INFERENCE OF SEMANTICS FROM EXAMPLES:

FROM CONTEXT-FREE TO DEFINITE-CLAUSE GRAMMARS

by

JUERGEN HAAS

A dissertation submitted to the
Faculty of the Graduate School of
State University of New York at Buffalo
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

September 1993

Acknowledgments

I thank my thesis advisor Professor Bharat Jayaraman for giving me the opportunity
to pursue this interesting and exciting project. His suggestions and guidance helped to
keep me on the right track and made the development of this dissertation a productive

and enjoyable experience.

I am grateful to Professor Stuart C. Shapiro and Professor William J. Rapaport for
the excellent education I received through them during my years at SUNY Buffalo and

for their comments on my dissertation research.

I also thank Dr. Fernando C. N. Pereira and Dr. Dale A. Miller for interesting dis-

cussions and valuable comments.

This research was supported in part by grant CCR 9004357 from the National Science

Foundation.

Abstract

This dissertation considers the problem of synthesizing mappings from syntactic struc-
tures to meaning representations given a grammar and sample sentence-meaning pairs.
The motivation for this work stems from the potential use of such techniques in the
development of natural-language front-ends, e.g., natural query languages. The cen-
tral technical problem addressed in the dissertation is the mechanical transformation
of a context-free grammar (CFG) into a definite clause grammar (DCG) using sam-
ple sentence-meaning pairs of the form (s, m), where s is a sentence belonging to the
language defined by CFG and m is the semantic representation (meaning) of s. The
resulting DCG would be such that it could be executed, by the interpreter of a logic
programming language, to compute the semantic representation(s) for every sentence
of the original CFG. Two important assumptions underlie the proposed approach: (i)
the semantic representation language is the simply typed lambda-calculus, and (ii) the
semantic representation of a sentence can be obtained from the semantic representations

of its parts (compositionality).

The basic technique involves an enumeration of a representative finite set of sen-
tences and formation of a corresponding set of equations over (typed) function variables.
Each function variable represents the meaning of a particular grammar rule, and effec-
tively serves to augment the original CFG in order to derive a higher-order DCG. The
main research topics investigated in this disseration are: (i) formulation of a solution
technique using a variant of Huet’s unification procedure for the simply-typed lambda-
calculus; (ii) efficient implementation of the solution using constraints from multiple
examples, “macro” substitution rules that package common sequences of more basic
substitutions, and a dependency-directed backtracking search; (iii) development of a
provably-correct partial execution procedure to convert the constructed higher-order
DCG into a first-order DCG, for more efficient execution; and (iv) the application of the
entire methodology for developing a natural query language—a variant of the CHAT-80

query language—starting from a grammar and sample sentence-meaning pairs.

Contents

1. Introduction
1.1. The Problem and Its Significance
1.2. Approach and Technical Results
1.2.1. Efficient Synthesis o oo
1.2.2. Efficient Execution o000

1.2.3. Application to Natural Query Languages
1.3. Scope and Outline of the Dissertation

. Related Research

2.1. Automatic Synthesis of Semantics
2.2. Program Synthesis by Examples,
2.3. Machine Learning oo
2.4. Natural Language Learning

. Typed A-Calculus: Equality and Unification

3.1, Typed Atermso
3.2. Equality between A-terms. L L.,
3.3. Representation of Mathematical Objects
3.4. Higher-Order Unification

3.4.1. Motivation Lo

3.4.2. Higher-order unification procedure

. Higher-Order Definite Clause Grammars

4.1. Definite Clause Programs
4.2. First-order Definite Clause Grammars.
4.3. Higher-order Definite Clause Grammars.
4.3.1. Higher-order definite clauses
4.3.2. Higher-order DCGs

. Synthesizing Higher-Order DCGs from Examples

5.1. Basic Technique
5.1.1. Procedure SYNTH(G)

12
13
13

15
15
16
17
18

20
20
22
24
25
25
28

36
36
40
48
48
48

5.1.2. Procedure SOLVE(E) L. 56

5.1.3. Procedure SUBST(e) 57
5.1.4. Function CHECK(E) 58

5.2. Two Examples of Synthesis 00, 58
5.2.1. The Successor Function oo, 58
5.2.2. Search Constraints through Multiple Examples 61

5.3. Compositionality L L e 64
5.3.1. Significance of Compositionality 64
5.3.2. Can Compositionality be Expected? 66

5.4. Multiple Solutionso 67
5.4.1. Equivalent solutions o o o 0o 68
5.4.2. Solutions leading to distinct DCGs 69

B.h. Summary Lo e e e e e 70
. Efficient Synthesis 71
6.1. Generation of Training Instances 71
6.1.1. Criteria for selecting training instances 73
6.1.2. Efficiency issues Lo e 75

6.2. Search Control and Combination Rules 78
6.2.1. More Efficient Substitutions 0. 79
6.2.2. Effect of Combination Rules on Search Complexity 84
6.2.3. Linearity and Monotonicity oo o0 88
6.4. Dependency Directed Backtracking 000, 89
6.0, SUMmMAaryo e e e e e 91
. Efficient Execution 93
7.1. Basic Procedure for Partial Execution 93
7.1.1. Correctness of Partial Execution 96

7.2. Enhanced Partial Execution Procedure 100
7.2.1. Improved Treatment of Application Terms 100
7.2.2. The Need for Copying oo 103
7.2.3. General Procedure for Partial Execution 104

7.3. Reversibility 107
7.3.1. Correctness for Reverse Execution 108
7.3.2. Efficient Control for Reverse Execution 110

7.3.3. Application of Reversibility 0., 112

TA SUMMATY « . o v v v o b e i e e e e e e e e e e 114

8. Application to Natural Query Languages 115
8.1. Pragmatic Enhancements o o o oL 115
8.1.1. Type Assignment and Type Inference 115

8.1.2. Semantic Rules Provided by the User 117

8.1.3. Generalization of Lexical Rules 119

8.2. Methodology for Larger Applications 119
8.2.1. Compositionality and Grammatical Structure 119

8.2.2. Reversible Grammars oL o oo 121

8.2.3. Efficiency 125

8.2.4. Type Raising o e 125

8.3. Case Studies L 127
8.3.1. CHAT-80' e 127

8.3.2. SEQUEL’ 134

S84 SUMMATY .« v v v v et e e e e e e e e e 137

9. Conclusions and Further Work 139
9.1. Summary and Contributions o oo 139
9.1. Generalizing the Paradigm to Other Applications 140
9.3. Syntactic and Semantic Ambiguities o oL 143
9.4. Limitations and Extensions 0 0o 145
Bibliography 148
Appendix 156
A: How to Use the System 156
A.l. The userinterface o o 156
A.2. Debugging and diagnostic facilities 162

B: Details of the CHAT-80' Application 164
C: Application to a Larger Subset of English 191

D: Illustration of Combination Rules 199

E: Further examples of DCG synthesis 214
E.1. Learning arithmetic functions using Church numerals 214
E.1.1. Addition function L o o 214

E.1.2. Modulo functions o o 216

E.2. Learning to parenthesize arithmetic expressions 220
E.3. Boolean functions L L o 222

1. Introduction

1.1. The Problem and Its Significance

The two definitive properties of a language are its syntax and semantics. At the
outset, I should clarify that I use the term language in a broad sense, and include the
kinds of formal languages that one encounters in automata theory, conventional pro-
gramming language constructs, and certain restricted subsets of natural languages. The
term syntax refers to the structure of well-formed sentences of a language, whereas the
term semantics refers to the meaning of well-formed sentences. The syntax of the kinds
of languages considered in this dissertation is fairly well-understood, that is, it is rela-
tively straightforward to define the set of well-formed sentences of such languages using
context-free grammars! or Backus-Naur Form (BNF). However, the formal semantics of
a language is harder to specify, and numerous approaches have been proposed in the

literature, e.g., denotational, axiomatic, operational, etc. (Gordon 1988).

This dissertation is concerned with the problem of inferring semantics of a language
from examples, assuming that we are already given its syntax. More precisely, I as-
sume that the syntax is given using an unambiguous context-free grammar, although
the proposed techniques also apply to certain attribute grammars, where the attributes
specify context-sensitive features such as number or gender agreement, and can be ex-
tended to apply to ambiguous grammars. There are several semantic representation
languages, first-order logic (FOL), A-calculus, semantic networks (Brachman 1979),
etc. (For brevity, I will use the term ‘semantics” and ‘semantic representations’ as syn-
onyms throughout this dissertation.) Given an unambiguous grammar, the problem of
inferring its meaning from examples is one of finding the mapping (i.e., function) from
sentences to their meanings on the basis of sample sentence-meaning pairs. More specifi-
cally, the goal of this research is to develop a system that takes as input an unambiguous
context-free grammar (CFG) and a finite set of pairs (s, m), where s is a sentence

belonging to the language defined by the context-free grammar and m is the semantics

!Context-free grammars are clearly insufficient to specify the complete syntax of a natural langnage
or even a programming language. I therefore limit attention to restricted subsets of these languages. See

section 1.3 for further discussion.

of s, and will produce as output a definite clause grammar (DCG) (Pereira and Warren
1980) that will compute the semantics of every sentence of the input grammar. A DCG
is essentially a CFG wherein each nonterminal symbol has been enhanced with a param-
eter that provides semantic information. A DCG can be directly converted into a logic
program which can then be executed to perform parsing or generation. This dissertation
shows that in many practical cases such a mapping can be automatically inferred from a
representative finite set of examples. The next subsection will clarify the precise sense in
which this problem can be solved and the research issues it raises, but first I will discuss

the significance of this problem:
(1) Why is it desirable to automatically generate a DCG from a CFG?
(2) What are the applications of such a system?

It is not easy to manually augment a CFG with semantic constructors to obtain a
DCG because the task of building a correct and efficient DCG requires a fair amount
of search, the process being tedious and error-prone. Even for the small grammars
considered in later chapters of this dissertation, it is not obvious what the semantic
constructors should be. However, it is easy to give sample sentence-meaning pairs, and
often the semantic representation of a sentence is systematically composed from those
of the phrases that constitute the sentence. Therefore it natural to seek a mechanical
procedure that will compute (induce) the semantics of all sentences of a given CFG on
the basis of a representative set of sentence-meaning pairs.

Another motivation for a mechanical transformation procedure from a CFG to a
DCG is to accommodate changes quickly and correctly. For example, in the context of
natural query languages, it will be a fairly common task to change an interface to another
language or another dialect or jargon, but to keep the semantic representations the same.
In general this requires a complete redesign of the grammar, a task that would be easily
accomplished by the proposed system, whereas conventional methods would require a
substantial amount of programming effort, the result of which will likely be error-prone

and not as general.

The proposed system would facilitate rapid prototyping of natural language inter-
faces for database systems or customizing such interfaces for specific applications (Ve-
lardi 1989, Wallace 1984), since the interface could be obtained merely by defining the
grammar and typical sentence-meaning pairs. Both the conversion of the natural lan-

guage query into this representation and the conversion from this representation back

into natural language would be handled by the generated interface—the latter operation
would be achieved by applying the definite-clause grammar in the reverse direction to
the semantic representations. Reversible execution of DCGs is possible because they
are essentially logic programs. Since the DCGs considered in this dissertation are me-
chanically generated, they have a more restricted form compared with arbitrary logic
programs, or for that matter arbitrary DCGs. This in turn makes them more amenable
to reversible execution than for arbitrary logic programs or DCGs.

The techniques developed in this dissertation may provide a new approach to machine
learning and program synthesis from examples. Similar techniques have recently been
explored by Hagiya (1990). For example, program synthesis from examples is related to
our stated problem in the following way: the CFG is analogous to a program schema; the
resulting DCG is analogous to the program to be synthesized; and, the sample sentence-
meaning pairs are analogous to the sample input-output pairs of the program to be
synthesized. However, program synthesis is the harder of the two problems because it
also involves the determination of the right schema. This topic is discussed further in

chapter 2.

1.2. Approach and Technical Results

An arbitrary transformation (i.e., an arbitrary infinite mapping) cannot be inferred from
finitely many examples, and hence it is necessary to impose additional constraints on
our problem. We make the following two assumptions in order to facilitate the mechan-
ical transformation of a CFG to a DCG: (i) the semantic representation language is the
simply typed A-calculus (Church 1940); (ii) the semantic representation of a sentence is
systematically constructed from those of its phrases (compositionality). These assump-
tions are not unusual, since such assumptions have been adopted, for example, by R.
Montague for a proper treatment of quantification of English (Montague 1974, Dowty et
al. 1981). To illustrate, consider the following CFG rule,

sentence — nounphrase, verbphrase

which specifies that a sentence is composed of a noun phrase followed by a verb phrase
(sentence, nounphrase and verbphrase are nonterminals). A key idea of my approach

is to exploit the compositionality principle to enhance the rules as follows:
sentence((F X Y')) — nounphrase(X), verbphrase(Y)

where uppercase letters are variables. That is, if variables X and Y represent respectively

the meanings of the nonterminals nounphrase and verbphrase, then the meaning of

nonterminal sentence is obtained by applying some function F’ to X and Y. The function
variable F'is a term in the simply typed A-calculus, and must be determined by the
system based upon the finite set of input examples. The semantic representations of the
terminal symbols of the CF'G are the other unknowns to be determined by the system.

The compositionality principle effectively means that the grammatical structure con-
strains the allowable semantics. The choice of the simply-typed A-calculus as the seman-
tic representation language drastically reduces the search space of allowable solutions,
as we shall later see. Under these two assumptions, it can be seen that the stated prob-
lem is recursively enumerable in that, if there exists a DCG satisfying the finitely many
examples, it is possible to systematically find it; if there is no solution, the search may
sometimes be nonterminating. The typed A-calculus is particularly suitable for analyzing
and synthesizing semantic representations. It effectively allows us to reduce the gener-
alization problem to a unification problem over simply-typed terms. This unification
problem is called higher-order unification because variables may range over functions.

A semi-decidable solution procedure for this problem was first described by Huet (1975).

Briefly, my technique is to enumerate sentences in a certain order, query the user
for the semantic representation of each of the generated sentences, formulate a set of
equations over the unknown function variables, and solve these equations using a vari-
ant of Huet’s unification procedure. The solutions for these function variables serve to
augment the original CFG in order to derive the final DCG.

Referring to the grammar rule given above, if the solution for F' was AA.AB.(B A),

then the grammar rule would become
sentence((AAAB.(B A) X Y)) — nounphrase(X), verbphrase(Y)
which is equivalent to

sentence((Y X)) — nounphrase(X), verbphrase(Y).

It turns out that Huet’s procedure cannot be directly used to solve the kinds of
equations that arise in our context. The reason is that this procedure requires that the
types for all terms are known in advance; however, in the synthesis scheme, in general
only some of the types are known when the equations are set up. It therefore becomes
necessary to augment his procedure with two important operations—type inference and

type enumeration.

10

1.2.1. Efficient Synthesis

In order to achieve acceptable performance for realistic grammars, the search has to
make effective use of the constraints from multiple examples. Thus the proposed system
marks an interesting point of departure from AProlog (Nadathur and Miller 1988) both
with respect to the unification procedure as well as the search regime. (This is the
reason that the synthesis system was implemented from scratch rather than on top of
AProlog.) Another difference from AProlog arises from the fact that the right-hand
sides of all equations generated from the examples are ground (i.e., do not contain any
free variables). Thus higher-order unification reduces to higher-order matching in this
context. As the decidability of general higher-order matching still remains an open
problem, in this dissertation I will adapt the (semi-decidable) unification procedure of
Huet, exploiting where possible the fact that all right-hand sides are ground. To speed
up the synthesis of common types of substitution terms, I also explore the use of “macro”
substitution rules, which are certain combinations of Huet’s substitution rules without
any free variables. In this way the kinds of substitutions needed in the context of DCG
synthesis can be enumerated more efficiently. The approach of simultaneously solving a
set of higher-order equations also facilitates an effective scheme of dependency directed
backtracking. If a substitution causes failure in a particular equation, backtracking can

be restricted to substitutions that have influenced that equation.

Unlike first-order unification, the unification of simply-typed A-terms can yield more
than more one solution. However, these solutions do not necessarily result in DCGs
that implement different sentence-meaning functions. But if the problem is undercon-
strained by providing too few examples, the resulting DCGs need not be equivalent. If
more examples are provided than necessary, there may be no solution at all if the exam-
ples are inconsistent, or unnecessary computations may be performed when solving the
equations.? Therefore one should use as few examples as are necessary to guarantee a
unique solution (sentence-meaning function). I derived a set of criteria for determining
whether a set of examples has this property. These criteria ensure that the grammar rules
are exposed to as many variations of sentences as are necessary to enforce maximally
general semantic rules. An important technique in this context is to change one word

of a sentence at a time, so that it can be uniquely determined which words contribute

2This problem is analogous to the linear algebra problem of determining a plane by specifying a set
of points in space; at least three points are necessary to fix a (two-dimensional) plane. Specifying less
than three points allows many different planes, whereas specifying more than three points can make a

solution impossible.

11

which subterms of the semantic representation. Further performance improvements can
be achieved by presenting shorter training instances before longer ones. The equations
corresponding to shorter training instances are easier to solve, and the constraints intro-

duced by them reduce the search for substitutions of subsequent equations.

1.2.2. Efficient Execution

While higher-order logic is useful for reasoning about and synthesizing programs, it is
not very amenable to efficient execution. To achieve acceptable performance for larger
grammars, the constructed higher-order DCG should be converted into a first-order DCG
where possible. A first-order DCG is also more amenable to reversible execution than
a higher-order DCG. T have investigated a technique called partial execution, which
effectively replaces A-terms by first-order terms, and therefore replaces higher-order uni-
fication by (the more efficient) first-order unification. The use of first-order unification
to simulate certain cases of f-reduction was first introduced by Colmerauer (1978), and
the connection between partial execution of predicates and Colmerauer’s method for do-
ing semantic interpretation in a logic grammar was made explicit by Pereira & Shieber
(1987). I have developed a specialized version of partial execution that automatically
converts a higher-order DCG into a first-order DCG guided by the set of examples that
were used to derive the higher-order DCG.

The partially executed DCG works in the forward direction (i.e., computing the se-
mantic representation of a sentence) by using first-order matching instead of S-reduction,
and works in the reverse direction (i.e., computing the sentence(s) for a given semantic
representation) by using first-order unification instead of higher-order unification. A
simple form of partial execution is possible for the class of DCGs where all application
terms are reduced during execution and the bodies of semantic terms do not have mul-
tiple occurrences of variables. If these assumptions do not hold, tracing the execution
of the training instances can be used to determine which application terms should be
partially executed. Copy operations may be necessary if a variable occurs more than

once in a semantic term.

Even though one can construct pathological grammars and semantic representations
where this scheme of partial execution fails, it appears to be applicable for most practical
applications, and I have shown its correctness in those cases. Higher-order DCGs for
which I could not find a satisfactory solution are those where a particular application

term is reduced for some sentences but not for others. However, usually such grammars

12

can be easily rewritten into a more natural form that avoids this problem. For cases
where the partially executed DCG fails to compute the correct answer in the reverse

direction, I have developed a simple enhancement that will restore correctness.

Efficient forward execution of DCGs has received considerable attention in the lit-
erature (e.g., see Matsumoto (1983) and references therein), but techniques for efficient
reverse execution are also important. It turns out that a partially executed DCG is par-
ticularly well-suited for reverse execution, since first-order unification is more efficient
than higher-order unification. I have implemented an interpreter for reverse execution
of a partially executed DCG that uses a selection strategy that ensures that at each
step constraints from the semantic representation are utilized, so that nondeterminism

is minimized.

1.2.3. Application to Natural Query Languages

In order to demonstrate the viability of my approach for larger grammars, I applied my
techniques to synthesize a variant of the CHAT-80 natural query language (Warren and
Pereira 1980). The grammar defining the syntax of queries contained about 90 rules
(excluding terminals). This exercise helped develop a methodology for generating large
DCGs: I have found that the best way to synthesize a large DCG is to group the given
syntactic rules into independent modules that can be “trained” individually, and to in-
crementally add new rules. Such an approach also ensures that the number of variables
to be solved for at each incremental step is small, by taking advantage of the results
from previous steps. This in turn helps keep the search space for solutions small. The
implemented system also permits the semantics for grammar rules and terminals to be
optionally specified along with the syntactic rules, if they are known. This incremental
approach is also useful if the syntactic rules need to be modified to maintain composi-
tionality. My schemes for partial execution and reverse execution of DCGs have proved

to be effective for all test cases the system was applied to.

1.3. Scope and Outline of the Dissertation

The objective of this research differs from those of Berwick (1985), Ishizaka (1990) and
others, who are concerned with inferring a grammar (syntax) from example sentences.
Instead, given the grammar, my objective is to infer the semantics of sentences from
examples. Natural languages are of interest in my work since they are good examples

of languages whose semantics require the use quantified terms and hence the full use

13

of the typed A-calculus. However, my work is not directly concerned with devising
suitable semantics for natural languages; it is the user’s responsibility to construct both
the grammar as well as the semantic representation for typical sentences in the typed
A-calculus.

This dissertation is concerned with that subset of natural languages that can be ade-
quately described with CFGs and the typed A-calculus. For applications such as natural
query languages, it seems feasible to describe the language with a context-free grammar
and also to insist on sentences with unambiguous meanings. However, the techniques
apply equally to CFGs that have been extended with additional arguments to control
rule application, which makes them effectively context sensitive. It appears that issues
related to pronoun resolution can be separated from those related to generalization of
semantics. Therefore I restrict my attention to languages without pronouns or anaphora.
In this dissertation I am not concerned with the issues related to resolution of ambigu-
ities, but the present system can be extended to handle certain types of syntactic and
semantic ambiguity. Suggestions on how that might be done are given in chapter 9.

The remainder of this dissertation is organized as follows: Chapter 2 surveys related
research; chapters 3 and 4 review the typed A-calculus and definite-clause grammars re-
spectively (these chapters are provided in order to make the dissertation self-contained);
chapter 5 describes the basic techniques underlying the synthesis of a higher-order DCG;
chapter 6 describes how to improve the efficiency of the synthesis procedure; chapter 7 de-
scribes how to convert the higher-order DCG into a first-order DCG by partial execution,
and shows the correctness of the partially executed DCG under appropriate conditions;
chapter 8 describes the application of the foregoing techniques to the synthesis of natural
query languages; and chapter 9 presents conclusions, contributions, possible extensions,

and areas of further work.

14

2. Related Research

I am not aware of any published research that meets the stated objectives of the previous
chapter, but there are several closely related research areas. I briefly survey these research

areas below and mention their relationship to my work.

2.1. Automatic Synthesis of Semantics

In order to partially automate the synthesis of semantics, various formalisms have been
developed within the logic grammar framework, e.g., modifier structure grammars, re-
striction grammars, discontinuous grammars, and puzzle grammars (Abramson and
Dahl 1989). These grammars provide the user with means for specifying guidelines which
a system could consult in order to construct the final representation. That is, the user
specifies the desired type of semantic representation in some high-level language, and the
system then translates these specifications into constructors which can be incorporated
into the executable grammar rules. It appears that the only types of semantic represen-
tations that could be completely automated with these approaches are parse trees, since
their representations follow exactly the history of rule application.

Hauptmann (1991) discusses the automatic acquisition of semantic interpretation
rules which convert syntactic tree-structures (the output of an ATN syntactic parser)
into tree structured frame representations (of the KL-ONE knowledge representation
system). The basic ideas behind his approach are similar to those discussed in this
dissertation, but his generalization and induction processes are much more heuristic and
ad hoc compared with my proposed approach based upon higher-order unification. As a
result, his system is more restrictive and probably harder to generalize beyond the specific
types of transformations discussed in his thesis. For example, his approach assumes
that the lexical mapping rules are already known; i.e., the semantic representations
of all the individual words must be given to the system, whereas the system discussed
in this dissertation can infer them from the examples. He uses various heuristics, for
example, specific mapping rules are generalized by allowing a certain substitution because
“all other critical parts of the rule are identical and the embedded concept that was
substituted is sufficiently similar to the original one, based on a definition of similarity

which exploits the frame hierarchy.” His system also does not appear to be reversible.

15

The reason why no heuristics are needed in the system discussed in this dissertation
is because the constraints are collected in a set of higher-order equations to be solved
simultaneously, so that once a solution has been found there are no other constraints
that could invalidate the solution. Whereas when one tries to generalize locally without
taking all the other restrictions into account, similarity heuristics are needed to control

the search.

2.2. Program Synthesis by Examples

A definite clause grammar can be viewed as a program that takes as input a sentence
and computes its semantic representation (see section 4 for details). Therefore the aug-
mentation process discussed in this dissertation can be considered a type of automatic
program synthesis from examples (Summers 1977, Bauer 1979, Kodratoff 1979, Bier-
mann et al. 1984). Programming by examples, on the other hand, is a special case of
inductive inference, since the synthesis of a program generally involves the inference of
an extended pattern of program behavior from the patterns discovered in the examples—
computability theory has shown that it is possible to infer large useful classes of programs
simply from examples of input/output behavior (Gold 1967, Blum 1975, Barzdin 1977).
A common way to deal with the search problem in automatic program synthesis from
examples is to use program schemata to constrain the way in which the control struc-
tures and data operators of the chosen programming language are used (Smith 1984). In
this dissertation, the parsing grammar provided to the system can be considered such a
program schema.

Until recently, research in program synthesis from examples has not considered the
kind of input/output pairs with quantified terms and types. Hagiya (1991) extends the
simply typed A-calculus with inductive definitions, providing a formalism for solving
both inductive learning (“programming by example”) as well as deductive learning
(“proving by example”) problems. Both types of problem are formulated as equations
in a typed A-calculus. However, in order to avoid combinatorial explosion when solving
such equations, appropriate program or recursion schemata must be provided. These
schemata can also be formulated in the calculus introduced by Hagiya and could in

principle be inferred through higher-order unification.

16

2.3. Machine Learning

The use of the typed A-calculus and higher-order unification can be thought of as car-
rying out inductive learning (programming by examples). There is a strong similarity
to deductive learning (proving by example) as well: if the semantics for the terminal
symbols of the grammar are given, the correct substitutions for the remaining function
variables can be considered a proof that a particular sentence has a particular seman-
tic representation as specified by an example. Generalization takes place in that once
a function substitution has been determined by a set of examples, the corresponding
semantics is determined for all sentences that use the rule with that substitution during
parsing. The problem of inferring these substitutions is made tractable in our case by
the fact that syntactic structure is predefined, thus providing an appropriate program
schema.

Proving by examples is known more commonly as explanation-based learning (EBL)
(Shavlik 1990, Hagiya 1991). EBL has been investigated mainly in the area of theorem
proving, although the same mechanism underlies much of the work in other fields such
as skill acquisition and automatic programming. EBL can be considered as the general-
ization of a given proof, so that theorems that are “similar” to the one derived by that
proof can be derived more efficiently. The initial proof that is used to guide the gen-
eralization in EBL corresponds to semitraces in the area of programming by examples
(Smith 1984), and the general proof in EBL corresponds to the synthesized program. In
our work, the analysis of a particular sentence and its representation corresponds to the
initial proof and is used to guide the augmentation of the grammar.

Determining the association between terminal symbols (words) and their semantic
representations using anti-unification can be considered a generalization of learning con-
cepts from examples. Anti-unification is essentially the dual of unification; that is, Uy is
an “anti-unifier” of two terms t; and t,, if U4 can be unified with ¢; and with ¢5. Instead
of using an expressive description language to formulate possible generalizations, as in the
version-space approach (Mitchell 1978), anti-unification generalizes only by turning con-
stants or terms into variables, thus facilitating efficient implementation. Anti-unification
is implicitly handled in my system by the higher-order unification procedure. By suc-
cessively considering example sentences whose sentences differ in only one word from
the sentence of the “main” example sentence, my system effectively incorporates the

powerful concept of near misses (Winston 1975) in its generalization process.

17

2.4. Natural Language Learning

Lehnert (1987) discusses a system that uses limited syntactic knowledge expressed in
a chart parser and relevant conceptual case frame representations as the basis to learn
semantic representations of natural language sentences from examples. The system is
illustrated by using an “approximation” of conceptual dependency as sample represen-
tation (Schank 1975). In order to determine the associations between the words of the
sentence and the fragments of the semantic representation, Lehnert’s system uses lexi-
cal matches; i.e., the word has to appear explicitly in the representation, otherwise the
association has to be provided by the user in the form of a conceptual definition. The
semantic representations that can be learned by Lehnert’s system are also restricted by
the fact that they must be non-recursive case-frame representations.

Other research projects in the area of natural language learning, e.g., (Anderson
1981) and (Selfridge 1986), combine the acquisition of syntactic and semantic knowl-
edge. A major objective of those projects is to explain the characteristics of human
language learning. Anderson (1977) discusses a system that infers augmented transition
networks given pairs of sentences and structures representing their meanings. The type
of meaning representation used by Anderson’s system is a propositional semantic net-
work. The augmented transition network inferred by the system can be used for both
converting sentences into their semantic representations and vice versa; however, two
separate interpreters are required for these two modes of operation, whereas in the case
of definite clause grammars only one is needed due to the reversibility property. Over-
all, Anderson takes a very heuristic approach to language learning, in contrast to the
systematic techniques discussed in this dissertation.

Selfridge (1986) discusses a program that acquires word meanings and language struc-
ture from examples of sentences and their corresponding meaning representations using
conceptual dependency (Schank 1973). It is an attempt to model the development of
language comprehension in a child. Word meanings are learned either by providing the
association between a particular word and its meaning representation to the program
directly, or by providing pairs of whole phrases and their meaning representations and
then factoring out the parts already known to the program and associating the unknown
parts of the phrases with the unknown parts of the representations.

The approach discussed in this dissertation is essentially a generalization of the sec-
ond method (using complete sentences). By systematically varying sentences the word
meanings can be inferred with maximum efficiency and precision, whereas Selfridge’s

program may temporarily undergeneralize or make wrong associations.

18

Since the sentences handled by Selfridge’s program are quite simple and the vocabu-
lary very limited, no formalism like ATN’s or DCG’s is required. It can learn how to fill
the slots of the representations of certain actions using various heuristics, but does not
handle more complex sentences involving quantification or recursive grammar structures,
whereas the DCG formalism in conjunction with higher-order unification can handle such
applications. Selfridge’s program uses a separate procedure for language generation. It
converts a meaning representation into a phrase (not necessarily a complete sentence) in
a heuristic fashion, whereas the DCG’s constructed by the proposed system are suitable
for both efficient parsing and efficient generation.

Selfridge’s system is restricted to a fixed set of frames of the conceptual dependency
knowledge representation system, whereas the the proposed system can handle any con-

sistent representation expressible in the typed A-calculus.

19

3. Typed)M-Calculus:
Equality and Unification

This chapter gives an overview of the simply typed \-calculus and discusses two impor-
tant operations, reduction and unification, following the notation and terminology from
Huet (1975). Reduction of A-terms is fairly well known, but (higher-order) unification
is not as well understood. This chapter presents the unification procedure along with

examples.

3.1. Typed A-terms

Types

The typed A-calculus is based on Church’s simple theory of types (Church 1940). Fach
well-formed expression (term) of this language has an unambiguous type that indicates

its position in a functional hierarchy.

Definition 3.1: Assuming Tp is a finite set of elementary types (also called primitive
types), the set T' of types is defined as the smallest superset of Tj closed under the binary

operator ‘—’:
a,fel = (a—p)el.

If Ais a set of elements of type a, and B a set of elements of type 4, then a — 3 denotes
the type of functions with domain A and range B. Types are designated by the Greek
letters a, 3, v, etc. A colon is used to indicate the type of a term; e.g., ¢ : @ means that

the term ¢ has type a.

A-Terms

There are basically four kinds of terms in the typed A-calculus: variables, constants,
abstractions, and applications. Variables and constants are also referred to as atoms.
For every a € T there is a denumerable set V, of variables of type a. The elements of

the set C of constants have arbitrary given types. All sets V, and C are pairwise disjoint.
Definition 3.2: The set A of atoms is defined as:

20

A=CUV, where V = J,cr Va-

In this section, variables are written in lowercase letters z, v, ..., f, ¢, ..., constants are

written in capitals A, B, ..., F, G, ..., and atoms written using the symbols @, @',

Definition 3.3: If e is a term of type (a —), and ey a term of type «, then the term
(e1 e3) is an application of type j.

(The outermost parentheses of a term are often omitted; i.e., (e; €2) is the same as e e3 .

The application operator is left-associative; i.e., ((e1 e3) e3) is the same as eq ez e3.)

Definition 3.4: If e is a term of type 5, and z € V,, then the term Axz.e is an
abstraction of type a — (3. The variable z is called a binder variable, or prefix variable

of the term e.

Therefore, the set of terms is defined as the smallest superset of A closed by appli-
cation and abstraction. Terms are denoted by e, €, ..., E, F', ..., which may have

subscripts. The type of a term e is denoted by 7(e).

Definition 3.5: The relation subterm of is defined as the reflexive and transitive

closure of:

e1 and e are subterms of (e e3),

e is a subterm of Az.e .

E[e] denotes a term that has a subterm e, and E[e’] denotes the term obtained by replacing

all occurrences of e by €' in & (if T(€') = 7(e)).

Definition 3.6: Let E = £[Az.€]. An occurrence of 2 in Ax.e is bound in E.
Definition 3.7: Let F = £[Axz.€]. A non-bound occurrence of x in E is free in E.
F(F) denotes the set of variables having a free occurrence in .

Assuming 7(e) = 7(z), SI(L) denotes the term obtained by substituting e for every
free occurrence of z in F, taking care to rename variables of F as necessary to avoid

“capture” of free (occurrences of) variables in e by prefix variables of F.

21

3.2. Equality between A-terms
The following three conversion rules define equality between A-terms.

Definition 3.8: a-conversion: E£[\y.S;(e)] = E[Ax.e], for any y € F(e) such that
7(y) = 7(z), assuming that the same subterm position is being referred to on both sides

of the equality.

Definition 3.9: 3-conversion: £[SZ(e')] = E[(Ax.¢’ €)] assuming that the same subterm

position is being referred to on both sides of the equality.

Definition 3.10: n-conversion: E[Az.(e x)] = E[e], where © ¢ F(e), assuming that the

same subterm position is being referred to on both sides of the equality.

Definition 3.11: A-conversion is the reflexive, symmetric, and transitive closure of a-,
-, and n-conversion.

Informally, a-conversion is simply variable renaming. That is, two terms are equiv-
alent if they can be made identical by appropriately renaming variables. J-conversion
can be used to simplify an application term ((AV.FE7) E3) by removing the left-most
prefix variable V' of the function, and the right-most argument F5, and at the same time
replacing all free occurrences of V' in Fy with F,. This use of -conversion is referred
to as (-reduction. An abstraction AV.(E V') can be simplified through n-conversion by
removing the left-most prefix variable and the right-most argument of the function F if

they are identical and if V' has no free occurrences in F.
Example 3.2.1:
Examples of a-conversion:

Ar.x = Ay.y

Az Ay.((z y) a) = Az z.((x 2) a)

Example 3.2.2:

Examples of §-conversion (assuming 7(z) = 7(a) and 7(y) = 7(b)):
(Az.Ay.(f (g ¢ y)) a) = Ay.(f (g a y))
(AzAy.(f (g @ y))ab)=(f(gab))

Note that (¢ = y) is equivalent to ((g z) y).

22

Example 3.2.3:

Examples of n-conversion:
Ay-((gab)y)=(gab)

Nedy.(f 2 y) =]
Note that types are preserved during A-conversion.

Definition 3.12: A term is said to be in normal form iff it is a A-term but not of the
form E[(Az.eq e3)].

Theorem 3.2: For every term e there exists a term ¢’ in normal form derivable from e
by A-conversion. This term €’ is unique modulo a-conversion, and is called the normal
form of e.

Proof: see Fortune et al. (1983), page 158.

Definition 3.13: Let e be the term Azy.Az3....A2,.(@ ey €3 ... €,). Then the head
of e is the atom @, and the heading of e is the term Azy.Azs. ... A2,.Q. e is called rigid
if@eCuU{ay,...,z,}, and flexible otherwise.

Definition 3.14:

A substitution pair is a pair (z,e) where z € V,e # z,7(z) = 7(e) and e is reduced
to normal form. We say this substitution pair pertains to x. A substitution is a finite
set of substitution pairs pertaining to distinct variables:

o= {{z;,e;)]1 <i<n} V(1 <i,j<n)(z;=2;)=(t=7)

We define z o as
e if (x,€) €0,

x otherwise.
If 7 denotes the set of terms in normal form, zo can be interpreted as a type-

preserving mapping from V to 7. We extend this mapping in the following way: For all
F € T, the application of o to F, written as F o, is defined as the normal form of the
term ((Az1,..., 2, E) (e1,€2,...,€,)).

Notational Conventions:

In computer implementations of higher-order unification, the infix symbol “\” is used
instead of the combination of the Greek letter A and the period. From now on, we also
adopt the convention that symbols starting with capital letters are variables and symbols

starting with lower case letters are constants, to be consistent with the Prolog-based

23

implementation of the system. For example, the term AX.\Y.(loves X Y') is represented
as X\Y\ (loves X Y). The standard way to express the relationship between operators or
predicates (which are all considered constants in the A-calculus) and their arguments is
prefix-notation. For example, (X + Y) would be written as (+ X Y). (Cambridge prefix
notation is used for all terms; e.g., (loves X Y) is used instead of loves(X,Y).) The

above conventions will be used throughout the remainder of this dissertation.

3.3. Representation of Mathematical Objects

There are many ways to represent numbers, functions, truth values, data structures,
and other objects in the typed A-calculus. Numbers, for example, can be represented as

“Church numerals” in the following way:

0 = F\X\X

1 = F\X\(F X)

2 = F\X\(F (F X))

3 = F\X\(F (F (F X))

Assuming ¢ is a primitive type, each such Church numeral can by assigned the simple
type (i — i) — ¢ — ¢ (note that the — operator is right-associative).

Arithmetic functions like the successor function, the addition function, the multipli-
cation function, or the conditional function can be implemented in the typed A-calculus
using the Church numerals and the function definitions given below. Such arithmetic
operations can thus be performed using the conversion rules of the typed A-calculus

discussed above.

succ = N\F\X\(N F (F X))

add = M\N\F\X\(M F (N F X))

mult = M\N\FAX\(N (M F) X)

cond = M\N\O\F\X\(M Y\(N F X) (0 F X))

Let [= (i — i) — (¢ — ¢). Then 1(succ) =1 — I, 7(add) = I — I — I, 7(mult) =
I — I — 1I,and 7(cond) = 1 — I — I — I. Application of the conditional function
(cond m n o), where m, n, and o are Church numerals, reduces to n if m is greater than

zero and to o if m is equal to zero.

24

Considering only natural number representations over a domain B, where B is a
primitive type, the functions representable in the simply typed A-calculus can be char-

acterized in the following way:

Theorem 3.3: The functions representable by A-expressions of the type (I — (I —
...(d = 1)...), where I = (B — B) — (B — B), where B is a primitive type, are
exactly the functions generated by the constants 0 and 1 using the operations add,

mult, and cond.
Proof: see Fortune et al. (1983), page 161.

Shown below are representations of the booleans along with typical operations. Suitable

types can be given, but are omitted here for brevity.

true = X\Y\X

false = X\Y\Y

not = T\(T false true)
iszero = N\ (N (X\false) true)
if-then-else = (A B C)

and = A\B\(4 B X\Y\Y)

Even though any recursive function can be represented by a A-expression (Gordon
1988), the typed A-calculus is not powerful enough for representing all of them; instead,
the untyped A-calculus must be used in many cases. For example, the or function defined
below cannot be assigned simple types since it contains a “self-application” term, i.e.,
application term of the form (z). Self-application terms are not legal in the typed

A-calculus since they cannot be assigned any type.

or = A\B\((A A) B)

3.4. Higher-Order Unification

3.4.1 Motivation

The unification of typed A-terms is referred to as higher-order unification. Tt is the
process of finding substitutions for variables (some of which may denote functions) such
that the terms are equal by A-conversion. As an example, consider the following two

terms:

25

(1) X\Y\(foo (a X Y) H)

(2) X\Y\(foo (G Y X) 2)

By replacing G by P\Q\(a Q P) and replacing H by 2, the two resulting terms are equal

by the A-conversion rules:

(1) X\Y\(foo (a X Y) 2)

(2) X\Y\(foo (P\Q\(a Q@ P) Y X) 2)
X\Y\(foo (Q\(a Q Y) X) 2) (3-conversion)
X\Y\(foo (a X Y) 2) (3-conversion)

However, the following two terms cannot be unified:

(3) X\Y\(f X V)

(4) X\Y\(g X V)
There are also no unifying substitutions for the two terms below,

(5) X\V\(a V)

(6) X\Y\(F X)

because (a Y) contains the prefix variable Y, but the substitution for the function variable

F is independent of Y since F is applied only to X.

In general, a pair of typed A-terms may not have a most general unifier. For example,

(F a) and a have two unifiers (assuming, for example, that 7(a) = ¢, and 7(F) = ¢ — @):

F— X\a
F— X\X

neither one of which is more general than the other, i.e., one cannot be obtained from
the other by a substitution to some of its free variables. Similarly, (F a) and (g a a)

have four unifiers (assuming, 7(a) = ¢, 7(F) =1 — ¢, and 7(¢) =1 — 1 — @):

F— X\(g aX)
F— X\(g X a)
F— X\(g XX
F— X\(g a a)

26

It is even possible that two terms have countably infinite unifiers. The higher-order
unification problem is only semi-decidable: While there is a procedure that always find
a unifier if one exists, it is in general impossible to determine that there is no unifier. A
systematic search procedure for unifiers was first given by Huet (1975). A simple example
to motivate Huet’s unification procedure is given below. The procedure is discussed in
detail in the next section. Suppose that we want to unify (X Y Z) with (foo a b)
(assuming suitable types). One may attempt to do that by having the head of the first
term, X, “imitate” the head of the second term, foo. Thus the substitution for X is

constructed as follows:
X — V1\V2\(foo (H1 V1 V2) (H2 V1 V2))

Note that the arguments for foo are terms built up of function variables (H1 and H2)
applied to the sequence of binder variables. Such a substitution expresses a general form
for the imitation. The introduction of new variables is a key reason for the potential
nontermination of the unification process (contrast this situation with that of the first-
order unification algorithm). Under this imitition substitution for X, the term (X Y Z)

becomes

(V1\V2\(foo (H1 V1 V2) (H2 V1 V2)) Y Z)
which by f-reduction is equal to

(foo (H1 Y Z) (H2 Y 2)).

Now, in order to unify (foo (H1 Y Z) (H2 Y Z)) with (foo a b) we have to unify
each of their arguments: First we need to unify (H1 Y Z) with a. It is possible to
attempt an imitation substitution, as before, for variable H1. However, it is also possible
to construct a function that will return one of the arguments Y or Z, which in turn is to
be unified with a. This is the idea behind the “projection” substitutions. Let us attempt

the following projection:
H1 — V1\V2\V1

Now (H1 Y Z) becomes (VI\V2\V1 Y Z), which is equal to Y. Obviously the imitation
substitution Y < a takes care of the rest. Unifying the second arguments (H2 V1 V2)

and b can be done similarly.

27

3.4.2. Higher-order unification procedure

Suppose that we are given a finite set of pairs of terms of the same type to be unified:

{(u1,v1), -y (U, vn) }.

The higher-order unification problem involves finding a substitution ¢ such that u; o is
A-convertible to v; ¢ by the rules of A-conversion defined earlier. We assume each term

is represented in head-normal form, as:
AZ1. . Az (At ty),

where A is a constant or variable of type oy — ... — a,, — §. Given two rigid terms
AZ1.o.. .. Ay (Fy s1...8;) and Azq. ..o Az, (Fy rp..omy)

of the same type, they are unifiable only if F; and Fy are identical, and they can be

reduced to:
{(Azq.. .. Azp.s1, Az, ... AZpr1)y ey (A7 AT .Sy AT]. A1)}

Huet observed that either such a set of pairs has no unifier or it can be reduced (by
procedure SIMPL defined further below) to another set, having the same set of unifiers,
in which each pair has at least one flexible term. For a set consisting only of flexible-
flexible pairs, a unifier can be trivially constructed. For a flexible-rigid pair, Huet has

shown that two kinds of substitutions are possible: imitation and projections.

Definition 3.15: Let F' = Azy...., A z,.(f t1...t;) and R = Azq..... A2y, (€ S1... 85)
respectively be the flexible and rigid terms in head normal form; and let the type of f
be ay — ... — ap — (. Then, if ¢ is a constant, the imitation substitution is defined

as:
f—= 2w o dwg.(e (b wy oo wg) . (b wy o wy)),
where the h;’s are new variables of appropriate types.
Definition 3.16: If a; is of the form 3; — ... — §; — 3, the i'" projection substitution,
for 1 <1 <k, is defined as:
f=2dwi... dwg.(w; (hy wy ... wg) .. (hywr ... wg)),
where the h;’s above are new variables of appropriate types. Note that these substitutions

are determined entirely by the heads of the flexible and rigid terms.

Higher-order unification procedures can be conveniently described in terms of the

function SIMPL (Huet 1975, Nadathur & Miller 1990).

28

Definition 3.17: The function SIMPL on sets of disagreement pairs D is defined as

follows (a sequence of prefix variables z; is denoted by ¥).
(1) If D = ¢ then SIMPL(D) = ¢.
(2) f D= {(Fy, F3)}, and

(a) if F is flexible then SIMPL(D) = D; o