DCG cannot be partially executed with any of the schemes discussed so

far. This is because the application in A\B\(A B) is reduced in computing the semantic

representation for certain sentences but not others. One way to solve this problem

would be to partially execute all applications, including those occurring in the �nal

representations. For example, the term A\B\(A B) would reduced to (B\D)\B\D, and

the rules of the above grammar would have to be changed accordingly:

s(A\B\B) --> [0].

s((B\D)\B\D) --> [s],[0].

s(A\B\B) --> [s],[s],[0].

s((C\H)\C\J) --> [s],[s],[s],s(((D\C)\H\J)).

If such a completely reduced DCG is used, not all generated semantic terms would

be legal terms of the �-calculus. Therefore, partial execution has to be reversed for some

terms, e.g., (B\D)\B\D has to be converted back to A\B\(A B), and (D\B)\D\D, which

is generated for the sentence [s,s,s,s,0], has to be converted to E\D\D.

A partially executed term is converted back to a legal �-term by replacing any pre�x

term of the form (A\B) by a new variable C, and then replacing all occurrences of B by

(C A).
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Example 7.1.5:

The conversion of (C\B)\C\B to A\B\(A B) is done by replacing (C\B) with the new

variable A, and then replacing B with (A B).

7.2.2. The Need for Copying

Another potential problem arises when a function returned by one of the constituents of

a grammar rule is applied more than once. This can happen if not all substitution terms

satisfy the linearity assumption. For example, consider the rule

a((B (B C))) --> b(B), c(C).

Now, if B is an abstraction then there are two applications to be performed in the term

(B (B C)). However, the simple scheme for partial execution cannot be used here since

the two applications have di�erent arguments. Replacing B with X\Y would result in:

a(((X\Y) ((X\Y) C))) --> b(X\Y), c(C).

Now X would have to be bound to ((X\Y C)) and to C, which is impossible.

A solution to this problem would be to make a \copy" of the term returned by b for

each occurrence of B.

16

. In the example above, we would have:

a((B1 (B2 C))) --> b(B1), copy(B1,B2), c(C).

The predicate copy produces a copy of B1 so that the function represented by B1 can be

applied twice (to di�erent arguments). Now B1 can be replaced by X1\Y1:

a(((X1\Y1) (B2 C))) --> b((X1\Y1)), copy((X1\Y1),B2), c(C).

Reducing the applications gives:

a(Y1) --> b((B2 C)\Y1), copy(((B2 C)\Y1),B2), c(C).

Next, B2 is replaced by X2\Y2:

a(Y1) --> b((X2\Y2 C)\Y1), copy((X2\Y2 C)\Y1,X2\Y2), c(C).

The �nal partially executed rule is obtained by reducing the remaining applications:

a(Y1) --> b(Y2\Y1), copy(Y2\Y1,C\Y2), c(C).

16

A copy of term B leaves constants unchanged, but variables are consistently renamed; e.g.,

foo(C,D,D) would be a copy of foo(A,B,B)
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Example 7.1.6:

A more systematic way to handle multiple applications of a function is illustrated by the

following example. The term F\X\(F (F X)) can be converted into reduced form in the

following way:

F\X\(F (F X))

= F\X\(F1 (F2 X)), copy(F, F1), copy(F, F2)

= F\X\(A1\B1 (A2\B2 X)), copy(F, A1\B1), copy(F, A2\B2)

= F\X\(A1\B1 B2), copy(F, A1\B1), copy(F, X\B2)

= F\X\B1, copy(F, B2\B1), copy(F, X\B2)

The reduced form is converted back into a regular �-term as follows:

= F\X\B1, copy(F, B2\B1), copy(F, X\B2)

= F\X\(F1 B2), copy(F, F1), copy(F, X\B2)

= F\X\(F1 (F2 X)), copy(F, F1), copy(F, F2)

= F\X\(F (F X))

7.2.3. General Procedure for Partial Execution

The following procedure incorporates the enhancements of the previous subsection. As-

sume HG0 is the higher-order DCG constructed as described in Chapter 5 (none of the

applications have been reduced yet). Assume s

1

: : : s

k

are the training sentences used for

the construction of HG0.

(1) Make a copy HG1 of HG0. (HG1 will be transformed into the partially executed

DCG.)

(2) FOR i = 1 to k DO

(2a) Make a copy HG of HG0.

(2b) Execute HG on sentence s

i

to instantiate all variables in the semantic rep-

resentations of those rules of HG used for parsing s

i

, without reducing any

applications. (If a rule is used more than once by a sentence, it is su�cient

to keep track of the instantiations resulting from the �rst use; i.e., instanti-

ations of subsequent uses are ignored as they may not be uni�able with the

instantiations resulting from the �rst use.)
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(2c) Execute HG and HG1 simultaneously on sentence s

i

in the following way: for

each pair of rules r 2 HG and r1 2 HG1 being called during this execution,

exhaustively reduce all applications of the semantic representations m andm1

associated with rules r and r1. Since m is already completely instantiated,

it is used as a guide to decide which applications of m1 are supposed to be

partially executed. If a particular abstraction is applied more than once in a

term, a copy operation must be inserted in the body of r1, so that a separate

copy of this abstraction is available for each �-reduction.

END FOR

(3) Asserting the elements of the �nal list HG1 yields the partially executed DCG,

which can be directly executed by a Prolog interpreter.

By iterating through all training sentences all grammar rules are partially executed.

There may be redundant partial executions of a rule if that rule is used by more than

one training sentence. Unless there are application terms that should be reduced for

some but not all training instances (as discussed above), there should be no conicting

partial executions. This procedure also ensures that an application is reduced only if it

is supposed to be reduced according to the higher-order DCG.

To illustrate this procedure for partial execution consider the following CFG and

training instances:

s --> [0].

s --> [sc,0].

s --> [sc,sc], s.

Sentence Semantic representation

[0] FnXnX

[sc,0] FnXn(F X)

[sc,sc,0] FnXnX

[sc,sc,sc,0] FnXn(F X)

The higher-order DCG HG0 is as follows:

s(A\B\B) --> [0].

s(A\B\(A B)) --> [sc],[0].

s(A\B\C\(A B C) D) --> [sc],[sc],s(D).
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In order to obtain a partially executed version we follow the procedure given above:

(1) First a copy HG1 of HG0 is made.

(2) First iteration (i = 1):

(2a) Another copy HG of HG0 is made.

(2b) HG is executed on the �rst training sentence [0] returning its semantic rep-

resentation A\B\B.

(2c) Since there are no applications in the semantic representation returned by

this sentence, there is no change in HG and HG1.

(2) Second iteration (i = 2):

(2a) A fresh copy HG of HG0 is made.

(2b) HG is executed on the second training sentence [sc,0] returning the semantic

representation A\B\(A B).

(2c) Since A in this term is not an abstraction there are again no �-reductions

performed; that is, HG1 remains unchanged.

(2) Third iteration (i = 3):

(2a) A fresh copy HG of HG0 is made.

(2b) HG is executed on the third training sentence [sc,sc,0] returning as seman-

tic representation (A\B\C\(A B C) F\X\X).

(2c) HG and HG1 now look as follows:

HG :

s(A\B\B) --> [0].

s(A\B\(A B)) --> [sc],[0].

s(A\B\C\(A B C) A\B\B) --> [sc],[sc],s(A\B\B).

HG1 :

s(A\B\B) --> [0].

s(A\B\(A B)) --> [sc],[0].

s(A\B\C\(A B C) D) --> [sc],[sc],s(D).
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The term representing the semantics of the third rule of HG can be reduced

by performing three �-reductions:

(A\B\C\(A B C) F\X\X)

= B\C\(F\X\X B C)

= B\C\(X\X C)

= B\C\C

which transforms the third rule of HG1 in the following way:

s(A\B\C\(A B C) D) --> [sc],[sc],s(D).

= s(B\C\(D B C)) --> [sc],[sc],s(D).

= s(B\C\(K\L B C)) --> [sc],[sc],s(K\L).

= s(B\C\(L C)) --> [sc],[sc],s(B\L).

= s(B\C\(E\F C)) --> [sc],[sc],s(B\E\F).

= s(B\C\F) --> [sc],[sc],s(B\C\F).

There are no other applications to be performed in HG, therefore the process

continues with the next training sentence.

(2) Fourth iteration (i = 4):

The iteration for the training sentence [sc,sc,sc,0] is basically the same as the

third iteration and doesn't further change HG1.

(3) Therefore the �nal version of HG1 is:

s(A\B\B) --> [0].

s(A\B\(A B)) --> [sc],[0].

s(B\C\F) --> [sc],[sc],s(B\C\F).

which is the partially executed version of the original higher-order DCG.

7.3. Reversibility

Dymetman and Isabelle (1990) point out important theoretical and practical bene�ts of

DCG reversibility. A DCG is reversible if it is possible to use it not only for computing
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the semantic representation of each sentence of the language, but also for generating

the set of sentences corresponding to a particular semantic representation. Reversibility

makes it easier to construct DCGs which neither overgenerate nor undergenerate, i.e.,

they generate (or accept) all correct sentences for a particular semantic representation

no more and no less. One bene�t, of course, is that one doesn't need to write a separate

DCG for generation. However, even if one is only interested in translating sentences into

their semantic representations, it is in general useful to have the DCG detect ungram-

matical sentences, rather than generating a \wrong" semantic representation without

giving any indication that the parsed sentence is not part of the intended language.

Without reversibility, it is hard to determine whether the DCG only accepts \correct"

sentences, whereas a reversible DCG would generate all sentences for a particular se-

mantic representation, and the grammar designer can easily check whether all of them

should have this semantic representation.

The higher-order DCGs of Chapter 5 can be used for computing the semantics of a

sentence quite e�ciently, but not so e�ciently for generating a sentence given its semantic

representation. For example, if the higher-order rule s((F A B))! np(A); vp(B) in the

above grammar is used for parsing, the semantics A for np and B for vp are computed

�rst, and then F is applied to A and B to obtain the semantics for s. If, however, the

rule is used for generation, A and B would have to be assigned nondeterministically

using higher-order uni�cation.

7.3.1. Correctness for Reverse Execution

One of the motivations for developing a procedure for partial execution is its use for

e�cient reverse execution of DCGs. However, in certain cases correctness problems of

reverse execution arise, as illustrated by the following example. The grammar

s(X\Y\Y) --> [0].

s(X\Y\X) --> [1].

will be expanded to the following clauses:

s(X\Y\Y, [0|T], T).

s(X\Y\X, [1|T], T).

When used in parsing mode, this grammar correctly computes X\Y\Y for [0], and X\Y\X

for [1] using the following queries:

?- s(Sem, [0], []). ---> Sem = X\Y\Y
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and

?- s(Sem, [1], []). ---> Sem = X\Y\X

However, consider its use in generation mode, for example on the query:

?- s(A\B\B, Sent, []).

Now, both clauses match: the �rst clause matches by binding A to X and B to Y, and

the second clause matches by binding all four variables to each other. Therefore, the

incorrect sentence [1] would also be generated for the above query.

Next follows an analysis of the conditions under which reverse execution of partially

executed DCGs is correct and the corresponding correctness proof. It has been shown in

the previous section that a partially executed DCG G

p

is correct in the forward direction;

i.e., given a sentence s, it generates the correct semantic representation m

s

, as de�ned

by the original, higher-order DCG. We assume that the grammar is unambiguous, i.e.,

for each sentence there is only one semantic representation. However, there can be more

than one sentence (paraphrases) for a particular semantic representation.

In order to ensure correctness when using the partially executed DCG in the reverse

direction \freezing" is applied to the input semantic representation; that is, all of its

variables are turned into constants (di�erent constants are used for di�erent variables).

This operation prevents possible bindings of di�erent variables to the same term or to

each other.

Theorem 7.3.3: Assuming that an input semantic representation m has no free vari-

ables, reverse execution of a partially executed DCG D from the frozen form n of m

computes exactly the set of sentences whose semantics is m.

Proof: Let s

1

, : : :, s

k

be all the sentences with semantics m. By the correctness of

forward execution (from s

1

, : : :, s

k

) and the completeness of SLD-resolution, there exists

a reverse execution from m for computing each of these sentences. Such a derivation

would not instantiate any variable inm (since these represent binder variables of lambda-

terms). Hence there is also a successful reverse execution from the frozen form n of m.

The remaining issue is that of soundness of reverse execution: to show that reverse

execution does not compute any incorrect sentence from n. We should prove that the only

way that reverse execution can compute an incorrect sentence is by instantiating some

variables of m. Suppose otherwise, i.e., suppose that reverse execution of m computes an
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incorrect sentence s without instantiating any variables of m. By completeness of SLD-

resolution, there is a forward execution from s that computesm. But this contradicts the

assumption that s was an incorrect sentence. Now the proof is easy to complete: freezing

variables in m prevents any possible instantiation, and therefore reverse execution from

n is correct. Q.E.D.

7.3.2. E�cient Control for Reverse Execution

One of the problems of bidirectional grammars is the ine�ciency (due to nondetermin-

ism) in the generation mode.

Example 7.3.1:

If the grammar below is invoked with s((saw john mary)), the subgoal np(D) will

be executed completely uninstantiated; i.e., all possibilities for this subgoal have to be

explored until one is found that is compatible with the subgoal vp(Dn(saw john mary)).

s(A) --> np(D),vp(D\A).

np(A) --> pn(A).

vp(A\B) --> tv(A\E\B),np(E).

pn(john) --> [john].

pn(mary) --> [mary].

tv(A\B\ (saw A B)) --> [saw].

At �rst it may seem that problem can be solved by changing the order in which these

subgoals are executed, but in certain cases there does not exist an ordering that avoids

all such unconstrained executions.

Example 7.3.2:

Assume the following grammar is invoked by the query s((saw john mary),S,[]).

(The DCG shown below is in de�nite-clause format.)

s(A,W,V) :- np(D\A,W,U),vp(D,U,V).

np((A\B)\B,W,V) :- pn(A,W,V).

vp(A\B,W,V) :- tv(A\E,W,U),np(E\B,U,V).

pn(john,[john|V],V).

pn(mary,[mary|V],V).

tv(A\B\(saw A B),[saw|V],V).
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The subgoal np(Dn(saw john mary),S,U) should be executed �rst since it is constrained

by the given semantic representation. However, the rule for np will then call the goal

pn(A,S,U) which again is completely uninstantiated. The solution to this problem is

to suspend the goal pn(A,S,U) and select the goal vp(D,U,[]) for execution at this

point, because D has been instantiated to An(saw john mary) when the rule for np was

invoked.

This technique can be implemented by maintaining a list of goals (initially containing

the goal entered at the top level). On each iteration, one goal from this list whose

semantic representation contains constraints from the original goal is selected, and it is

replaced by the subgoals on the right-hand side of the grammar rule whose head uni�es

with it. This process continues until the list is empty.

Example 7.3.3:

In the example above, the list would be initially [s((saw john mary),S,[])]. Next,

the only element of that list is selected and replaced by the right-hand side of the rule

for s, so that the list becomes [np(Dn(saw john mary),S,U),vp(D,U,[])]. Next the

goal np(Dn(saw john mary),S,U) is selected and replaced by

pn(D,S,U). The list now is [pn(A,S,U), vp(An(saw john mary),U,[])]. The goal

vp(An(saw john mary),U,[]) is selected next, etc. Below is a complete trace.

List Subst. for S Select

[s((saw john mary),S,[])] S s(...)

[np(Dn(saw john mary),S,U),vp(D,U,[])] S np(...)

[pn(A,S,U), vp(An(saw john mary),U,[])] S vp(...)

[pn(A,S,U), tv(AnE,U,V), S np(...)

np(En(saw john mary),V,[])]

[pn(A,S,U), tv(An(A1n(saw john mary)),U,V), S tv(...)

pn(A1,V,[])]

[pn(john,S,[saw|V]), pn(mary,V,[])] S pn(john)

[pn(mary,V,[])] [john,saw|V] pn(mary)

[] [john,saw,mary]
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As can be seen, no search (nondeterminism) is involved.

7.3.3. Application of Reversibility

The bene�ts of bidirectionality become apparent in the construction of natural language

interfaces to data bases or knowledge bases. For demonstration purposes a simple meta-

interpreter of DCG-rules has been implemented. It interprets and answers questions that

can be parsed by the DCG. In order for the grammar to parse questions, the following

kinds of rules have been added to the DCG:

np --> wh([who]).

np --> wh([what]).

vp --> wh([did,what]).

vp --> wh([does,what]).

etc.

meaning that a noun phrase can be replaced by the words [who] or [what], and a

verb phrase can be replaced by [did,what] or [does,what]. Any nonterminal of the

grammar can obtain such rules.

When a statement is parsed, its semantic representation is simply added to the data

base (knowledge base). However, if a question is parsed the interpreter discards the

interrogative words (who, what, etc.), and tries to generate a sequence of words for

the corresponding grammar constituent such that there exists a fact in the data base

(or one can be inferred) whose corresponding natural language sentence is identical to

the sentence completed by the interpreter. The sequence of words generated by the

interpreter for the missing grammar constituent thus is the answer to the question. If

there are multiple answers, all of them are generated. A question that doesn't contain

any interrogative words is a yes/no question, and the answer returned by the interpreter

is \yes" if the corresponding fact can be inferred from the data base, and \I don't know"

otherwise.

Below is a demonstration of how such a DCG (see Appendix C) can be used to answer

questions.

|: john saw mary. % Statement entered by the user.

(saw john mary). % Semantic representation

% generated by the grammar.

|: mary was seen by every smart person.

(all A\ (implies (and (person A) (smart A))

(saw A mary))).
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|: every student is a smart person.

(all A\ (implies (student A)

(and (person A) (smart A)))).

|: nancy is a student.

(student nancy).

|: who saw mary? % Question entered by the user.

- john. % The interpreter returns three

- every smart person. % answers.

- nancy.

|: every person that read a book is a student.

(all A\ (implies (and (person A)

(exists B\ (and (book B)

(read A B))))

(student A))).

|: mike saw a professor that read every book.

(exists A\ (and (and (professor A)

(all B\ (implies (book B)

(read A B))))

(saw mike A))).

|: mike saw who?

- a professor that read every book.

|: mike saw a professor that read what?

- every book.

|: mike saw a professor that did what?

- read every book.

|: mike did what?

- saw a professor that read every book.

|: who saw who?

- john - mary.

- every smart person - mary.

- mike - a professor that read every book.
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- nancy - mary.

|: who did what?

- john - saw mary.

- every smart person - saw mary.

- mike - saw a professor that read every book.

- nancy - saw mary.

|: who does what?

- every student - is a smart person.

- nancy - is a student.

- every person that read a book - is a student.

- nancy - is a smart person.

|: john saw mary? % Yes/no questions.

- yes.

|: bertrand saw mary?

- I don't know.

Not all logically entailed answers are generated in this demonstration since only a very

simple, incomplete inference engine was used.

7.4. Summary

In this chapter I have described a general procedure for converting higher-order DCGs

into �rst-order DCGs. This conversion can be considered a form of partial execution

since all �-reductions that would be reduced at execution time in the higher-order DCG

are e�ectively reduced at \compile time", that is, during the conversion. Execution is

more e�cient, especially in the reverse direction, since �rst-order uni�cation is more

e�cient than higher-order uni�cation.

This type of partial execution is correct in the sense that the partially executed DCGs

compute the same semantic representations as the corresponding higher-order DCGs.

Also, partially executed DCGs can be used to compute the correct sentences for a given

semantic representation if they are used in conjunction with a simple meta-interpreter

that eliminates incorrect results.
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8. Application to Natural Query

Languages

The development of natural query languages, that is, subsets of natural languages

suitable for querying databases or knowledge bases, is becoming increasingly important as

the number and sizes of databases increases. Therefore, a system that can automatically

synthesize or modify natural query language interfaces would be desirable. Such query

languages typically satisfy the requirements of the system discussed in this dissertation,

such as non-ambiguity, and the semantic representations can often be easily adapted to

the �-calculus. This chapter discusses issues related to the application of my system to

realistically sized query languages.

In order to synthesize larger DCGs from examples, the syntactic rules and the training

instances must be speci�ed in such a way that the resulting higher-order equations can be

solved reasonably fast. In the following sections I describe a methodology for developing

the syntactic rules in an incremental, modular fashion to facilitate e�cient synthesis of

large grammars. The DCGs generated by the system can be used in basically two ways.

Either a grammar is used to directly convert sentences into structures that form the

input to some application, or two grammars are used, one in parsing mode, the other in

generation mode, to translate from one language to another, with appropriate semantic

representations as an interlingua. Section 8.3 discusses one application of each type.

8.1. Pragmatic Enhancements to SYNTH

8.1.1. Type Assignment and Type Inference

The higher-order uni�cation procedure used by SOLVE requires knowledge of the types

for variables. However, specifying types for the training instances is optional, since

the system uses the conventions given below to assign primitive and function types.

Together with the type inference mechanism implemented by procedure CHECK, these

initial type assignments allow the types of all terms to be completely determined during

the uni�cation process. In the current implementation, only one primitive type i is used,

so that for example \individuals" and \booleans" are not di�erentiated.

The semantic representations given by the user are assigned types in the following way:
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(1) Since the semantic representations given by the user are assumed to be ground,

each function application (together with all of its arguments) is assigned primitive

type i. E.g., (saw john mary) has type i. Constants john and mary have type i

as well. Therefore, (saw john mary) would be augmented in the following way:

(saw john:i mary:i ): i.

(2) Function types are inferred from the types of the arguments in the obvious way:

the type of the term T at the function position of a term is a function type of the

form �

1

! (�

2

! (�

3

! : : :)), where the �rst argument of T is of type �

1

, the

second argument of type �

2

, etc. (�

1

, �

2

, etc. are type variables). For example, if

mary is of type i and (saw john mary) is of type i then (saw john) must be of

type i! i, and saw must be of type i! (i! i). Therefore, the whole term would

be further augmented as follows:

((saw:(i! (i! i)) john:i):(i! i) mary:i): i.

(3) If a term has pre�x variables it must be a function that takes as arguments terms

of the same types as the corresponding pre�x variables. For example, the term

X\(saw X mary) would be a function of type i! i, and X would be of type i.

This scheme for type assignment has proved su�cient for all the test cases I have inves-

tigated, and I believe it will work for most practical applications. However, the user is

free to override this scheme by providing types along with the semantic representations.

In natural language semantics separate primitive types for individuals and booleans are

typically used. However, this distinction is not necessary for SYNTH to correctly infer

semantic representations (types are not part of the �nal DCGs).

Example 8.1.1:

In example 5.2.1 the CFG

s --> [a].

s --> [a], s.

was converted into a higher-order DCG using the following training instances:

Sentence Semantic representation

[a] FnXnX

[a,a] FnXn(F X)

[a,a,a] FnXn(F (F X))

which gave rise to these higher-order equations:
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F1 = F\X\X

(F2 F1) = F\X\(F X)

(F2 (F2 F1)) = F\X\(F (F X)).

If no types are given for the semantic representation given by the user, the system would

assign type i for X, (F X), and (F (F X)) according to the rules described above. Since

both X and (F X) have type i, the type of F is inferred to be i ! i. Therefore, using

these conventions for type assignment and type inference, the same types are obtained

as those given in Chapter 5.

Example 8.1.2:

Consider the following set of higher-order equations from example 5.2.2:

{(F1 F2 F4) = (run shrdlu),

(F1 F3 F4) = (run eliza),

(F1 F2 F5) = (halt shrdlu)}.

Following the above conventions for type assignment, the system assigns the ele-

mentary type i to the semantic representation given by the user and the non-function

constants in those terms; that is, �((run shrdlu)) = i, �((run eliza)) = i, �((halt

shrdlu)) = i, �(shrdlu) = i, and, �(eliza) = i. Therefore, �(run) = i! i and �(halt)

= i! i. Recall that the system uses i for both individual and boolean types.

8.1.2. Semantic Rules Provided by the User

Users can optionally provide the semantic rules for any grammar rules for which they

happen to know the semantic rules. Providing this information for terminals is often

easy. For example, most users who can provide the semantic representations for the

sentences generated by the following CFG, could probably also specify the semantic

representations for the terminals program, computer, runs, and halts.

s --> np, iv.

np --> det, n.

det --> [a].

det --> [every].

n --> [program].

n --> [computer].

iv --> [runs].

iv --> [halts].
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A natural semantics for these terminals would be respectively A\(prog A), A\(comp A),

A\(run A), and A\(halt A), and this information can be provided as follows:

n(A\(prog A)) --> [program].

n(A\(comp A)) --> [computer].

iv(A\(run A)) --> [runs].

iv(A\(halt A)) --> [halts].

Users may also specify semantic rules for individual grammar rules. For example, for

the rule s --> np, iv, the semantics for s is computed by applying the semantics of np

to the semantics of iv. This information could be communicated to the system simply

by augmenting the original CFG rule as follows:

s((A B))--> np(A), iv(B).

Providing semantics along with grammar rules is an e�ective way reduce the search

space since the number of free variables for which substitutions need to found is reduced.

It gives rise to a di�erent set of equations than described in Chapter 5, because the

augmented grammar constructed at step 2 of procedure SYNTH can now contain ground

terms in addition to function variables. For example, including the semantics for the

terminals and the �rst grammar rule, the above grammar will be converted into the

following DCG:

s((A B))--> np(A), iv(B).

np((F1 A B) --> det(A), n(B).

det(F2) --> [a].

det(F3) --> [every].

n(A\(prog A)) --> [program].

n(A\(comp A)) --> [computer].

iv(A\(run A)) --> [runs].

iv(A\(halt A)) --> [halts].

Now, executing this DCG on the training sentence [a,program,runs], will produce the

semantic representation

((F1 F2 A\(prog A)) A\(run A)).

If the user speci�es (run prog) as the semantic representation for [a,program,runs],

the following equation is obtained:
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((F1 F2 A\(prog A)) A\(run A)) = (run prog).

Similar equations would be set up for the other training sentences. However, elementary

types can now also be assigned to subterms of the left-hand side terms using the following

rule: If a term is not completely ground but contains a subterm that has a constant at its

function position, that function application together with all of its arguments is assigned

type i. For example, in the above equation we can assign type i to the subterms (prog

A) and (run A).

This feature can also be used to incrementally synthesize the semantics for larger

grammars. Large grammars often can be broken down into independent smaller gram-

mars (modules) that still parse complete sentences but are less complex. These modules

can then be trained separately. The semantic rules found for a set of grammar rules

this way can then be provided directly with those rules when the modules are merged,

so that most of the semantics is already �xed when the system searches for consistent

augmentations of the whole grammar, which can cut down time complexity considerably.

8.1.3. Generalization of Lexical Rules

The scope of an augmented DCG can be enlarged by exploiting the similarity of the

representations of words of the same syntactic category. In most cases it is possible

to generalize the speci�c associations between words and their �-term meanings to the

categories of those words and their corresponding meanings. For example, in a machine

translation application, assuming the representation for any transitive verb TV is of the

form �x:�y:TV (y; x), then the representation of a transitive verb of another language

could sometimes be obtained by �rst consulting a dictionary to obtain the root of the

corresponding English word, and then extending the root into the �-term. It should

be noted, however, that my system does not rely on the fact that a word (or its root)

occurs in its semantic representation. In order for the system to infer those semantic

representations from the examples, a word does not need to bear any resemblance to its

semantic representation.

8.2. Methodology for Larger Applications

8.2.1. Compositionality and Grammatical Structure

In section 5.3 it was noted that the grammatical rules must be speci�ed in such a way that

they reect the compositionality of the language with respect to the �-calculus. In this
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section I discuss a methodology for developing the syntactic rules for large applications

in such a way that compositionality is maintained.

Basically, the syntax must be de�ned such that the corresponding semantics is com-

positional with respect to the typed �-calculus; i.e., for any grammar rule there must

exist a function in the typed �-calculus that computes the semantic representation for the

phrase corresponding to that rule from the semantic representations of the constituents.

For example, if the semantic representation of a phrase has a right-recursive structure

the phrase must be generated by right-recursive grammar rules rather than left-recursive

rules (see example given in Appendix E.2).

As another example of how semantics imposes restrictions on the syntactic rules,

consider the following four pairs of sentences and representations from the CHAT-80

language:

Example 8.2.1:

(1) what is bordering italy?

X\(borders X italy)

(2) what is not bordering italy?

X\(not (borders X italy))

(3) what is bordering any country?

X\(exists C\(and (country C) (borders X C)))).

(4) what is not bordering any country?

X\(not (exists C\(and (country C) (borders X C))))).

The syntax for cases (1) and (2) can be naturally expressed by the following rules:

s --> [what,is], vppr, [?].

vppr --> tv_pr_not, pn.

tv_pr_not --> tv_pr.

tv_pr_not --> [not], tv_pr.

tv_pr --> [bordering].

The corresponding augmentations would be:

s(B) --> [what,is],vppr(B),[?].

vppr((C D)) --> tv_pr_not(C),pn(D).
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tv_pr_not(B\C\(D C B)) --> tv_pr(D).

tv_pr_not(B\C\(not (D C B))) --> [not],tv_pr(D).

tv_pr(A\B\(borders A B)) --> [bordering].

Note that the scope of not is just the verb (tv_pr). However, in case (4) the scope

of the negation should be the whole expression headed by exists. That is, the simple

approach of generalizing the rule

vppr --> tv_pr_not, pn.

to

vppr --> tv_pr_not, np.

where

np --> pn.

np --> [any], noun.

would not allow compositional semantics. Instead new rules for vppr need to be intro-

duced:

vppr --> [not], vppr_any.

vppr --> vppr_any.

vppr_any --> tv_pr, [any], np0.

The corresponding augmentations are:

vppr(B\(not (C B))) --> [not],vppr_any(C).

vppr(B) --> vppr_any(B).

vppr_any(C\(exists D\(and (F D) (E C D)))) -->

tv_pr(E),[any],np0(F).

8.2.2. Reversible Grammars

The syntactic rules should be written such that the corresponding DCG does not over-

generate. That is, if the DCG is used in the reverse mode, only grammatically and

semantically correct sentences should be generated for a particular semantic representa-

tion. The following example illustrates grammatical overgeneration, that is, generation

of sentences from a particular semantic representation that are semantically correct but

grammatically incorrect:

121



s((B A)) --> np(A), vp(B).

np(john) --> [john].

np(people) --> [people].

vp(X\(run X)) --> [runs].

vp(X\(run X)) --> [run].

This DCG computes the semantic representation (run john) for the sentence [john

runs], and (run people) for [people run]. However, when used in the reverse direc-

tion, this DCG computes both [john runs] and [john run] for the semantic represen-

tation (run john). Similarly, two sentences, one grammatically correct the other one

incorrect, are generated for the semantic representation (run people).

Grammatical overgeneration is best eliminated by using attributes that are added as

arguments to the grammar symbols. For example, number and gender agreement can be

achieved by such attributes. For the above DCG this could be achieved, for example, by

adding arguments that prevent incorrect rule combinations in the following way:

Example 8.2.2:

s((B A),N) --> np(A,N), vp(B,N).

np(john,singular) --> [john].

np(people,plural) --> [people].

vp(X\(run X),singular) --> [runs].

vp(X\(run X),plural) --> [run].

See Appendix C for a more elaborate example of this technique.

Semantic overgeneration is exempli�ed by the following DCG:

Example 8.2.3:

s((A B)) --> np(A), vp(B).

vp((B A)) --> ntv(A), np(B).

vp(C\(not (A B C))) --> [didn't], ntv1(A), np(B).

ntv(B\C\(not (D C B))) --> [didn't], tv(D).

ntv(B\C\(D C B)) --> [did], tv(D).

ntv1(B\C\(exists D\(and (B D) (E C D)))) --> tv(E).

np(B\(B A)) --> pn(A).

np(A) --> [any], noun(A).
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np(B\C(exists E\(and (A E) (B E C)))) --> [a], noun(A).

tv(A\B\(read A B)) --> [read].

tv(A\B\(know A B)) --> [know].

pn(john) --> [john].

pn(principia) --> [principia].

noun(X\(logician X)) --> [logician].

This DCG correctly parses the following types of sentences and generates their semantic

representations as indicated.

(1) john didn't read principia

(not (read john principia))

(2) john didn't know any logician

(not (exists X\(and (logician X) (know john X))))

(3) mary did know a logician

(exists X\(and (logician X) (know mary X)))

However, for the semantic representation

(exists X\(and (logician X) (not (know john X))))

whose meaning should be \there exists a logician that john didn't know", the above

DCG would generate the somewhat ungrammatical sentence

john didn't know a logician

which is likely to be understood as \john didn't know any logician."

The compositionality constraint takes care of a large part of the overgeneration prob-

lem since it requires that separate rules be given for semantically di�erent phrases.

Overgeneration in example 8.2.3 can be eliminated by separating the rules for certain

nonterminals just as the rules for vppr were separated in example 8.2.1 to achieve com-

positionality.

If the training instances are used as a basis for specifying the syntax of the language,

one can consider the process of constructing syntactic rules in the following way: Initially

there is only one grammar rule for each training sentence. Each of them has the starting

symbol on the left-hand side and a sequence of words (terminals) making up the training
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sentence on the right-hand side. Generalization takes place by replacing certain sequences

of terminals and nonterminals with a nonterminal that may be used repeatedly in the

same or other grammar rules. A new rule is added which has that nonterminal on the

left-hand side and the sequence of terminals and nonterminals that it replaced on the

right-hand side.

As a simple example consider the following sentences (1)-(3).

(1) s --> [john], [met], [mary].

(2) s --> [mike], [met], [mary].

(3) s --> [john], [met], [mike].

This grammar can be generalized by introducing a new nonterminal in the following way:

(4) s --> pn1, [met], [mary].

(5) s --> pn1, [met], [mike].

(6) pn1 --> [john].

(7) pn1 --> [mike].

This can be further generalized as follows:

(8) s --> pn1, [met], pn2.

(9) pn2 --> [mary].

(10) pn2 --> [mike].

Further generalization is obtained now by merging pn1 and pn2:

(11) s --> pn, [met], pn.

(12) pn --> [john].

(13) pn --> [mike].

(14) pn --> [mary].

This process can be continued for example by changing (11) to:

(15) s --> pn, vp.

(16) vp --> [met], pn.

etc.

As demonstrated by examples 8.2.1 and 8.2.3, both the compositionality and re-

versibility constraint work to inhibit this generalization process in certain situations.

This means, in general achieving compositionality increases reversibility and vice versa.
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8.2.3. E�ciency

In general the syntactic rules can be written in many di�erent ways without a�ecting

the language de�ned by those rules. Similarly, there are many \minimal" sets of training

instances that de�ne the same unique augmentation. Even though the �nal DCGs are

equivalent, the choice of syntactic rules and training instances can signi�cantly a�ect the

time and space requirements for computing the correct augmentation.

For example, one can always add an arbitrary number of \chain rules" to the set

of rules specifying the syntax without changing the language de�ned by that grammar.

However, each unnecessary chain rule will introduce an additional function variable for

which a substitution needs to be found. Having more function variables than necessary

implies that there are many solutions to the higher-order equations. Even though all

such solutions lead to DCGs that are equivalent in terms of input/output behavior, the

time complexity to �nd just one solution can increase dramatically since all branches

have to be explored even if they are not the source of the failure. This problem is partly

alleviated by the dependency directed backtracking scheme discussed earlier.

It is also important for e�ciency that training instances are provided in order of

increasing size. Each training instance should involve as few rules/function variables as

possible, so that the constraints given by the higher-order matching problem take e�ect

as early as possible and the search space is kept small. Training instances involving a

large number of rules/function variables should be provided only after as many of those

rules as possible have be trained individually, so that some of the function variables are

already instantiated.

8.2.4. Type Raising

Type raising (Andrews 1986) is the conversion of a semantic representation to a term

that has a higher type. A term t

1

has a higher type than a term t

2

if the type of one

of the arguments of t

1

is higher than all the types of the arguments of t

2

. The type of

a function that only takes terms of primitive types as arguments is higher than any of

these primitive types. A term t can be type raised by applying A\B\(B A) to it. The

type of the resulting term, B\(B t), is of the form � ! , and the type of B is of the

form � ! , where � is the type of t. This means � = (� ! ), so that the type of

B\(B t) is actually of the form (� ! )! . Therefore, whatever the type � of t, the

type of B\(B t) will be one level higher.

Type raising is necessary in certain cases so that semantic representations from dif-

ferent parts of the grammar have the same type if they are used by the same grammar
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symbol. This is illustrated in the grammar below where a noun phrase can be either a

proper noun or a quanti�ed noun phrase. This example also shows how type raising is

automatically performed by the higher-order uni�cation procedure.

s --> np, iv.

np --> pn.

np --> det, n.

det --> [a].

det --> [every].

n --> [program].

n --> [computer].

iv --> [runs].

iv --> [halts].

pn --> [shrdlu].

pn --> [eliza].

Sentence Semantic representation

[shrdlu,runs] (run shrdlu)

[eliza,runs] (run eliza)

[shrdlu,halts] (halt shrdlu)

[a,program,runs] (exists Xn(and (program X) (run X)))

[every,program,runs] (all Xn(implies (program X) (run X)))

[a,computer,runs] (exists Xn(and (computer X) (run X)))

[a,program,halts] (exists Xn(and (program X) (halt X)))

The following higher-order DCG is obtained:

s((C D)) --> np(C),iv(D).

np(B\(B C)) --> pn(C).

np(C\(D C E)) --> det(D),n(E).

det(A\B\(exists C\(and (B C) (A C)))) --> [a].

det(A\B\(all C\(implies (B C) (A C)))) --> [every].

n(A\(program A)) --> [program].

n(A\(computer A)) --> [computer].

iv(A\(run A)) --> [runs].

iv(A\(halt A)) --> [halts].

pn(shrdlu) --> [shrdlu].

pn(eliza) --> [eliza].
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where the �rst three rules can be reduced to:

s((C D)) --> np(C),iv(D).

np(B\(B C)) --> pn(C).

np(C\(D C E)) --> det(D),n(E).

As can be seen, a proper noun is \type raised", and thus being made type-compatible

with quanti�ed noun phrases.

8.3. Case Studies

8.3.1. CHAT-80

0

This section discusses the application of my DCG-synthesis system to a variation of

the natural query language of the CHAT-80 system (Warren & Pereira 1982). I call

this variation CHAT-80

0

. CHAT-80 is a system, implemented in Prolog, that stores

geographic information and accepts queries about this domain in English. It uses ex-

traposition grammars, a logic-based grammar formalism, to translate English questions

into the Prolog subset of �rst-order logic. The resulting logical expression (semantic

representation) is then transformed by a planning algorithm into an optimized Prolog

query, which is executed to yield the answer. Below are a few typical queries together

with their semantic representations and the responses of the CHAT-80 system.

17

Question: Does Afghanistan border China?

Semantics: (borders afghanistan china)

Answer: yes.

Question: Which country's capital is Ouagadougou?

Semantics: C\(and (country C) (capital C ouagadougou))

Answer: C = upper_volta.

Question: Which is the ocean that borders African countries and

that borders Asian countries?

Semantics: X\(and (ocean X) (and (country C) (and (african C)

(and (borders X C) (and (country C1) (and (asian C1)

(borders X C1)))))))

17

I have changed the syntax for the semantic representations slightly so that it matches the �-calculus

syntax notation used in this dissertation.
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Answer: X = indian_ocean.

Question: What is the capital of each country bordering the Baltic?

Semantics: C\X\(and (country C) (and (borders C baltic)

(capital C X)))

Answers: C-X = denmark-copenhagen,

C-X = east_germany-east_berlin,

C-X = finland-helsinki,

C-X = poland-warsaw,

C-X = soviet_union-moscow,

C-X = sweden-stockholm,

C-X = west_germany-bonn.

Question: What are the latitudes of the countries north of the

United Kingdom?

Semantics: C\Ls\(and (country C)

(and (northof C united_kingdom)

(setof L\(latitude C L) Ls)))

Answers: C-Ls = canada-60 degrees,

C-Ls = denmark-55 degrees,

C-Ls = finland-65 degrees,

C-Ls = iceland-65 degrees,

C-Ls = norway-64 degrees,

C-Ls = soviet-union-57 degrees,

C-Ls = sweden-63 degrees.

Question: Which country is bordered by two seas?

Semantics: C\(and (country C)

(number_of X\(and (sea X) (borders C X)) 2))

Answers: C = egypt, C = iran, C = israel, C = saudi_arabia,

C = turkey.

Question: How many countries does the Danube flow through?

Semantics: N\(number_of C\(and (country C) (flows danube C)) N)

Answer: N = 6.
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Question: From what country does a river flow into the Persian

Gulf?

Semantics: C\(and (river R)

(and (country C) (flows R C person_gulf)))

Answer: C = iraq.

Question: What is the total area of countries south of the

Equator not in Australasia?

Semantics:

T\(and (setof A\C\(and (area C A)

(and (country C)

(and (southof C equator)

(not (in C australasia))))) S)

(aggregate total S T))

Answer: T = 10228 ksqmiles.

Question: Which country bordering the Mediterranean borders a

country that is bordered by a country whose

population exceeds the population of India?

Semantics:

C\(and (country C)

(and (borders C mediterranean)

(and (country C1)

(and (country C2)

(and (population C2 X)

(and (population indea Y)

(and (exceeds X Y)

(and (borders C2 C1)

(borders C C1)))))))))

Answer: C = turkey.

As exempli�ed by the above queries, CHAT-80 allows yes/no questions, single answer

questions, and multiple answer questions. The semantic representations of queries may

involve abstractions such as (setof L\(latitude C L) Ls), or (number_of X\(and

(sea X) (borders C X)) 2). The semantics of quanti�cations and aggregations such
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as \how many" and \total area" provide particular challenges regarding composition-

ality as can be seen below. The last query above illustrates how essentially unlimited

quali�cations can be used in a question.

The aspect of CHAT-80 that is of interest in of this dissertation is the translation

of the natural language queries into their semantic representations. I will show that the

DCG synthesis system can generate such a translater by specifying the grammar along

with typical input/output examples. For larger grammars it is recommended that the

translater (the DCG) be synthesized in a modular fashion; that is, the DCGs for small

independent subgammars should �rst be synthesized separately, if possible. If indepen-

dent subgrammars cannot be isolated, a grammar should be developed incrementally,

starting with short sentences and simple semantics. This allows e�cient computation of

the semantics of many grammar rules and terminals so that the search space is reduced

when the semantics for more complex sentences needs to be determined. To demonstrate

this point, consider the fraction of the syntax of the CHAT-80

0

language exempli�ed by

the following training instances (training instances are speci�ed by a ternary predicate

train(Number,Sentence,Semantics), where Number would be a parameter that can be

used for indexing, but is not used by the current system).

train(_,[does,italy,border,france,?],

(borders italy france)).

train(_,[does,italy,border,a,sea,?],

(and (sea X) (borders italy X))).

A possible grammar for such sentences is:

s --> [does], pn, vp0, [?].

vp0 --> tv, pn.

vp0 --> tv, [a], np0.

pn(france) --> [france].

pn(italy) --> [italy].

np0 --> n1.

n1(X\(sea X)) --> [sea].

tv(X\Y\(borders X Y)) --> [border].

If the semantic representations for some of the rules are already known, the rules can

be augmented as shown for the terminals france, italy, sea, and border in this case.

The semantics will be inferred for any rules or terminals for which it is not given.
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The above training instances and grammar rules will lead to the following initial

set of higher-order equations each of which is given as a list of two elements, [D1,D2],

where D1 is the left-hand side and D2 the right-hand side of the equation. (Note that the

outermost parentheses of a �-term may be omitted.)

[F1 italy (F2 K\L\(borders K L) france),

borders italy france],

[F1 italy (F3 K\L\(borders K L) (F58 K\(sea K))),

and (sea H2) (borders italy H2)],

Solving these equations for the function variables, and substituting in the DCG in the

usual way leads to the following higher-order DCG:

s((B A)) --> [does],pn(A),vp0(B),[?].

vp0((A M B)) --> tv(A),pn(B).

vp0(M\(and (B N) (A M N))) --> tv(A),[a],np0(B).

pn(france) --> [france].

pn(italy) --> [italy].

np0(K\K A) --> n1(A).

n1(X\(sea X)) --> [sea].

tv(X\Y\(borders X Y)) --> [border].

Let us next consider a grammar for the following two examples:

train(_,[what,is,the,capital,of,italy,?],

Y\(capital italy Y)).

train(_,[what,is,the,capital,of,each,country,?],

X\Y\(and (country X) (capital X Y))).

Such a grammar would be:

s --> [what,is,the], n2, [of], pn, [?].

s --> [what,is,the], n2, [of,each], np0, [?].

pn(italy) --> [italy].

np0(K\K A) --> n1(A).

n1(X\(country X)) --> [country].

n2(X\Y\(capital Y X)) --> [capital].
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Again, we assume that the semantic representations for the terminals are known (the

order of the arguments X and Y of capital is not critical; both choices lead to equivalent

solutions). The semantics for the rule np0 --> n1 has been determined by the other

grammar fraction above and can therefore also be provided at this point. Hence only

the semantics for the �rst two rules remain to be determined. The following equations

are used to infer the semantics for those two rules (represented by F19 and F18):

[F19 K\L\(capital L K) italy,

K\(capital italy K)],

[F18 K\L\(capital L K) (K\K K\(country K)),

K\L\(and (country K) (capital K L))],

The resulting DCG rules are:

s(K\L\M\(K M L) A B) -->

[what], [is], [the], n2(A), [of], pn(B), [?].

s(K\L\M\N\(and (L M) (K N M)) A B) -->

[what], [is], [the], n2(A), [of], [each], np0(B), [?].

Next, we want to incorporate grammar rules for the following three examples which have

a somewhat more complex semantics:

train(_,[what,are,the,latitudes,of,italy,?],

Y\(setof Z\(latitude italy Z) Y)).

train(_,[what,are,the,longitudes,of,italy,?],

Y\(setof Z\(longitude italy Z) Y)).

train(_,[what,are,the,latitudes,of,each,country,?],

X\Y\(and (country X) (setof Z\(latitude X Z) Y))).

The syntax for these sentences could be described by the following rules (the semantics

for some of these rules and terminals is also given):

s --> [what,are], np_set, [of], pn, [?].

s --> [what,are], np_set, [of,each], np0, [?].

np0(K\K A) --> n1(A).

np_set --> [the,latitudes].

np_set --> [the,longitudes].

n1(X\(country X)) --> [country].

pn(italy) --> [italy].
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This will lead to the following equations:

[F20 F79 italy,

K\(setof L\(latitude italy L) K)],

[F20 F80 italy,

K\(setof L\(longitude italy L) K)],

[F21 F79 (F58 K\(country K)),

K\L\(and (country K) (setof M\(latitude K M) L))],

After solving for the function variables in these equations, the following augmented rules

are obtained:

s(K\L\(K L) A B) --> [what],[are],np_set(A),[of],pn(B),[?].

s(K\L\M\N\(and (L M) (K M N)) A B) --> [what],[are],np_set(A),

[of],[each],np0(B),[?].

np0(K\K A) --> n1(A).

np_set(K\L\(setof M\(latitude K M) L)) --> [the],[latitudes].

np_set(K\L\(setof M\(longitude K M) L)) --> [the],[longitudes].

n1(X\(country X)) --> [country].

pn(italy) --> [italy].

As demonstrated by the above example, a large grammar can be synthesized in an incre-

mental fashion by considering more or less independent subsets of the whole language.

The semantics for each rule needs to be inferred only once. That is, once the semantics

for a rule has been determined, it can be used in augmentation of other rules (see for

example rule np0 --> n1 above). This helps to reduce the search space. However, in

some cases backtracking may be necessary if the semantics for a rule inferred earlier is

not general enough to correctly handle the semantics of later rules.

The syntactic rules are di�erent from those in the original CHAT-80 grammar for the

following reasons: (1) Certain syntactic constructs that can be expressed very concisely in

an extraposition grammar require more rules when one is restricted to de�nite clauses.

(2) No attributes for features such as number or gender agreement are used in this

grammar; adding such attributes would allow to merge some of the rules (see for example

the grammar given in appendix C). (3) In order to avoid introduction of unnecessary

function variables, which would degrade the performance of the synthesis process, rules

with the same left-hand side and similar right-hand sides have not been combined. For

example, the two rules
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s --> [which,are,the], np0_pl, [?].

s --> [which,are], np0_pl, [?].

could be combined to:

s --> [which,are], s1.

s1 --> [the], np0_pl, [?].

s1 --> np0_pl, [?].

However, one more rule means one more function variable:

s((F1 A)) --> [which,are], s1(A).

s1((F2 A)) --> [the], np0_pl(A), [?].

s1((F3 A)) --> np0_pl(A), [?].

which increases the complexity of the search for a solution.

The complete set of grammar rules specifying the syntax of the query language is

given in appendix B. Appendix B also lists the training instances used for this application

as well as the corresponding higher-order and partially executed DCGs. It also gives the

complete sequence of substitutions found by the system to resolve the set of higher-order

equations. Sample executions of the partially executed DCG are provided at the end of

Appendix B.

8.3.2. SEQUEL

0

To demonstrate how the system can be used to generate natural language interfaces

to databases with standard query languages, consider the task of converting simple

instructions expressed in English into the corresponding instructions in the database

query language SEQUEL (Date 1989)./footnoteSEQUEL

0

is the subset of SEQUEL I am

considering in this section. SEQUEL is very similar to SQL. Below is a CFG de�ning a

set of English sentences.

s --> s1, [.]. attr --> [names].

s1 --> [print], np1. attr --> [addresses].

s1 --> [print], rel0. rel0 --> [the,join,of], j1.

s1 --> [bind], np3. rel0 --> rel.

np1 --> np2, pp0. rel --> [members].

np2 --> [the], attr. rel --> [customers].

np3 --> rel0, pp3. rel --> [r1].
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pp0 --> pp1, pp2. cond --> [negative,balance].

pp1 --> [of], rel0. cond --> [positive,balance].

pp2 --> [with], cond.

pp3 --> [to], rel0.

j1 --> rel0, rel1.

rel1 --> [and], rel0.

As an interlingua we choose �-terms which closely resemble the corresponding expressions

of the query language. The training instances to convert English sentences into the

interlingual representation would be as follows:

train(1,[print,the,names,of,members,with,negative,balance,.],

(select name (from (rel members) neg_balance))).

train(2,[print,the,addresses,of,members,with,negative,balance,.],

(select address (from (rel members) neg_balance))).

train(3,[print,the,names,of,customers,with,negative,balance,.],

(select name (from (rel customers) neg_balance))).

train(4,[print,the,names,of,members,with,positive,balance,.],

(select name (from (rel members) pos_balance))).

train(5,[print,members,.],(rel members)).

train(6,[print,the,join,of,members,and,customers,.],

(join (rel members) (rel customers))).

train(7,[bind,members,to,r1,.],(assign (rel r1) (rel members))).

The resulting augmented partially executed DCG is:

s(A) --> s1(A),['.']. attr(name) --> [names].

s1(A) --> [print],np1(A). attr(address) --> [addresses].

s1(A) --> [print],rel0(A). rel0(A) --> [the],[join],[of],j1(A).

s1(A) --> [bind],np3(A). rel0(rel A) --> rel(A).

np1(A) --> np2(D),pp0(D\A). rel(members) --> [members].

np2(A\(select B A)) --> [the],attr(B). rel(customers) --> [customers].

np3(assign A B) --> rel0(B),pp3(A). rel(r1) --> [r1].

pp0((A\B)\B) --> pp1(E),pp2(E\A). cond(neg_balance) -->

[negative],[balance].

pp1(A\(from B A)) --> [of],rel0(B). cond(pos_balance) -->

[positive],[balance].

pp2((A\B)\B) --> [with],cond(A).
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pp3(A) --> [to],rel0(A).

j1(A) --> rel0(D),rel1(D\A).

rel1(A\(join A B)) --> [and],rel0(B).

The CFG which de�nes the corresponding phrases in SEQUEL would be:

s --> s1, [.]. rel0 --> rel.

s --> s2, [.]. rel0 --> rel0, j1.

s1 --> [select], np1. rel --> [members].

s2 --> [assign,to], np2. rel --> [customers].

np1 --> n, pp1. rel --> [r1].

np1 --> [*,from], rel0. cond --> [balance,<,0].

np2 --> rel0, np3. cond --> [balance,>,0].

np3 --> [:], s1. n --> [name].

pp1 --> [from], tup. n --> [address].

tup --> rel0, c.

c --> [where], cond.

j1 --> [','], rel0.

And the corresponding training instances would be:

train(1,[select,name,from,members,where,balance,<,0,.],

(select name (from (rel members) neg_balance))).

train(2,[select,address,from,members,where,balance,<,0,.],

(select address (from (rel members) neg_balance))).

train(3,[select,name,from,customers,where,balance,<,0,.],

(select name (from (rel customers) neg_balance))).

train(4,[select,name,from,members,where,balance,>,0,.],

(select name (from (rel members) pos_balance))).

train(5,[select,*,from,members,.],(rel members)).

train(6,[select,*,from,members,',',customers,.],

(join (rel members) (rel customers))).

train(7,[assign,to,r1,:,select,*,from,members,.],

(assign (rel r1) (rel members))).

The resulting augmented partially executed DCG is:

s(A) --> s1(A),['.']. rel0(rel A) --> rel(A).

s(A) --> s2(A),['.']. rel0(A) --> rel0(D),j1(D\A).

s1(A) --> [select],np1(A). rel(members) --> [members].

s2(A) --> [assign],[to],np2(A). rel(customers) --> [customers].

np1(A) --> n(D),pp1(D\A). rel(r1) --> [r1].

np1(A) --> [*],[from],rel0(A). cond(neg_balance) -->

[balance],[<],[0].

np2(assign A B) --> rel0(A),np3(B). cond(pos_balance) -->

136



[balance],[>],[0].

np3(A) --> [:],s1(A). n(name) --> [name].

pp1(A\(select A B)) --> [from],tup(B). n(address) --> [address].

tup(A) --> rel0(D),c(D\A).

c(A\(from A B)) --> [where],cond(B).

j1(A\(join A B)) --> [','],rel0(B).

In order to translate from English to SEQUEL the �rst DCG is used in parsing mode

to obtain the interlingual representation, then the result is given as input to the second

DCG operating in generation mode to synthesize the corresponding SEQUEL query.

Here are some sample runs:

|: print the names of members with negative balance.

select name from members where balance < 0.

|: print the names of the join of customers and members with positive balance.

select name from customers , members where balance > 0.

|: print the join of members and customers.

select * from members , customers.

|: print customers.

select * from customers.

|: bind the join of customers and members to r1.

assign to r1 : select * from customers , members.

|: bind customers to r1.

assign to r1 : select * from customers.

8.4. Summary

In this chapter I have discussed various extensions of the system that help to synthesize

larger DCGs more e�ciently:

� For most practical applications it is possible to automatically assign and infer sim-

ple types for all terms, so that the user can omit all or some of the type speci�cation

when providing semantic representations.

� The user can specify semantic information along with the syntactic rules. This

allows to cut down the search space if semantic information is already known.

This also facilitates e�cient synthesis of large DCGs since a large grammar can
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be broken down into smaller pieces with reasonable-size search space, and the

semantics for rules and terminals found for subgrammars can then be incorporated

into larger grammars. Without this facility the synthesis of larger DCGs would be

impractical.

� The system can use the fact that terminals (words) of the same syntactic category

usually have a similar structure, so that the semantics of terminals often can be

inferred by generalizing this similarity.

I have also discussed methodologies for developing grammars and semantic represen-

tations so that large DCGs can be synthesized e�ciently, and I have shown how type

raising, which is sometimes necessary to \align" semantic representations returned by

di�erent parts of the grammar, is automatically taken care of by the technique pro-

posed in this dissertation. The system has been applied to a variation of the CHAT-80

database query language to demonstrate these techniques and methodologies. The SE-

QUEL query language was chosen to illustrate how the system can be used to translate

between languages using an interlingua.
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9. Conclusions and Further Work

9.1. Summary and Contributions

This dissertation is related to the following four general research areas: (1) relationship

between syntax and formal semantics, (2) generalization from examples, (3) higher-

order logic programming, and (4) machine learning. The contributions of my research

are primarily to the �rst three areas.

The principal contribution of my research has been to show that it is possible, un-

der reasonable assumptions, to mechanically transform a context-free grammar into a

de�nite-clause grammar using a �nite set of examples. This problem is not only of tech-

nical interest but also has potential applications, and, to the best of my knowledge, the

problem has been not been addressed in the literature. The key idea needed to solve this

problem was to adopt the simply-typed �-calculus as the semantic representation lan-

guage and to assume the principle of compositionality, which requires that the syntactic

rules partition a sentence into meaningful phrases, such that the meaning of the sentence

can be computed from the meanings of its parts. Writing grammar rules such that they

satisfy this requirement is usually the most natural way for humans to de�ne a language.

These restrictions are generally satis�ed by the class of natural query languages. With

these assumptions, I showed that one can cast the problem of generalization from ex-

amples as a uni�cation problem over simply-typed �-terms. However, Huet's procedure

(Huet 1975) could not be directly used for this purpose due to the lack of complete

knowledge of types. Therefore, I developed a combination of type enumeration and type

inference in order to solve this problem.

Higher-order logics (or typed �-calculi) are useful for synthesizing and manipulating

programs, since programs can be viewed as functions and therefore can be represented by

variables in the logic. However, inference in higher-order logic is more complex than in

�rst-order logic. To obtain an e�cient search for solutions, I showed that it is necessary

to implement the uni�cation procedure so that the constraints from several examples

are enforced simultaneously. From the perspectives of both search and inference, my

system marks an interesting point of departure from the higher-order logic programming

language �Prolog (Nadathur and Miller 1988). To further improve performance, I showed

how to make the execution of the resulting higher-order DCG more e�cient by the
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technique of partial execution, which e�ectively turns higher-order rules into �rst-order

rules where possible. With the aid of a simple checking routine, the resulting �rst-order

DCG is capable of e�cient forward as well as reverse execution.

I have implemented a system that incorporates the above ideas, and have tested it on a

substantial application|synthesis of a variant of the CHAT 80 natural query language|

in order to demonstrate their practicality. When inferring the semantic rules for a large

grammar, it is in general bene�cial to isolate small independent \subgrammars" for which

the semantic rules can be found relatively easily. The semantic rules for the complete

grammar can then be found by incrementally combining these subgrammars and their

semantic rules. The techniques discussed in this dissertation allow one to associate

semantics with grammar rules or terminals (words) if their semantics is known or has

already been inferred, so that the semantic rules for the remaining grammar rules and

terminals can be found faster. This approach allows the user to supervise and direct the

generalization process, so that large and complex grammars can be processed quickly.

It can also help in identifying syntactic rules that should be rewritten to facilitate the

inference process.

9.2. Generalizing the Paradigm to Other Applications

The techniques developed in this dissertation could be used to obtain insights in other

areas:

1. The techniques may be used as a basis for the automatic generation of machine

translation systems. In principle, both the transfer approach and the interlingua

approach (Hutchins 1986, Nirenburg 1987) could be realized by such a system. The

transfer approach translates the natural language input directly into the natural

language output. In the interlingua approach, the input is �rst converted into an

intermediate representation, which is then converted to the output language; that

is, two grammars would have to be generated in this case. The interlingua approach

was illustrated in chapter 8 by a simple natural query language that interfaces with

the database query language SEQUEL.

2. In combination with a system that learns the syntax of languages from examples,

the results of this research may provide insights into how intelligent agents may

e�ciently acquire language from examples; that is, the results may contribute to

the development of comprehensive grammar induction systems that include both

syntactic and semantic generalization.
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3. These techniques may provide a systematic way to generate e�cient reversible

grammars. Grammar bidirectionality provides important theoretical bene�ts be-

cause it insures that a grammar generates the \right" set of sentences (paraphrases)

for a particular semantic representation|no more and no less (Dymetman and Is-

abelle 1990).

As noted earlier, there is a strong connection between DCG synthesis from grammars

and examples, on the one hand, and program synthesis from schemas and examples, on

the other. Next, I will discuss a variation of this problem. A DCG that computes

semantic representations from sentences can be considered as a program whose input is

a sentence and whose output is the corresponding semantic representation. In fact, any

program can be implemented by a de�nite-clause logic program, where each predicate

has two arguments: the �rst argument would be the input, and the second argument

the output. In the top-level query, the second argument is typically a variable to be

instantiated during the execution.

In order to solve a particular problem, a program has to recursively reduce a complex

problem to simpler problems. The solutions of the simpler problems are then composed

in some way to form the solution of the complex problem. The problem of inferring a

de�nite-clause logic program from examples, therefore, can be divided into two parts:

�rst, one has to decide how the problem can be reduced to simpler problems; second,

one has to decide how the solutions of the simpler problems are composed to form the

solutions of the complex problems. My proposed scheme assumes that the user provides a

\skeleton" of the logic program, specifying the reduction of complex problems to simpler

problems. The system then uses this skeleton and a set of sample input/output pairs to

infer the rules that combine the solutions of the subproblems|in the case of computing

semantic representations from sentences, the CFG would be such a skeleton.

This approach allows us to e�ciently infer programs that are much more complex

than those which can be e�ciently inferred with other approaches to programming by ex-

amples (Summers 1977, Bauer 1979, Kodrato� 1979, Biermann et al. 1984). The use of

program skeletons allows us to use the the typed �-calculus and higher-order uni�cation

to infer the input/output behaviour of programs from examples. This approach e�ec-

tively reduces (�rst-order) inductive inference to (second-order) deductive inference, thus

suggesting a general formal framework for integrating inductive and deductive learning

processes.
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Example 9.1

The following problem is taken from Dietzen and Pfenning (1989). Consider the following

set of skeletal clauses for symbolic integration (F1-F4 are variables to be determined):

intgr( X\(expn X C), (F1 A) ) :- const( C, A ).

intgr( X\(C * (F X)), (F2 A B) ) :- const( C, A ), intgr( F, B ).

intgr( X\((F X) + (G X)), (F3 A B) ) :- intgr( F, A ), intgr( G, B ).

intgr( cos, F4 ).

const( 2, F5 ).

const( 3, F6 ).

Consider the following training instances:

(1) intgr( X\(expn X 2), X\(expn X (2+1) div (2+1)) ).

(2) intgr( X\(expn X 3), X\(expn X (3+1) div (3+1)) ).

(3) intgr( X\(2 * (cos X)), X\(2 * (sin X)) ).

(4) intgr( X\((expn X 2) + (cos X)), X\((expn X (2+1) div (2+1)) + (sin X)) ).

(5) intgr( cos, sin ).

Higher-order equations obtained by applying the training instances to the program

clauses are as follows:

(1) (F1 F5) = X\(expn X (2+1) div (2+1))

(2) (F1 F6) = X\(expn X (3+1) div (3+1))

(3) (F2 F5 F4) = X\(2 * (sin X))

(4) (F3 (F1 F5) F4) = X\((expn X (2+1) div (2+1)) + (sin X))

(5) F4 = sin

The solutions to the above equations are:

F1 = V\X\(expn X (V+1) div (V+1))

F2 = V\W\X\(V * (W X))

F3 = V\W\X\((V X) + (W X))

F4 = sin

F5 = 2

F6 = 3

Thus the resulting program clauses are:

intgr( X\(expn X C), (V\X\(expn X (V+1) div (V+1)) A) ) :- const( C, A ).

intgr( X\(C * (F X)), (V\W\X\(V * (W X)) A B) ) :- const( C, A ),

intgr( F, B ).

intgr( X\((F X) + (G X)), (V\W\X\((V X) + (W X)) A B) ) :- intgr( F, A ),

intgr( G, B ).

intgr( cos, sin ).

const( 2, 2 ).

const( 3, 3 ).
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After evaluation and partial execution:

intgr( X\(expn X C), X\(expn X (A+1) div (A+1)) ) :- const( C, A ).

intgr( X\(C * (F X)), X\(A * D) ) :- const( C, A ), intgr( F, X\D ).

intgr( X\((F X) + (G X)), X\(D + E) ) :- intgr( F, X\D ),

intgr( G, X\E ).

intgr( cos, sin ).

const( 2, 2 ).

const( 3, 3 ).

For more complex applications it may not always be possible to determine a complete

\correct" decomposition (program skeleton) right away. As in the case of grammar

induction, it will probably be necessary to develop and infer the program skeleton and

the combination rules in an incremental and interactive fashion, so as to complete the

induction process reasonably fast. This is a topic for further investigation.

9.3. Syntactic and Semantic Ambiguities

Syntactic ambiguities (i.e., a sentence with more than one parse) are common in gram-

mars for formal languages, in particular programming languages, as well as natural

languages, whereas semantic ambiguities (i.e., a sentence with more than one semantic

representation) occur mainly in natural languages.

18

Therefore, if the system is to be

used for a larger class of languages than restricted natural query languages, it is necessary

to have a scheme for dealing with ambiguous grammars and languages.

Certain types of syntactic and semantic ambiguities could actually be handled by

the current system with only minor extensions. In the case where there are several

parse trees for a sentence but only one semantic representation, the task is basically

to select a parse tree which expresses the correct compositionality with respect to the

given semantic representation. Therefore, the system would simply backtrack and select

another parse, until the resulting set of higher-order equations can be solved.

Semantic ambiguities can be resolved by this system only if there are di�erent parse

trees for each interpretation of an ambiguous sentence. In order to preserve composition-

ality it may be necessary to have separate sets of grammar rules for each interpretation;

that is, grammar rules may have to be duplicated to accommodate the di�erent seman-

tic rules corresponding to each interpretation. If compositionality holds, the system can

18

Semantic ambiguity implies syntactic ambiguity under the assumption of compositionality.
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resolve semantic ambiguities in the following way. Let fs

1

; : : : ; s

k

g be the set of training

sentences, where each s

i

has n

i

� 1 parse trees and interpretations. For each sentence

s

i

, the system would then ask the user for n

i

semantic representations. Each semantic

representation has to be paired up with a parse tree to set up higher-order equations as

described in Section 5.1. Since the correct pairing is unknown, the system has to try all

combinations until the resulting set of higher-order equations can be solved in the usual

way.

Example 9.2:

The following grammar can parse the sentence [john saw the girl in the park] in

two ways:

s --> pn, vp, pp. s((F1 A B C)) --> pn(A), vp(B), pp(C).

vp --> tv, np. vp((F2 A B)) --> tv(A), np(B).

np --> det, n, pp. np((F3 A B C)) --> det(A), n(B), pp(C).

pn --> [john]. pn(F4) --> [john].

tv --> [saw]. tv(F5) --> [saw].

det --> [the]. det(F6) --> [the].

n --> [girl]. n(F7) --> [girl].

pp --> [in,the,park]. pp(F8) --> [in,the,park].

pp --> []. pp(F9) --> [].

The �rst parse ((F1 F4 (F2 F5 (F3 F6 F7 F8)) F9)) corresponds to the structure:

[john [saw [the girl in the park]]]

The second parse ((F1 F4 (F2 F5 (F3 F6 F7 F9)) F8)) corresponds to:

[john [saw [the girl]] in the park]

Each parse corresponds to a di�erent semantic interpretation, which could be expressed

for example as:

(exists X\(and (girl X) (saw john (in X park))))

and

(exists X\(and (girl X) (in (saw john X) park)))
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respectively. Therefore, the system would ask the user for two semantic representations

for the above sentence. These two semantic representations are then paired up nondeter-

ministically with the two ways of parsing the sentence so that two higher-order equations

can be set up (and solved in the usual way):

{(F1 F4 (F2 F5 (F3 F6 F7 F8)) F9)

= (exists X\(and (girl X) (saw john (in X park)))),

(F1 F4 (F2 F5 (F3 F6 F7 F9)) F8)

= (exists X\(and (girl X) (in (saw john X) park)))}

9.4. Limitations and Extensions

Grammatical agreement of gender, number, and tense:

Grammatical constraints such as gender, number, and tense agreement can be enforced

in DCGs using additional arguments. For example, two constituents on the right-hand

side of a rule can be forced to have the same number by making the variables representing

number in each case be identical. For example, in the rule

s --> np(N), vp(N).

the number of np and vp would be required to be the same. The example in Appendix

C uses this feature. However, this approach has the disadvantage that disjunctions often

can only be handled by duplicating grammar rules. While it is possible to leave a variable

completely unconstrained to permit any value, one cannot easily say for example that

the gender of a particular constituent can be male or neuter but not female without

using a separate grammar rule for each case.

Representation of time:

It appears representation of temporal information cannot be easily handled in a com-

positional way. Cli�ord (1990) gives the example \John worked yesterday", where the

\ed" in \worked" is redundant in this case; so it shouldn't have a semantic representa-

tion, whereas in the case of \John worked", it should have one. The reason is that, if

the meaning of \ed" is represented in the typed �-calculus by a term m, then \yester-

day" would have to produce m as well. But in the �nal representation of \John worked

yesterday" m must appear only once (there should only be one representation for a par-

ticular meaning). Since in the case of \John worked" the meaning m of \ed" cannot
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be discarded, a conditional would be required that discards the semantic representation

of \ed" in one case but not in the other, which is impossible in the typed �-calculus.

Therefore, representations of temporal relations should be processed separately, e.g., by

using additional arguments as discussed below.

Pronoun resolution:

For natural language applications such as machine translation, the compositionality as-

sumption causes problems, since the resolution of pronouns depends on the context. For

example:

That is a house. It is big. This is a car. It is big.

The pronoun \It" in \It is big." refers to two di�erent things. Unless the sentence

\It is big." is interpreted in a context, one cannot get the right referent. But requiring a

context goes against the notion of compositionality, since compositionality implies that

the semantics of a sentence is computed from the semantics of its parts rather than from

the semantics of its context. However, it can be argued that the meaning of \It" is the

same in both cases, namely a variable. A similar problem arises in relative clauses: the

reference of the (omitted) subject of the relative clause depends on the main clause, but,

as a variable, the compositionality principle still applies. E.g.:

That is a house that is big. ---> exists(X, house(X) & big(X))

That is a car that is big. ---> exists(X, car(X) & big(X))

Initially, the semantics of the omitted subject (\the house/the car") would just be a free

variable which is bound by the grammar rules to the quanti�ed variable. Similarly:

John saw Mary. She is big. ---> saw(john,mary) & big(mary)

John saw Nancy. She is big. ---> saw(john,nancy) & big(nancy)

The type of DCGs discussed so far cannot accommodate general pronoun resolution since

there is no notion of context. For example, a typical augmented grammar rule would be:

a((F X Y)) --> b(X), c(Y).

If b or c had a pronoun, its meaning could not be resolved due to lack of context.

One way to restore compositionality is to assume that every phrase of the language is

interpreted in a context, and returns a new context. So, the augmentation might be:
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a((F X Y), Cin, Cout) --> b(X, Cin, C), c(Y, C, Cout).

With this scheme the pronoun resolution problem can be separated from what can be

done in a strictly compositional manner. Basically, two additional arguments can be used

for holding the attributes of the terminals encountered during the parse (the attributes

can simply be provided in the lexicon). These attribute lists (given in the context) can

then be used to assign variables corresponding to pronouns. For example, if the pronoun

is \she" with attributes [female, singular] and the context contains

[(john,[male,singular]),(mary,[female,singular])],

the variable corresponding to \she" would be bound to mary.

Equivalence of semantic formulas:

Semantic formulas often satisfy various kinds of equivalence laws, such as the commu-

tativity of disjunction and conjunction. The system described in this dissertation may

fail if the user does not provide the semantic representations such that arguments of dis-

junction, conjunction, or similar operators are in consistent order. This problem could

be corrected by building such equivalences into the higher-order uni�cation procedure.
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Appendix

A: How to Use the System

A.1. The user interface

The system discussed in this dissertation is available from the author as a Quintus

Prolog program, and as executable for UNIX systems. After starting it up it displays

the following instructions:

Escape to Prolog by typing "prolog".

Terminate Prolog session by typing "halt".

Please enter name of file containing the grammar: test

If the system is at the Prolog level and shows the prompt | ?- it can be started (or

restarted) by entering start followed by a period.

The system prompts the user for the name of the �le containing the input grammar.

The rules of this grammar must be speci�ed using the --> operator. The constituents on

the right-hand side of the rules are separated by commas, and terminated with a period.

Terminals are inclosed in [ ]'s. This format is exempli�ed by the following grammar:

s --> [which], n1, pvp, [?].

pvp --> [is], tv_pp, [by], np.

np --> number, n1_pl.

number --> [two].

number --> [three].

n1_pl --> [seas].

n1_pl --> [oceans].

n1 --> [country].

n1 --> [nation].

tv_pp --> [bordered].

tv_pp --> [contained].

If the semantics for some of the rules or terminals of a grammar is already known, it

can speci�ed by simply adding arguments specifying the semantics. For example, the

user may already know the semantics for all terminals and for the third rule of the
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above grammar. This information can be speci�ed along with the input grammar in the

following way:

s --> [which], n1, pvp, [?].

pvp --> [is], tv_pp, [by], np.

np(A\B\C\(A`C`B)`D`E) --> number(D),n1_pl(E).

number --> [two].

number --> [three].

n1_pl(A\(sea`A)) --> [seas].

n1_pl(A\(ocean`A)) --> [oceans].

n1(A\(country`A)) --> [country].

n1(A\(nation`A)) --> [nation].

tv_pp(A\B\(borders`A`B)) --> [bordered].

tv_pp(A\B\(contains`A`B)) --> [contained].

Note that the backquote (`) must be used instead of space to indicate function ap-

plication in the �-calculus. E.g., the term (saw john mary) should be encoded as

(saw`john`mary).

After entering the name of the �le containing the input grammar, the system will try

to read the training instances from a �le with the same name but extended with _t:

Read training instances from file test_t? (y/n) y

If the user answers no, it will generated training sentences and ask the user for their

semantic representations interactively.

The �le with the training instances contains clauses of the form

train(_, <sentence>, <semantic representation> ).

The �le with training instances for the above grammar might look like this:

train(_,[which,continent,is,bordered,by,two,seas,?],

X\(and`(continent`X)`(numberof`Y\(and`(sea`Y)`(borders`X`Y))`2))).

train(_,[which,country,is,bordered,by,two,seas,?],

X\(and`(country`X)`(numberof`Y\(and`(sea`Y)`(borders`X`Y))`2))).

train(_,[which,country,is,bordered,by,three,seas,?],

X\(and`(country`X)`(numberof`Y\(and`(sea`Y)`(borders`X`Y))`3))).
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Next, the system will contruct the set of higher-order equations corresponding to

these training instances and start the uni�cation procedure (SOLVE). Depending to

what degree the user wants to control the search for a consistent set of substitutions, he

or she can choose among the following options:

Starting unification procedure ...

Mode 0: General projection rule only.

Mode 1: General projection and imitation rules only.

Mode 2: Use additional rule for rule variables.

Mode i: Interactive mode.

Mode s: Specify a sequence of substitutions.

Mode x: No types used.

Enter mode: 0

Mode 0 can be chosen for those cases where the semantic representations given by the

user contain no constants. The imitation substitution rule is not needed in those cases,

because each imitation substitution introduces a constant. Mode 1 is the general case.

Mode 2 is an optimization that uses an additional rule for function variables that corre-

sponds to grammar rules that have no terminals, since the substitution terms for these

variables in general are of a restricted form. Mode i allows the user to specify substi-

tutions interactively. The options in this mode are discussed below. Mode s allows to

specify paritially or completely the sequence of substitutions to be selected for the cur-

rent set of equations. It is also discussed in more detail below. Finally, mode x invokes

a uni�cation procedure that doesn't use types.

If the uses choses mode 0, the system will ask whether it should print all substitutions

being tried (verbose). This option is useful for example for the analysis of the search

procedure and substitution rules being used.

Verbose? (y/n): n

Assuming the user replys with no, the system will proceed and try to solve the set

of equations. The parameter Lim is indicates the maximum order of types, and the

maximum depth of nesting allowed for terms. This parameter is incremented successively

to ensure exhaustive traversal of the search space.

Lim = 0 cpu: 0
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Lim = 1 cpu: 50

Lim = 2 cpu: 650

Lim = 3 cpu: 2000

Writing to file "result"...

(Case memory disabled.)

Solution found.

See file "test_h" for the higher order DCG.

See file "test_p" for the partially executed version.

After a solution is found, the system writes the complete derivation (the augmented

grammar, all substitutions and the set of equations after each substitution) to the �le

result. The synthesized higher-order DCG will be written to the �le test_h, if test

is the �le name of the original grammar, and the partially executed version would be

written to test_p.

At this point the user can force the system to backtrack and �nd another solution:

Get another solution? (y/n) n

If the answer is no, the system is automatically restarted:

Escape to Prolog by typing "prolog".

Terminate Prolog session by typing "halt".

Please enter name of file containing the grammar:

In case mode i is chosen above, the augmented initial grammar and the current set of

higher-order equations is displayed. In addition the user has a choice of actions that

control which substitutions are selected:

Enter mode: i

Lim = 0 cpu: 0

s(F1) --> [0].

s(F2`A) --> [s],s(A).

[[F1,K\L\L],

[F2`F1,K\L\(K`L)],
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[F2`(F2`F1),K\L\(K`(K`L))]]

Please specify next substitution (e.g., proj(2,2,1)),

or type "c" to change interactive mode,

or type "a" to let the system finish,

or type "quit" to quit session,

or type "abort" to abort,

or type "b" to backtrack,

or type "l" to place restrictions in projections: c

The user may either specify the next substitution by entering an instruction of the form

proj(K,L,M) or imit(K), or change the interactive mode as described below. A projec-

tion substitution is speci�ed for example by proj(3,1,2), which would be a projection

with three pre�x variables, the �rst of which (counting from right to left) is chosen as

head, and the head has two arguments; so the substitution would be

A\B\C\(C (H1 A B C) (H2 A B C)).

Imitation substitutions are specify by terms like imit(2), which would be an imi-

tation with two pre�x variables. A substitution can be partially speci�ed through the

use of the \don't care" symbol `_'. For example, proj(3,_,_) requires that the next

substitution is a projection with three pre�x variables, but leaves the remaining param-

eters for the system to decide. It is also possible to leave the substitution completely

unspeci�ed by simply entering _.

Selecting option c above will bring up the following menu for selecting the amount

of information to be displayed after each substitution:

Type "1" to show everything,

type "2" to show substitutions, first and last set of equations,

type "3" to show first and last set of equations,

type "4" to show last set of equations only:

Choice 1 of this menu means that the initial augmented grammar, all substitutions, and

the set of equations after each substitution will be displayed. The other choices would

display the derivation less detailed as indicated.

Option a of the previous menu e�ectively causes the system to leave the interactive

mode and �nish search, if possible, without further guidance by the user. As in the
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non-interactive mode, the user has the option to see all attempted substitutions. Option

quit will terminate the search and write the current status to the �le result. The

whole Prolog process can be interrupted with option abort. The user can try di�erent

substitutions by forcing the system to backtrack using option b. As indicated, option l

is used to limit to choice of projection substitutions to speed up the search; option l will

display the following message:

Enter proj(lim1,_,lim2) for projection substitutions,

where lim1 and lim2 are two numbers; e.g., proj(5,_,4) :

The maximum number of pre�x variables is determined by lim1, and the maximum

number of arguments of the head of the substitution term is determined by lim2.

Choice s of the main menu prompts the user for a list of substitution speci�cations

that determine the initial or all substitutions chosen by the system:

Enter list of specifications.

E.g., [proj(2,1,0),imit(1),_,stop].

or [proj(2,1,0),imit(1)|_].

(Check file "result" after each run.)

If the last element of the list is stop, the derivation will terminate at that point and

write the current state to �le result. If the rest of the list is left unspeci�ed ( [...|_]),

the system will try to �nd consistent substitutions for the remaining equations. Again,

substitutions can be partially speci�ed using the \don't care" symbol `_'.
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A.2. Debugging and diagnostic facilities

If the system fails to �nd a solution for a particular application it may to due to a

variety of reasons, such as typos, or the grammar may not be compositional with respect

to the given semantics, or the corresponding higher-order uni�cation problem may be

too complex for the system to �nd a solution in a reasonable time. Most of these

problems can be eliminated by restructuring the grammar or reorganizing the set of

training instances. In the previous section we mentioned various diagnostic facilities,

such as the interactive mode, that can be used to determine the problem with a grammar

or its training instances.

One approach to locating a problem would be reducing the number of training in-

stances until the system is able to �nd a solution, and then adding the other training

instances one by one until an incompatible training instance is located. In general, it is

advisable to break down a large grammar into small modules to derive the semantics for

individual rules. As described in the previous section, the semantics can then be speci�ed

along with the input grammar when the complete grammar is being synthesized.

In the current implementation the system records the sequence of substitutions and

the set of disagreement pairs after each substitution a �le called result. This information

can be used in subsequent runs to specify the initial sequence of substitutions to avoid

repeated search for the same substitutions, by using the s-mode. The s-mode allows to

specify completely or partially the sequence of substitutions the system will choose. It

also allows to specify just the number of substitutions so that the uni�cation procedure is

terminated early and the sequence of substitutions found by the system can be analyzed.

Additional debugging or diagnostic facilities apart from those discussed above and

those of the underlying implementation language (Quintus Prolog) would be desirable.

In general, a grammar will exhibit a certain modularity, and it should be possible for the

system to isolate a small number of rules and training instances that prevent the system

from �nding a solution. Such a strategy is closely related to the dependency directed

backtracking scheme discussed earlier. Even if there is no clear modularity it would

be helpful if the system indicated until which training instance or disagreement pair it

was able to �nd consistent substitutions, as this is usually an indication that there is a

problem with the subsequent disagreement pair and the corresponding training instance.

Various kinds of typos or \syntax errors" can be detected even before the higher-

order uni�cation procedure is envoked. For example, if the semantic representation of

162



a training instance contains the term saw(john,mary) instead of (saw john mary), a

simple routine would detect the error and indicate to the user in which training instance

it occurred.
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B: Details of the CHAT-80

0

Application

Syntax:

Below I list the set of rules specifying the syntax of the query language.

Syntax for the CHAT-80

0

language:

s --> [does], pn, vp0, [?].

vp0 --> tv, pn.

vp0 --> tv, [a], np0.

s --> [is,there,a], np0, vppr, [?].

s --> qnp, [is], pn, [?].

qnp --> [which], n1, [s], n2.

s --> [which,is,a], np0, [?].

s --> [which,is,the], np0, [?].

s --> [which,are,the], np0_pl, [?].

s --> [which,are], np0_pl, [?].

s --> [which], np0, vp, [?].

s --> [which], np0, pvp, [?].

s --> [what], pvp, [?].

pvp --> [is], tv_pp, [by], np2n.

s --> [what], vp, [?].

s --> [what,is], vppr, [?].

s --> [what,is,there], vppr, [?].

s --> [what,is,the], n2, [of,each], np0, [?].

s --> [what,is,the], n2, [of], pn, [?].

s --> [what,are], np_set, [of], pn, [?].

s --> [what,are], np_set, [of,each], np0, [?].

s --> [how,many], s1, [?].

s --> s1.

s1 --> n1_pl, [are,there].

s1 --> n1_pl, vp1.

vp1 --> [does], pn, tv.

vp1 --> tv, pn.

s --> [from,what], n1, s2, [?].

s --> [from,where], s2, [?].

s2 --> [does], pn, vp_prep.

s2 --> [does,a], np0, vp_prep.

vp_prep --> tv3, pn.

s --> [what,is,the], quant, s3, [?].

s --> [what,is,the], s3, [?].

s --> [what,are], np_pl, [?].

s3 --> n2.
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s3 --> n2, [of], np_pl.

np_pl --> n1_pl.

np_pl --> n1_pl, vppr.

s --> [what,is,the], quant, s4, [?].

s --> [what,is,the], s4, [?].

s --> [what,is,the], set2, [?].

s --> [what,is,the], np3, [what,?].

s --> [what,is,the], np3, [something,?].

s --> [what,are], np_pl2, [?].

s4 --> set2, [each], np0.

s4 --> set2.

set2 --> np3.

np3 --> n3.

np3 --> n2, [of], np_pl2.

np_pl2 --> [the], n1_pl, tv_pr_not.

s --> s5, [each], np0, [?].

s --> s5, [what,?].

s --> [what], np2, [what,?].

s5 --> [how,many], np2.

np2 --> n1_pl, [are,there], tv_pr.

s --> vppr, [?].

np0 --> n1.

np0 --> n1, vppr.

vppr --> vppr1, [and], vppr.

vppr --> vppr1.

vppr --> [not], vppr_any.

vppr --> vppr_any.

vppr1 --> [that], tv_not, pn.

vppr1 --> [that], tv_not, [a], np0.

vppr1 --> [that], tv_not, np0_pl.

vppr1 --> [whose], n2, vp.

vppr1 --> tv_pr_not, pn.

vppr1 --> tv_pr_not, [a], np0.

vppr1 --> tv_pr_not, [the], np0.

vppr1 --> tv_pr_not, np0_pl.

vppr_any --> tv_pr, [any], np0.

tv_not --> tv_s.

tv_not --> [does,not], tv.

tv_pr_not --> tv_pr.

tv_pr_not --> [not], tv_pr.

np0_pl --> adj, n1_pl.

np2n --> number, n1_pl.

np_set --> [the,latitudes].
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np_set --> [the,longitudes].

vp --> tv_s, pn.

vp --> tv_s, [the], n2, [of], pn.

vp --> tv_s, [the], np0.

vp --> tv_s, [a], np0.

tv(X\Y\(borders X Y)) --> [border].

tv(X\Y\(contains X Y)) --> [contain].

tv(X\Y\(flows X Y)) --> [flow,through].

tv_s(X\Y\(borders X Y)) --> [borders].

tv_s(X\Y\(contains X Y)) --> [contains].

tv_s(X\Y\(flows X Y)) --> [flows,through].

tv_s(X\Y\(exceeds X Y)) --> [exceeds].

tv_pr(X\Y\(borders X Y)) --> [bordering].

tv_pr(X\Y\(contains X Y)) --> [containing].

tv_pr(X\Y\(northof X Y)) --> [north,of].

tv_pr(X\Y\(southof X Y)) --> [south,of].

tv_pr(X\Y\(in X Y)) --> [in].

tv_pp(X\Y\(borders X Y)) --> [bordered].

tv_pp(X\Y\(contains X Y)) --> [contained].

tv3(X\Y\Z\(flows X Y Z)) --> [flow,into].

pn(africa) --> [africa].

pn(france) --> [france].

pn(india) --> [india].

pn(italy) --> [italy].

pn(paris) --> [paris].

pn(spain) --> [spain].

pn(rome) --> [rome].

pn(baltic) --> [the,baltic].

pn(danube) --> [the,danube].

pn(equator) --> [the,equator].

pn(persian_gulf) --> [the,persian,gulf].

pn(united_kingdom) --> [the,united,kingdom].

pn(1000000) --> [1,million].

n1(X\(country X)) --> [country].

n1_pl(X\(country X)) --> [countries].

n1(X\(nation X)) --> [nation].

n1_pl(X\(nation X)) --> [nations].

n1(X\(ocean X)) --> [ocean].

n1_pl(X\(ocean X)) --> [oceans].

n1(X\(sea X)) --> [sea].

n1_pl(X\(sea X)) --> [seas].

n1(X\(continent X)) --> [continent].
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n1_pl(X\(continent X)) --> [continents].

n1(X\(river X)) --> [river].

n1_pl(X\(river X)) --> [rivers].

n2(X\Y\(capital Y X)) --> [capital].

n2(X\Y\(president Y X)) --> [president].

n2(X\Y\(area Y X)) --> [area].

n2(X\Y\(population Y X)) --> [population].

n3(Z\X\Y\(area Y X Z)) --> [area,adjacent,to].

adj(X\(african X)) --> [african].

adj(X\(asian X)) --> [asian].

number --> [two].

number --> [three].

quant(X\Y\(aggregate total X Y)) --> [total].

quant(X\Y\(aggregate average X Y)) --> [average].

Training instances:

train(_,[which,is,a,country,?], X\(country X)).

train(_,[which,are,the,african,countries,?],

X\(and (african X) (country X))).

train(_,[which,are,african,countries,?],

X\(and (african X) (country X))).

train(_,[what,is,there,that,borders,italy,?],

X\(borders X italy)).

train(_,[what,is,there,that,does,not,border,italy,?],

X\(not (borders X italy))).

train(_,[what,is,there,that,borders,a,sea,?],

X\(and (sea Y) (borders X Y))).

train(_,[what,is,there,that,borders,african,countries,?],

X\(and (and (african Y) (country Y)) (borders X Y))).

train(_,[what,is,bordering,italy,?],

X\(borders X italy)).

train(_,[what,is,not,bordering,italy,?],

X\(not (borders X italy))).

train(_,[what,is,bordering,a,sea,?],

X\(and (sea Y) (borders X Y))).

train(_,[what,is,bordering,the,sea,?],

X\(and (sea Y) (borders X Y))).

train(_,[what,is,bordering,african,countries,?],

X\(and (and (african Y) (country Y)) (borders X Y))).

train(_,[what,is,containing,italy,and,bordering,spain,?],

X\(and (contains X italy) (borders X spain))).

train(_,[which,is,the,country,bordering,the,baltic,?],
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X\(and (country X) (borders X baltic))).

train(_,[does,italy,border,france,?],(borders italy france)).

train(_,[does,italy,border,a,sea,?],(and (sea X) (borders italy X))).

train(_,[what,is,the,capital,of,italy,?],

Y\(capital italy Y)).

train(_,[what,is,the,capital,of,each,country,?],

X\Y\(and (country X) (capital X Y))).

train(_,[which,country,s,capital,is,rome,?],

X\(and (country X) (capital X rome))).

train(_,[what,are,the,latitudes,of,italy,?],

Y\(setof Z\(latitude italy Z) Y)).

train(_,[what,are,the,longitudes,of,italy,?],

Y\(setof Z\(longitude italy Z) Y)).

train(_,[what,are,the,latitudes,of,each,country,?],

X\Y\(and (country X) (setof Z\(latitude X Z) Y))).

train(_,[what,is,bordered,by,two,seas,?],

X\(numberof Y\(and (sea Y) (borders X Y)) 2)).

train(_,[what,is,bordered,by,three,seas,?],

X\(numberof Y\(and (sea Y) (borders X Y)) 3)).

train(_,[which,country,is,bordered,by,two,seas,?],

X\(and (country X) (numberof Y\(and (sea Y) (borders X Y)) 2))).

train(_,[countries,are,there], X\(country X)).

train(_,[nations,are,there], X\(nation X)).

train(_,[how,many,countries,are,there,?],

X\(numberof Y\(country Y) X)).

train(_,[how,many,countries,does,the,baltic,border,?],

X\(numberof Y\(and (country Y) (borders baltic Y)) X)).

train(_,[how,many,oceans,border,spain,?],

X\(numberof Y\(and (ocean Y) (borders Y spain)) X)).

train(_,[from,where,does,the,danube,flow,into,the,persian,gulf,?],

X\(flows danube X persian_gulf)).

train(_,[from,what,country,does,the,danube,flow,into,the,persian,gulf,?],

X\(and (country X) (flows danube X persian_gulf))).

train(_,[from,where,does,a,river,flow,into,the,persian,gulf,?],

X\(and (river Y) (flows Y X persian_gulf))).
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train(_,[what,are,countries,?],

X\(country X)).

train(_,[what,are,countries,bordering,the,baltic,?],

X\(and (country X) (borders X baltic))).

train(_,[what,is,the,area,?],

Z\(setof X\Y\(area Y X) Z)).

train(_,[what,is,the,area,of,countries,?],

Z\(setof X\Y\(and (country Y) (area Y X)) Z)).

train(_,[what,is,the,total,area,?],

Z\(and (setof X\Y\(area Y X) S) (aggregate total S Z))).

train(_,[what,are,the,countries,bordering,?],

Y\X\(and (country Y) (borders Y X))).

train(_,[what,is,the,area,adjacent,to,what,?],

X\B\Y\(area Y B X)).

train(_,[what,is,the,area,of,the,countries,bordering,something,?],

X\B\Y\(and (and (country Y) (borders Y X)) (area Y B))).

train(_,[what,is,the,area,adjacent,to,?],

S\X\(setof B\Y\(area Y B X) S)).

train(_,[what,is,the,area,adjacent,to,each,ocean,?],

S\X\(and (ocean X) (setof B\Y\(area Y B X) S))).

train(_,[what,is,the,average,area,adjacent,to,?],

X\A\(and (setof B\Y\(area Y B X) S) (aggregate average S A))).

train(_,[what,countries,are,there,in,what,?],

X\C\(and (country C) (in C X))).

train(_,[how,many,countries,are,there,in,what,?],

X\N\(numberof C\(and (country C) (in C X)) N)).

train(_,[how,many,countries,are,there,in,each,continent,?],

X\N\(and (continent X) (numberof C\(and (country C) (in C X)) N))).

train(_,[what,is,bordering,any,country,?],

X\(exists C\(and (country C) (borders X C)))).

train(_,[what,is,not,bordering,any,country,?],

X\(not (exists C\(and (country C) (borders X C))))).

train(_,[is,there,a,sea,bordering,any,country,?],

(and (sea X) (exists C\(and (country C) (borders X C))))).

train(_,[what,exceeds,1,million,?],

P\(exceeds P 1000000)).

train(_,[what,exceeds,the,population,of,india,?],

X\(and (exceeds X P) (population india P))).

train(_,[whose,population,exceeds,1,million,?],

X\(and (population X P) (exceeds P 1000000))).
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train(_,[what,borders,the,ocean,?],

X\(and (ocean Y) (borders X Y))).

train(_,[what,borders,a,sea,?],

X\(and (sea Y) (borders X Y))).

train(_,[which,country,borders,the,ocean,?],

X\(and (country X) (and (ocean Y) (borders X Y)))).

Higher-order DCG:

Below is the higher-order DCG derived from the original grammar and the training

instances.

s(K\L\(L K) A B) --> [does],pn(A),vp0(B),[?].

vp0(K\L\M\(K M L) A B) --> tv(A),pn(B).

vp0(K\L\M\(and (L N) (K M N)) A B) --> tv(A),[a],np0(B).

s(K\L\(and (K M) (L M)) A B) --> [is],[there],[a],np0(A),vppr(B),[?].

s(K\L\(K L) A B) --> qnp(A),[is],pn(B),[?].

qnp(K\L\M\N\(and (K N) (L M N)) A B) --> [which],n1(A),[s],n2(B).

s(K\K A) --> [which],[is],[a],np0(A),[?].

s(K\K A) --> [which],[is],[the],np0(A),[?].

s(K\K A) --> [which],[are],[the],np0_pl(A),[?].

s(K\K A) --> [which],[are],np0_pl(A),[?].

s(K\L\M\(and (K M) (L M)) A B) --> [which],np0(A),vp(B),[?].

s(K\L\M\(and (K M) (L M)) A B) --> [which],np0(A),pvp(B),[?].

s(K\K A) --> [what],pvp(A),[?].

pvp(K\L\(L K) A B) --> [is],tv_pp(A),[by],np2n(B).

s(K\K A) --> [what],vp(A),[?].

s(K\K A) --> [what],[is],vppr(A),[?].

s(K\K A) --> [what],[is],[there],vppr(A),[?].

s(K\L\M\N\(and (L M) (K N M)) A B) --> [what],[is],[the],n2(A),

[of],[each],np0(B),[?].

s(K\L\M\(K M L) A B) --> [what],[is],[the],n2(A),[of],pn(B),[?].

s(K\L\(K L) A B) --> [what],[are],np_set(A),[of],pn(B),[?].

s(K\L\M\N\(and (L M) (K M N)) A B) --> [what],[are],np_set(A),

[of],[each],np0(B),[?].

s(K\L\(numberof K L) A) --> [how],[many],s1(A),[?].

s(K\K A) --> s1(A).

s1(K\K A) --> n1_pl(A),[are],[there].

s1(K\L\M\(and (K M) (L M)) A B) --> n1_pl(A),vp1(B).

vp1(K\L\M\(L K M) A B) --> [does],pn(A),tv(B).

vp1(K\L\M\(K M L) A B) --> tv(A),pn(B).

s(K\L\M\(and (K M) (L M)) A B) --> [from],[what],n1(A),s2(B),[?].

s(K\K A) --> [from],[where],s2(A),[?].

s2(K\L\(L K) A B) --> [does],pn(A),vp_prep(B).
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s2(K\L\M\(and (K N) (L N M)) A B) --> [does],[a],np0(A),vp_prep(B).

vp_prep(K\L\M\N\(K M N L) A B) --> tv3(A),pn(B).

s(K\L\M\(and (L N) (K N M)) A B) --> [what],[is],[the],quant(A),s3(B),[?].

s(K\K A) --> [what],[is],[the],s3(A),[?].

s(K\K A) --> [what],[are],np_pl(A),[?].

s3(K\L\(setof K L) A) --> n2(A).

s3(K\L\M\(setof N\O\(and (L O) (K N O)) M) A B) --> n2(A),[of],np_pl(B).

np_pl(K\K A) --> n1_pl(A).

np_pl(K\L\M\(and (K M) (L M)) A B) --> n1_pl(A),vppr(B).

s(K\L\M\N\(and (L O M) (K O N)) A B) --> [what],[is],[the],

quant(A),s4(B),[?].

s(K\K A) --> [what],[is],[the],s4(A),[?].

s(K A) --> [what],[is],[the],set2(A),[?].

s(K\K A) --> [what],[is],[the],np3(A),[what],[?].

s(K\K A) --> [what],[is],[the],np3(A),[something],[?].

s(K\K A) --> [what],[are],np_pl2(A),[?].

s4(K\L\M\N\(and (L N) (K M N)) A B) --> set2(A),[each],np0(B).

s4(K\K A) --> set2(A).

set2(K\L\M\(setof (K M) L) A) --> np3(A).

np3(K\K A) --> n3(A).

np3(K\L\M\N\O\(and (L O M) (K N O)) A B) --> n2(A),[of],np_pl2(B).

np_pl2(K\L\M\N\(and (K M) (L N M)) A B) --> [the],n1_pl(A),tv_pr_not(B).

s(K\L\M\N\(and (L M) (K N M)) A B) --> s5(A),[each],np0(B),[?].

s(K\L\M\(K M L) A) --> s5(A),[what],[?].

s(K\K A) --> [what],np2(A),[what],[?].

s5(K\L\M\(numberof (K M) L) A) --> [how],[many],np2(A).

np2(K\L\M\N\(and (K N) (L N M)) A B) --> n1_pl(A),[are],[there],tv_pr(B).

s(K\K A) --> vppr(A),[?].

np0(K\K A) --> n1(A).

np0(K\L\M\(and (K M) (L M)) A B) --> n1(A),vppr(B).

vppr(K\L\M\(and (K M) (L M)) A B) --> vppr1(A),[and],vppr(B).

vppr(K\K A) --> vppr1(A).

vppr(K\L\(not (K L)) A) --> [not],vppr_any(A).

vppr(K\K A) --> vppr_any(A).

vppr1(K\L\(K L) A B) --> [that],tv_not(A),pn(B).

vppr1(K\L\M\(and (L N) (K N M)) A B) --> [that],tv_not(A),[a],np0(B).

vppr1(K\L\M\(and (L N) (K N M)) A B) --> [that],tv_not(A),np0_pl(B).

vppr1(K\L\M\(and (K N M) (L N)) A B) --> [whose],n2(A),vp(B).

vppr1(K\L\(K L) A B) --> tv_pr_not(A),pn(B).

vppr1(K\L\M\(and (L N) (K N M)) A B) --> tv_pr_not(A),[a],np0(B).

vppr1(K\L\M\(and (L N) (K N M)) A B) --> tv_pr_not(A),[the],np0(B).

vppr1(K\L\M\(and (L N) (K N M)) A B) --> tv_pr_not(A),np0_pl(B).

vppr_any(K\L\M\(exists N\(and (L N) (K M N))) A B) --> tv_pr(A),[any],

np0(B).
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tv_not(K\L\M\(K M L) A) --> tv_s(A).

tv_not(K\L\M\(not (K M L)) A) --> [does],[not],tv(A).

tv_pr_not(K\L\M\(K M L) A) --> tv_pr(A).

tv_pr_not(K\L\M\(not (K M L)) A) --> [not],tv_pr(A).

np0_pl(K\L\M\(and (K M) (L M)) A B) --> adj(A),n1_pl(B).

np2n(K\L\M\(K M L) A B) --> number(A),n1_pl(B).

np_set(K\L\(setof M\(latitude K M) L)) --> [the],[latitudes].

np_set(K\L\(setof M\(longitude K M) L)) --> [the],[longitudes].

vp(K\L\M\(K M L) A B) --> tv_s(A),pn(B).

vp(K\L\M\N\(and (K N O) (L O M)) A B C) --> tv_s(A),[the],n2(B),[of],pn(C).

vp(K\L\M\(and (L N) (K M N)) A B) --> tv_s(A),[the],np0(B).

vp(K\L\M\(and (L N) (K M N)) A B) --> tv_s(A),[a],np0(B).

tv(K\L\(borders K L)) --> [border].

tv(K\L\(contains K L)) --> [contain].

tv(K\L\(flows K L)) --> [flow],[through].

tv_s(K\L\(borders K L)) --> [borders].

tv_s(K\L\(contains K L)) --> [contains].

tv_s(K\L\(flows K L)) --> [flows],[through].

tv_s(K\L\(exceeds K L)) --> [exceeds].

tv_pr(K\L\(borders K L)) --> [bordering].

tv_pr(K\L\(contains K L)) --> [containing].

tv_pr(K\L\(northof K L)) --> [north],[of].

tv_pr(K\L\(southof K L)) --> [south],[of].

tv_pr(K\L\(in K L)) --> [in].

tv_pp(K\L\(borders K L)) --> [bordered].

tv_pp(K\L\(contains K L)) --> [contained].

tv3(K\L\M\(flows K L M)) --> [flow],[into].

pn(africa) --> [africa].

pn(france) --> [france].

pn(india) --> [india].

pn(italy) --> [italy].

pn(paris) --> [paris].

pn(spain) --> [spain].

pn(rome) --> [rome].

pn(baltic) --> [the],[baltic].

pn(danube) --> [the],[danube].

pn(equator) --> [the],[equator].

pn(persian_gulf) --> [the],[persian],[gulf].

pn(united_kingdom) --> [the],[united],[kingdom].

pn(1000000) --> [1],[million].

n1(K\(country K)) --> [country].

n1_pl(K\(country K)) --> [countries].

n1(K\(nation K)) --> [nation].

n1_pl(K\(nation K)) --> [nations].
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n1(K\(ocean K)) --> [ocean].

n1_pl(K\(ocean K)) --> [oceans].

n1(K\(sea K)) --> [sea].

n1_pl(K\(sea K)) --> [seas].

n1(K\(continent K)) --> [continent].

n1_pl(K\(continent K)) --> [continents].

n1(K\(river K)) --> [river].

n1_pl(K\(river K)) --> [rivers].

n2(K\L\(capital L K)) --> [capital].

n2(K\L\(president L K)) --> [president].

n2(K\L\(area L K)) --> [area].

n2(K\L\(population L K)) --> [population].

n3(K\L\M\(area M L K)) --> [area],[adjacent],[to].

adj(K\(african K)) --> [african].

adj(K\(asian K)) --> [asian].

number(K\L\M\(numberof N\(and (L N) (K M N)) 2)) --> [two].

number(K\L\M\(numberof N\(and (L N) (K M N)) 3)) --> [three].

quant(K\L\(aggregate total K L)) --> [total].

quant(K\L\(aggregate average K L)) --> [average].

Derivation of the higher-order order DCG for CHAT-80

0

Below is the grammar for the CHAT-80

0

language augmented with function variables

expressing compositionality. F1, F2, F3, etc. will be instantiated by the higher-order

uni�cation procedure. Most of the terminal symbols are given their semantic represen-

tations already to reduce to amount of search necessary to �nd a solution.

s(F1 A B) --> [does],pn(A),vp0(B),[?].

vp0(F2 A B) --> tv(A),pn(B).

vp0(F3 A B) --> tv(A),[a],np0(B).

s(F4 A B) --> [is],[there],[a],np0(A),vppr(B),[?].

s(F5 A B) --> qnp(A),[is],pn(B),[?].

qnp(F6 A B) --> [which],n1(A),[s],n2(B).

s(F7 A) --> [which],[is],[a],np0(A),[?].

s(F8 A) --> [which],[is],[the],np0(A),[?].

s(F9 A) --> [which],[are],[the],np0_pl(A),[?].

s(F10 A) --> [which],[are],np0_pl(A),[?].

s(F11 A B) --> [which],np0(A),vp(B),[?].

s(F12 A B) --> [which],np0(A),pvp(B),[?].

s(F13 A) --> [what],pvp(A),[?].

pvp(F14 A B) --> [is],tv_pp(A),[by],np2n(B).

s(F15 A) --> [what],vp(A),[?].

s(F16 A) --> [what],[is],vppr(A),[?].

s(F17 A) --> [what],[is],[there],vppr(A),[?].
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s(F18 A B) --> [what],[is],[the],n2(A),[of],[each],np0(B),[?].

s(F19 A B) --> [what],[is],[the],n2(A),[of],pn(B),[?].

s(F20 A B) --> [what],[are],np_set(A),[of],pn(B),[?].

s(F21 A B) --> [what],[are],np_set(A),[of],[each],np0(B),[?].

s(F22 A) --> [how],[many],s1(A),[?].

s(F23 A) --> s1(A).

s1(F24 A) --> n1_pl(A),[are],[there].

s1(F25 A B) --> n1_pl(A),vp1(B).

vp1(F26 A B) --> [does],pn(A),tv(B).

vp1(F27 A B) --> tv(A),pn(B).

s(F28 A B) --> [from],[what],n1(A),s2(B),[?].

s(F29 A) --> [from],[where],s2(A),[?].

s2(F30 A B) --> [does],pn(A),vp_prep(B).

s2(F31 A B) --> [does],[a],np0(A),vp_prep(B).

vp_prep(F32 A B) --> tv3(A),pn(B).

s(F33 A B) --> [what],[is],[the],quant(A),s3(B),[?].

s(F34 A) --> [what],[is],[the],s3(A),[?].

s(F35 A) --> [what],[are],np_pl(A),[?].

s3(F36 A) --> n2(A).

s3(F37 A B) --> n2(A),[of],np_pl(B).

np_pl(F38 A) --> n1_pl(A).

np_pl(F39 A B) --> n1_pl(A),vppr(B).

s(F40 A B) --> [what],[is],[the],quant(A),s4(B),[?].

s(F41 A) --> [what],[is],[the],s4(A),[?].

s(F42 A) --> [what],[is],[the],set2(A),[?].

s(F43 A) --> [what],[is],[the],np3(A),[what],[?].

s(F44 A) --> [what],[is],[the],np3(A),[something],[?].

s(F45 A) --> [what],[are],np_pl2(A),[?].

s4(F46 A B) --> set2(A),[each],np0(B).

s4(F47 A) --> set2(A).

set2(F48 A) --> np3(A).

np3(F49 A) --> n3(A).

np3(F50 A B) --> n2(A),[of],np_pl2(B).

np_pl2(F51 A B) --> [the],n1_pl(A),tv_pr_not(B).

s(F52 A B) --> s5(A),[each],np0(B),[?].

s(F53 A) --> s5(A),[what],[?].

s(F54 A) --> [what],np2(A),[what],[?].

s5(F55 A) --> [how],[many],np2(A).

np2(F56 A B) --> n1_pl(A),[are],[there],tv_pr(B).

s(F57 A) --> vppr(A),[?].

np0(F58 A) --> n1(A).

np0(F59 A B) --> n1(A),vppr(B).

vppr(F60 A B) --> vppr1(A),[and],vppr(B).

vppr(F61 A) --> vppr1(A).
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vppr(F62 A) --> [not],vppr_any(A).

vppr(F63 A) --> vppr_any(A).

vppr1(F64 A B) --> [that],tv_not(A),pn(B).

vppr1(F65 A B) --> [that],tv_not(A),[a],np0(B).

vppr1(F66 A B) --> [that],tv_not(A),np0_pl(B).

vppr1(F67 A B) --> [whose],n2(A),vp(B).

vppr1(F68 A B) --> tv_pr_not(A),pn(B).

vppr1(F69 A B) --> tv_pr_not(A),[a],np0(B).

vppr1(F70 A B) --> tv_pr_not(A),[the],np0(B).

vppr1(F71 A B) --> tv_pr_not(A),np0_pl(B).

vppr_any(F72 A B) --> tv_pr(A),[any],np0(B).

tv_not(F73 A) --> tv_s(A).

tv_not(F74 A) --> [does],[not],tv(A).

tv_pr_not(F75 A) --> tv_pr(A).

tv_pr_not(F76 A) --> [not],tv_pr(A).

np0_pl(F77 A B) --> adj(A),n1_pl(B).

np2n(F78 A B) --> number(A),n1_pl(B).

np_set(F79) --> [the],[latitudes].

np_set(F80) --> [the],[longitudes].

vp(F81 A B) --> tv_s(A),pn(B).

vp(F82 A B C) --> tv_s(A),[the],n2(B),[of],pn(C).

vp(F83 A B) --> tv_s(A),[the],np0(B).

vp(F84 A B) --> tv_s(A),[a],np0(B).

tv(K\L\(borders K L)) --> [border].

tv(K\L\(contains K L)) --> [contain].

tv(K\L\(flows K L)) --> [flow],[through].

tv_s(K\L\(borders K L)) --> [borders].

tv_s(K\L\(contains K L)) --> [contains].

tv_s(K\L\(flows K L)) --> [flows],[through].

tv_s(K\L\(exceeds K L)) --> [exceeds].

tv_pr(K\L\(borders K L)) --> [bordering].

tv_pr(K\L\(contains K L)) --> [containing].

tv_pr(K\L\(northof K L)) --> [north],[of].

tv_pr(K\L\(southof K L)) --> [south],[of].

tv_pr(K\L\(in K L)) --> [in].

tv_pp(K\L\(borders K L)) --> [bordered].

tv_pp(K\L\(contains K L)) --> [contained].

tv3(K\L\M\(flows K L M)) --> [flow],[into].

pn(africa) --> [africa].

pn(france) --> [france].

pn(india) --> [india].

pn(italy) --> [italy].

pn(paris) --> [paris].

pn(spain) --> [spain].
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pn(rome) --> [rome].

pn(baltic) --> [the],[baltic].

pn(danube) --> [the],[danube].

pn(equator) --> [the],[equator].

pn(persian_gulf) --> [the],[persian],[gulf].

pn(united_kingdom) --> [the],[united],[kingdom].

pn(1000000) --> [1],[million].

n1(K\(country K)) --> [country].

n1_pl(K\(country K)) --> [countries].

n1(K\(nation K)) --> [nation].

n1_pl(K\(nation K)) --> [nations].

n1(K\(ocean K)) --> [ocean].

n1_pl(K\(ocean K)) --> [oceans].

n1(K\(sea K)) --> [sea].

n1_pl(K\(sea K)) --> [seas].

n1(K\(continent K)) --> [continent].

n1_pl(K\(continent K)) --> [continents].

n1(K\(river K)) --> [river].

n1_pl(K\(river K)) --> [rivers].

n2(K\L\(capital L K)) --> [capital].

n2(K\L\(president L K)) --> [president].

n2(K\L\(area L K)) --> [area].

n2(K\L\(population L K)) --> [population].

n3(K\L\M\(area M L K)) --> [area],[adjacent],[to].

adj(K\(african K)) --> [african].

adj(K\(asian K)) --> [asian].

number(F132) --> [two].

number(F133) --> [three].

quant(K\L\(aggregate total K L)) --> [total].

quant(K\L\(aggregate average K L)) --> [average].

By executing the augmented DCG on the training instances list above, the following

higher-order equations (disagreement-pairs) are generated.

[[F7 (F58 K\(country K)),

K\(country K)],

[F9 (F77 K\(african K) K\(country K)),

K\(and (african K) (country K))],

[F10 (F77 K\(african K) K\(country K)),

K\(and (african K) (country K))],

[F17 (F61 (F64 (F73 K\L\(borders K L)) italy)),

K\(borders K italy)],

[F17 (F61 (F64 (F74 K\L\(borders K L)) italy)),

K\(not (borders K italy))],
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[F17 (F61 (F65 (F73 K\L\(borders K L)) (F58 K\(sea K)))),

K\(and (sea H1) (borders K H1))],

[F17 (F61 (F66 (F73 K\L\(borders K L)) (F77 K\(african K)

K\(country K)))),

K\(and (and (african H1) (country H1)) (borders K H1))],

[F16 (F61 (F68 (F75 K\L\(borders K L)) italy)),

K\(borders K italy)],

[F16 (F61 (F68 (F76 K\L\(borders K L)) italy)),

K\(not (borders K italy))],

[F16 (F61 (F69 (F75 K\L\(borders K L)) (F58 K\(sea K)))),

K\(and (sea H1) (borders K H1))],

[F16 (F61 (F70 (F75 K\L\(borders K L)) (F58 K\(sea K)))),

K\(and (sea H1) (borders K H1))],

[F16 (F61 (F71 (F75 K\L\(borders K L)) (F77 K\(african K)

K\(country K)))),

K\(and (and (african H1) (country H1)) (borders K H1))],

[F16 (F60 (F68 (F75 K\L\(contains K L)) italy)

(F61 (F68 (F75 K\L\(borders K L)) spain))),

K\(and (contains K italy) (borders K spain))],

[F8 (F59 K\(country K) (F61 (F68 (F75 K\L\(borders K L)) baltic))),

K\(and (country K) (borders K baltic))],

[F1 italy (F2 K\L\(borders K L) france),

borders italy france],

[F1 italy (F3 K\L\(borders K L) (F58 K\(sea K))),

and (sea H2) (borders italy H2)],

[F19 K\L\(capital L K) italy,

K\(capital italy K)],

[F18 K\L\(capital L K) (F58 K\(country K)),

K\L\(and (country K) (capital K L))],

[F5 (F6 K\(country K) K\L\(capital L K)) rome,

K\(and (country K) (capital K rome))],

[F20 F79 italy,

K\(setof L\(latitude italy L) K)],

[F20 F80 italy,

K\(setof L\(longitude italy L) K)],

[F21 F79 (F58 K\(country K)),

K\L\(and (country K) (setof M\(latitude K M) L))],

[F13 (F14 K\L\(borders K L) (F78 F132 K\(sea K))),

K\(numberof L\(and (sea L) (borders K L)) 2)],

[F13 (F14 K\L\(borders K L) (F78 F133 K\(sea K))),

K\(numberof L\(and (sea L) (borders K L)) 3)],

[F12 (F58 K\(country K)) (F14 K\L\(borders K L) (F78 F132 K\(sea K))),

K\(and (country K) (numberof L\(and (sea L) (borders K L)) 2))],

[F23 (F24 K\(country K)),
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K\(country K)],

[F23 (F24 K\(nation K)),

K\(nation K)],

[F22 (F24 K\(country K)),

K\(numberof L\(country L) K)],

[F22 (F25 K\(country K) (F26 baltic K\L\(borders K L))),

K\(numberof L\(and (country L) (borders baltic L)) K)],

[F22 (F25 K\(ocean K) (F27 K\L\(borders K L) spain)),

K\(numberof L\(and (ocean L) (borders L spain)) K)],

[F29 (F30 danube (F32 K\L\M\(flows K L M) persian_gulf)),

K\(flows danube K persian_gulf)],

[F28 K\(country K) (F30 danube (F32 K\L\M\(flows K L M) persian_gulf)),

K\(and (country K) (flows danube K persian_gulf))],

[F29 (F31 (F58 K\(river K)) (F32 K\L\M\(flows K L M) persian_gulf)),

K\(and (river H1) (flows H1 K persian_gulf))],

[F35 (F38 K\(country K)),

K\(country K)],

[F35 (F39 K\(country K) (F61 (F68 (F75 K\L\(borders K L)) baltic))),

K\(and (country K) (borders K baltic))],

[F34 (F36 K\L\(area L K)),

K\(setof L\M\(area M L) K)],

[F34 (F37 K\L\(area L K) (F38 K\(country K))),

K\(setof L\M\(and (country M) (area M L)) K)],

[F33 K\L\(aggregate total K L) (F36 K\L\(area L K)),

K\(and (setof L\M\(area M L) H3) (aggregate total H3 K))],

[F45 (F51 K\(country K) (F75 K\L\(borders K L))),

K\L\(and (country K) (borders K L))],

[F43 (F49 K\L\M\(area M L K)),

K\L\M\(area M L K)],

[F44 (F50 K\L\(area L K) (F51 K\(country K) (F75 K\L\(borders K L)))),

K\L\M\(and (and (country M) (borders M K)) (area M L))],

[F41 (F47 (F48 (F49 K\L\M\(area M L K)))),

K\L\(setof M\N\(area N M L) K)],

[F41 (F46 (F48 (F49 K\L\M\(area M L K))) (F58 K\(ocean K))),

K\L\(and (ocean L) (setof M\N\(area N M L) K))],

[F40 K\L\(aggregate average K L) (F47 (F48 (F49 K\L\M\(area M L K)))),

K\L\(and (setof M\N\(area N M K) H4) (aggregate average H4 L))],

[F54 (F56 K\(country K) K\L\(in K L)),

K\L\(and (country L) (in L K))],

[F53 (F55 (F56 K\(country K) K\L\(in K L))),

K\L\(numberof M\(and (country M) (in M K)) L)],

[F52 (F55 (F56 K\(country K) K\L\(in K L))) (F58 K\(continent K)),

K\L\(and (continent K) (numberof M\(and (country M) (in M K)) L))],

[F16 (F63 (F72 K\L\(borders K L) (F58 K\(country K)))),
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K\(exists L\(and (country L) (borders K L)))],

[F16 (F62 (F72 K\L\(borders K L) (F58 K\(country K)))),

K\(not (exists L\(and (country L) (borders K L))))],

[F4 (F58 K\(sea K)) (F63 (F72 K\L\(borders K L) (F58 K\(country K)))),

and (sea H2) (exists K\(and (country K) (borders H2 K)))],

[F15 (F81 K\L\(exceeds K L) 1000000),

K\(exceeds K 1000000)],

[F15 (F82 K\L\(exceeds K L) K\L\(population L K) india),

K\(and (exceeds K H1) (population india H1))],

[F57 (F61 (F67 K\L\(population L K) (F81 K\L\(exceeds K L) 1000000))),

K\(and (population K H1) (exceeds H1 1000000))],

[F15 (F83 K\L\(borders K L) (F58 K\(ocean K))),

K\(and (ocean H1) (borders K H1))],

[F15 (F84 K\L\(borders K L) (F58 K\(sea K))),

K\(and (sea H1) (borders K H1))],

[F11 (F58 K\(country K)) (F83 K\L\(borders K L) (F58 K\(ocean K))),

K\(and (country K) (and (ocean H1) (borders K H1)))]]

The following sequence of substitutions resolves these higher-order equations.

cproj(1,1,0): F7 <- K\K

cproj(1,1,0): F58 <- K\K

cproj(1,1,0): F9 <- K\K

imit_proj(3): F77 <- K\L\M\(and (K M) (L M))

cproj(1,1,0): F10 <- K\K

cproj(1,1,0): F17 <- K\K

cproj(1,1,0): F61 <- K\K

cproj(2,2,1): F64 <- K\L\(K L)

cproj(3,3,2): F73 <- K\L\M\(K M L)

imit_proj(3): F74 <- K\L\M\(not (K M L))

imit_proj(3): F65 <- K\L\M\(and (L B) (K B M))

imit_proj(3): F66 <- K\L\M\(and (L B) (K B M))

cproj(1,1,0): F16 <- K\K

cproj(2,2,1): F68 <- K\L\(K L)

cproj(3,3,2): F75 <- K\L\M\(K M L)

imit_proj(3): F76 <- K\L\M\(not (K M L))

imit_proj(3): F69 <- K\L\M\(and (L B) (K B M))

imit_proj(3): F70 <- K\L\M\(and (L B) (K B M))

imit_proj(3): F71 <- K\L\M\(and (L B) (K B M))

imit_proj(3): F60 <- K\L\M\(and (K M) (L M))

cproj(1,1,0): F8 <- K\K

imit_proj(3): F59 <- K\L\M\(and (K M) (L M))

cproj(2,1,1): F1 <- K\L\(L K)

cproj(3,3,2): F2 <- K\L\M\(K M L)
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imit_proj(3): F3 <- K\L\M\(and (L A) (K M A))

cproj(3,3,2): F19 <- K\L\M\(K M L)

imit_proj(4): F18 <- K\L\M\N\(and (L M) (K N M))

cproj(2,2,1): F5 <- K\L\(K L)

imit_proj(4): F6 <- K\L\M\N\(and (K N) (L M N))

cproj(2,2,1): F20 <- K\L\(K L)

imitation(2): F79 <- K\L\(setof (H6 K) (H5 L))

cproj(1,1,0): H5 <- K\K

imit_proj(2): H6 <- K\L\(latitude K L)

imitation(2): F80 <- K\L\(setof (H8 K) (H7 L))

cproj(1,1,0): H7 <- K\K

imit_proj(2): H8 <- K\L\(longitude K L)

imit_proj(4): F21 <- K\L\M\N\(and (L M) (K M N))

cproj(1,1,0): F13 <- K\K

cproj(2,1,1): F14 <- K\L\(L K)

cproj(3,3,2): F78 <- K\L\M\(K M L)

imitation(3): F132 <- K\L\M\(numberof (H9 K L M) H10)

imit_proj(0): H10 <- 2

imit_proj(4): H9 <- K\L\M\N\(and (L N) (K M N))

imitation(3): F133 <- K\L\M\(numberof (H11 K L M) H15)

imit_proj(0): H15 <- 3

imit_proj(4): H11 <- K\L\M\N\(and (L N) (K M N))

imit_proj(3): F12 <- K\L\M\(and (K M) (L M))

cproj(1,1,0): F23 <- K\K

cproj(1,1,0): F24 <- K\K

imit_proj(2): F22 <- K\L\(numberof K L)

imit_proj(3): F25 <- K\L\M\(and (K M) (L M))

cproj(3,2,2): F26 <- K\L\M\(L K M)

cproj(3,3,2): F27 <- K\L\M\(K M L)

cproj(1,1,0): F29 <- K\K

cproj(2,1,1): F30 <- K\L\(L K)

cproj(4,4,3): F32 <- K\L\M\N\(K M N L)

imit_proj(3): F28 <- K\L\M\(and (K M) (L M))

imit_proj(3): F31 <- K\L\M\(and (K B) (L B M))

cproj(1,1,0): F35 <- K\K

cproj(1,1,0): F38 <- K\K

imit_proj(3): F39 <- K\L\M\(and (K M) (L M))

cproj(1,1,0): F34 <- K\K

imit_proj(2): F36 <- K\L\(setof K L)

imitation(3): F37 <- K\L\M\(setof (H13 K L) (H12 M))

cproj(1,1,0): H12 <- K\K

imit_proj(4): H13 <- K\L\M\N\(and (L N) (K M N))

imit_proj(3): F33 <- K\L\M\(and (L D) (K D M))

cproj(1,1,0): F45 <- K\K
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imit_proj(4): F51 <- K\L\M\N\(and (K M) (L N M))

cproj(1,1,0): F43 <- K\K

cproj(1,1,0): F49 <- K\K

cproj(1,1,0): F44 <- K\K

imit_proj(5): F50 <- K\L\M\N\O\(and (L O M) (K N O))

cproj(1,1,0): F41 <- K\K

cproj(1,1,0): F47 <- K\K

imit_proj(3): F48 <- K\L\M\(setof (K M) L)

imit_proj(4): F46 <- K\L\M\N\(and (L N) (K M N))

imit_proj(4): F40 <- K\L\M\N\(and (L E M) (K E N))

cproj(1,1,0): F54 <- K\K

imit_proj(4): F56 <- K\L\M\N\(and (K N) (L N M))

cproj(3,3,2): F53 <- K\L\M\(K M L)

imit_proj(3): F55 <- K\L\M\(numberof (K M) L)

imit_proj(4): F52 <- K\L\M\N\(and (L M) (K N M))

cproj(1,1,0): F63 <- K\K

imitation(3): F72 <- K\L\M\(exists (H14 K L M))

imit_proj(4): H14 <- K\L\M\N\(and (L N) (K M N))

imit_proj(2): F62 <- K\L\(not (K L))

imit_proj(2): F4 <- K\L\(and (K A) (L A))

cproj(1,1,0): F15 <- K\K

cproj(3,3,2): F81 <- K\L\M\(K M L)

imit_proj(4): F82 <- K\L\M\N\(and (K N B) (L B M))

cproj(1,1,0): F57 <- K\K

imit_proj(3): F67 <- K\L\M\(and (K B M) (L B))

imit_proj(3): F83 <- K\L\M\(and (L B) (K M B))

imit_proj(3): F84 <- K\L\M\(and (L B) (K M B))

imit_proj(3): F11 <- K\L\M\(and (K M) (L M))

Some of these substitution terms are too deeply nested to be generated by just

one substitution. In those cases free variables are introduced which are instantiated

by subsequent substitutions. (In this example variables whose name start with H are

such free variables.) These free variables then have to be replaced by their substitution

terms, and the terms in which they occur are simpli�ed according to the �-conversion

rules. Therefore, the �nal substitutions of those variables with deeply nested substitution

terms are:

F79 <- K\L\(setof M\(latitude K M) L)

F80 <- K\L\(setof M\(longitude K M) L)

F132 <- K\L\M\(numberof N\(and (L N) (K M N)) 2)

F133 <- K\L\M\(numberof N\(and (L N) (K M N)) 3)

F37 <- K\L\M\(setof N\O\(and (L O) (K N O)) M)

F72 <- K\L\M\(exists N\(and (L N) (K M N)))
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Partially executed (�rst-order) DCG:

s(A) --> [does],pn(E),vp0(E\A),[?].

vp0(A\B) --> tv(A\E\B),pn(E).

vp0(A\(and B C)) --> tv(A\F\C),[a],np0(F\B).

s(and A B) --> [is],[there],[a],np0(H\A),vppr(H\B),[?].

s(A) --> qnp(D\A),[is],pn(D),[?].

qnp(A\B\(and C D)) --> [which],n1(B\C),[s],n2(A\B\D).

s(A) --> [which],[is],[a],np0(A),[?].

s(A) --> [which],[is],[the],np0(A),[?].

s(A) --> [which],[are],[the],np0_pl(A),[?].

s(A) --> [which],[are],np0_pl(A),[?].

s(A\(and B C)) --> [which],np0(A\B),vp(A\C),[?].

s(A\(and B C)) --> [which],np0(A\B),pvp(A\C),[?].

s(A) --> [what],pvp(A),[?].

pvp(A) --> [is],tv_pp(E),[by],np2n(E\A).

s(A) --> [what],vp(A),[?].

s(A) --> [what],[is],vppr(A),[?].

s(A) --> [what],[is],[there],vppr(A),[?].

s(A\B\(and C D)) --> [what],[is],[the],n2(B\A\D),[of],[each],np0(A\C),[?].

s(A\B) --> [what],[is],[the],n2(A\H\B),[of],pn(H),[?].

s(A) --> [what],[are],np_set(F\A),[of],pn(F),[?].

s(A\B\(and C D)) --> [what],[are],np_set(A\B\D),[of],[each],np0(A\C),[?].

s(A\(numberof B A)) --> [how],[many],s1(B),[?].

s(A) --> s1(A).

s1(A) --> n1_pl(A),[are],[there].

s1(A\(and B C)) --> n1_pl(A\B),vp1(A\C).

vp1(A\B) --> [does],pn(F),tv(F\A\B).

vp1(A\B) --> tv(A\E\B),pn(E).

s(A\(and B C)) --> [from],[what],n1(A\B),s2(A\C),[?].

s(A) --> [from],[where],s2(A),[?].

s2(A) --> [does],pn(E),vp_prep(E\A).

s2(A\(and B C)) --> [does],[a],np0(H\B),vp_prep(H\A\C).

vp_prep(A\B\C) --> tv3(A\B\F\C),pn(F).

s(A\(and B C)) --> [what],[is],[the],quant(I\A\C),s3(I\B),[?].

s(A) --> [what],[is],[the],s3(A),[?].

s(A) --> [what],[are],np_pl(A),[?].

s3(A\(setof B A)) --> n2(B).

s3(A\(setof B\C\(and D E) A)) --> n2(B\C\E),[of],np_pl(C\D).

np_pl(A) --> n1_pl(A).

np_pl(A\(and B C)) --> n1_pl(A\B),vppr(A\C).

s(A\B\(and C D)) --> [what],[is],[the],quant(J\B\D),s4(J\A\C),[?].

s(A) --> [what],[is],[the],s4(A),[?].

s(A) --> [what],[is],[the],set2(G),[?].
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s(A) --> [what],[is],[the],np3(A),[what],[?].

s(A) --> [what],[is],[the],np3(A),[something],[?].

s(A) --> [what],[are],np_pl2(A),[?].

s4(A\B\(and C D)) --> set2(A\B\D),[each],np0(B\C).

s4(A) --> set2(A).

set2(A\B\(setof C A)) --> np3(B\C).

np3(A) --> n3(A).

np3(A\B\C\(and D E)) --> n2(B\C\E),[of],np_pl2(C\A\D).

np_pl2(A\B\(and C D)) --> [the],n1_pl(A\C),tv_pr_not(B\A\D).

s(A\B\(and C D)) --> s5(B\A\D),[each],np0(A\C),[?].

s(A\B\C) --> s5(B\A\C),[what],[?].

s(A) --> [what],np2(A),[what],[?].

s5(A\B\(numberof C A)) --> [how],[many],np2(B\C).

np2(A\B\(and C D)) --> n1_pl(B\C),[are],[there],tv_pr(B\A\D).

s(A) --> vppr(A),[?].

np0(A) --> n1(A).

np0(A\(and B C)) --> n1(A\B),vppr(A\C).

vppr(A\(and B C)) --> vppr1(A\B),[and],vppr(A\C).

vppr(A) --> vppr1(A).

vppr(A\(not B)) --> [not],vppr_any(A\B).

vppr(A) --> vppr_any(A).

vppr1(A) --> [that],tv_not(E\A),pn(E).

vppr1(A\(and B C)) --> [that],tv_not(G\A\C),[a],np0(G\B).

vppr1(A\(and B C)) --> [that],tv_not(G\A\C),np0_pl(G\B).

vppr1(A\(and B C)) --> [whose],n2(G\A\B),vp(G\C).

vppr1(A) --> tv_pr_not(D\A),pn(D).

vppr1(A\(and B C)) --> tv_pr_not(F\A\C),[a],np0(F\B).

vppr1(A\(and B C)) --> tv_pr_not(F\A\C),[the],np0(F\B).

vppr1(A\(and B C)) --> tv_pr_not(F\A\C),np0_pl(F\B).

vppr_any(A\(exists B\(and C D))) --> tv_pr(A\B\D),[any],np0(B\C).

tv_not(A\B\C) --> tv_s(B\A\C).

tv_not(A\B\(not C)) --> [does],[not],tv(B\A\C).

tv_pr_not(A\B\C) --> tv_pr(B\A\C).

tv_pr_not(A\B\(not C)) --> [not],tv_pr(B\A\C).

np0_pl(A\(and B C)) --> adj(A\B),n1_pl(A\C).

np2n(A\B) --> number(A\E\B),n1_pl(E).

np_set(A\B\(setof C\(latitude A C) B)) --> [the],[latitudes].

np_set(A\B\(setof C\(longitude A C) B)) --> [the],[longitudes].

vp(A\B) --> tv_s(A\E\B),pn(E).

vp(A\(and B C)) --> tv_s(A\F\B),[the],n2(F\I\C),[of],pn(I).

vp(A\(and B C)) --> tv_s(A\F\C),[the],np0(F\B).

vp(A\(and B C)) --> tv_s(A\F\C),[a],np0(F\B).

tv(A\B\(borders A B)) --> [border].

tv(A\B\(contains A B)) --> [contain].
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tv(A\B\(flows A B)) --> [flow],[through].

tv_s(A\B\(borders A B)) --> [borders].

tv_s(A\B\(contains A B)) --> [contains].

tv_s(A\B\(flows A B)) --> [flows],[through].

tv_s(A\B\(exceeds A B)) --> [exceeds].

tv_pr(A\B\(borders A B)) --> [bordering].

tv_pr(A\B\(contains A B)) --> [containing].

tv_pr(A\B\(northof A B)) --> [north],[of].

tv_pr(A\B\(southof A B)) --> [south],[of].

tv_pr(A\B\(in A B)) --> [in].

tv_pp(A\B\(borders A B)) --> [bordered].

tv_pp(A\B\(contains A B)) --> [contained].

tv3(A\B\C\(flows A B C)) --> [flow],[into].

pn(africa) --> [africa].

pn(france) --> [france].

pn(india) --> [india].

pn(italy) --> [italy].

pn(paris) --> [paris].

pn(spain) --> [spain].

pn(rome) --> [rome].

pn(baltic) --> [the],[baltic].

pn(danube) --> [the],[danube].

pn(equator) --> [the],[equator].

pn(persian_gulf) --> [the],[persian],[gulf].

pn(united_kingdom) --> [the],[united],[kingdom].

pn(1000000) --> [1],[million].

n1(A\(country A)) --> [country].

n1_pl(A\(country A)) --> [countries].

n1(A\(nation A)) --> [nation].

n1_pl(A\(nation A)) --> [nations].

n1(A\(ocean A)) --> [ocean].

n1_pl(A\(ocean A)) --> [oceans].

n1(A\(sea A)) --> [sea].

n1_pl(A\(sea A)) --> [seas].

n1(A\(continent A)) --> [continent].

n1_pl(A\(continent A)) --> [continents].

n1(A\(river A)) --> [river].

n1_pl(A\(river A)) --> [rivers].

n2(A\B\(capital B A)) --> [capital].

n2(A\B\(president B A)) --> [president].

n2(A\B\(area B A)) --> [area].

n2(A\B\(population B A)) --> [population].

n3(A\B\C\(area C B A)) --> [area],[adjacent],[to].

adj(A\(african A)) --> [african].

184



adj(A\(asian A)) --> [asian].

number((A\B\C)\(B\D)\A\(numberof B\(and D C) 2)) --> [two].

number((A\B\C)\(B\D)\A\(numberof B\(and D C) 3)) --> [three].

quant(A\B\(aggregate total A B)) --> [total].

quant(A\B\(aggregate average A B)) --> [average].

Sample executions of the partially executed DCG:

|: does italy border spain?

(borders italy spain)

|: which country s capital is paris?

A\(and (country A) (capital A paris))

|: which is the ocean bordering france?

A\(and (ocean A) (borders A france))

|: which is the nation bordering the ocean containing italy?

A\(and (nation A) (and (and (ocean B) (contains B italy)) (borders A B)))

|: which is the ocean bordering italy and bordering spain?

A\(and (ocean A) (and (borders A italy) (borders A spain)))

|: which is the ocean bordering african countries and bordering the ocean

containing italy?

A\(and (ocean A)

(and (and (and (african B) (country B))

(borders A B))

(and (and (ocean C) (contains C italy))

(borders A C))))

|: what is the capital of each country bordering the baltic?
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A\B\(and (and (country A) (borders A baltic)) (capital A B))

|: what are the latitudes of france?

A\(setof B\(latitude france B) A)

|: what are the longitudes of each ocean bordering asian countries?

A\B\(and (and (ocean A) (and (and (asian C) (country C))

(borders A C)))

(setof D\(longitude A D) B))

|: which country is bordered by two seas?

A\(and (country A) (numberof B\(and (sea B) (borders A B)) 2))

|: how many countries does france border?

A\(numberof B\(and (country B) (borders france B)) A)

|: how many oceans border spain?

A\(numberof B\(and (ocean B) (borders B spain)) A)

|: from what country does the danube flow into the persian gulf?

A\(and (country A) (flows danube A persian_gulf))

|: from what country does a river flow into the persian gulf?

A\(and (country A) (and (river B) (flows B A persian_gulf)))

|: from where does a river flow into the persian gulf?

A\(and (river B) (flows B A persian_gulf))
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|: what is the area of each country bordering spain?

A\B\(and (and (country A) (borders A spain)) (area A B))

|: what is the total area of countries bordering the persian gulf?

A\(and (setof B\C\(and (and (country C)

(borders C persian_gulf))

(area C B)) D)

(aggregate total D A))

|: what is the average area of countries bordering the persian gulf and

bordering african countries?

A\(and (setof B\C\(and (and (country C)

(and (borders C persian_gulf)

(and (and (african D) (country D))

(borders C D))))

(area C B)) E)

(aggregate average E A))

|: what is the total area of countries not bordering the baltic?

A\(and (setof B\C\(and (and (country C)

(not (borders C baltic)))

(area C B)) D)

(aggregate total D A))

|: what is the total area of countries not bordering the ocean containing

italy?

A\(and (setof B\C\(and (and (country C)

(and (and (ocean D)

(contains D italy))

(not (borders C D))))

(area C B)) E)

(aggregate total E A))
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|: what is the average area of the countries bordering each ocean?

A\B\(and (and (ocean A)

(setof C\D\(and (and (country D)

(borders D A))

(area D C)) E))

(aggregate average E B))

|: what is the average area of the countries in each continent south of the

united kingdom and north of the continent bordering the ocean containing

india?

A\B\(and (and (and (continent A)

(and (southof A united_kingdom)

(and (and (continent C)

(and (and (ocean D)

(contains D india))

(borders C D)))

(northof A C))))

(setof E\F\(and (and (country F) (in F A)) (area F E)) G))

(aggregate average G B))

|: how many countries are there in each continent?

A\B\(and (continent A) (numberof C\(and (country C) (in C A)) B))

|: how many countries are there in each continent south of the equator and not

bordering the persian gulf?

A\B\(and (and (continent A)

(and (southof A equator)

(not (borders A persian_gulf))))

(numberof C\(and (country C) (in C A)) B))

|: is there a sea not bordering any country?

(and (sea A) (not (exists B\(and (country B) (borders A B)))))
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|: is there a sea south of the united kingdom not bordering any country

north of the equator?

(and (and (sea A) (southof A united_kingdom))

(not (exists B\(and (and (country B) (northof B equator))

(borders A B)))))

|: what is bordering a sea and not bordering any river?

A\(and (and (sea B) (borders A B))

(not (exists C\(and (river C) (borders A C)))))

|: what is bordering the ocean that does not border africa?

A\(and (and (ocean B) (not (borders B africa))) (borders A B))

|: which is the ocean that borders african countries and that borders asian

countries?

A\(and (ocean A) (and (and (and (african B) (country B))

(borders A B))

(and (and (asian C) (country C))

(borders A C))))

|: which country borders the country whose population exceeds 1 million?

A\(and (country A)

(and (and (country B)

(and (population B C) (exceeds C 1000000)))

(borders A B)))

|: which country bordering the persian gulf borders a country that borders

a country whose population exceeds the population of india?

A\(and (and (country A) (borders A persian_gulf))

(and (and (country B)

(and (and (country C)

(and (population C D)

(and (exceeds D E) (population india E))))
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(borders B C)))

(borders A B)))
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C: Application to a Larger Subset of English

Below is a CFG to be augmented with semantic interpretation rules. Note that the

CFG has already been augmented with an extra argument to enforce context-sensitive

features (e.g., tense, number, gender). However, this extra argument has no inuence

on the semantic representations. A terminal of the form wh(List) indicates that List

is an interrogative word compound, and a terminal of the form pron(W) indicates that

W is a pronoun. Other terminals are of the form [...].

s(_) --> s1_p(_).

s(_) --> s1_p(_), s(_).

s1_p(_) --> s1(_), ['.'].

s1(_) --> np([_,N,G,nom|_]),vp([_,N,G|_]).

s1(A) --> pvp(A), pnp(A).

np(A) --> det(A), adjs_n_rel(A).

np(A) --> pn(A).

np([_,_,neut|_]) --> wh([what]).

np(_) --> wh([who]).

np([_,sing,masc,nom|_]) --> pron(he).

np([_,sing,masc,acc|_]) --> pron(him).

np([_,sing,masc,dat|_]) --> pron(him).

np([_,sing,fem,nom|_]) --> pron(she).

np([_,sing,fem,acc|_]) --> pron(her).

np([_,sing,fem,dat|_]) --> pron(her).

np([_,sing,neut|_]) --> pron(it).

vp([past|A]) --> tv([past|A]), np([_,_,_,acc|_]).

vp(A) --> iv(A).

vp([pres|_]) --> [is,a], adjs_n_rel(_).

vp([past|_]) --> wh([did,what]).

vp([pres,sing|_]) --> wh([does,what]).

adjs_n_rel(A) --> adjs_n(A).

adjs_n_rel(A) --> adjs_n(A), rel(_).

adjs_n(A) --> adjs(A), n(A).

adjs_n(A) --> n(A).

adjs(A) --> adj(A).

adjs(A) --> adj(A), adjs(A).

rel(A) --> rel_pro(A), vp(A).

pnp(_) --> [by], np([_,_,_,dat|_]).

pvp(_) --> np([_,N,_,nom|_]), ptv([_,N|_]).

ptv(_) --> [was], tv([pp|_]).

det([_,sing|_]) --> [a].

det([_,sing|_]) --> [every].

n([_,sing,fem|_]) --> [girl].
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n([_,sing|_]) --> [student].

pn([_,sing,fem|_]) --> [mary].

pn([_,sing,masc|_]) --> [john].

iv([pres,sing|_]) --> [sings].

iv([pres,sing|_]) --> [sleeps].

tv([past|_]) --> [saw].

tv([past|_]) --> [visited].

tv([pp|_]) --> [seen].

tv([pp|_]) --> [visited].

adj(_) --> [good].

adj(_) --> [smart].

rel_pro(_) --> [that].

The training instances for this example are:

train(1,[mary,sings,'.'],(sings mary)).

train(2,[john,sings,'.'],(sings john)).

train(3,[mary,sleeps,'.'],(sleeps mary)).

train(4,[mary,is,a,girl,'.'],(girl mary)).

train(5,[mary,is,a,student,'.'],(student mary)).

train(6,[mary,is,a,good,girl,'.'],(and (girl mary) (good mary))).

train(7,[mary,is,a,smart,girl,'.'],(and (girl mary) (smart mary))).

train(8,[mary,is,a,good,smart,girl,'.'],(and (girl mary)

(and (good mary) (smart mary)))).

train(9,[john,saw,mary,'.'],(saw john mary)).

train(10,[john,visited,mary,'.'],(visited john mary)).

train(11,[a,girl,sings,'.'],(exists X\(and (girl X) (sings X)))).

train(12,[every,girl,sings,'.'],(all X\(implies (girl X) (sings X)))).

train(13,[john,saw,a,girl,that,sings,'.'],

(exists X\(and (and (girl X) (sings X)) (saw john X)))).

train(14,[mary,was,seen,by,john,'.'],(saw john mary)).

train(15,[mary,was,visited,by,john,'.'],(visited john mary)).

train(16,[mary,saw,john,'.',john,saw,mary,'.'],

(and (saw mary john) (saw john mary))).

Here is the augmented higher-order DCG in which each grammar symbol obtained an ad-

ditional argument representing the semantics of the corresponding grammar constituent:

s(A,B\B C) --> s1_p(F,C).

s(A,B\C\(and B C) D E) --> s1_p(H,D),s(J,E).

s1_p(A,B\B C) --> s1(F,C),[.].

s1(A,B\C\(B C) D E) --> np([H,I,J,nom|K],D),vp([M,I,J|N],E).

s1(A,B\C\(C B) D E) --> pvp(A,D),pnp(A,E).

np(A,B\C\D\(B D C) E F) --> det(A,E),adjs_n_rel(A,F).

192



np(A,B\C\(C B) D) --> pn(A,D).

np([A,B,neut|C],D) --> wh([what]).

np(A,B) --> wh([who]).

np([A,sing,masc,nom|B],C) --> pron(he).

np([A,sing,masc,acc|B],C) --> pron(him).

np([A,sing,masc,dat|B],C) --> pron(him).

np([A,sing,fem,nom|B],C) --> pron(she).

np([A,sing,fem,acc|B],C) --> pron(her).

np([A,sing,fem,dat|B],C) --> pron(her).

np([A,sing,neut|B],C) --> pron(it).

vp([past|A],B\C\D\(C (B D)) E F) --> tv([past|A],E),np([J,K,L,acc|M],F).

vp(A,B\C\(B C) D) --> iv(A,D).

vp([pres|A],B\C\(B C) D) --> [is],[a],adjs_n_rel(I,D).

vp([past|A],B) --> wh([did,what]).

vp([pres,sing|A],B) --> wh([does,what]).

adjs_n_rel(A,B\C\(B C) D) --> adjs_n(A,D).

adjs_n_rel(A,B\C\D\(C D B) E F) --> adjs_n(A,E),rel(J,F).

adjs_n(A,B\C\D\(and (C D) (B D)) E F) --> adjs(A,E),n(A,F).

adjs_n(A,B\C\(B C) D) --> n(A,D).

adjs(A,B\C\(B C) D) --> adj(A,D).

adjs(A,B\C\D\(and (B D) (C D)) E F) --> adj(A,E),adjs(A,F).

rel(A,B\C\D\E\(B E C D) F G) --> rel_pro(A,F),vp(A,G).

pnp(A,B\C\(C B) D) --> [by],np([H,I,J,dat|K],D).

pvp(A,B\C\D\(D (C B)) E F) --> np([I,J,K,nom|L],E),ptv([N,J|O],F).

ptv(A,B\C\D\(C (B D)) E) --> [was],tv([pp|I],E).

det([A,sing|B],C\D\(exists E\(and (D E) (C E)))) --> [a].

det([A,sing|B],C\D\(all E\(implies (D E) (C E)))) --> [every].

n([A,sing,fem|B],C\(girl C)) --> [girl].

n([A,sing|B],C\(student C)) --> [student].

pn([A,sing,fem|B],mary) --> [mary].

pn([A,sing,masc|B],john) --> [john].

iv([pres,sing|A],B\(sings B)) --> [sings].

iv([pres,sing|A],B\(sleeps B)) --> [sleeps].

tv([past|A],B\C\(saw B C)) --> [saw].

tv([past|A],B\C\(visited B C)) --> [visited].

tv([pp|A],B\C\(saw B C)) --> [seen].

tv([pp|A],B\C\(visited B C)) --> [visited].

adj(A,B\(good B)) --> [good].

adj(A,B\(smart B)) --> [smart].

rel_pro(A,B\C\D\(and (B D) (C D))) --> [that].

After partial execution and generalization of the representations of terminals, where

possible, the following �rst-order DCG is obtained.

s(A,B) --> s1_p(E,B).

193



s(A,and B C) --> s1_p(F,B),s(H,C).

s1_p(A,B) --> s1(E,B),[.].

s1(A,B) --> np([E,F,G,nom|H],I\B),vp([K,F,G|L],I).

s1(A,B) --> pvp(A,E),pnp(A,E\B).

np(A,B\C) --> det(A,B\F\C),adjs_n_rel(A,F).

np(A,(B\C)\C) --> pn(A,B).

np([A,B,neut|C],D) --> wh([what]).

np(A,B) --> wh([who]).

np([A,sing,masc,nom|B],C) --> pron(he).

np([A,sing,masc,acc|B],C) --> pron(him).

np([A,sing,masc,dat|B],C) --> pron(him).

np([A,sing,fem,nom|B],C) --> pron(she).

np([A,sing,fem,acc|B],C) --> pron(her).

np([A,sing,fem,dat|B],C) --> pron(her).

np([A,sing,neut|B],C) --> pron(it).

vp([past|A],B\C) --> tv([past|A],B\F),np([H,I,J,acc|K],F\C).

vp(A,B\C) --> iv(A,B\C).

vp([pres|A],B\C) --> [is],[a],adjs_n_rel(H,B\C).

vp([past|A],B) --> wh([did,what]).

vp([pres,sing|A],B) --> wh([does,what]).

adjs_n_rel(A,B\C) --> adjs_n(A,B\C).

adjs_n_rel(A,B\C) --> adjs_n(A,F),rel(H,B\F\C).

adjs_n(A,B\(and C D)) --> adjs(A,B\D),n(A,B\C).

adjs_n(A,B\C) --> n(A,B\C).

adjs(A,B\C) --> adj(A,B\C).

adjs(A,B\(and C D)) --> adj(A,B\C),adjs(A,B\D).

rel(A,B\C\D) --> rel_pro(A,C\G\B\D),vp(A,G).

pnp(A,(B\C)\C) --> [by],np([G,H,I,dat|J],B).

pvp(A,(B\C)\C) --> np([F,G,H,nom|I],J),ptv([L,G|M],J\B).

ptv(A,(B\C)\D\C) --> [was],tv([pp|H],D\B).

det([A,sing|B],(C\D)\(C\E)\(exists C\(and E D))) --> [a].

det([A,sing|B],(C\D)\(C\E)\(all C\(implies E D))) --> [every].

n(A,B\(C B)) --> [C],{lex(C,n,A)}.

pn(A,B) --> [B],{lex(B,pn,A)}.

iv(A,B\(C B)) --> [C],{lex(C,iv,A)}.

tv(A,B\C\(D B C)) --> [D],{lex(D,tv,A)}.

tv([pp|A],B\C\(saw B C)) --> [seen].

tv([pp|A],B\C\(visited B C)) --> [visited].

adj(A,B\(C B)) --> [C],{lex(C,adj,A)}.

rel_pro(A,(B\C)\(B\D)\B\(and C D)) --> [that].

For some of the lexical categories in this example it is possible to systematically construct

the semantic representations from the words themselves. E.g., if TV is a transitive verb

in past tense, its representation is always of the form A\B\(TV A B). Therefore this
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construction can be generalized to all transitive verbs in past tense. The lexicon used

for this example is listed below. Each entry is of the form lex( Word, Category,

Attributes ). Note, however, that in general there doesn't need to be any resemblance

between a word and its semantic representation in order for our system to infer the

representations of those words from the examples. The additional generalizations are

performed only if there exist such regularities.

lex( a, det, [_,sing|_] ).

lex( every, det, [_,sing|_] ).

lex( that, rel_pro, _ ).

lex( which, rel_pro, [_,_,neut|_] ).

lex( being, n, [_,sing,neut|_] ).

lex( book, n, [_,sing,neut|_] ).

lex( boy, n, [_,sing,masc|_] ).

lex( child, n, [_,sing,neut|_] ).

lex( girl, n, [_,sing,fem|_] ).

lex( person, n, [_,sing|_] ).

lex( picture, n, [_,sing,neut|_] ).

lex( professor, n, [_,sing|_] ).

lex( program, n, [_,sing,neut|_] ).

lex( pupil, n, [_,sing|_] ).

lex( student, n, [_,sing|_] ).

lex( bertrand, pn, [_,sing,masc|_] ).

lex( eliza, pn, [_,sing,fem|_] ).

lex( john, pn, [_,sing,masc|_] ).

lex( mary, pn, [_,sing,fem|_] ).

lex( mike, pn, [_,sing,masc|_] ).

lex( nancy, pn, [_,sing,fem|_] ).

lex( principia, pn, [_,sing|_] ).

lex( shrdlu, pn, [_,sing,neut|_] ).

lex( terry, pn, [_,sing|_] ).

lex( drew, tv, [past|_] ).

lex( ran, tv, [past|_] ).

lex( read, tv, _ ).

lex( saw, tv, [past|_] ).

lex( studied, tv, [past|_] ).

lex( taught, tv, [past|_] ).

lex( visited, tv, [past|_] ).

lex( wrote, tv, [past|_] ).
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lex( halts, iv, [pres,sing|_] ).

lex( laughs, iv, [pres,sing|_] ).

lex( learns, iv, [pres,sing|_] ).

lex( plays, iv, [pres,sing|_] ).

lex( runs, iv, [pres,sing|_] ).

lex( sings, iv, [pres,sing|_] ).

lex( talks, iv, [pres,sing|_] ).

lex( works, iv, [pres,sing|_] ).

lex( red, adj, _ ).

lex( blue, adj, _ ).

lex( good, adj, _ ).

lex( bad, adj, _ ).

lex( smart, adj, _ ).

lex( little, adj, _ ).

lex( big, adj, _ ).

Below are some sample executions of the grammar constructed above, demonstrating

recursive rule applications for relative clauses, adjectives, and multiple sentences, pas-

sive voice, reversibility, paraphrasing, and quanti�ed noun phrases, as well as pronoun

resolution and pronoun generation.

|: john saw mary. % Natural language input.

(saw john mary). % Semantic representation

% computed by the grammar.

|: john was visited by a student that read principia.

(exists A\(and (and (student A) (read A principia)) (visited A john))).

|: terry wrote a big program.

(exists A\(and (and (program A) (big A)) (wrote terry A))).

|: every smart student wrote a big program.

(all A\(implies (and (student A) (smart A))

(exists B\(and (and (program B) (big B))

(wrote A B))))).

|: every smart little girl read a book.

(all A\(implies (and (girl A) (and (smart A) (little A)))
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(exists B\(and (book B) (read A B))))).

|: mike is a child that read a book.

(and (child mike) (exists A\(and (book A) (read mike A)))).

|: john taught every student that wrote a program that drew a picture.

(all A\(implies (and (student A)

(exists B\(and (and (program B)

(exists C\(and (picture C)

(drew B C))))

(wrote A B))))

(taught john A))).

|: john saw mary. she visited him. he wrote a big program.

and (saw john mary)

(and (visited mary john)

(exists A\(and (and (program A) (big A)) (wrote john A)))).

|: a student saw a girl that visited him.

exists A\(and (student A)

(exists B\(and (and (girl B) (visited B A))

(saw A B)))).

|: (saw john mary). % For generation, the semantic

% representation is the input.

john saw mary. % Two sentences are generated

mary was seen by john. % for this semantic

% representation.

|: (exists A\(and (and (student A) (read A principia)) (visited A john))).

a student that read principia visited john.

john was visited by a student that read principia.

|: (exists A\(and (and (program A) (big A)) (wrote terry A))).

% No passive version is con-

terry wrote a big program. % structed in this case, since

% "written" was not covered

% by the training instances.
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|: (all A\(implies (and (student A) (smart A))

(exists B\(and (and (program B) (big B))

(wrote A B))))).

every smart student wrote a big program.

|: (all A\(implies (and (girl A) (and (smart A) (little A)))

(exists B\(and (book B) (read A B))))).

every smart little girl read a book.

a book was read by every smart little girl.

|: (and (child mike) (exists A\(and (book A) (read mike A)))).

mike is a child that read a book.

|: (all A\(implies (and (student A)

(exists B\(and (and (program B)

(exists C\(and (picture C)

(drew B C))))

(wrote A B))))

(taught john A))).

john taught every student that wrote a program that drew a picture.

|: and (saw john mary)

(and (visited mary john)

(exists A\(and (and (program A) (big A)) (wrote john A)))).

john saw mary. she visited him. he wrote a big program.

john saw mary. he was visited by her. he wrote a big program.

mary was seen by john. she visited him. he wrote a big program.

mary was seen by john. he was visited by her. he wrote a big program.

|: exists A\(and (student A)

(exists B\(and (and (girl B) (visited B A))

(saw A B)))).

a student saw a girl that visited him.

a student saw a girl that visited her.

a girl that visited a student was seen by him.

a girl that visited a student was seen by her.
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D: Illustration of Combination Rules

Without combination rules:

The CFG is:

s(A B C) --> np(B),iv(C).

np(G H I) --> det(H),n(I).

det(M) --> [a].

det(P) --> [every].

n(S) --> [program].

n(V) --> [computer].

iv(Y) --> [runs].

iv(B1) --> [halts].

Training instances:

train(1,[a,program,runs],(exists X\(and (program X) (run X)))).

train(2,[every,program,runs],(all X\(implies (program X) (run X)))).

train(3,[a,computer,runs],(exists X\(and (computer X) (run X)))).

train(4,[a,program,halts],(exists X\(and (program X) (halt X)))).

Higher-order DCG:

s(A\B\(A B) C D) --> np(C),iv(D).

np(A\B\C\(A C B) D E) --> det(D),n(E).

det(A\B\(exists C\(and (B C) (A C)))) --> [a].

det(A\B\(all C\(implies (B C) (A C)))) --> [every].

n(program) --> [program].

n(computer) --> [computer].

iv(run) --> [runs].

iv(halt) --> [halts].

Partially executed DCG:

s(A) --> np(D\A),iv(D).

np(A\B) --> det(A\E\B),n(E).

det(A\B\(exists C\(and (B C) (A C)))) --> [a].

det(A\B\(all C\(implies (B C) (A C)))) --> [every].

n(program) --> [program].

n(computer) --> [computer].

iv(run) --> [runs].

iv(halt) --> [halts].

Here is the sequence of substitutions. "proj(...)" are Huet's projection

substitutions, "imitation(.)" are Huet's imitation substitutions.
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Further below are the disagreement pair sets after each substitution listed.

Note, that some of the intermediate terms are rather large.

proj(2,2,1): A <- T27\U27\(T27 (F1 T27 U27))

proj(3,3,2): G <- Q27\R27\S27\(Q27 (G1 Q27 R27 S27) (I1 Q27 R27 S27))

imitation(2): M <- O27\P27\(exists (Q1 O27 P27))

imitation(3): Q1 <- M27\N27\A\(and (L3 M27 N27 A) (H3 M27 N27 A))

proj(3,3,1): H3 <- J27\K27\L27\(J27 (B10 J27 K27 L27))

proj(3,1,0): G1 <- G27\H27\I27\I27

proj(2,1,0): F1 <- E27\F27\F27

imitation(1): Y <- D27\(run (T23 D27))

proj(1,1,0): T23 <- C27\C27

proj(3,1,0): B10 <- Z26\A27\B27\B27

proj(3,2,1): L3 <- W26\X26\Y26\(X26 (T24 W26 X26 Y26))

proj(3,2,0): I1 <- T26\U26\V26\U26

imitation(1): S <- S26\(program (J25 S26))

proj(1,1,0): J25 <- R26\R26

proj(3,1,0): T24 <- O26\P26\Q26\Q26

imitation(2): P <- M26\N26\(all (N25 M26 N26))

imitation(3): N25 <- K26\L26\A\(implies (P25 K26 L26 A) (O25 K26 L26 A))

proj(3,3,1): O25 <- H26\I26\J26\(H26 (Q25 H26 I26 J26))

proj(3,1,0): Q25 <- E26\F26\G26\G26

proj(3,2,1): P25 <- B26\C26\D26\(C26 (R25 B26 C26 D26))

proj(3,1,0): R25 <- Y25\Z25\A26\A26

imitation(1): V <- X25\(computer (S25 X25))

proj(1,1,0): S25 <- W25\W25

imitation(1): B1 <- V25\(halt (T25 V25))

proj(1,1,0): T25 <- U25\U25

[[A (G M S) Y,exists E1\(and (program E1) (run E1))],

[A (G P S) Y,all E1\(implies (program E1) (run E1))],

[A (G M V) Y,exists E1\(and (computer E1) (run E1))],

[A (G M S) B1,exists E1\(and (program E1) (halt E1))]]

proj(2,2,1): A <- T27\U27\(T27 (F1 T27 U27))

[[G M S (F1 (G M S) Y),exists A\(and (program A) (run A))],

[G P S (F1 (G P S) Y),all A\(implies (program A) (run A))],

[G M V (F1 (G M V) Y),exists A\(and (computer A) (run A))],

[G M S (F1 (G M S) B1),exists A\(and (program A) (halt A))]]

proj(3,3,2): G <- Q27\R27\S27\(Q27 (G1 Q27 R27 S27) (I1 Q27 R27 S27))
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[[M (G1 M S (F1 H1\(M (G1 M S H1) (I1 M S H1)) Y)) (I1 M S (F1 J1\(M (G1 M

S J1) (I1 M S J1)) Y)),exists A\(and (program A) (run A))],

[P (G1 P S (F1 K1\(P (G1 P S K1) (I1 P S K1)) Y)) (I1 P S (F1 L1\(P (G1 P

S L1) (I1 P S L1)) Y)),all A\(implies (program A) (run A))],

[M (G1 M V (F1 M1\(M (G1 M V M1) (I1 M V M1)) Y)) (I1 M V (F1 N1\(M (G1 M

V N1) (I1 M V N1)) Y)),exists A\(and (computer A) (run A))],

[M (G1 M S (F1 O1\(M (G1 M S O1) (I1 M S O1)) B1)) (I1 M S (F1 P1\(M (G1 M

S P1) (I1 M S P1)) B1)),exists A\(and (program A) (halt A))]]

imitation(2): M <- O27\P27\(exists (Q1 O27 P27))

[[Q1 (G1 R1\S1\(exists (Q1 R1 S1)) S (F1 T1\(exists (Q1 (G1 U1\V1\(exists

(Q1 U1 V1)) S T1) (I1 W1\X1\(exists (Q1 W1 X1)) S T1))) Y)) (I1

Y1\Z1\(exists (Q1 Y1 Z1)) S (F1 A2\(exists (Q1 (G1 B2\C2\(exists (Q1 B2

C2)) S A2) (I1 D2\E2\(exists (Q1 D2 E2)) S A2))) Y)),A\(and (program A)

(run A))],

[P (G1 P S (F1 K1\(P (G1 P S K1) (I1 P S K1)) Y)) (I1 P S (F1 L1\(P (G1 P

S L1) (I1 P S L1)) Y)),all A\(implies (program A) (run A))],

[Q1 (G1 F2\G2\(exists (Q1 F2 G2)) V (F1 H2\(exists (Q1 (G1 I2\J2\(exists

(Q1 I2 J2)) V H2) (I1 K2\L2\(exists (Q1 K2 L2)) V H2))) Y)) (I1

M2\N2\(exists (Q1 M2 N2)) V (F1 O2\(exists (Q1 (G1 P2\Q2\(exists (Q1 P2

Q2)) V O2) (I1 R2\S2\(exists (Q1 R2 S2)) V O2))) Y)),A\(and (computer A)

(run A))],

[Q1 (G1 T2\U2\(exists (Q1 T2 U2)) S (F1 V2\(exists (Q1 (G1 W2\X2\(exists

(Q1 W2 X2)) S V2) (I1 Y2\Z2\(exists (Q1 Y2 Z2)) S V2))) B1)) (I1

A3\B3\(exists (Q1 A3 B3)) S (F1 C3\(exists (Q1 (G1 D3\E3\(exists (Q1 D3

E3)) S C3) (I1 F3\G3\(exists (Q1 F3 G3)) S C3))) B1)),A\(and (program A)

(halt A))]]

imitation(3): Q1 <- M27\N27\A\(and (L3 M27 N27 A) (H3 M27 N27 A))

[[H3 (G1 I3\J3\(exists K3\(and (L3 I3 J3 K3) (H3 I3 J3 K3))) S (F1

M3\(exists N3\(and (L3 (G1 O3\P3\(exists Q3\(and (L3 O3 P3 Q3) (H3 O3 P3

Q3))) S M3) (I1 R3\S3\(exists T3\(and (L3 R3 S3 T3) (H3 R3 S3 T3))) S M3)

N3) (H3 (G1 U3\V3\(exists W3\(and (L3 U3 V3 W3) (H3 U3 V3 W3))) S M3) (I1

R3\S3\(exists X3\(and (L3 R3 S3 X3) (H3 R3 S3 X3))) S M3) N3))) Y)) (I1

Y3\Z3\(exists A4\(and (L3 Y3 Z3 A4) (H3 Y3 Z3 A4))) S (F1 B4\(exists

C4\(and (L3 (G1 D4\E4\(exists F4\(and (L3 D4 E4 F4) (H3 D4 E4 F4))) S B4)

(I1 G4\H4\(exists I4\(and (L3 G4 H4 I4) (H3 G4 H4 I4))) S B4) C4) (H3 (G1

J4\K4\(exists L4\(and (L3 J4 K4 L4) (H3 J4 K4 L4))) S B4) (I1 G4\H4\(exists

M4\(and (L3 G4 H4 M4) (H3 G4 H4 M4))) S B4) C4))) Y)) A,run A],

[L3 (G1 N4\O4\(exists P4\(and (L3 N4 O4 P4) (H3 N4 O4 P4))) S (F1

Q4\(exists R4\(and (L3 (G1 S4\T4\(exists U4\(and (L3 S4 T4 U4) (H3 S4 T4

U4))) S Q4) (I1 V4\W4\(exists X4\(and (L3 V4 W4 X4) (H3 V4 W4 X4))) S Q4)
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R4) (H3 (G1 Y4\Z4\(exists A5\(and (L3 Y4 Z4 A5) (H3 Y4 Z4 A5))) S Q4) (I1

V4\W4\(exists B5\(and (L3 V4 W4 B5) (H3 V4 W4 B5))) S Q4) R4))) Y)) (I1

Y3\Z3\(exists C5\(and (L3 Y3 Z3 C5) (H3 Y3 Z3 C5))) S (F1 B4\(exists

D5\(and (L3 (G1 E5\F5\(exists G5\(and (L3 E5 F5 G5) (H3 E5 F5 G5))) S B4)

(I1 H5\I5\(exists J5\(and (L3 H5 I5 J5) (H3 H5 I5 J5))) S B4) D5) (H3 (G1

K5\L5\(exists M5\(and (L3 K5 L5 M5) (H3 K5 L5 M5))) S B4) (I1 H5\I5\(exists

N5\(and (L3 H5 I5 N5) (H3 H5 I5 N5))) S B4) D5))) Y)) A,program A],

[P (G1 P S (F1 K1\(P (G1 P S K1) (I1 P S K1)) Y)) (I1 P S (F1 L1\(P (G1 P

S L1) (I1 P S L1)) Y)),all A\(implies (program A) (run A))],

[H3 (G1 O5\P5\(exists Q5\(and (L3 O5 P5 Q5) (H3 O5 P5 Q5))) V (F1

R5\(exists S5\(and (L3 (G1 T5\U5\(exists V5\(and (L3 T5 U5 V5) (H3 T5 U5

V5))) V R5) (I1 W5\X5\(exists Y5\(and (L3 W5 X5 Y5) (H3 W5 X5 Y5))) V R5)

S5) (H3 (G1 Z5\A6\(exists B6\(and (L3 Z5 A6 B6) (H3 Z5 A6 B6))) V R5) (I1

W5\X5\(exists C6\(and (L3 W5 X5 C6) (H3 W5 X5 C6))) V R5) S5))) Y)) (I1

D6\E6\(exists F6\(and (L3 D6 E6 F6) (H3 D6 E6 F6))) V (F1 G6\(exists

H6\(and (L3 (G1 I6\J6\(exists K6\(and (L3 I6 J6 K6) (H3 I6 J6 K6))) V G6)

(I1 L6\M6\(exists N6\(and (L3 L6 M6 N6) (H3 L6 M6 N6))) V G6) H6) (H3 (G1

O6\P6\(exists Q6\(and (L3 O6 P6 Q6) (H3 O6 P6 Q6))) V G6) (I1 L6\M6\(exists

R6\(and (L3 L6 M6 R6) (H3 L6 M6 R6))) V G6) H6))) Y)) A,run A],

[L3 (G1 S6\T6\(exists U6\(and (L3 S6 T6 U6) (H3 S6 T6 U6))) V (F1

V6\(exists W6\(and (L3 (G1 X6\Y6\(exists Z6\(and (L3 X6 Y6 Z6) (H3 X6 Y6

Z6))) V V6) (I1 A7\B7\(exists C7\(and (L3 A7 B7 C7) (H3 A7 B7 C7))) V V6)

W6) (H3 (G1 D7\E7\(exists F7\(and (L3 D7 E7 F7) (H3 D7 E7 F7))) V V6) (I1

A7\B7\(exists G7\(and (L3 A7 B7 G7) (H3 A7 B7 G7))) V V6) W6))) Y)) (I1

D6\E6\(exists H7\(and (L3 D6 E6 H7) (H3 D6 E6 H7))) V (F1 G6\(exists

I7\(and (L3 (G1 J7\K7\(exists L7\(and (L3 J7 K7 L7) (H3 J7 K7 L7))) V G6)

(I1 M7\N7\(exists O7\(and (L3 M7 N7 O7) (H3 M7 N7 O7))) V G6) I7) (H3 (G1

P7\Q7\(exists R7\(and (L3 P7 Q7 R7) (H3 P7 Q7 R7))) V G6) (I1 M7\N7\(exists

S7\(and (L3 M7 N7 S7) (H3 M7 N7 S7))) V G6) I7))) Y)) A,computer A],

[H3 (G1 T7\U7\(exists V7\(and (L3 T7 U7 V7) (H3 T7 U7 V7))) S (F1

W7\(exists X7\(and (L3 (G1 Y7\Z7\(exists A8\(and (L3 Y7 Z7 A8) (H3 Y7 Z7

A8))) S W7) (I1 B8\C8\(exists D8\(and (L3 B8 C8 D8) (H3 B8 C8 D8))) S W7)

X7) (H3 (G1 E8\F8\(exists G8\(and (L3 E8 F8 G8) (H3 E8 F8 G8))) S W7) (I1

B8\C8\(exists H8\(and (L3 B8 C8 H8) (H3 B8 C8 H8))) S W7) X7))) B1)) (I1

I8\J8\(exists K8\(and (L3 I8 J8 K8) (H3 I8 J8 K8))) S (F1 L8\(exists

M8\(and (L3 (G1 N8\O8\(exists P8\(and (L3 N8 O8 P8) (H3 N8 O8 P8))) S L8)

(I1 Q8\R8\(exists S8\(and (L3 Q8 R8 S8) (H3 Q8 R8 S8))) S L8) M8) (H3 (G1

T8\U8\(exists V8\(and (L3 T8 U8 V8) (H3 T8 U8 V8))) S L8) (I1 Q8\R8\(exists

W8\(and (L3 Q8 R8 W8) (H3 Q8 R8 W8))) S L8) M8))) B1)) A,halt A],

[L3 (G1 X8\Y8\(exists Z8\(and (L3 X8 Y8 Z8) (H3 X8 Y8 Z8))) S (F1

A9\(exists B9\(and (L3 (G1 C9\D9\(exists E9\(and (L3 C9 D9 E9) (H3 C9 D9

E9))) S A9) (I1 F9\G9\(exists H9\(and (L3 F9 G9 H9) (H3 F9 G9 H9))) S A9)

B9) (H3 (G1 I9\J9\(exists K9\(and (L3 I9 J9 K9) (H3 I9 J9 K9))) S A9) (I1

F9\G9\(exists L9\(and (L3 F9 G9 L9) (H3 F9 G9 L9))) S A9) B9))) B1)) (I1
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I8\J8\(exists M9\(and (L3 I8 J8 M9) (H3 I8 J8 M9))) S (F1 L8\(exists

N9\(and (L3 (G1 O9\P9\(exists Q9\(and (L3 O9 P9 Q9) (H3 O9 P9 Q9))) S L8)

(I1 R9\S9\(exists T9\(and (L3 R9 S9 T9) (H3 R9 S9 T9))) S L8) N9) (H3 (G1

U9\V9\(exists W9\(and (L3 U9 V9 W9) (H3 U9 V9 W9))) S L8) (I1 R9\S9\(exists

X9\(and (L3 R9 S9 X9) (H3 R9 S9 X9))) S L8) N9))) B1)) A,program A]]

proj(3,3,1): H3 <- J27\K27\L27\(J27 (B10 J27 K27 L27))

[[G1 Y9\Z9\(exists A10\(and (L3 Y9 Z9 A10) (Y9 (B10 Y9 Z9 A10)))) S (F1

C10\(exists D10\(and (L3 (G1 E10\F10\(exists G10\(and (L3 E10 F10 G10) (E10

(B10 E10 F10 G10)))) S C10) (I1 H10\I10\(exists J10\(and (L3 H10 I10 J10)

(H10 (B10 H10 I10 J10)))) S C10) D10) (G1 K10\L10\(exists M10\(and (L3 K10

L10 M10) (K10 (B10 K10 L10 M10)))) S C10 (B10 (G1 N10\O10\(exists P10\(and

(L3 N10 O10 P10) (N10 (B10 N10 O10 P10)))) S C10) (I1 Q10\R10\(exists

S10\(and (L3 Q10 R10 S10) (Q10 (B10 Q10 R10 S10)))) S C10) D10)))) Y) (B10

(G1 T10\U10\(exists V10\(and (L3 T10 U10 V10) (T10 (B10 T10 U10 V10)))) S

(F1 W10\(exists X10\(and (L3 (G1 Y10\Z10\(exists A11\(and (L3 Y10 Z10 A11)

(Y10 (B10 Y10 Z10 A11)))) S W10) (I1 B11\C11\(exists D11\(and (L3 B11 C11

D11) (B11 (B10 B11 C11 D11)))) S W10) X10) (G1 E11\F11\(exists G11\(and (L3

E11 F11 G11) (E11 (B10 E11 F11 G11)))) S W10 (B10 (G1 H11\I11\(exists

J11\(and (L3 H11 I11 J11) (H11 (B10 H11 I11 J11)))) S W10) (I1

K11\L11\(exists M11\(and (L3 K11 L11 M11!

) (K11 (B10 K11 L11 M11)))) S W10)

X10)))) Y)) (I1 N11\O11\(exists P11\(and (L3 N11 O11 P11) (N11 (B10 N11

O11 P11)))) S (F1 Q11\(exists R11\(and (L3 (G1 S11\T11\(exists U11\(and (L3

S11 T11 U11) (S11 (B10 S11 T11 U11)))) S Q11) (I1 V11\W11\(exists X11\(and

(L3 V11 W11 X11) (V11 (B10 V11 W11 X11)))) S Q11) R11) (G1 Y11\Z11\(exists

A12\(and (L3 Y11 Z11 A12) (Y11 (B10 Y11 Z11 A12)))) S Q11 (B10 (G1

B12\C12\(exists D12\(and (L3 B12 C12 D12) (B12 (B10 B12 C12 D12)))) S Q11)

(I1 E12\F12\(exists G12\(and (L3 E12 F12 G12) (E12 (B10 E12 F12 G12)))) S

Q11) R11)))) Y)) A),run A],

[L3 (G1 N4\O4\(exists P4\(and (L3 N4 O4 P4) (N4 (B10 N4 O4 P4)))) S (F1

Q4\(exists R4\(and (L3 (G1 S4\T4\(exists U4\(and (L3 S4 T4 U4) (S4 (B10 S4

T4 U4)))) S Q4) (I1 V4\W4\(exists X4\(and (L3 V4 W4 X4) (V4 (B10 V4 W4

X4)))) S Q4) R4) (G1 H12\I12\(exists J12\(and (L3 H12 I12 J12) (H12 (B10

H12 I12 J12)))) S Q4 (B10 (G1 K12\L12\(exists M12\(and (L3 K12 L12 M12)

(K12 (B10 K12 L12 M12)))) S Q4) (I1 N12\O12\(exists P12\(and (L3 N12 O12

P12) (N12 (B10 N12 O12 P12)))) S Q4) R4)))) Y)) (I1 Y3\Z3\(exists C5\(and

(L3 Y3 Z3 C5) (Y3 (B10 Y3 Z3 C5)))) S (F1 B4\(exists D5\(and (L3 (G1

E5\F5\(exists G5\(and (L3 E5 F5 G5) (E5 (B10 E5 F5 G5)))) S B4) (I1

H5\I5\(exists J5\(and (L3 H5 I5 J5) (H5 (B10 H5 I5 J5)))) S B4) D5) (G1

Q12\R12\(exists S12\(and (L3 Q12 R12 S12) (Q12 (B10 Q12 R12 S12)))) S B4

(B10 (G1 T12\U12\(exists V12\(and (L3 T12 U12 V12) (T12 (B10 T12 U12

V12)))) S B4) (I1 W12\X12\(exists Y12\(and (L3 W12 X12 Y12) (W12 (B10 W12
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X12 Y12)))) S B4) D5)))) Y)) A,program A],

[P (G1 P S (F1 K1\(P (G1 P S K1) (I1 P S K1)) Y)) (I1 P S (F1 L1\(P (G1 P

S L1) (I1 P S L1)) Y)),all A\(implies (program A) (run A))],

[G1 Z12\A13\(exists B13\(and (L3 Z12 A13 B13) (Z12 (B10 Z12 A13 B13)))) V

(F1 C13\(exists D13\(and (L3 (G1 E13\F13\(exists G13\(and (L3 E13 F13 G13)

(E13 (B10 E13 F13 G13)))) V C13) (I1 H13\I13\(exists J13\(and (L3 H13 I13

J13) (H13 (B10 H13 I13 J13)))) V C13) D13) (G1 K13\L13\(exists M13\(and (L3

K13 L13 M13) (K13 (B10 K13 L13 M13)))) V C13 (B10 (G1 N13\O13\(exists

P13\(and (L3 N13 O13 P13) (N13 (B10 N13 O13 P13)))) V C13) (I1

Q13\R13\(exists S13\(and (L3 Q13 R13 S13) (Q13 (B10 Q13 R13 S13)))) V C13)

D13)))) Y) (B10 (G1 T13\U13\(exists V13\(and (L3 T13 U13 V13) (T13 (B10 T13

U13 V13)))) V (F1 W13\(exists X13\(and (L3 (G1 Y13\Z13\(exists A14\(and (L3

Y13 Z13 A14) (Y13 (B10 Y13 Z13 A14)))) V W13) (I1 B14\C14\(exists D14\(and

(L3 B14 C14 D14) (B14 (B10 B14 C14 D14)))) V W13) X13) (G1 E14\F14\(exists

G14\(and (L3 E14 F14 G14) (E14 (B10 E14 F14 G14)))) V W13 (B10 (G1

H14\I14\(exists J14\(and (L3 H14 I14 J14) (H14 (B10 H14 I14 J14)))) V W13)

(I1 K14\L14\(exists M14\(and (L3 K14 L14 M14) (K14 (B10 K14 L14 M14))))

V W13) X13)))) Y)) (I1 N14\O14\(exists P14\(and (L3 N14 O14 P14) (N14 (B10

N14 O14 P14)))) V (F1 Q14\(exists R14\(and (L3 (G1 S14\T14\(exists U14\(and

(L3 S14 T14 U14) (S14 (B10 S14 T14 U14)))) V Q14) (I1 V14\W14\(exists

X14\(and (L3 V14 W14 X14) (V14 (B10 V14 W14 X14)))) V Q14) R14) (G1

Y14\Z14\(exists A15\(and (L3 Y14 Z14 A15) (Y14 (B10 Y14 Z14 A15)))) V Q14

(B10 (G1 B15\C15\(exists D15\(and (L3 B15 C15 D15) (B15 (B10 B15 C15

D15)))) V Q14) (I1 E15\F15\(exists G15\(and (L3 E15 F15 G15) (E15 (B10 E15

F15 G15)))) V Q14) R14)))) Y)) A),run A],

[L3 (G1 S6\T6\(exists U6\(and (L3 S6 T6 U6) (S6 (B10 S6 T6 U6)))) V (F1

V6\(exists W6\(and (L3 (G1 X6\Y6\(exists Z6\(and (L3 X6 Y6 Z6) (X6 (B10 X6

Y6 Z6)))) V V6) (I1 A7\B7\(exists C7\(and (L3 A7 B7 C7) (A7 (B10 A7 B7

C7)))) V V6) W6) (G1 H15\I15\(exists J15\(and (L3 H15 I15 J15) (H15 (B10

H15 I15 J15)))) V V6 (B10 (G1 K15\L15\(exists M15\(and (L3 K15 L15 M15)

(K15 (B10 K15 L15 M15)))) V V6) (I1 N15\O15\(exists P15\(and (L3 N15 O15

P15) (N15 (B10 N15 O15 P15)))) V V6) W6)))) Y)) (I1 D6\E6\(exists H7\(and

(L3 D6 E6 H7) (D6 (B10 D6 E6 H7)))) V (F1 G6\(exists I7\(and (L3 (G1

J7\K7\(exists L7\(and (L3 J7 K7 L7) (J7 (B10 J7 K7 L7)))) V G6) (I1

M7\N7\(exists O7\(and (L3 M7 N7 O7) (M7 (B10 M7 N7 O7)))) V G6) I7) (G1

Q15\R15\(exists S15\(and (L3 Q15 R15 S15) (Q15 (B10 Q15 R15 S15)))) V G6

(B10 (G1 T15\U15\(exists V15\(and (L3 T15 U15 V15) (T15 (B10 T15 U15

V15)))) V G6) (I1 W15\X15\(exists Y15\(and (L3 W15 X15 Y15) (W15 (B10 W15

X15 Y15)))) V G6) I7)))) Y)) A,computer A],

[G1 Z15\A16\(exists B16\(and (L3 Z15 A16 B16) (Z15 (B10 Z15 A16 B16)))) S

(F1 C16\(exists D16\(and (L3 (G1 E16\F16\(exists G16\(and (L3 E16 F16 G16)

(E16 (B10 E16 F16 G16)))) S C16) (I1 H16\I16\(exists J16\(and (L3 H16 I16

J16) (H16 (B10 H16 I16 J16)))) S C16) D16) (G1 K16\L16\(exists M16\(and (L3

K16 L16 M16) (K16 (B10 K16 L16 M16)))) S C16 (B10 (G1 N16\O16\(exists
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P16\(and (L3 N16 O16 P16) (N16 (B10 N16 O16 P16)))) S C16) (I1

Q16\R16\(exists S16\(and (L3 Q16 R16 S16) (Q16 (B10 Q16 R16 S16)))) S C16)

D16)))) B1) (B10 (G1 T16\U16\(exists V16\(and (L3 T16 U16 V16) (T16 (B10

T16 U16 V16)))) S (F1 W16\(exists X16\(and (L3 (G1 Y16\Z16\(exists A17\(and

(L3 Y16 Z16 A17) (Y16 (B10 Y16 Z16 A17)))) S W16) (I1 B17\C17\(exists

D17\(and (L3 B17 C17 D17) (B17 (B10 B17 C17 D17)))) S W16) X16) (G1

E17\F17\(exists G17\(and (L3 E17 F17 G17) (E17 (B10 E17 F17 G17)))) S W16

(B10 (G1 H17\I17\(exists J17\(and (L3 H17 I17 J17) (H17 (B10 H17 I17

J17)))) S W16) (I1 K17\L17\(exists M17\(and (L3 K17 L17 M17) (K17 (B10 K17

L17 M17)))) S W16) X16)))) B1)) (I1 N17\O17\(exists P17\(and (L3 N17 O17

P17) (N17 (B10 N17 O17 P17)))) S (F1 Q17\(exists R17\(and (L3 (G1

S17\T17\(exists U17\(and (L3 S17 T17 U17) (S17 (B10 S17 T17 U17)))) S Q17)

(I1 V17\W17\(exists X17\(and (L3 V17 W17 X17) (V17 (B10 V17 W17 X17)))) S

Q17) R17) (G1 Y17\Z17\(exists A18\(and (L3 Y17 Z17 A18) (Y17 (B10 Y17 Z17

A18)))) S Q17 (B10 (G1 B18\C18\(exists D18\(and (L3 B18 C18 D18) (B18 (B10

B18 C18 D18)))) S Q17) (I1 E18\F18\(exists G18\(and (L3 E18 F18 G18) (E18

(B10 E18 F18 G18)))) S Q17) R17)))) B1)) A),halt A],

[L3 (G1 X8\Y8\(exists Z8\(and (L3 X8 Y8 Z8) (X8 (B10 X8 Y8 Z8)))) S (F1

A9\(exists B9\(and (L3 (G1 C9\D9\(exists E9\(and (L3 C9 D9 E9) (C9 (B10 C9

D9 E9)))) S A9) (I1 F9\G9\(exists H9\(and (L3 F9 G9 H9) (F9 (B10 F9 G9

H9)))) S A9) B9) (G1 H18\I18\(exists J18\(and (L3 H18 I18 J18) (H18 (B10

H18 I18 J18)))) S A9 (B10 (G1 K18\L18\(exists M18\(and (L3 K18 L18 M18)

(K18 (B10 K18 L18 M18)))) S A9) (I1 N18\O18\(exists P18\(and (L3 N18 O18

P18) (N18 (B10 N18 O18 P18)))) S A9) B9)))) B1)) (I1 I8\J8\(exists M9\(and

(L3 I8 J8 M9) (I8 (B10 I8 J8 M9)))) S (F1 L8\(exists N9\(and (L3 (G1

O9\P9\(exists Q9\(and (L3 O9 P9 Q9) (O9 (B10 O9 P9 Q9)))) S L8) (I1

R9\S9\(exists T9\(and (L3 R9 S9 T9) (R9 (B10 R9 S9 T9)))) S L8) N9) (G1

Q18\R18\(exists S18\(and (L3 Q18 R18 S18) (Q18 (B10 Q18 R18 S18)))) S L8

(B10 (G1 T18\U18\(exists V18\(and (L3 T18 U18 V18) (T18 (B10 T18 U18

V18)))) S L8) (I1 W18\X18\(exists Y18\(and (L3 W18 X18 Y18) (W18 (B10 W18

X18 Y18)))) S L8) N9)))) B1)) A,program A]]

proj(3,1,0): G1 <- G27\H27\I27\I27

[[F1 Z18\(exists A19\(and (L3 Z18 (I1 B19\C19\(exists D19\(and (L3 B19 C19

D19) (B19 (B10 B19 C19 D19)))) S Z18) A19) (Z18 (B10 Z18 (I1

E19\F19\(exists G19\(and (L3 E19 F19 G19) (E19 (B10 E19 F19 G19)))) S Z18)

A19)))) Y (B10 (F1 H19\(exists I19\(and (L3 H19 (I1 J19\K19\(exists

L19\(and (L3 J19 K19 L19) (J19 (B10 J19 K19 L19)))) S H19) I19) (H19 (B10

H19 (I1 M19\N19\(exists O19\(and (L3 M19 N19 O19) (M19 (B10 M19 N19 O19))))

S H19) I19)))) Y) (I1 P19\Q19\(exists R19\(and (L3 P19 Q19 R19) (P19 (B10

P19 Q19 R19)))) S (F1 S19\(exists T19\(and (L3 S19 (I1 U19\V19\(exists

W19\(and (L3 U19 V19 W19) (U19 (B10 U19 V19 W19)))) S S19) T19) (S19 (B10

S19 (I1 X19\Y19\(exists Z19\(and (L3 X19 Y19 Z19) (X19 (B10 X19 Y19 Z19))))
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S S19) T19)))) Y)) A),run A],

[L3 (F1 A20\(exists B20\(and (L3 A20 (I1 C20\D20\(exists E20\(and (L3 C20

D20 E20) (C20 (B10 C20 D20 E20)))) S A20) B20) (A20 (B10 A20 (I1

F20\G20\(exists H20\(and (L3 F20 G20 H20) (F20 (B10 F20 G20 H20)))) S A20)

B20)))) Y) (I1 Y3\Z3\(exists C5\(and (L3 Y3 Z3 C5) (Y3 (B10 Y3 Z3 C5)))) S

(F1 B4\(exists D5\(and (L3 B4 (I1 H5\I5\(exists J5\(and (L3 H5 I5 J5) (H5

(B10 H5 I5 J5)))) S B4) D5) (B4 (B10 B4 (I1 I20\J20\(exists K20\(and (L3

I20 J20 K20) (I20 (B10 I20 J20 K20)))) S B4) D5)))) Y)) A,program A],

[P (F1 L20\(P L20 (I1 P S L20)) Y) (I1 P S (F1 L1\(P L1 (I1 P S L1))

Y)),all A\(implies (program A) (run A))],

[F1 M20\(exists N20\(and (L3 M20 (I1 O20\P20\(exists Q20\(and (L3 O20 P20

Q20) (O20 (B10 O20 P20 Q20)))) V M20) N20) (M20 (B10 M20 (I1

R20\S20\(exists T20\(and (L3 R20 S20 T20) (R20 (B10 R20 S20 T20)))) V M20)

N20)))) Y (B10 (F1 U20\(exists V20\(and (L3 U20 (I1 W20\X20\(exists

Y20\(and (L3 W20 X20 Y20) (W20 (B10 W20 X20 Y20)))) V U20) V20) (U20 (B10

U20 (I1 Z20\A21\(exists B21\(and (L3 Z20 A21 B21) (Z20 (B10 Z20 A21 B21))))

V U20) V20)))) Y) (I1 C21\D21\(exists E21\(and (L3 C21 D21 E21) (C21 (B10

C21 D21 E21)))) V (F1 F21\(exists G21\(and (L3 F21 (I1 H21\I21\(exists

J21\(and (L3 H21 I21 J21) (H21 (B10 H21 I21 J21)))) V F21) G21) (F21 (B10

F21 (I1 K21\L21\(exists M21\(and (L3 K21 L21 M21) (K21 (B10 K21 L21 M21))))

V F21) G21)))) Y)) A),run A],

[L3 (F1 N21\(exists O21\(and (L3 N21 (I1 P21\Q21\(exists R21\(and (L3 P21

Q21 R21) (P21 (B10 P21 Q21 R21)))) V N21) O21) (N21 (B10 N21 (I1

S21\T21\(exists U21\(and (L3 S21 T21 U21) (S21 (B10 S21 T21 U21)))) V N21)

O21)))) Y) (I1 D6\E6\(exists H7\(and (L3 D6 E6 H7) (D6 (B10 D6 E6 H7)))) V

(F1 G6\(exists I7\(and (L3 G6 (I1 M7\N7\(exists O7\(and (L3 M7 N7 O7) (M7

(B10 M7 N7 O7)))) V G6) I7) (G6 (B10 G6 (I1 V21\W21\(exists X21\(and (L3

V21 W21 X21) (V21 (B10 V21 W21 X21)))) V G6) I7)))) Y)) A,computer A],

[F1 Y21\(exists Z21\(and (L3 Y21 (I1 A22\B22\(exists C22\(and (L3 A22 B22

C22) (A22 (B10 A22 B22 C22)))) S Y21) Z21) (Y21 (B10 Y21 (I1

D22\E22\(exists F22\(and (L3 D22 E22 F22) (D22 (B10 D22 E22 F22)))) S Y21)

Z21)))) B1 (B10 (F1 G22\(exists H22\(and (L3 G22 (I1 I22\J22\(exists

K22\(and (L3 I22 J22 K22) (I22 (B10 I22 J22 K22)))) S G22) H22) (G22 (B10

G22 (I1 L22\M22\(exists N22\(and (L3 L22 M22 N22) (L22 (B10 L22 M22 N22))))

S G22) H22)))) B1) (I1 O22\P22\(exists Q22\(and (L3 O22 P22 Q22) (O22 (B10

O22 P22 Q22)))) S (F1 R22\(exists S22\(and (L3 R22 (I1 T22\U22\(exists

V22\(and (L3 T22 U22 V22) (T22 (B10 T22 U22 V22)))) S R22) S22) (R22 (B10

R22 (I1 W22\X22\(exists Y22\(and (L3 W22 X22 Y22) (W22 (B10 W22 X22 Y22))))

S R22) S22)))) B1)) A),halt A],

[L3 (F1 Z22\(exists A23\(and (L3 Z22 (I1 B23\C23\(exists D23\(and (L3 B23

C23 D23) (B23 (B10 B23 C23 D23)))) S Z22) A23) (Z22 (B10 Z22 (I1

E23\F23\(exists G23\(and (L3 E23 F23 G23) (E23 (B10 E23 F23 G23)))) S Z22)

A23)))) B1) (I1 I8\J8\(exists M9\(and (L3 I8 J8 M9) (I8 (B10 I8 J8 M9)))) S

(F1 L8\(exists N9\(and (L3 L8 (I1 R9\S9\(exists T9\(and (L3 R9 S9 T9) (R9
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(B10 R9 S9 T9)))) S L8) N9) (L8 (B10 L8 (I1 H23\I23\(exists J23\(and (L3

H23 I23 J23) (H23 (B10 H23 I23 J23)))) S L8) N9)))) B1)) A,program A]]

proj(2,1,0): F1 <- E27\F27\F27

[[Y (B10 Y (I1 K23\L23\(exists M23\(and (L3 K23 L23 M23) (K23 (B10 K23 L23

M23)))) S Y) A),run A],

[L3 Y (I1 Y3\Z3\(exists C5\(and (L3 Y3 Z3 C5) (Y3 (B10 Y3 Z3 C5)))) S Y)

A,program A],

[P Y (I1 P S Y),all A\(implies (program A) (run A))],

[Y (B10 Y (I1 N23\O23\(exists P23\(and (L3 N23 O23 P23) (N23 (B10 N23 O23

P23)))) V Y) A),run A],

[L3 Y (I1 D6\E6\(exists H7\(and (L3 D6 E6 H7) (D6 (B10 D6 E6 H7)))) V Y)

A,computer A],

[B1 (B10 B1 (I1 Q23\R23\(exists S23\(and (L3 Q23 R23 S23) (Q23 (B10 Q23

R23 S23)))) S B1) A),halt A],

[L3 B1 (I1 I8\J8\(exists M9\(and (L3 I8 J8 M9) (I8 (B10 I8 J8 M9)))) S B1)

A,program A]]

imitation(1): Y <- D27\(run (T23 D27))

[[T23 (B10 U23\(run (T23 U23)) (I1 V23\W23\(exists X23\(and (L3 V23 W23

X23) (V23 (B10 V23 W23 X23)))) S Y23\(run (T23 Y23))) A),A],

[L3 Z23\(run (T23 Z23)) (I1 Y3\Z3\(exists C5\(and (L3 Y3 Z3 C5) (Y3 (B10

Y3 Z3 C5)))) S A24\(run (T23 A24))) A,program A],

[P B24\(run (T23 B24)) (I1 P S C24\(run (T23 C24))),all A\(implies

(program A) (run A))],

[T23 (B10 D24\(run (T23 D24)) (I1 E24\F24\(exists G24\(and (L3 E24 F24

G24) (E24 (B10 E24 F24 G24)))) V H24\(run (T23 H24))) A),A],

[L3 I24\(run (T23 I24)) (I1 D6\E6\(exists H7\(and (L3 D6 E6 H7) (D6 (B10

D6 E6 H7)))) V J24\(run (T23 J24))) A,computer A],

[B1 (B10 B1 (I1 Q23\R23\(exists S23\(and (L3 Q23 R23 S23) (Q23 (B10 Q23

R23 S23)))) S B1) A),halt A],

[L3 B1 (I1 I8\J8\(exists M9\(and (L3 I8 J8 M9) (I8 (B10 I8 J8 M9)))) S B1)

A,program A]]

proj(1,1,0): T23 <- C27\C27

[[B10 run (I1 K24\L24\(exists M24\(and (L3 K24 L24 M24) (K24 (B10 K24 L24

M24)))) S run) A,A],

[L3 run (I1 Y3\Z3\(exists C5\(and (L3 Y3 Z3 C5) (Y3 (B10 Y3 Z3 C5)))) S

run) A,program A],

[P run (I1 P S run),all A\(implies (program A) (run A))],

[B10 run (I1 N24\O24\(exists P24\(and (L3 N24 O24 P24) (N24 (B10 N24 O24
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P24)))) V run) A,A],

[L3 run (I1 D6\E6\(exists H7\(and (L3 D6 E6 H7) (D6 (B10 D6 E6 H7)))) V

run) A,computer A],

[B1 (B10 B1 (I1 Q23\R23\(exists S23\(and (L3 Q23 R23 S23) (Q23 (B10 Q23

R23 S23)))) S B1) A),halt A],

[L3 B1 (I1 I8\J8\(exists M9\(and (L3 I8 J8 M9) (I8 (B10 I8 J8 M9)))) S B1)

A,program A]]

proj(3,1,0): B10 <- Z26\A27\B27\B27

[[L3 run (I1 Y3\Z3\(exists C5\(and (L3 Y3 Z3 C5) (Y3 C5))) S run) A,program A],

[P run (I1 P S run),all A\(implies (program A) (run A))],

[L3 run (I1 D6\E6\(exists H7\(and (L3 D6 E6 H7) (D6 H7))) V run) A,

computer A],

[B1 A,halt A],

[L3 B1 (I1 I8\J8\(exists M9\(and (L3 I8 J8 M9) (I8 M9))) S B1) A,program A]]

proj(3,2,1): L3 <- W26\X26\Y26\(X26 (T24 W26 X26 Y26))

[[I1 Q24\R24\(exists S24\(and (R24 (T24 Q24 R24 S24)) (Q24 S24))) S run

(T24 run (I1 U24\V24\(exists W24\(and (V24 (T24 U24 V24 W24)) (U24 W24))) S

run) A),program A],

[P run (I1 P S run),all A\(implies (program A) (run A))],

[I1 X24\Y24\(exists Z24\(and (Y24 (T24 X24 Y24 Z24)) (X24 Z24))) V run

(T24 run (I1 A25\B25\(exists C25\(and (B25 (T24 A25 B25 C25)) (A25 C25))) V

run) A),computer A],

[B1 A,halt A],

[I1 D25\E25\(exists F25\(and (E25 (T24 D25 E25 F25)) (D25 F25))) S B1 (T24

B1 (I1 G25\H25\(exists I25\(and (H25 (T24 G25 H25 I25)) (G25 I25))) S B1)

A),program A]]

proj(3,2,0): I1 <- T26\U26\V26\U26

[[S (T24 run S A),program A],

[P run S,all A\(implies (program A) (run A))],

[V (T24 run V A),computer A],

[B1 A,halt A],

[S (T24 B1 S A),program A]]

imitation(1): S <- S26\(program (J25 S26))

[[J25 (T24 run K25\(program (J25 K25)) A),A],

[P run L25\(program (J25 L25)),all A\(implies (program A) (run A))],

[V (T24 run V A),computer A],
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[B1 A,halt A],

[J25 (T24 B1 M25\(program (J25 M25)) A),A]]

proj(1,1,0): J25 <- R26\R26

[[T24 run program A,A],

[P run program,all A\(implies (program A) (run A))],

[V (T24 run V A),computer A],

[B1 A,halt A],

[T24 B1 program A,A]]

proj(3,1,0): T24 <- O26\P26\Q26\Q26

[[P run program,all A\(implies (program A) (run A))],

[V A,computer A],

[B1 A,halt A]]

imitation(2): P <- M26\N26\(all (N25 M26 N26))

[[N25 run program,A\(implies (program A) (run A))],

[V A,computer A],

[B1 A,halt A]]

imitation(3): N25 <- K26\L26\A\(implies (P25 K26 L26 A) (O25 K26 L26 A))

[[O25 run program A,run A],

[P25 run program A,program A],

[V A,computer A],

[B1 A,halt A]]

proj(3,3,1): O25 <- H26\I26\J26\(H26 (Q25 H26 I26 J26))

[[Q25 run program A,A],

[P25 run program A,program A],

[V A,computer A],

[B1 A,halt A]]

proj(3,1,0): Q25 <- E26\F26\G26\G26

[[P25 run program A,program A],

[V A,computer A],

[B1 A,halt A]]

proj(3,2,1): P25 <- B26\C26\D26\(C26 (R25 B26 C26 D26))
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[[R25 run program A,A],

[V A,computer A],

[B1 A,halt A]]

proj(3,1,0): R25 <- Y25\Z25\A26\A26

[[V A,computer A],

[B1 A,halt A]]

imitation(1): V <- X25\(computer (S25 X25))

[[S25 A,A],

[B1 A,halt A]]

proj(1,1,0): S25 <- W25\W25

[[B1 A,halt A]]

imitation(1): B1 <- V25\(halt (T25 V25))

[[T25 A,A]]

proj(1,1,0): T25 <- U25\U25

[]

Final substitutions:

A = T27\U27\(T27 U27)

G = Q27\R27\S27\(Q27 S27 R27)

M = O27\P27\(exists W27\(and (P27 W27) (O27 W27)))

Q1 = M27\N27\A\(and (N27 A) (M27 A))

H3 = J27\K27\L27\(J27 L27)

G1 = G27\H27\I27\I27

F1 = E27\F27\F27

Y = run

T23 = C27\C27

B10 = Z26\A27\B27\B27

L3 = W26\X26\Y26\(X26 Y26)

I1 = T26\U26\V26\U26

S = program

J25 = R26\R26

T24 = O26\P26\Q26\Q26
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P = M26\N26\(all V27\(implies (N26 V27) (M26 V27)))

N25 = K26\L26\A\(implies (L26 A) (K26 A))

O25 = H26\I26\J26\(H26 J26)

Q25 = E26\F26\G26\G26

P25 = B26\C26\D26\(C26 D26)

R25 = Y25\Z25\A26\A26

V = computer

S25 = W25\W25

B1 = halt

T25 = U25\U25

With combintation rules:

s(A B C) --> np(B),iv(C).

np(G H I) --> det(H),n(I).

det(M) --> [a].

det(P) --> [every].

n(S) --> [program].

n(V) --> [computer].

iv(Y) --> [runs].

iv(B1) --> [halts].

[[A (G M S) Y,exists E1\(and (program E1) (run E1))],

[A (G P S) Y,all E1\(and (program E1) (run E1))],

[A (G M V) Y,exists E1\(and (computer E1) (run E1))],

[A (G M S) B1,exists E1\(and (program E1) (halt E1))]]

cproj(2,2,1): A <- A2\B2\(A2 B2)

[[G M S Y,exists A\(and (program A) (run A))],

[G P S Y,all A\(and (program A) (run A))],

[G M V Y,exists A\(and (computer A) (run A))],

[G M S B1,exists A\(and (program A) (halt A))]]

cproj(3,3,2): G <- X1\Y1\Z1\(X1 Z1 Y1)

[[M Y S,exists A\(and (program A) (run A))],

[P Y S,all A\(and (program A) (run A))],

[M Y V,exists A\(and (computer A) (run A))],

[M B1 S,exists A\(and (program A) (halt A))]]

imitation(2): M <- V1\W1\(exists (F1 V1 W1))

[[F1 Y S,A\(and (program A) (run A))],
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[P Y S,all A\(and (program A) (run A))],

[F1 Y V,A\(and (computer A) (run A))],

[F1 B1 S,A\(and (program A) (halt A))]]

imit_proj(2): F1 <- T1\U1\A\(and (U1 A) (T1 A))

[[Y A,run A],

[S A,program A],

[P Y S,all A\(and (program A) (run A))],

[Y A,run A],

[V A,computer A],

[B1 A,halt A],

[S A,program A]]

imit_proj(1): Y <- S1\(run S1)

[[S A,program A],

[P G1\(run G1) S,all A\(and (program A) (run A))],

[V A,computer A],

[B1 A,halt A],

[S A,program A]]

imit_proj(1): S <- R1\(program R1)

[[P G1\(run G1) H1\(program H1),all A\(and (program A) (run A))],

[V A,computer A],

[B1 A,halt A]]

imitation(2): P <- P1\Q1\(all (I1 P1 Q1))

[[I1 J1\(run J1) K1\(program K1),A\(and (program A) (run A))],

[V A,computer A],

[B1 A,halt A]]

imit_proj(2): I1 <- N1\O1\A\(and (O1 A) (N1 A))

[[V A,computer A],

[B1 A,halt A]]

imit_proj(1): V <- M1\(computer M1)

[[B1 A,halt A]]

imit_proj(1): B1 <- L1\(halt L1)
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[]

A = A2\B2\(A2 B2)

G = X1\Y1\Z1\(X1 Z1 Y1)

M = V1\W1\(exists A\(and (W1 A) (V1 A)))

F1 = T1\U1\A\(and (U1 A) (T1 A))

Y = S1\(run S1)

S = R1\(program R1)

P = P1\Q1\(all A\(and (Q1 A) (P1 A)))

I1 = N1\O1\A\(and (O1 A) (N1 A))

V = M1\(computer M1)

B1 = L1\(halt L1)
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E: Further examples of DCG synthesis

E.1. Learning arithmetic functions using Church numerals

E.1.1. Addition function

Usually the task of grammars for natural and other languages is to analyze and give

structure to a list of tokens (words), and generate a \semantic representation" which is

essentially an alternative representation of what is expressed by the list of words (sen-

tence). Such semantic representations are more suitable for processing by computer

applications, like data bases or knowledge bases. However, it is also possible, as shown

below, to construct semantic representations in such a way that mathematical computa-

tions are performed while parsing mathematical expressions. This in turn means that the

kind of system discussed in this dissertation can e�ectively learn mathematical functions

given CFGs which parse mathematical expressions appropriately.

The successor function has already been discussed in section 5.2. The grammar in the

next example accepts expressions that are interpreted as additions of natural numbers,

also using the Church numerals. The syntax is speci�ed by the following CFG:

s --> n.

s --> n, op_s.

op_s --> [+], s.

n --> [0].

n --> [succ], n.

It is trained using these examples:

Sentence Semantic representation

---------------- -----------------------

[0] F\X\X

[succ,0] F\X\(F X)

[succ,succ,0] F\X\(F (F X))

[0,+,succ,0] F\X\(F X)

[succ,0,+,succ,succ,0] F\X\(F (F (F X)))

[succ,succ,0,+,0] F\X\(F (F X))

The higher-order DCG derived by the system is

s(A\A B) --> n(B).

s(A\B\(B A) C D) --> n(C),op_s(D).

op_s(A\B\C\D\(B C (A C D)) E) --> [+],s(E).

n(A\B\B) --> [0].

n(A\B\C\(A B (B C)) D) --> [succ],n(D).
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where the term A\B\C\D\(B C (A C D)) in the third rule essentially performs the

additions, and A\B\C\(A B (B C)) in the last rule increments numbers. For example,

consider the parsing of the expression [0 + succ 0]:

s

F\X\(F X)

/ \

n op_s

F\X\X B\C\D\(B C (C D)

| / \

[0] [+] s

F\X\(F X)

|

n

F\X\(F X)

/ \

[succ] n

F\X\X

|

[0]

In this parse tree the semantic representations computed for each rule are listed under-

neath the corresponding grammar symbols. Terminal symbols are denoted by [...]'s.

The partially executed version of this DCG is:

s(A) --> n(A).

s(A) --> n(D),op_s(D\A).

op_s((A\B\C)\A\D\C) --> [+], s(A\D\B).

n(A\B\B) --> [0].

n(A\B\C) --> [succ], n(A\(A B)\C).

Using this DCG, a typical query would be:

| ?- s(L, [s,s,0,+,s,0,+,s,s,s,0,+,0], []).

where the semantic representation L would obtain the following binding:

L = A\B\(A (A (A (A (A (A B))))))

If the semantic representation is instantiated in a query, and a variable is used for the

sentence argument, the system will compute all expressions whose value is equal to that

semantic representation. For example, the query

| ?- s(A\B\(A (A (A (A B)))), S, []).
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will produce the following instantiations for S (commas are omitted for easier reading):

S = [s s s s 0]

S = [s s s s 0 + 0]

S = [s s s 0 + s 0]

S = [s s 0 + s s 0]

S = [s 0 + s s s 0]

S = [0 + s s s s 0]

S = [s s s s 0 + 0 + 0]

S = [s s s 0 + s 0 + 0]

S = [s s 0 + s s 0 + 0]

S = [s 0 + s s s 0 + 0]

S = [0 + s s s s 0 + 0]

etc.

E.1.2. Modulo functions

Given a particular semantics (as implied by the training instances), the grammar rules

specifying the syntax of a language must be structured appropriately, in order for a

solution to exist. Essentially, the compositionality of the language must be expressed

by the rule structure (see section 5.3. for further discussion). The following examples

illustrate this point.

In the �rst example a modulo 2 function is computed, where the symbol succ rep-

resenting the successor function is used for the input \sentence", zero is represented by

the term X\Y\X, and one is represented by X\Y\Y. The syntax is again de�ned by this

CFG:

s --> [0].

s --> [succ], s.

The training instances now are:

Sentence Semantic representation

------------------- -----------------------

[0] X\Y\X

[succ,0] X\Y\Y

[succ,succ,0] X\Y\X

[succ,succ,succ,0] X\Y\Y

Which leads to the following higher-order DCG:

s(A\B\A) --> [0].

s(A\B\C\(A C B) D) --> [succ],s(D).
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And the partially executed version is:

s(A\B\A) --> [0].

s(A\B\C) --> [succ],s(B\A\C).

This DCG can now computed this modulo two function for all (in�nitely many) sentences

accepted by it. As can be easily seen in the partially executed version, this is done simply

exchanging two pre�x variables (A and B) on each iteration.

The next example also computes the modulo 2 function, but now using Church

numerals. The two CFG rules de�ning the syntax in the previous example are now

inappropriate to express the compositionality. Even though a consistent augmentation

was found by the system, it does not appear very natural and is hard to understand:

CFG:

s --> [0].

s --> [succ], s.

Training instances:

Sentence Semantic representation

----------------------- -----------------------

[0] F\X\X

[succ,0] F\X\(F X)

[succ,succ,0] F\X\X

[succ,succ,succ,0] F\X\(F X)

[succ,succ,succ,succ,0] F\X\X

Higher-order DCG:

s(A\B\B) --> [0].

s(A\B\C\(A D\C (B C)) E) --> [succ],s(E).

This DCG computes the correct semantics for all sentences because if the term returned

by E in the second rule is F\X\X, it discards the argument D\C , which is used to

discard the argument (B C) if the term returned by E is F\X\(F X). The is quite a

clever solution, but is unlikely to be generalizable to other modulo functions. Another

interesting point about it is that it cannot be (easily) partially executed. The problem is

that the application in A\B\(A B) sometimes is supposed to be reduced and sometimes

not. The only way to solve this problem would be to require that all applications are

partially executed if possible, including those occurring in the �nal representations (like

in the Church numerals). See chapter 7. for further discussion of this problem.
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The following CFG de�nes the language for a modulo 2 function in a more natural

way, and allows to easily infer the desired semantics. Instead of just one base case as in

the previous example, two base cases are now used:

s --> [0].

s --> [succ,0].

s --> [succ,succ], s.

The training instances are again:

Sentence Semantic representation

------------------ -----------------------

[0] F\X\X

[succ,0] F\X\(F X)

[succ,succ,0] F\X\X

[succ,succ,succ,0] F\X\(F X)

The following higher-order DCG is obtained:

s(A\B\B) --> [0].

s(A\B\(A B)) --> [succ],[0].

s(A\B\C\(A B C) D) --> [succ],[succ],s(D).

which can easily be partially executed to:

s(A\B\B) --> [0].

s(A\B\(A B)) --> [succ],[0].

s(A\B\C) --> [succ],[succ],s(A\B\C).

That is, the third rule simply copies the semantics returned by the subgoal on the

right-hand side, which makes sense since every other number has the same semantic

representation.

In the following example the modulo 3 function is inferred. The number zero is now

represented as X\Y\Z\X, the number one as X\Y\Z\Y, and the number two as X\Y\Z\Z.

Syntax is speci�ed again by:

s --> [0].

s --> [succ], s.

The training instances are:
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Sentence Semantic representation

------------------ -----------------------

[0] X\Y\Z\X

[succ,0] X\Y\Z\Y

[succ,succ,0] X\Y\Z\Z

[succ,succ,succ,0] X\Y\Z\X

The following higher-order DCG is derived:

s(A\B\C\A) --> [0].

s(A\B\C\D\(A C D B) E) --> [succ],s(E).

And partially executed:

s(A\B\C\A) --> [0].

s(A\B\C\D) --> [succ],s(B\C\A\D).

As in the corresponding modulo 2 example above, this DCG can compute the intended

semantics for all sentences by simply rotating the pre�x variables of the term returned by

the right-hand side of the second rule. Obviously, this scheme can easily be generalized

to all modulo n functions, where n is any natural number.

In the next example the system infers the modulo 3 function for numbers represented

by Church numerals. The language is now de�ned by the following CFG which used three

base cases:

s --> [0].

s --> [succ,0].

s --> [succ,succ,0].

s --> [succ,succ,succ], s.

Five training instances are needed to ensure correct augmentation of this grammar:

Sentence Semantic representation

----------------------- -----------------------

[0] F\X\X

[succ,0] F\X\(F X)

[succ,succ,0] F\X\(F (F X))

[succ,succ,succ,0] F\X\X

[succ,succ,succ,succ,0] F\X\(F X)

Using the above grammar and training instances the system derived this higher-order

DCG:
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s(A\B\B) --> [0].

s(A\B\(A B)) --> [succ],[0].

s(A\B\(A (A B))) --> [succ],[succ],[0].

s((A\B\C\(A B C) D)) --> [succ],[succ],[succ],s(D).

and this partially executed DCG:

s(A\B\B) --> [0].

s(A\B\(A B)) --> [s],[0].

s(A\B\(A (A B))) --> [s],[s],[0].

s(A\B\C) --> [s],[s],[s],s(A\B\C).

As in the corresponding modulo 2 case, only the last rule is actually partially executed.

The applications occurring in the base cases are those that occur in the �nal semantic

representations and therefore should not be reduced. Here are some sample executions

of this DCG:

Input Output

--------------- --------------

s s s 0 A\B\B

s s s s 0 A\B\(A B)

s s s s s 0 A\B\(A (A B))

s s s s s s 0 A\B\B

s s s s s s s 0 A\B\(A B)

Computing and inferring modulo n functions using Church numerals in this way can

be generalized to any natural number n in the obvious way by providing n base cases, and

by providing one recursive rule which reduces the input number by n on each iteration

and simply copies the corresponding semantic representation.

E.2. Learning to parenthesize arithmetic expressions

In the following example the system infers a DCG that parses simple arithmetic ex-

pressions and returns enhanced versions of those expressions by parenthesizing them

according to operator precedences implicitly speci�ed by the grammar de�ning the ex-

pression language. The language is de�ned by the following CFG:

s --> prod.

s --> prod, con_sum.

con_sum --> add_op, s.

prod --> number.

prod --> number, con_prod.
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con_prod --> mult_op, prod.

add_op --> [+].

add_op --> [-].

mult_op --> [*].

mult_op --> [/].

number --> [1].

number --> [3].

number --> [5].

The training instances below are su�cient to ensure correct augmentation of the gram-

mar:

Sentence Semantic representation

-------- -----------------------

[1] 1

[3] 3

[1,+,5] ('+' 1 5)

[1,-,5] ('-' 1 5)

[1,*,5] ('*' 1 5)

[1,/,5] ('/' 1 5)

The higher-order DCG inferred by the system is:

s(A\A B) --> prod(B).

s(A\B\(B A) C D) --> prod(C),con_sum(D).

con_sum(A\B\C\(A C B) D E) --> add_op(D),s(E).

prod(A\A B) --> number(B).

prod(A\B\(B A) C D) --> number(C),con_prod(D).

con_prod(A\B\C\(A C B) D E) --> mult_op(D),prod(E).

add_op(A\B\(+ A B)) --> [+].

add_op(A\B\(- A B)) --> [-].

mult_op(A\B\(* A B)) --> [*].

mult_op(A\B\(/ A B)) --> [/].

number(1) --> [1].

number(3) --> [3].

number(5) --> [5].

And the partially executed version is:

s(A) --> prod(A).

s(A) --> prod(D),con_sum(D\A).

con_sum(A\B) --> add_op(A\E\B),s(E).

prod(A) --> number(A).

prod(A) --> number(D),con_prod(D\A).
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con_prod(A\B) --> mult_op(A\E\B),prod(E).

add_op(A\B\(+ A B)) --> [+].

add_op(A\B\(- A B)) --> [-].

mult_op(A\B\(* A B)) --> [*].

mult_op(A\B\(/ A B)) --> [/].

number(1) --> [1].

number(3) --> [3].

number(5) --> [5].

The following test runs of this partially executed DCG demonstrate that it computes

the correct semantics for all accepted sentences.

| ?- s(L,[1,+,3],[]).

L = (+ 1 3)

| ?- s(L,[1,+,3,*,5],[]).

L = (+ 1 (* 3 5))

| ?- s(L,[1,+,3,*,5,*,1],[]).

L = (+ 1 (* 3 (* 5 1)))

| ?- s(L,[1,+,3,*,5,*,1,+,3],[]).

L = (+ 1 (+ (* 3 (* 5 1)) 3))

E.3. Boolean functions

In this section I demonstrate the inference of the boolean and and or function. The

true values can be represented in the following way:

true = X\Y\X

false = X\Y\Y

Given these representations, the functions and and or can be implemented like this:

and = A\B\(A B X\Y\Y)

or = A\B\(A A B)

In the typed �-calculus the type of true would be of the form �

1

! �

2

! �

3

. Now,

assume we want to perform the following computation:

(and true true) =

(X\Y\(X Y M\N\N) X\Y\X X\Y\X)
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(Y\(A\B\A Y M\N\N) X\Y\X)

(A\B\A C\D\C M\N\N) X\Y\X

...

That is, true is applied to true: (A\B\A C\D\C). This implies that the type of the �rst

argument of true must have the same type as true itself, which is impossible. Therefore

the untyped �-calculus must be used for such cases.

OR-function:

The following CFG de�nes the language of simple boolean expressions involving only the

logical or and the boolean values true and false:

s --> a.

s --> a, b.

b --> [or], s.

a --> [true].

a --> [false].

The system is trained on the following examples:

Sentence Semantic representation

---------------- -----------------------

[true] A\B\A

[false] A\B\B

[false,or,false] A\B\B

[true,or,false] A\B\A

[false,or,true] A\B\A

And derives this higher-order DCG:

s(A\A B) --> a(B).

s(A\(A A) B C) --> a(B),b(C).

b(A\A B) --> [or],s(B).

a(A\B\A) --> [true].

a(A\B\B) --> [false].

The or function is implemented essentially by the term A\(A A) in the second rule.

The system derived this higher-order DCG using the sequence of substitutions given

below. First the grammar is augmented with function variables in the usual way:

s(F1 A) --> a(A).

s(F2 A B) --> a(A),b(B).

b(F3 A) --> [or],s(A).

a(F4) --> [true].

a(F5) --> [false].
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Executing this augmented grammar for each training sentence leads to the following set

of higher-order equations:

[[F1 F4,K\L\K],

[F1 F5,K\L\L],

[F2 F5 (F3 (F1 F5)),K\L\L],

[F2 F4 (F3 (F1 F5)),K\L\K],

[F2 F5 (F3 (F1 F4)),K\L\K]]

Below is the sequence of substitutions and the resulting equations leading to the solution:

proj(1,1,0): F1 <- K\K

[[F4,K\L\K],

[F5,K\L\L],

[F2 F5 (F3 F5),K\L\L],

[F2 F4 (F3 F5),K\L\K],

[F2 F5 (F3 F4),K\L\K]]

proj(2,2,0): F4 <- K\L\K

[[F5,K\L\L],

[F2 F5 (F3 F5),K\L\L],

[F2 K\L\K (F3 F5),K\L\K],

[F2 F5 (F3 K\L\K),K\L\K]]

proj(2,1,0): F5 <- K\L\L

[[F2 K\L\L (F3 K\L\L),K\L\L],

[F2 K\L\K (F3 K\L\L),K\L\K],

[F2 K\L\L (F3 K\L\K),K\L\K]]

proj(1,1,1): F2 <- K\(K (H1 K))

[[F3 K\L\L,K\L\L],

[H1 K\L\K,K\L\K],

[F3 K\L\K,K\L\K]]

proj(1,1,0): F3 <- K\K

[[H1 K\L\K,K\L\K]]

proj(1,1,0): H1 <- K\K
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[]

F1 <- K\K

F4 <- K\L\K

F5 <- K\L\L

F2 <- K\(K K)

F3 <- K\K

H1 <- K\K

The following sample executions of the inferred higher-order DCG demonstrate that

it computes the correct result for all sentences of the language.

Input Output

----------------------------------------- ------

[true] A\B\A

[true,or,true] A\B\A

[false,or,true] A\B\A

[false,or,false,or,false] A\B\B

[true,or,false,or,false,or,true,or,false] A\B\A

AND-function:

The corresponding CFG for the and function is:

s --> a.

s --> a, b.

b --> [and], s.

a --> [true].

a --> [false].

The following training instances are used:

Sentence Semantic representation

------------------- -----------------------

[true] A\B\A

[false] A\B\B

[true,and,true] A\B\A

[true,and,false] A\B\B

[false,and,true] A\B\B

The �rst solution the system came up with is given below. Since in general there are

many (equivalent) solutions, it depends on the search strategy used by the higher-order

uni�cation procedure which one is found �rst. This solution appears to be a rather

complex but is correct nevertheless as demonstrated by the sample runs further below.
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s(A\A B) --> a(B).

s(A\(A (A B\B (C A)) (A (D A) E\A)) F G) --> a(F),b(G).

b(A\A B) --> [and],s(B).

a(A\B\A) --> [true].

a(A\B\B) --> [false].

This higher-order DCG was derived in the following way:

s(F1 A) --> a(A).

s(F2 A B) --> a(A),b(B).

b(F3 A) --> [and],s(A).

a(F4) --> [true].

a(F5) --> [false].

[[F1 F4,K\L\K],

[F1 F5,K\L\L],

[F2 F4 (F3 (F1 F4)),K\L\K],

[F2 F4 (F3 (F1 F5)),K\L\L],

[F2 F5 (F3 (F1 F4)),K\L\L]]

proj(1,1,0): F1 <- K\K

[[F4,K\L\K],

[F5,K\L\L],

[F2 F4 (F3 F4),K\L\K],

[F2 F4 (F3 F5),K\L\L],

[F2 F5 (F3 F4),K\L\L]]

proj(2,2,0): F4 <- K\L\K

[[F5,K\L\L],

[F2 K\L\K (F3 K\L\K),K\L\K],

[F2 K\L\K (F3 F5),K\L\L],

[F2 F5 (F3 K\L\K),K\L\L]]

proj(2,1,0): F5 <- K\L\L

[[F2 K\L\K (F3 K\L\K),K\L\K],

[F2 K\L\K (F3 K\L\L),K\L\L],

[F2 K\L\L (F3 K\L\K),K\L\L]]

proj(1,1,2): F2 <- K\(K (H1 K) (H2 K))

[[H1 K\L\K (F3 K\L\K),K\L\K],
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[H1 K\L\K (F3 K\L\L),K\L\L],

[H2 K\L\L (F3 K\L\K),K\L\L]]

proj(1,1,2): H1 <- K\(K (H3 K) (H5 K))

[[H3 K\L\K (F3 K\L\K),K\L\K],

[H3 K\L\K (F3 K\L\L),K\L\L],

[H2 K\L\L (F3 K\L\K),K\L\L]]

proj(2,1,0): H3 <- K\L\L

[[F3 K\L\K,K\L\K],

[F3 K\L\L,K\L\L],

[H2 K\L\L (F3 K\L\K),K\L\L]]

proj(1,1,0): F3 <- K\K

[[H2 K\L\L K\L\K,K\L\L]]

proj(1,1,2): H2 <- K\(K (H6 K) (H4 K))

[[H4 K\L\L K\L\K,K\L\L]]

proj(2,2,0): H4 <- K\L\K

[]

F1 <- K\K

F4 <- K\L\K

F5 <- K\L\L

F2 <- K\(K (K L\L (H5 K)) (K (H6 K) L\K))

H1 <- K\(K L\L (H5 K))

H3 <- K\L\L

F3 <- K\K

H2 <- K\(K (H6 K) L\K)

H4 <- K\L\K

The above higher-order DCG computes the correct result for all sentences of the language

as can be seen from the following sample executions:

Input Output

---------------------------------------------------- ------

[true,and,true] A\B\A

[true,and,true,and,false] A\B\B
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[true,and,true,and,true,and,true,and,true] A\B\A

[true,and,true,and,true,and,false,and,true,and,true] A\B\B

[false,and,false,and,true,and,false] A\B\B
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