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SUBSET LOGIC PROGRAMS AND THEIR
IMPLEMENTATION
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This paper discusses the design and implementation of a set-oriented
logic programming paradigm, called subset-logic programming. Subset-
logic programs are built up of three kinds of program clauses: subset,
equational, and relational clauses. Using these clauses, we can program so-
lutions to a broad range of problems of interest in logic programming and
deductive databases. In previous research, we developed the implementa-
tion of subset and equational program clauses. This paper substantially
extends that work, and focuses on the more expressive paradigm of subset
and relational clauses. This paradigm supports setof operations, transitive
closures, monotonic aggregation as well as incremental and lazy enumera-
tion of sets. Although the subset-logic paradigm differs substantially from
that of Prolog, we show that few additional changes are needed to the
Warren Abstract Machine (WAM) to implement the paradigm and that
these changes blend well with the overall machinery of the WAM. A cen-
tral feature in the implementation of subset-logic programs is that of a
monotonic memo-table, i.e., a memo-table whose entries can monotonically
grow or shrink in an appropriate partial order. We present in stages the
paradigm of subset-logic progams, showing the effect of each feature on the
implementation. The implementation has been completed, and we present
performance figures to show the efficiency and costs of memoization. Our
conclusion is that the monotonic memo-tables are a practical tool for imple-
menting a set-oriented logic programming language. We also compare this
system with other closely related systems, especially XSB and CORAL.
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1. Introduction

This paper describes the implementation of a logic programming paradigm based
upon three kinds of program clauses: equational, subset, and general relational
clauses. This paradigm is called subset logic programming, and it has been the
subject of our investigations over the past several years [9, 10, 11, 12, 13, 14, 15,
18, 23, 25]. The particular language that was implemented is called SuRE, which
stands for Subsets, Relations, and Equations!. While equational and relational
clauses are well-known in functional and logic programming respectively, subset
clauses are relatively a recent development. Hence we first motivate our interest in
subset clauses, describe the new implementation issues they raise, and outline our
proposed solutions.

1.1. Subset Logic Programming

Our interest in subset-logic programming stems from the fact that it provides
a declarative and efficient means of working with sets, a feature that has re-
ceived considerable recent interest in logic programming and deductive databases
[2, 4, 5, 15, 16]. While sets are ubiquitous in applications of logical reasoning, prac-
tical functional and logic languages (such as ML or Prolog) do not support bona
fide sets, apparently due to the difficulty of implementing them efficiently. For ex-
ample, Prolog’s setof actually constructs an ordered list, not a set. Our proposed
constructs subsume the uses of setof and provide several additional capabilities.
The central feature of our work is the subset clause, which has one of two forms:

f(terms) contains expr
f(terms) contains expr :- condition

where terms are built up from constants, variables, and data constructors; ezpr
may in addition contain user-defined functions; and condition is a sequence of one
or more equational, relational, or membership goals. The syntactic details of terms,
expr, and condition are given in section 2.

Informally, the declarative meaning of an unconditional subset clause is that,
for all its ground instantiations, the function f applied to its argument terms is a
superset of the ground set denoted by the expression on the right-hand side. For
a conditional subset clause, in addition the appropriate instance of condition must
be true. In general, multiple subset clauses may be used in defining some function
f- By providing subset clauses with a collect-all capability, the meaning of a set-
valued function f applied to ground terms is equal to the union of the respective
sets defined by the different subset clauses for f.

An interesting aspect of subset-logic programs is that often a function may be
circularly defined using subset clauses. In these cases, it is natural to define the
meaning of the function call as the smallest set that satisfies the circular constraints.
In general, a program has a well-defined meaning if it obeys a local stratification con-
dition in which all circularly defined function calls must depend upon one another
through subset-monotonic functions, i.e., monotonic with respect to the subset or-
dering. We illustrate such programs in section 2. A more formal account of the
theory of subset-logic programming is given in [9, 23, 24].

1To wit, SURE is the affirmative answer to the question: Can programming be declarative and
practical?



Subset clauses can be used in combination with both equational and general
relational clauses. The combination of equational and unconditional subset clauses
is called subset-equational programming. This is a purely functional paradigm, and
its implementation issues were mostly discussed in reference [11]. However, these
papers do not discuss circular subset constraints and their attendant implemen-
tation problems. This paper concentrates on the combination of relational and
subset clauses (both unconditional and conditional), a paradigm which may be
called subset-relational programming. Relational clauses are of the form:

p(terms)
p(terms) :- condition

where terms and condition are as described earlier. The paradigm of subset-logic
programming is essentially a union of the subset-equational and subset-relational
paradigms. In order to keep the paper self-contained, we include a brief coverage
of relevant parts from our earlier work [11].

In the subset-logic paradigm, sets are constructed using two novel set construc-
tors, {X\T} and {X/T}. The constructor {X\T} matches a set S such that X € S
and T = S - {X}, i.e.,, the set S with X removed [11]. This constructor can be
used only on the left-hand sides of subset clauses and it helps decompose a set into
strictly smaller subsets—this is why we do not use the more familiar U constructor
for pattern-matching with sets. Set patterns made up from this constructor help
finesse iteration over sets and thereby minimize the number of procedure calls. The
constructor {X/T}, on the other hand, is equivalent to {X} U T, and it is generally
used on the right-hand sides of subset clauses for including an element X in a set
T—using {X\T} on the right-hand sides of subset clauses would result in failure if
X € T. The {X/T} constructor has also been advocated by several other researchers
in logic programming and deductive databases [4, 5]. (In [11] we used a single
constructor {_|_}, which meant {X\T} on the left-hand sides of clauses, and meant
{X/T} on the right-hand sides of clauses.) We illustrate the use of both constructors
in section 2. All functions defined by subset clauses are invoked with ground argu-
ments (possibly ground sets), and hence we must use set-matching in these cases.
On the other hand, the use of a set constructor in the head of a relational clause
necessitates set-unification.

Subset clauses have many uses in the logic programming context: They serve as
a declarative alternative to many uses of Prolog-like mode declarations as well as
those uses of Prolog’s assert and retract that correspond to implementations of
memo-tables or collection of results from alternative search paths, as in the setof
construct. By re-formulating a relation as a set-valued function, one not only spec-
ifies mode information declaratively, but also gains the flexibility of operating on
the resulting set incrementally or collectively. In the latter case, one further has
the flexibility of working lazily or eagerly. We showed in our earlier work [11, 14]
that when a function distributes over union in one of its arguments, we can oper-
ate element-at-a-time with respect to this argument, and thereby avoid forming an
intermediate set as well as avoid the check for duplicates in this argument. This
semantic property of a function can be specified by the programmer as an annota-
tion, but the property can also be inferred automatically by the SuRE compiler in
most practical cases [20].

Subset clauses are also useful in the deductive database context: They help ren-
der clear and concise formulations to problems involving aggregate operations and



recursion in database querying. An aggregate operation is a function that maps
a set to some value, e.g., the maximum or minimum in the set, the cardinality of
this set, the summation of all its members, etc. This has been a topic of consid-
erable interest in the deductive database literature recently [8, 17, 21, 31, 32, 34].
In considering the problems with various semantic approaches, Van Gelder notes
that, for many applications in which the use of aggregates has been proposed, the
concept of subset is what is really necessary [34]. Moreover, for many problems re-
quiring aggregate operations to be performed, the concept of monotonic functions is
necessary [31]. We have recently shown that the subset-logic paradigm and its gen-
eralization (i.e., replacing subset clauses by partial-order clauses) are particularly
well-suited for programming such operations because the concepts of aggregation,
subset, and monotonicity are more naturally expressed in terms of functions rather
than predicates [25].

1.2. Implementation Issues

The Warren Abstract Machine (WAM) [1, 35], designed by D.H.D. Warren, has
proven to be a robust framework for implementing Prolog as well as several vari-
ants of the language [6, 11, 22, 33]. Our basic strategy is to extend the WAM
with new instructions and run-time structures in order to implement the new con-
trol regime as well as the new matching and unification operations of subset-logic
programs. It turns out that, even though the subset-logic paradigm differs substan-
tially from Prolog, few additional instructions, registers, and storage structures are
needed and these blend in well with the overall design of the WAM. Our decision
to use the WAM model implies that we are using a top-down (as opposed to a
bottom-up) execution model for subset-logic programs. Since memoization plays
a crucial role in our implementation, the use of a top-down execution model has
no inherent disadvantages. On the contrary, recent work indicates that a WAM
model with memoization shows an order of magnitude performance improvement
over bottom-up methods [33] for the class of definite clause (relational) programs.
This improvement is due to the efficiency in data-structures and backtracking of
the WAM.

Due to the presence of sets in the language, the efficient realization of set-
matching and set-unification is a central implementation problem. The implemen-
tation of both these operations has been treated in earlier papers—set-matching
is described in [11] and set-unification in [6]—and therefore we discuss them only
briefly in this paper. Both operations can in general result in multiple maximally
general matches/unifiers, and hence may cause additional branching in the search
process. Set unification also results in new variables being introduced (during
unification), an issue that doesn’t arise in standard, first-order unification. Our
experience shows that for many practical subset-logic programs making use of sets
in relational clauses, set-unification reduces to set-matching, and these cases can
be detected through static analysis [20]. Thus, the knowledge of the context in
which set terms are used helps obtain a more efficient implementation. One im-
plementation of set-unification has been described in [6], but we take a different
approach in this paper. The main difference from [6] is that the implementation
of set-unification is done through constraint management, whereas our language
does not support constraints, and hence we implement set unification within the
basic WAM structure, but with an extended form of a push-down list. In previ-



ous work, [11] showed that set-matching can be compiled in terms of an extended
WAM instruction set, and that remainder sets in patterns of the form {X\T} can
be efficiently constructed and represented. To keep track of the branching within
set-matching and set-unification, we introduce a branch point record on the control
stack of the WAM.

The control cycle of the abstract machine for subset-logic programs differs sub-
stantially from that of the WAM. Still we are able to accomodate it with a few
simple additions. In contrast with Prolog programs, branching in subset-logic pro-
grams occurs because (the left-hand sides of) multiple subset clauses may match a
given call and also because any one clause may match in multiple ways due to the
presence of set constructors. Thus the body of a subset clause would in general have
to be re-executed several times, each time with a different match, and the union
of the resulting sets for these different executions would have to be formed. There
are four different modes in which a set-valued function (defined by a subset clause)
may be called: eager evaluation, incremental evaluation, memoized evaluation, and
lazy evaluation. When a function is invoked eagerly (using an equational goal) the
entire set for the function call is formed. This is accomplished by traversing the
search tree exhaustively in depth-first order with backtracking. When a function f
is invoked via a membership goal or if f occupies an argument position of another
function that distributes over union in this argument, then the search tree for the
function call is not traversed exhaustively, but rather incrementally, to yield one
element at a time to the caller of f. Incremental evaluation does represent the en-
tire set explicitly, and therefore contrasts with lazy evaluation which may form the
entire set but does so lazily. A fundamental difference between lazy evaluation in
the subset-logic paradigm and that in a conventional functional paradigm owes to
the fact that the unevaluated portion of a lazy set might be some control point in
the search tree of a relational program. For the sake of brevity, we do not discuss
in detail the implementation of lazy sets in this paper; the interested reader may
consult for the details [20].

Memoization in subset-logic programs differs from the way it is used in both
functional and logic programming languages: In functional programming, memo-
ization is used to detect dynamic common subexpressions [7], and serves to obtain
an efficient implementation of dynamic programming algorithms. In addition to this
motivation, memoization in logic programs is used to detect circularloops that arise
in programs for problems such as transitive closure [33, 36]. In subset-logic pro-
grams, memoization is used for detecting dynamic common subexpressions as well
as for loop detection. The latter capability is needed when circular function calls
arise because of circular subset constraints. However, simple loop detection is in-
sufficient to realize the semantics of subset-logic programs: When circular function
calls depend upon one another through subset-monotonic functions, these calls have
to be progressively iterated (or re-executed) until their least/greatest fixed point is
reached. This in turn requires memo-table entries to be monotonically updated—as
we shall explain in more detail later. In order to record where a memo-table entry
was consulted, we store a lookup point record on the WAM control stack. By chain-
ing together all such lookup points, we can direct re-execution to the most recent
lookup point. The above scheme is sufficient for unconditional subset clauses. For
a conditional subset clause—which might contain relational goals in their bodies—
in order to restore the environment to the correct state for re-execution, we need
to protect the bindings of variables that might have be reset during backtracking



amongst relational goals. Hence we introduce a new structure called a redo trail, in
which we save the bindings of such variables at the time a lookup point is created.
These bindings are recovered when a re-do is to be performed.

We represent the memo-table by a hash-table in order to achieve fast look-up.
Note that memo-table entries for subset-logic programs will always contain ground
terms (possibly ground sets), because the arguments and results of functions will
be ground. That is, we memoize only function calls, and not predicate calls. In
this respect, our approach differs from that of [33]. However, as noted earlier, for
many problems of involving aggregation in deductive databases, such as shortest
path, company controls, etc., it suffices to work with functions and ground terms.

1.3. Ezperimental Results and Comparisons

We provide performance figures to illustrate the key new features of our implemen-
tation. While this implementation should be regarded as a prototype, we never-
theless present performance figures in order to demonstrate certain properties. For
example, we show that the overhead of memoization in certain kinds of subset-logic
programs is minimal. This result is similar to the one reported in [33] for Prolog
programs, namely, that tabled execution for programs that have no redundant com-
putation is comparable with ordinary WAM execution. We show that the use of
monotonic memo-tables to implement dynamic programming algorithms can be a
more efficient way than using pure memo-tables. We report performance figures for
problems requiring monotonic aggregation in deductive databases—our extensional
database is an in-memory database, as is the case with Prolog databases.

We compare the performance of SURE with two closely related systems, XSB and
CORAL, on typical problems in deductive databases. These systems share some
features with each other, but there are differences in their respective language and
computational models. Both XSB and CORAL can evaluate circular calls without
incurring nontermination problems as in Prolog.

1. The XSB system, developed by D.S. Warren and researchers at Stony Brook,
implements a language that is very similar to Prolog [27, 37]. The operational
semantics of XSB is based upon SLG resolution, a table-oriented resolution
method that combines SLD resolution with memoization [33]. The X in XSB
stands for extension table, or memo-table, while the G in SLG stands for
general clauses, as opposed to definite clauses. XSB applies SLD resolution
for non-tabled predicates, and memoization for predicates that are declared
by the programmer as tabled predicates. Although both SuRE and XSB
use memo-tables to detect circular calls, XSB memoizes calls to predicates
whereas SuURE memoizes calls to functions. As a result, in XSB a single
memo-table entry can have several different answer clauses, and each answer
clause has to be resolved against the subgoals. A fixed point is reached when
there are no subgoals to be resolved upon. The answer clause resolution of
XSB is different from the table look-up operation of SuRE. Memoization
in SuRE is restricted only to functions, and a given function call has only
one answer. However, this answer can be a set, which, in general, is deter-
mined by a process of monotonically updating memo-table entries until a
fixed point is reached. In XSB, a new memo-table entry is created whenever
a call to a tabled subgoal is made that is not a variant of a previous tabled



subgoal. When a selected subgoal is already in the table and there is no
answer, the operation of that subgoal is suspended (this is similar to creat-
ing a look-up point record in SURE) and backtracking to the previous goal
occurs (in contrast, SURE would assume the default value and proceed). A
suspended goal resumes an operation when an answer to it becomes avail-
able and resolved via an answer clause resolution. Like Prolog, XSB does
not support sets, and it makes use of the second-order predicates setof or
bagof for collecting all solutions into a list.

2. CORAL is a deductive database system developed by R. Ramakrishnan and
researchers at Wisconsin [28]. CORAL stands for COntrol, Relations, And
Logic. Unlike SuRE and XSB, CORAL uses bottom-up evaluation with
magic rewriting. The declarative language that it implements is essentially
definite clauses with negation and multiset-generation capabilities. CORAL
supports multisets, or bags, and a limited form of grouping, which is similar
to set-collection in SuRE. Although grouping allows construction of a mul-
tiset, this multiset may be compared only against another ground multiset
term or assigned to a variable. General matching and unification of sets
are not supported [28]. This may be contrasted with SURE which supports
nonground set-terms. Although the main strategy is bottom-up evaluation—
‘materialization’ in database terms—CORAL also supports Prolog-like exe-
cution through a pipelining annotation, a predicate-level annotation, and a
rule-level annotation. Even without user-specified annotations, the CORAL
compiler attempts to perform some optimizations. An important feature of
CORAL is its module system, which is key to incorporating compile-time
as well as run-time optimizations. CORAL sometimes shows marked differ-
ences in performance between the case when a single module is used for both
program and data and the case when separate modules are used for program
and data: The idea is that, by moving many rules out of a module, fewer
rules are involved during bottom-up evaluation [28].

The rest of this paper is organized as follows: section 2 presents the syntax
and examples of subset-logic programs; section 3 develops the abstract machine for
subset-logic programs in stages, starting with a basic abstract machine for subset
clauses and then showing the changes needed to accomodate each additional feature
on the paradigm; section 4 presents the new instructions of the abstract machine,
and examples of compiled code; section 5 presents performance figures from our
current implementation and comparisons with the XSB and CORAL systems; fi-
nally, section 6 presents our conclusions and areas of further work. We assume
some familiarity with the implementation of logic programs, especially the Warren
Abstract Machine [1, 35].

2. Subset Logic Programs: An Informal Introduction

A subset-logic program is built up of equational, subset, and general relational
clauses. We do not treat equational clauses in this paper, as they have been fully
discussed in [11]. Our focus is on subset and relational clauses, each of which may be
unconditional or conditional. We begin with unconditional subset clauses in section
2.1, and discuss set matching, distribution over union, memoization, and monotonic



memo-tables in this context. We then describe in section 2.2 conditional subset and
relational clauses, and discuss setof operations and monotonic aggregation. We
also introduce partial-order clauses in that subsection.

2.1. Unconditional Subset Clauses
Unconditional subset clauses are of the form
f(terms) contains expr

where each variable in expr must also occur in terms in order for an unconditional
clause to be well-formed. The syntax of terms is:

terms : := term | term , terms
term : := variable | constant | constructor(terms) | set
set ::= phi | variable | {term\set}

Our lexical convention in this paper, as in Prolog, is to write constants and (non-set)
constructors starting with lowercase letters, and variables starting with uppercase
letters. A ground term is a term without any variables. Ground terms are built up
from constants and constructors and stand for data objects of the language. The
syntax of expr is:

expr : := variable | constant | phi | {expr/ezpr} |
constructor(ezprs) | function(exprs)
erprs 1 := erpr | expr , exprs

where a function is a non-constructor, or user-defined, symbol, i.e., a symbol ap-
pearing at the head of the left-hand side of a subset clause.

Informally, the declarative meaning of a subset clause, f(terms) contains expr,
is that, for all its ground instantiations (i.e., replacing variables by ground terms),
the function f applied to its argument terms contains the ground set denoted by the
instance of expr. The top-level goal is a ground expression e, and its meaning is the
ground term ¢ such that e = tis a logical consequence of a completion of the program
[15, 9]. The completion incorporates two assumptions underlying the meaning of
subset-equational programs: the collect-all assumption and the emptiness-as-failure
assumption. Given a subset logic program and a ground expression f(terms), if it
follows from the program that f(terms) contains s , ..., f(terms) contains s,,
for some ground sets sj, ..., Sp, and no other sets are contained in f(terms)
according to the given program, then the collect-all assumption allows us to infer
that f(terms) = U;=1,,8;, provided that the resulting set is finite and all reduction
sequences from f(terms) terminate. The emptiness-as-failure assumption states
that a ground goal f(terms) returns phi as its result if terms does not match
the left-hand side of any subset clause for f. We illustrate these ideas below with
examples.

2.1.1. Iteration via Set Matching

As noted in section 1, the term {X\T} matches a set S such that X € S and T=S-{X},
i.e., the set S with X removed. Thus, a set represented using {_\-} will not contain
any duplicate elements. This constructor has the property that

{ti\{t2\s}} = {t2\{t:\s}},



reflecting the fact that the order of members in a set are irrelevant. We permit
{t1} as an abbreviation for {¢;\phi}. Also, {t1,t2,...,t,}, for n > 1, is an abbre-
viation for {¢t;\{t2\{...{¢t»\phi}...}. Similarly, {t1,t2,...,¢,\T'}, for n > 1, is an
abbreviation for {t1\{t2\{... {tx-\T'}.. .}.

To illustrate, matching {X\T} with {a,b,c} gives three different outcomes:

X« a, T+« {b,c}
X«<b, T+« {ac}
X+c, T+« {ab}

There are only finitely many matches of a set-term {X\T} against any set con-
structed from phi and {_\_}. While this matching problem is NP-complete, in
practice set patterns have very simple forms, and hence set-matching is a practical
tool for iterating over the elements of a set. We illustrate this point with a few
examples. The union of two sets can be defined as follows:

union(X1,X2) contains X1
union(X1,X2) contains X2

By the collect-all assumption, we infer that union(X1,X2) = X1 UZX2. Aside: the
term {X/T} = union({X},T), and hence the constructor {_/_} need not be treated
as a primitive when used on the right-hand sides of clauses.

Often definitions can be stated in a compact, non-recursive manner using subset
clauses because much of the iteration over sets is moved into the matching process.
For example, the product and intersection of two sets can be defined as follows:

setproduct({X\_}, {Y\.}) contains {pair(X,Y)}
intersect({X\.}, {X\-}) contains {X}

When set patterns occur on the left-hand sides of subset clauses, all matches against
these patterns are used in instantiating the corresponding right-hand side expres-
sion, and the union of the resulting sets is taken as the result. For example, the def-
inition of intersect works as follows: For a goal intersect({1, 2,3}, {2,3,4}), we
get intersect({1,2,3},{2,3,4}) contains {2} and intersect({1,2,3},{2,3,4})
contains{3}. By the collect-all assumption, we infer intersect({1,2,3},{2,3,4})
= {2} U {3} = {2,3}. By the emptiness-as-failure assumption, both setproduct
and intersect will return phi if they are called with either argument as phi.

The use of remainder sets in set-matching is illustrated by the following function
definition, whose input is a set of propositional clauses (i.e., a set of set of literals)
and whose output is the set of all resolvents:

resolvents({{X\S1}, {not(X)\S2} \.}) contains {union(S1,S52)}

Here, the remainder sets S1 and S2 are crucial in constructing the resolvents. Note
that {A,B\_} is an abbreviation for {A\{B\_}}.

Recursive subset clauses are also meaningful and natural, as illustrated by the
following program to find the set of all list arrangements of a set (we use the Prolog
notation [ ] for the empty list and [X|L] for a nonempty list with head X and tail T):

perms(phi) contains {[ ]}
perms({X\T}) contains distr(X,perms(T))
distr(X,{L\-}) contains {[X|L]}

A detailed explanation of this program appears in [11].
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The perms definition brings up the issue of nested expressions in the body of a
subset clause. Basically these expressions are executed in leftmost-innermost order
(“call by value”), and the default strategy is to compute the resulting set for an
inner call before executing an outer call. However, this strategy is altered when
a function distributes over union in some argument. We say that a function f
distributes over union in its i-th argument if

f(...,SlLJSQ,...):f(...,sl,...)Uf(...,SQ,...)

where the i-th argument is the one shown above and all other arguments remain
unchanged on both sides of the equality. Another way to state this property is that

fCo Az, oz}, ) = Uiy F {50

Thus we see that functions that are defined in terms of the elements of their ar-
gument sets distribute over union in these arguments. Examples include union,
setproduct, and intersect. On the other hand, functions that compute some ag-
gregate property of a set, e.g., resolvents and perms, do not distribute over union.
(Note that distr distributes over union in its second argument.) In recognition of
this property, we distinguish two calling modes for functions: Under incremental
evaluation, the resulting set is produced one element at a time, and hence we say
that the function is called in call-one mode. Under eager evaluation, the resulting
set is produced all at once, and we say it is called in call-all mode. In our current
implementation, this property is indicated by a mode annotation:

mode perms(no), distr(no, yes), intersect(yes,yes).

Unlike the mode declaration of Prolog, the above is a declarative (as opposed to a
procedural) annotation. Because f(...,{z1,...,@x},-..) = Uiy f(--5 {75}, ),
when a function distributes over union with respect to one of its arguments, it suf-
fices to incrementally generate the elements of this argument set. The advantages
of this approach are: (a) space is saved by not forming the entire argument set,
and (b) time is saved by not checking for duplicates in this argument set. Our
experiments show that the use of the mode annotation does yield substantial im-
provements in the programs that we have encountered; and the overhead of extra
function calls is much less than the cost of duplicates checking and intermediate
set formation. A more detailed discussion of the effect of this annotation on the
performance improvement of programs is given in [11].

2.1.2. The Need for Memoization

There are two different, uses of memoization in subset clauses: (i) to detect dynamic
common subexpressions, and (ii) to detect circular function calls. While the first
use of memoization is motivated purely by efficiency considerations, the second use
of memoization is motivated by semantic reasons. The first use commonly arises in
recursive subset clauses of the form

f(..,{X\T},...) contains ... f(...,T,...)...

Here the recursion is with respect to the remainder set T. An example is provided
by the perms definition shown earlier. Any call on perms with an argument set of
size n, where n > 2, will result in n x (n — 1)/2 identical pairs of calls on perms
with argument sets of size n — 2.
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An example of the second use of memoization arises in computing the transitive
closure of a relation. The following is a definition of the set of reachable nodes of
a graph starting from a given set of nodes (we re-formulate this problem in section
2.2 using an edge predicate):

reach(S) contains S
reach({X\_}) contains reach(edge(X))
edge(1) contains {2}
edge(2) contains {1}

The intended meaning of the above program is clear even when the edge function
defines a cyclic graph, as shown above. That is, we expect the goal reach({1}) to
terminate with the resulting set {1,2}. This is the smallest set that satisfies the
constraints of the program. Notice that the goal reach({1}) results in a cyclic call
on itself. We therefore make use of a memo-table to detect this loop, and return
phi as the result of the recursive call. This value serves as the first approximation
of the final answer to the outer call. When the computed set, s, for the outer
call differs from the value assumed for the inner (cyclic) call, the inner call is re-
executed with s as the new approximation. This process is iterated until a fixed
point is reached. We refer to this process of re-execution as re-do, and we refer to
the resulting memo-table as a monotonic memo-table.

It turns out that the reach program is simple enough so that no re-execution
is necessary; the correct answer to the outer call is obtained at the end of the first
iteration itself. However, when circular function calls depend upon one another
through subset-monotonic functions, in general more than one iteration is needed
to obtain the correct final answer. We say that a function f is subset-monotonic in
its 4-th if

s1 C 39 =>f(...,$1,...) gf(...,SQ,...)

where the ¢-th argument is the one shown above and all other arguments remain
unchanged on both sides of C in the consequent of the implication. We illustrate
this case with the following program which defines the reaching definitions in a
program flow graph, a set which is computed by a compiler during its optimization
phase [3]:

out (B) contains diff(in(B), kill(B))
out (B) contains gen(B)

in(B) contains allout (pred(B))
allout ({P \_}) contains out(P)

The program flow graph is defined by the function pred which gives the set of
immediate predecessor nodes of any given node. The functions ki11(B) and gen (B)
are predefined set-valued functions specifying the relevant information for each basic
block B of the flow graph. The set-difference function diff (which is defined in
section 2.2.1) is monotonic in its first argument, and hence its use in the body of
out is legal. (However, the check for monotonicity is not made by the compiler.)
The above program is a direct rendering of the flow analysis equations, and the
computational model of memoization and re-do is ideally suited to solving such
problems. The reader may contrast the above solution to the one given in [3],
wherein an imperative program is written to compute the desired sets using a
bottom-up strategy.
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In general we require subset clauses to obey a local stratification condition: All
circular function calls must be defined in terms of one another through subset-
monotonic functions. Non-circular function-call dependencies are not restricted in
any way. Note that this definition of local stratification is similar to the one in [26].

2.2. Conditional Subset Clauses
The syntax of conditional subset clauses is as follows:
f(terms) contains expr :- condition

where each variable in expr appears either in terms or in condition, and condition
is a sequence of one or more goals as defined below:

condition : := goal | goal, condition
goal : := p(terms) | not p(terms) | f(terms) = term

The declarative reading of a conditional clause is similar to that for unconditional
clauses, in that it is given in terms of ground instances of a clause, except that the
ground instance of the head of the clause is considered true if the corresponding
instance of the condition in the body is true. The meaning of a ground expression
e is the ground term ¢ that follows from the completion of the program, following
the collect-all and emptiness-as-failure assumptions. We require negated goals and
function calls to obey the usual local stratification condition for predicates, as given
by [26]. We treat negated goals by negation as failure [19]. When new variables
appear in condition, i.e., those that are not on the left-hand side of :-, then the
goals in condition should be processed in such an order so that all negated goals
and function calls are invoked with ground terms as arguments—because negation-
as-failure may in general be unsound for nonground goals.

We illustrate these features by giving two different uses of conditional subset
clauses, each of which is motivated by a need to obtain a more declarative or
clearer means of solving certain problems than other approaches: (i) Prolog’s setof
feature, and (ii) monotonic aggregation. In discussing (i), we introduce general
relational clauses and the use of set terms in them; and in discussing (ii), we
introduce partial-order clauses, a generalization of subset clauses.

2.2.1. Set terms in Relations and Setof Operations

We first provide a couple of examples to illustrate the use of set terms in relational
clauses. Asnoted in the introduction, a relational clause may take one of two forms:

p(terms)
p(terms) := condition

where terms and condition are as described earlier, except that the set constructor
{-/-} is used in defining terms instead of the constructor {_\_}, for a reason which
will be apparent from our second example below. Our first example below shows
that the definition of set membership can be succinctly stated using a single unit
clause:

member(X, {X/-})

This predicate can be used to verify set membership, e.g., by member(b,{a,b,c});
or to generate the elements of a set one at a time, e.g., by member(X,{a,b,c});
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or to insert an element in a set, e.g., by member(a,S). Unlike the list membeship
predicate, there is only one solution to the latter goal, namely, S + {a/_}. The
above member predicate may be successively invoked to insert an element into S.
This example shows that the use of sets helps eliminate unnecessary infinite search
trees (as could happen with the list-membership predicate).

Our second example, list-to-set conversion, illustrates further use of the set-
constructor {_/_}.

list_to_set([ ], phi)
list_to_set([X|L],{X/S}) :- list_to_set(L,S)

This predicate can be used to obtain the set representation of a list even if the list
has duplicate elements, by a goal such as 1ist_to_set([1,2,1], S). The computed
answer for S would be {1/{2/{1/phi}}}, which is equivalent to {1,2}. On the
other hand, if the {_\_} constructor were used in the second clause above, the
goal 1ist_to_set([1,2,1], S) would fail because {1\{2\{1\phi}}} is not a valid
term: in any term {X\T}, we require that X ¢ T. For the pair of clauses shown
above, there are infinitely many solutions to the goal 1list_to_set(L, {1}, namely,
L+ [1],L« [1,1],L « [1,1,1], etc. In general, it is preferable to use the {_\_}
constructor for extracting the elements or subsets of a set, and the {_/_} constructor
for constructing or inserting elements into a set.

The use of conditional subset clauses to specify setof operations was one of the
original motivations for introducing this feature [15]. For example, assuming the
usual definition of the append/3 predicate, the Prolog goal

|?7- setof(pair(X,Y), append(X, Y, [1,2,3]), Answer)
for defining different partitions of the list [1,2,3] may be expressed as follows:

partitions(List) contains {pair(X,Y)} :- append(X, Y, List)
|?- partitions([1,2,3])

By the collect-all assumption, the result of the above query is

{pair([ ],[1,2,3])} U {pair([1],[2,3])} U {pair([1,2], [3])} U {pair([1,2,3],[ ])}
= {pair([ ],[1,2,3]),pair([1],[2,3]), pair([1, 2], [3]), pair([1,2,3],[ ])}

Note: We extend the emptiness-as-failure assumption so that the result of a query
such as partitions(foo) is phi. That is, when the search tree from the body of
a conditional subset clause is finitely failied, the resulting set computed from this
clause is the empty set.

The definition of set-difference illustrates use of a negated goal in the body of a
subset clause:

diff(S1, S2) contains {D} :- member(D, S1), not member (D, S2)

The definition of negation-as-failure in this context is slightly more general than
the usual definition, in that a goal not A will succeed when the search tree for A is
finitely failed, taking into account the branching due to multiple clauses as well as
multiple set unifiers within any given clause (due to the set patterns {X/T}).

2.2.2. Monotonic Aggregation

We first note that, since the declarative semantics is stated in terms of ground
instances of subset clauses, in order to perform a collect-all operation the search
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tree emanating from the body of a subset clause must not only be finite but the
computed terms must also be ground; otherwise the result of a query is undefined.
This requirement is similar in spirit to that of range restrictedness in Datalog. For
example, consider the clauses

£(X) contains {Y} :- p(Y)
p(Y)

and a query expression f£(1). The answer to this query is undefined because the
union of all ground instances of {Y} is an infinite set.

Our first example is a reformulation of the set of reachable nodes in a graph, but
now we use the extensional database relation edge(X,Y) to represent edges.

reach(X) contains {X}
reach(X) contains reach(Y) :- edge(X,Y)

The above is a more efficient formulation of the problem because the argument of
reach (at run-time) will be a constant rather than a set, and hence memo-table
lookup can be done more efficiently. Except for this difference, the execution of a
top-level query against this program is identical to that of the program given in
section 2.1.2.

The following program illustrates the conciseness and clarity of the paradigm
for specifying monotonic aggregation. It is a specification of the company controls
problem [31], and makes use of a partial-order clause (for defining controls) and
two subset clauses (for defining owns). The resulting type of the partial-order clause
is boolean. We can understand this clause in a manner analogous to the subset
clause: we simply replace the subset ordering by the boolean ordering false <=
true, and we replace set-union by the boolean function or.

controls(X,Y) >= gt (sum(owns(X,Y)), 50)
owns (X,Y) contains {s(X,Y,N)} :- shares(X,Y,N)
owns (X,Y) contains {s(X,Y,N)} :- shares(Z,Y,N), controls(X, Z) = true

The function controls(X,Y) returns true if company X controls Y, and false
otherwise. It could be defined in terms of an equational clause just as well; in the
above example, the >= clause essentially behaves as an equational clause. Note that
the function owns collects sets of the form {s(X,Y,N)}, rather than {N}, because
we wish to sum up duplicate values. The relation shares(X,Y,N) means that
company X holds N% of the shares of company Y. Cyclic holdings are possible, i.e.,
company X may have direct holdings in company Y, and vice versa. Therefore, when
a circular call occurs on controls, the initial lookup value is false. Here we see
recursion over aggregation: a company X controls Y if the sum of X’s ownership
in Y together with the ownership in Y of all companies Z controlled by X exceeds
50%. Since percentages are non-negative, sum is monotonic with respect to the
subset ordering. The function gt(X,Y) stands for numeric greater-than, and is
monotonic in its first argument with respect to the ordering false <= true. Hence
the conditions for a well-defined semantics are met. This example also illustrates
the use of an aggregate operation, sum, which can be defined using equational rules
as follows:

sum(phi) = 0
sum({s(_,_,M)\T}) = N + sum(T)
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Our last example further illustrates use of partial-order clauses. Here the resulting
domain is integer which we take to be the finite set min_int ... maz_int totally
ordered under <=. In the following program, we make use of a <= clause, whose
meaning is understood analogous to the subset clause: we simply replace the subset
ordering by numeric ordering, and we replace set-union by the numeric function
min2.

short (X,Y) <=C :- edge(X,Y,C)
short (X,Y) <= C+short(Z,Y) :- edge(X,Z,C)

The relation edge(X,Y,C) means that there is a directed edge from X to Y with
distance C which is non-negative. The + operator is monotonic, and hence the
program is well-defined. Note that, since short is circularly defined, the initial
lookup value will be maz_int. (We assume that z + maz_int = max_int). The
logic of the shortest-distance problem is concisely and clearly specified in the above
program. And our computational model (monotonic memo-tables) provides better
efficiency than a dynamic programming algorithm because top-down control avoids
solving any unnecessary subproblems. We illustrate this point in section 5. Still,
this is not the best control strategy for the shortest-distance problem. By specifying
that the partial ordering is actually a total ordering, it is possible to mimic the
Dijkstra shortest-path algorithm. However, our current implementation does not
yet support annotations that specify total-ordering.

3. Abstract Machine For Subset Logic Programs

An abstract machine is primarily characterized by its instruction set, which in turn
refers to global registers and other storage structures for its definition. In this
section we present mainly the global registers and storage structures used in the
abstract machine; in section 4 we present the instruction set and give examples
of compiled code. We present the abstract machine for subset-logic programs in
stages: In section 3.1 we briefly review the basic abstract machine for uncondi-
tional subset clauses. This description is adapted from [11], which discusses both
equational and subset clauses. We then describe in section 3.2 the extension of the
basic abstract machine to support memoization and re-do, which are needed in the
implementation of unconditional subset clauses. Finally, in section 3.3 we explain
the further extensions to handle conditional subset clauses, especially monotonic
aggregation.

3.1. Basic Abstract Machine

The overall structure of the basic abstract machine for unconditional subset clauses
is depicted in figure 3.1. The main storage areas are the static code area, the control
stack (or local stack), and the heap. Unlike the WAM, there is no need for a trail
stack here because all function calls will be ground. The control stack is made up
essentially of choice point and environment records, while the heap contains all the
data structures constructed during the execution of the body of an unconditional
subset clause. A choice point stores information needed for backtracking, whereas
an environment record basically holds space for the permanent variables of the
clause, and also for the continuation code pointer and continuation environment.
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The new feature in a choice point is the set of branch point records, which are needed
to keep track of the branching within set matching, and are explained below.

Choice and Branch Points. The multiple subset clauses that match a given
call and the multiple set matches within a single subset clause are attempted
sequentially in depth-first order. We create a choice point record on the
control stack to keep track of these alternatives; a choice point is needed
even if a function is defined by a single subset clause, provided there is at
least one set constructor at the head of this clause. This choice point serves
two purposes: it will preserve the environment for call-one invocation and it
will protect the environment for a redo, as we will see in the next subsection.
In the case of multiple subset clauses, as in the WAM a choice point is created
below the environment record of all subset clauses. If any of these subset
clauses has a set constructor, an additional choice point would be created
above the environment record of this subset clause, as explained above. In
order to keep track of the state of the match for set terms of the form
{H1\T1}, we augment the abstract machine with a set of branch registers,
one for each distinct occurrence of the set constructor or the left-hand side
of a clause. The branch register points to the branch point record which
records the address of the instruction (see section 4) as well as the current
bindings of H1 and T1, since new matches for H1 and T1 are constructed from
previous matches (see [11] for details). We think of branch point records as
extending the choice point record of the subset clause; that is, a single choice
point can contain multiple branch points. A choice point holds the number
of arguments, their actual values, a pointer to its current environment (CE),
a continuation pointer (CP), and a pointer to the last choice point (MRCP),
and the number of branch points (BP). Except for BP, the other registers
are similar to those of the WAM. We will see later how this contents are
extended further.

Environment Records. The creation of an environment record for a subset
clause depends upon the calling mode, which is stored in a special register
called the mode register: In the call-all mode, an environment record is
created if a subset clause matching this call has at least one call in its body.
In the call-one mode, all variables are assumed to be permanent whether
or not function calls are present in the body of the subset clause. This is
done since a call-one invocation returns one element of a set at the time, and
it needs the state of the computation to be preserved for later resumption.
An environment record holds the number of permanent variables, the values
of these variables, a pointer to its continuation environment (CE), and a
continuation pointer (CP). When control reaches the end of a subset clause,
the environment record is deleted provided all branch points within this
clause have been explored and the current environment record is at the top
of the control stack.

Success Backtracking. Note that failure cannot occur with unconditional
subset clauses—the emptiness-as-failure assumption states that, if a function
call fails to match the head of any clause, the result of the call is the empty
set, phi. Success-backtracking depends upon the calling mode: For a call-all
invocation of a subset clause, each time control reaches the end of the clause,
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success-backtracking to the most recent choice-point occurs. As each subset
is computed, it is added to the overall set after removing duplicates. For
a call-one invocation of a subset clause, each time control reaches the end
of the clause, an exit occurs back to the caller before generating the next
element.

3.2. Abstract Machine for Memoization and Re-Do

Before describing the run-time structures needed to implement memoization and
re-do, we first describe more precisely the computation of a goal involving these
two operations. We assume that any function defined recursively through subset
clauses will be memoized. This is a safe strategy in the sense that it will detect
any circular function call that may arise. A memoized call is said to be made in
call-memo mode, as opposed to call-all or call-one mode.

3.2.1 Abstract Computational Model

We illustrate the operation of the abstract computational model by means of a very
simple example.

g(X) contains {10} h(X) contains {20}
g(X) contains h(X) h(X) contains p(g(X))

p{X\.}) contains {X,30}

We flatten the body expression of a subset clause and replace it by a sequence
of equality goals; the order of goals reflects a leftmost-innermost calling sequence.
For example, an expression p(g (X)), where g and p are non-constructor (i.e., user-
defined) function symbols, is flattened as
g(X) = T1, p(T1) = S2.

Similarly, a top-level query such as g(1) will be flattened as g(1) = Ans. Note
that the memo-table records with each memoized call the value phi as the initial
approximation of its result. (For functions that are defined by general partial-order
clauses, the initial value depends upon the type of the result and the kind of partial
order clause, <= or =>). For the above program, the derivation from the query g(1)
is as follows.

Goal Sequence Substitution Memo Table

g(1)=Ans Ans + {10} U S1 )

h(1)=S1 S1 « {20} U s2 {g(1)=phi}

(L) g(1)=T1, p(T1)=S2 T1 ¢ phi {g(1)=phi, h(1)=phi}
p(phi)=52 S2 <« phi {g(1)=phi, h(1)=phi}

(R) g(1)=T1, p(T1)=S2 T1 « {10,20} {g(1)={10,20}, n(1)={20}}
p({10,20})=S2 S2 « {10,20,30} {g(1)={10,20,30},

h(1)={10,20,30}}
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(R) g(1)=T1, p(T1)=S2 T1 « {10,20,30} {g(1)={10,20,30},
h(1)={10,20,30}}

p({10,20,30})=52 $2 « {10,20,30} {g(1)={10,20,30},
h(1)={10,20,30}}

[l {g(1)={10,20,30},
h(1)={10,20,30}}

A memo-table lookup occurs in step 3 and is indicated in the above derivation
by a (L) against the goal g(1) = T1. The value retrieved from the table is phi.
Using this value, the computed answer for h(1) is {20} and for the top-level query
g(1) is {10,20}. The memo-table is updated with these values as soon as they
are computed. Since the computed value for g(1) at the top-level is different from
that assumed for this call in step 3, the call g(1) is subjected to a re-do, and
this is shown by a (R) against the goal g(1) = T1 in the step 5. The revised
value retrieved from the table is {10,20}. Using this value, the revised computed
answer for the top-level query is {10,20,30}. Once again a re-do is required (see
step 7), and this time the computed answer for the top-level query agrees with the
value retrieved from the memo-table, and hence the computation terminates with
{10,20,30} as the final answer.

The above program raises the issue of how often a re-do should be performed.
For example, in the case of function g above, we can, in principle, we can perform
a re-do after each clause for g has completed, rather that perform the re-do after
all clauses for g have completed. We have experimented with both strategies in our
implementation. From these experiments, we have found that performing the re-do
after every clause involves more computational steps (since a body code is being
executed many more times) and hence we favor performing this operation after all
clauses have completed.

3.2.2 Lookup Points

It is clear that the basic abstract machine outlined in section 3.1 must be extended
with a memo-table in order to execute the full language of unconditional subset
clauses. However the control must be suitably modified in order to correctly imple-
ment the re-do process. We illustrate the problem and its solution by reconsidering
the above derivation. Figure 3.2a shows the state of the control stack at step 4 of
the above derivation. Note that a lookup occurred when the environment record
for h(1) was on top of the stack. After the call to p(phi) is completed, under
normal execution the environments for h and g would be deallocated, and we will
not be able to re-do the goal g(1)=T of step 3 of the above derivation.

To solve the above problem we push a new record, called a lookup point, on the
control stack above the environment record wherein a lookup occurred. The lookup
point preserves the state of computation at the time when a memo-table lookup
occurred, so that all the necessary information can be retrieved upon a re-do. All
lookup points are chained together, and the head of this list is kept in a new global
register called the most recent lookup point register (MRLP). A re-do operation is
initiated whenever a memo-table entry is updated and there was lookup made on
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Figure 2: Illustrating the Need for Lookup Points

this entry, i.e., there is a lookup point corresponding to this entry on the control
stack. In general if there is more than one lookup point on the control stack, all
lookup points that are more recent than the one that was responsible for the re-
do are discarded; they will be re-created as needed during re-execution. Thus the
information in a lookup point consists of the most recent lookup point (MRLP), the
continuation point (CP), the current environment (CE), the most recent choice point
(MRCP), and the location to return the lookup value.

Returing to the above derivation, figure 3.2b shows the control stack after step
4 of the above derivation, assuming a lookup point has been created. After the
call p(phi) is completed, environments for h(1) and g(1) will not be deallocated
because they are protected by a lookup point for g(1). When the call h(1) com-
pletes, the memo-table entry for h(1) is updated to {20}; and when the call g(1)
completes, its memo-table entry is updated to {10,20}. Figure 3.2c shows the state
of the control stack at this point: The current environment pointer (CE) points to
the bottom of the control stack, but the environments for g(1) and h(1) are not
deleted. When the memo-table entry for g(1) is updated to {10,20}, a re-do is
initiated. This results in CE being set to the environment for h(1). The resulting
control stack is shown in figure 3.2d.

To summarize the discussion, the basic operations related to memoization are:
creation of a memo-table entry, updating the memo-table entry, memo-table lookup,
and re-do. The overall structure of the abstract machine for unconditional subset
clauses is shown in figure 3.3. To facilitate efficient access to the memo-table,
it is organized as hash-table whose efficiency is well-known for dictionary type
operations. To facilitate efficient re-do, we record with each memo-table entry a
pointer to the most recent lookup point that consulted this value (this pointer is
nil if there was no lookup made on this entry).
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short (1,3)
/ \
edge (1, 3, C1) edge (1, Z2, C2), short (2, 3)
(Fail) / \
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Figure 3.4: Illustrating the Need for Re-do Trall

3.8. Abstract Machine for Conditional Subset Clauses

We develop the abstract machine for conditional subset clauses by extending the
machine for unconditional subset clauses to handle relational clauses and goals.
When relational clauses are present, we need to maintain a trail stack for resetting
variables upon backtracking. In addition, we need to extend the control mechanism
so that re-do works correctly in the presence of relational goals in the bodies of
conditional subset clauses, e.g., for programs involving monotonic aggregation.

To illustrate the implementation problem involving conditional subset clauses
with relational goals in their bodies, consider the short example from section 2.2.2
along with a few instances of the edge predicate:

short (X,Y) <= C :- edge(X,Y,C).

short (X,Y) <= C+short(Z,Y) :- edge(X,Z,C).
edge(1,2,10).

edge(2,3,20).

edge(3 1,30).

edge(3,4,40).

The call tree of the goal short(1,3) is shown in figure 3.4. Note that there is a
cyclic call on short(1,3) and therefore a lookup occurs on this goal. After the
completion of this lookup, control returns to the point marked (*), since there is
a choice point created as a result of the goal edge(3,Z6,C6). Now the variables
C6 and Z6 are reset, and the computation proceeds by determining new bindings
for these two variables (Z6=4, C6=40) and calling short(4,3), which results in no
further calls on short. When control eventually returns to the top-level, the memo-
table entry for short(1,3) is updated, and a re-do on the cyclic call is initiated.
However, since the bindings for C6 and Z6 were reset, the environment in which
this call is to be re-done must be restored to its original condition.

To solve the above problem, at the time a lookup is performed, if the MRCP is
positioned above the lookup point, we must save the bindings of those variables
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belonging to the current or any more recent environment that were trailed. This
calls for a new storage structure which we refer to as the redo-trail. The XSB
system also makes use of a similar data-structure in its implementation. In the
above example, the bindings of variables Z6 and C6 are saved in the redo-trail
at the time of lookup, and they are recovered at the time of re-do. Thus, the
lookup point now maintains a pointer into the redo-trail to facilitate the recovery
of information during a re-do.

The overall abstract machine for conditional subset clauses is summarized in
figure 3.6.

4. Instruction Set for Subset Logic Programs

The execution of SURE programs involves two steps: compilation, followed by the
interpretation of the compiled code. The basic scheme for the implementation for
SuRE follows that of the WAM for Prolog: Our adaptation of the WAM supports
the compilation of set-matching, set-unification, as well as memo functions. Fur-
thermore, a more complicated control cycle than that of Prolog is necessitated by
the subset clause, due to the ability to execute set-valued functions in different
modes—call-one call-all, and call-memo—as well as the need to re-execute function
calls (re-do). The SuRE compiler was written in Quintus Prolog and it generates
“SLAM code” (Subset-Logic Abstract Machine code). This code is emulated by
a run-time system which was written in C. Below we describe the main steps in
compilation.

This section explains each category of instructions, starting with instruction set
for unconditional subset clauses, followed by the additional instructions needed for
a full language. We describe the instruction set in stages, with emphasis on the
differences from those for Prolog. Section 4.1 presents the instruction set for the
basic abstract machine of section 3.1; section 4.2 presents the additional instructions
for unconditional subset clauses with memoing; and, finally, section 4.3 presents the
instructions for the full language, especially set unification.

4.1. Instruction Set for the Basic Abstract Machine

The basic abstract machine implements the sublanguage of unconditional subset
clauses without memoization. Only functions (i.e., no predicates) are permitted in
this sublanguage. We compile a function with n arguments as a predicate with n+1
arguments, the last argument standing for the result of the function. Of course,
we assume that the first n arguments are invoked with ground arguments. Over-
all, there are seven classes of instructions—get, put, match, store, store_indirect,
indexing, and procedural instructions. Of these, the put, store?, and procedural in-
structions are similar to those of Prolog. The remaining instructions are as follows:

Get Instructions and Match vs. Store_Indirect Instructions

Get instructions are used to compile the argument occurring in the head of a clause.
Since every argument to a function call is ground, we can identify the read and write
modes of WAM’s get instructions at compile-time. Thus, unification instructions

2This instruction set is similar to the set instructions given in [1], which correspond to unify
instructions in ‘write’ mode.
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in read mode will be compiled into match instructions, i.e. one-sided unification,
and those in write mode will be compiled into store_indirect instruction, to build a
term. Except for a set term, every structured term occurring in the head will be
compiled into a get instruction followed by match instruction.

Set-Matching Instructions

In order to compile the set constructors of the form, {_\_}, appearing at the head
of a subset clause, we introduced in [11] three instructions—adj_set_head, adj_set
and adj_set_with_copy—each of which treats the remainder-set in a different way.
Basically these instructions are used immediately after a get_set instruction, to
“adjust” the matching set so as to prepare it for the next match [11]. These three
instructions cannot be merged with the preceding get_set instruction to give three
new get_set instructions because they may be the target of backtracking, whereas
the get_set is not. (Each get instruction either binds the argument register to
temporary or permanent register or dereference its contents). The adj_set_head
instruction is used when the set term has the form {X\_}, meaning that no remainder
set need be constructed; matching can proceed by effectively binding X in turn to
the individual elements of the matching set. The adj_set instruction is used for set
terms of the form {X\T}, where each new remainder set for T can be constructed
from the previous one for T by destructive modification. This instruction can be
used if the set bound to variable T is not being returned, either directly or indirectly,
as part of the function’s result. Otherwise the adj_set_with_copy instruction must
be used, meaning that each new remainder set cannot be formed by destructive
modification from the previous one.

Procedural Instructions

The procedural instructions of the WAM are augmented with call one, call all,
last_call one and collect instructions. The call instruction of the WAM is re-
placed by the call_one or call_all instruction depending on the calling mode. The
execute instruction of the WAM is supplemented with a last_call one instruction
whose role is similar to those of call_one and call_all instructions, except that it
is used to compile the last call. In [11] the last_call_one instruction is used when
the last-call register LC indicates that last-call optimization (LCO) [35] is possible.
For reasons discussed in the previous section, however, LCO is no longer possible if
a goal in the body is a memo function; the environment needs to be protected for
a redo if there is a lookup point above it. The compiled code for each subset clause
ends with a collect instruction whose behavior depends on the calling mode (given
in the mode register): In the call-all mode, it is responsible for constructing the
resulting set, removing duplicates and also for eventual deletion of the environment
record; in the call-one, it simply exits back to the caller. Note that, in the call-one
mode, the deallocate instruction will not deallocate the environment if there is a
choice point above it, but it will in the call-all mode.

Indez Instructions

As in the WAM, a program clause is indexed on its first argument. However,
because every functional argument is ground, we use switch on ground term, a
new instruction with four cases: constant, list, structure, and set. We use the
instruction try_sub_and when the left-hand sides of two or more subset clauses
can potentially match a given function call. This instruction creates a choice-point
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frame. A save_choice_point instruction is placed after the compiled instructions
for the left-hand side and before the compiled instructions of the body of each
subset clause. It also creates choice points if there is a branch point due to different
set matchings.

For a complete example, consider the following subset clauses for perms:

perms(phi)  contains {[]1}
perms ({X\T}) contains distr(X, perms(T))

The compiled code should be self-explanatory with the comments.

perms/1: switch_on_ground_term C1, fail, fail, C2

Ci: allocate 2 %
get_phi Al % phi)
save_choice_point 2 % contains
store_indirect_var Y1, A2 %
put_set Y2 % {
store_nil % [
store_phi %}
collect Y1, Y2 %

C2: allocate 6 %
get_set Y6, A1l % {x\t}
adj_set_with_copy Y6 %
match_variable Y1 %
match_variable Y2 % )
save_choice_point 2 % contains
store_indirect_var Y3, A2 %h v -
put_value Y2, A1 % perms(t) =
put_variable Y4, A2 % vi,
call_all perms/1 %
put_value Y1, Al %
put_value Y4, A2 % distr(s, v1) =
put_variable Y5, A3 %
last_call_one distr/2 %
collect Y3, Y5 % v.

4.2. Instruction Set for Memoization

We introduce three new instructions, call memo, execute memo, and update memo,
to implement memoization. Both call_memo and execute_memo instructions create
a memo-table entry if the function is being called for the first time on these argu-
ments. and they perform a lookup if it is not the first time. The execute_memo
instruction is for the last call. Both instructions are called in call-all mode since a
memo-table is updated after its call is completed. The update memo instruction is
to update a memo-table entry for a memo function call when it is completed and
triggers a redo if necessary. Therefore, it follows immediately either a call memo
or an execute memo instruction. Finally, the operation of the allocate instruc-
tion needs to be changed since we have introduced a new global register MRLP for
a lookup point. Now, any new environment, choice point or lookup point will be
created above CE, MRCP, and MRLP.
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We illustrate the compiled code for the function reach of section 2.1.2.
reach(V) contains {V}
reach(V) contains reach(W) :- edge(V, W)

Note that the second clause of the reach/1 definition is flattened and transformed?as
follows:

reach(V) contains S1 :- edge(V, W), all(W) = S1
all(W) contains reach(W)

The compiled code is as follows, and should be self-explanatory in view of the
comments accompanying each instruction. The execute memo instruction performs
a memoized call and the update memo instruction updates a memo-table entry.

reach/1: try_sub_and L1
allocate 3
get_variable Y1, Al % reach(V)
save_choice_point
store_indirect_var Y2, A2 % contains
put_set Y3 h{
store_value Y1 %V
store phi %}
collect Y2, Y3 % UV
L1: allocate 4
get_variable Y1, A1 % reach(V)
save_choice_point % contains
store_indirect_var Y2, A2 % S1 :-
put_value Y1, Al % edge(V,
put_variable Y3, A2 % W,
call edge/2
put_value Y3, Al % all(W)
put_variable Y4, A2 % = S2
execute all/1
collect Y2, Y4 % S1 := 81 U 82
all: allocate 3
get_variable Y1, A1 % all(w)
save_choice_point % contains
store_indirect_var Y2, A2 % S1 :-
put_value Y1, Al % reach(W)
put_variable Y3, A2 % = S2
execute_memo reach/1
update_memo reach, 1, Y3
collect Y2, Y3 % S1 := 81 U S2

4.8. Instruction Set for the SuRE Language

The new instructions for the full subset-logic language primarily pertain to the pro-
cedural and unification classes of the WAM. (While there are additional instructions

3This transformation is done in order to enforce set-collection and is discussed in more detail
in [11, 20].
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pertaining to lazy evaluation and set enumeration goals, we do not discuss them
in this paper.) To link together two or more relational clauses, we use the WAM
instruction switch on term (except that its argument can also be set), along with
the try me_else and trust_me instructions. The rest of this section is devoted to
the instructions for set unification.

The unify instruction set is similar to that of the WAM. Terms appearing in
the head of subset clauses will be compiled as before, while terms appearing at
the head of a relational clause, excepting set terms, will be compiled as in Prolog.
All equational goals will be compiled assuming that their arguments are ground—
our compiler performs groundness checks and will flag violations—while relational
goals will be compiled as in Prolog. The presence of set terms of the form {_/_}
in relational clauses requires new instructions for set unification because [11] only
introduced instruction sets for set matching, adjusting an incoming set combined
with get_set instruction.

Since it cannot be assumed that an incoming term would be ground for relational
clauses, adjust-set instructions cannot be used. Since set unification generates
multiple unifiers, the get_set instruction alone is not enough. Furthermore, unlike
set matching where only an incoming set is being adjusted, set unification requires
adjusting of both terms and needs to know both terms before applying unification.
Thus, the usual compilation of structured terms will not suffice. We therefore create
several new instructions so that a set argument appearing in the head of a relational
clause can be built on the heap. We then apply the set-unification algorithm on
these terms (incoming argument and the argument just built). New instructions
for set unification are discussed below.

The w_get instructions: There are four w_get instructions: (1) w_get_variable
Y., 4;, (2) w.get_structure F, Y;, (3) w.get_list Y; and (4) w.get_set Y;. They
are essentially getinstructions in the ‘write’ mode. The w_get_set instruction would
treat a set like any other structured term except that it builds a set. Any structured
term appearing inside of a set term will be compiled with these instructions; the
mode will always be ‘write’.

The write instructions: These are: (1) write_variable V,, (2) write_value V,,
(3) write_constant C, (4) writenil, and (5) write_phi. These instructions cor-
respond to unify instructions in ‘write’ mode, i.e., they will build a term on a heap.
Terms that would be compiled into unify instructions will be compiled with these
if they appear inside of a set term in the head instead.

The unify_set instruction: This instruction performs set-unification on two terms,
generates a unifier, and is responsible for creating branch points. If set unification
generates more than one unifier it will create branch points as in set-matching.
Like set matching, it needs to try one unifier at a time, and backtracks if nec-
essary. Backtracking by branch points causes control to return to the branching
instruction—unify_set in this case.

In addition, since a set term appearing in the head of a relational clause may
introduce branch points and it may be a target of a redo operation as seen in the pre-
vious section, we place a save_choice_point instruction at the end of the compiled
code of each relational clause that has a set term in its head. Below we will show
the operations for the new instruction set and illustrate their use with an example.
Some similarity between the unify_set instruction and the adjusting-set instruc-
tions can be noted—both are targets of backtracking. But, unlike the adjust-set
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instruction, which simply sets a pointer for the next match, the unify_set instruc-
tion is responsible for binding variables for the next unifier. Other instructions that
call a unification routine can also be the target of backtracking, e.g., get_value and
unify_value, when the terms they unify are set terms.
We illustrate below the compiled code for a relational clause with a set term.
member (X, {X/_})

member/2: allocate 2
get_variable Y1, Al % member (X,
w_get_set Y2 % {
write_value Y1 % X/}
unify_set Y2, A2
save_choice_point 2
deallocate
proceed

5. Experimental Results

In this section we discuss the results of a prototype implementation of the forego-
ing ideas and techniques, and compare this implementation with two closely related
systems. We completed this implementation in the summer of 1996, and all of the
examples shown in this paper were tested out using this implementation. Section
5.1 will describe performance figures of SURE programs, concentrating on the per-
formance of memoization and re-do, as these are the main new features of our
implementation. Section 5.2 will show performance comparisons on representative
programs with XSB and CORAL systems.

5.1. Performance Figures for SuRE

We note at the outset that the memo-table is organized as a hash-table (with chain-
ing), the cost of a lookup and creating a memo-table entry is a constant independent
of the size of the table as long as a load factor a < 1. The load factor is the average
number of elements stored in a chain. We assume that the size of a memo-table is
large enough and the hash function is fairly uniform. This means there is at most
one entry on the chain on average. Our current implementation actually does not
guarantee that the load factor is always less than one. To ensure this condition,
we should be able to increase the hashtable periodically. For example, we can set
a certain threshold, and if the number of entries exceeds it, the hash-table size is
increased (e.g., doubled). In our prototype implementation, a hash-table with 4096
entries was used. However, this size can easily be increased if one were interested
in experimenting with larger problem sizes.

When the arguments to a memoized function are structured types, such as a list
or set, it will take #(n) to form a key, where n is the size of argument list. An
important point to note about memo-table updating is that, since the environment
for a memoized call will remain on the control stack as long as its computation
is not completed, keeping a pointer to the memo-table entry for the call allows
direct access to the entry and hence updating would be a constant time operation.
However, the check for a re-do can be costly if the result is a large set—the new
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value must be compared with the one in the table in order to decide whether a
re-do is needed.

In the next two subsections we report performance figures from running several
of the programs. We first discuss the performance of memoization and then the
performance of memoization with re-do. All timings shown represent in seconds
the execution times on a Sun Ultra Enterprise 4000, with 168 MHz UltraSPARC
CPUs and 1 gigabyte of main memory. Each timing shown for a particular input
and program is actually the average of several runs of the program on this input.
Care has been taken so that the memo-table is purged in between runs.

Performance of Memoization

First we consider an example where memoization is used purely for efficiency rea-
sons. The function short1 below is a direct rendering of the dynamic programming
formulation of the shortest-distance example. Here, the third argument of short1l
specifies a bound on the number of edges to be traversed in finding the shortest
distance and serves to explicitly identify subproblems. Since no cyclic calls will
arise in this program, it does not require re-do for its correct execution.

short1(X,Y,1) <= C :- edge(X,Y,C)
short1(X,Y,L) <= short1(X,Y,L-1) :- L > 1
short1(X,Y,L) <= C+short1(Z,Y,L-1) :- L > 1, edge(X,Z,C)

The above formulation can be contrasted with the formulation shown in section
2.2.2, which we refer to further below as short2. The running times for the above
program for increasingly larger graphs is shown below. The number in parentheses
next to each performance figure refers to the value of L that was used in making
the top-level call (we use the smallest value needed to compute the correct answer).
Without memoization, the computational cost grows exponentially in the number
of nodes, whereas, with memoization, this cost grows polynomially with the number
of nodes.

# of nodes (# of edges)
3(13) 16(39) 25(53)
with memo || 0.0032(2) | 0.0303(6) | 0.09799(10)
without memo || 0.0027(2) | 0.6398(6) | 155.274(10)

Our next example is the function reach which performs a transitive closure oper-
ation.

reach(X) contains {X}
reach(X) contains reach(Y) :- edge(X,Y)

As noted in section 2.2.2, this function does not require a re-do operation even for
a cyclic input graph (such a case can be detected syntactically during compilation).
It requires only a lookup which is a constant-time operation since the argument to
reach is a simple constant. However, the result of reach(X) is a set, and the cost
of constructing it affects the overall performance.

# of edges
25 50 100 200
graph! [ 0.0061 | 0.0120 | 0.0239 | 0.0482
graph2 [ 0.0217 | 0.0750 | 0.2957 | 1.0415
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In the preceding table, graphl is a balanced binary tree (an acyclic graph), and
therefore does not require memoization for correct execution. Still, every call on
reach is memoized by the implementation since it cannot detect this fact from the
extensional database of edge facts. Nevertheless the performance grows linearly
with the number of nodes in the graph, showing that memoization does not degrade
the overall performance.

In contrast with graphl, all the nodes of graph2 are arranged in a single cycle.
Every call to reach is once again memoized. Since, for each X, reach(X) is the
entire set N of nodes in the graph, the size of each set in the memo-table will
be |N|. The cost of duplicates-checking incurred in forming these sets makes the
overall performance for graph2 quadratic in the number of nodes. In contrast, in
the case of graphl, the average size of each set in the memo-table will be logs(| V).

Next we show an example where the benefits of memoization are lessened when
the function being memoized is set-valued and its argument terms are also sets. The
function parts below computes the set of all partitions of a set into two disjoint
subsets.

parts(phi) contains {pair(phi,phi)}
parts({H\T}) contains distr2(H,parts(T))
distr2(H,{pair(P1,P2)\}) contains {pair({H/P1},P2), pair(P1,{H/P2})}

The size of the output set is 2" where n is the size of input set. Any call on
parts with an argument set of size n, where n > 2, will result in n x (n —1)/2
identical pairs of calls on parts with argument sets of size n — 2. Hence there is
ample opportunity for memoization to speed up the computation here: we expect
noticeable improvements as the input set becomes larger. However, the cost of
set-equality checks in the memo-table greatly diminish the benefits of avoidance of
redundant computations.

Size of argument set
4 5 6 7
with memo 0.0102 | 0.0663 | 0.4389 | 13.59
without memo || 0.0115 | 0.1006 | 0.6157 | 15.36

Finally, we report on the performance of SURE programs when a bag is con-
structed instead of a set, i.e., when duplicates-checking is explicitly suppressed.
Bag construction is illustrated by the program below. The annotation bag perms/1
indicates that duplicates-checking need not be performed on the resulting set com-
puted by perms.

bag perms/1

perms(phi) contains {[ 1}

perms ({X\T}) contains distr(X, perms(T))
distr(X,{L\_}) contains {[X|L]}

The following table shows the results for the case when the bag annotation is present
and when it is absent (i.e., a set is constructed as the result).

Size of input set
4 5 6 7
with bags || 0.0115 | 0.1006 | 0.6157 | 15.36
with sets || 0.0149 | 0.1592 | 3.185 -
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In both cases, the function perms was called in the call-all mode. (Note that, due
to the prohibitive space and time requirements, it was not possible to obtain the
figures for an input set of size 7 when working with sets.) The table below shows
the performance of perms in the call-one mode. We conclude that incremental
computation with bags is the most efficient scheme whenever it is applicable.

Size of argument set
4 5 6 7
with bags || 0.0127 | 0.1046 | 0.6083 | 10.92
wit sets 0.0156 | 0.1496 | 2.844 | 127.8

Performance of Re-Do

We present two different examples to illustrate the performance of re-do. First
we compare the behavior of the formulation of the shortest-distance example with
and without re-do. The function shortl shown earlier requires memoization but
not re-do. The function short2 below requires both memoization and re-do. One
important advantage of short2 over shortl is that short2 does need the third
argument of shortl. That is, short2 does not need to have knowledge of the
bound on the number of edges to be traversed in finding the shortest distance.

short2(X,Y) <=C :- edge(X,Y,C)
short2(X,Y) <= C+short2(Z,Y) :- edge(X,Z,C)

We compared the performance of these two functions on the same graph (repre-
sented by the edge/3 predicate). The table below shows that short2 outperforms
short1 as the graph size increases. The graph below has no regular property, but
has several cycles in order to exercise the re-do process. The reason for the bet-
ter performance of short2 is that it avoids solving unnecessary subproblems. The
numbers in parentheses in the row for short?2 refer to number of redo’s that were
performed. These figures indicate to us that re-do is a reasonably efficient means
of performing monotonic aggregation.

Size of argument set
8(18) 16(38) 24(58) 32(78)
shortl || 0.0032(2) | 0.0303(6) | 0.0979(10) | 0.242(14)
short2 || 0.0072(3) | 0.0156(6) | 0.0238(9) | 0.0324(12)

Our second example shows the performance of memoization and re-do for the
company controls example from section 2.2.2 (note that false < true in the
boolean partial ordering):

controls(X,Y) >= sum(owns(X,Y)) > 50

owns(X,Y) contains {s(X,Y,N)} :- shares(X,Y,N)

owns(X,Y) contains {s(Z,Y,N)} :- shares(Z,Y,N), controls(X,Z)=true
sum(phi) equals 0

sum({s(_,_,C)\T}) equals C+sum(T)

For the above program, the following figures were obtained by running the controls
function on extensional databases of different sizes, and observing the effect of the
number re-do operations on the overall execution time. The term # of edges in the
table below refers to the size of the extensional database, i.e., the number of facts
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of the relation shares(X,Y,N) (an in-memory database). We introduced several
cyclic holding dependencies in order to exercise the re-do mechanism.

# of edges | Time
40 0.112
80 0.389
160 1.542
320 6.631

The above program requires a redo operation since owns/2 is an argument to a
monotonic function sum/1. Thus, when updating a memo-table entry, a set-equality
check between each new approximation and the previous one is made to determine if
a redo is required. As a result, the performance grows quadratically as the number
of edges increases.

5.2. Comparisons with XSB and CORAL

In this section we compare our implementation of SuRE with XSB and CORAL.
We choose problems that are appropriate test cases for all three systems. Although
SuRE is better suited to set-oriented computations, we do not consider such pro-
grams in the comparisons, because XSB and CORAL are not primarily targeted at
set-oriented computations. We used XSB version 1.4.3 and CORAL version 1.2 in
these comparisons, as these were the implementations available to us at the time
we completed the implementation of SuURE. The reader should note that all three
systems will improve in time, and hence the performance figures presented should
be read with in this light. The reader should focus on program clarity, and on the
rate of growth of execution times rather than on the absolute value of the execution
times. However, we report actual execution times in order to provide some sense
of their relative performance.

Comparisons with XSB

The XSB version of the shortest distance problem using bagMin is shown below.
The program is comparable in conciseness to the SuRE formulation with partial-
order clauses. XSB supports aggregation using the HiLog predicates bagReduce/4
and bagP0/3. The predicate bagMin/2 is defined using bagReduce/4 and computes
the minimum value of a bag of results. By implementing bagReduce/4 with tabling
it provides efficient access to the elements of a bag. Note that a bag is not explicitly
constructed; only the running minimum, maximum, sum, etc., is maintained in the
memo-table.

:- import bagMin/2 from aggregs.
:- hilog short.

short (X, Y)(D) :- edge(X,Y,D).
short (X, Y)(D) :-
bagMin(short (X,Z), D1),
edge(Z,Y,D2),
D is D1 + D2.

short2(X,Y,D) :- bagMin(short(X,Y),D).
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The behavior of the XSB bagMin/2 operation for recursive programs is of special
interest. As D.S. Warren describes in [37], for recursive programs operating on cyclic
data, such as this one, the bagMin/2 operation must return an answer before it has
seen all elements. Thanks to the monotonicity of the min operator, a well-defined
answer results without having to enumerate the infinitely-many paths. However, the
performance of this program depends on the scheduling strategy [37], i.e., which
solution path is explored first. Compared with the SuRE implementation, XSB
runs 3-6 times faster although the growth rate of the two execution times are quite
comparable.

# of edges
138 218 298 418 538
SuRE/short2 || 0.0569 | 0.097 | 0.136 | 0.185 | 0.296
XSB/short?2 0.020 | 0.029 | 0.039 | 0.044 | 0.050

Following is the XSB version of company-controls problem and its performance
figures. In this example, we expect that the XSB program will perform even bet-
ter than the corresponding SuRE program because the latter will construct a set.
Unlike the shortest-distance example, whose performance under XSB is dependent
upon the scheduling strategy, the performance of the above program is not affected
by the scheduling strategy because the aggregate operation here is sum.

:— import bagReduce/4 from aggregs.
:- hilog sum.
:— table(owns1/3).

sum(X,Y,Z) :- Z is X+Y.
bagSum(Call,Var) :- bagReduce(Call, Var, sum, 0).

controls(X, Y, A) :-
bagSum(owns (X,Y), Total),
(Total > 50 -> A = true; A = false).

owns(X, Y)(N) :- owns1(X, Y, N).

owns1(X, Y, N) :- shares(X, Y, N).
owns1(X, Y, N) :- controls(X, Z, true), shares(Z,Y,N).

In the SuRE version of company controls problem, we express controls as a
partial order clause and owns/2 as a contains clause. Both aggregation and mono-
tonicity are built into the control of SURE. However, as the table below shows, it
doesn’t perform as well since owns/2 still constructs a set.

# of edges
40 80 160 240 320
SuRE/controls || 0.112 | 0.389 | 1.542 | 3.40 | 6.631
XSB/controls 0.020 | 0.025 | 0.040 | 0.051 | 0.081

Finally, note that, unlike the perms function of section 5.1.1, the performance
of the SuURE function controls cannot be improved through the use of bags. The
reason is that, when working with bags, monotonic updating of memo-tables may
sometimes not reach a finite fixed-point for problems involving circular constraints
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(such as those that arise in the company-controls problem) even though a finite
fixed-point can be obtained when working with sets. For example, while the addi-
tion of an element 1 to a set {1,2,3} results in the set {1,2,3}, in the case of bags,
this will result in a new bag {1,1,2,3}. Thus, while a finite fixed-point {1,2,3}
might be reached in the former case (sets), this is precluded in the latter (bags):
since the bag {1,1,2,3} is different from the previous one, {1,2,3}, a re-do will
be initiated, causing increasingly large bags of the form {1,1,1,2,3}, etc., to be
computed.

Comparisons with CORAL

First we show the use of aggregation in CORAL, which allows rule-level control
through the aggregate_selection annotation. For the shortest-distance example, we
use the following program, which is taken from CORAL release 1.2, and modified
only slightly to conform to the SuRE version of the same problem.

module declad_egb6a.
export short2(bbf) .

cost(X,Y,C) :- edge(X,Y,C).
cost(X,Y,C) :- edge(X,Z,C1), cost(Z,Y,C2), C=C1+C2.

Qaggregate_selection cost[bbf] (X,Y,C) (X,Y) min(C).
short2(X,Y,min(<C>)) :- cost(X,Y,C).

end_module.

By specifying cost (X,Y,C) to be aggregate_selection the system checks for cost
facts with the same X,Y combination and deletes all facts whose C value is not the
smallest. This annotation is important not only for efficiency but also termination:
without it the program may run forever, generating cyclic paths of increasing length
[29]. That is, at each iteration it filters out unnecessary tuples, and thus minimizes
the cost of the next iteration. As a result, the grouping in short2 operates only
on the path between X and Y whose cost is the least. Reference [28] states that
the aggregate selection is an operational modification of duplicates-checking, and,
in general, there is no declarative semantics for programs using these features.
In contrast, SuRE uses the partial-order clause to formulate the same problem,
and programs have a well-defined semantics as long as monotonic functions in the
appropriate partial orders are used.

Another important control annotation of CORAL is the specification of ordered
search. This is an evaluation mechanism that orders the use of generated subgoals
in a program. It can be used to evaluate a large class of programs with negation
by maintaining information about dependencies between subgoals, and to avoid a
lot of redundant computations by hiding subgoals when only a single answer to a
query is needed [28].

The following table compares the SuURE and CORAL versions of the short-
distance program. The figures for CORAL below is with aggregate_selection and
making use of separate modules for program and data. The program uses bottom-
up evaluation and ordered search, along with grouping and recursion. The growth
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rates of both versions are comparable, although the current version of the SURE
system tends to take less time.

# of edges
138 218 298 418 538
SuRE/short2 0.0569 | 0.097 | 0.136 | 0.185 | 0.296
CORAL/short2 0.21 04 0.53 | 0.96 | 1.70

The following data is obtained from running the shortest-distance program on
a randomly generated tree and dag with 120 nodes and 495 edges. This data set
is taken from the CORAL release (files edge.tree.F and edge.dag.F respectively).
When run in defoult mode, CORAL takes more execution time for the DAG. This
may be explained by the fact that bottom-up evaluation requires more iterations for
certain data structures, especially when there are more elements in the transitive
closure.

SuRE CORAL
aggregate_selection default
tree || 0.0349 0.13(1.53) 0.14(1.53)
dag || 0.125 0.41(7.94) 4.14(12.29)

The figures in parentheses are for the single-module case and show the performance
penalties that might occur without modularization. Since the tree and dag contain
no cycle, SuRE will not perform redo’s although it will check if one is needed each
time the memo-table is updated.

While aggregate_selection improves efficiency significantly as the above test shows,
its use is somewhat limited to cases where we wish to retain just one of several
computed facts. In the case of company-controls example shown below [29], aggre-
gate_selection cannot be used because the aggregate operation is ‘sum’: we need
to sum up the shares from all the intermediate facts computed. As a result, an
annotation monotonic is used instead. Since the owns/2 relation can be cyclic, it
can lead to a cycle of goals through grouping. Without this annotation, it will not
terminate when generating all the shares of companies Z owned by X.

module company_control.
export controls(ff).

@monotonic.

controlsvia(X,X,Y,N) :- shares(X,Y,N).
controlsvia(X,Y,Z,N) :- controls(X,Y), s(Y,Z,N).

controlmin(X,Z, sum(<M>)) :- controlsvia(X,Y,Z,M).

controls(X,Y) :- controlmin(X,Y,N), N > 0.5.
end_module.

In the above example, no ordered search is used even in the presence of grouping
with recursion because the monotonic-annotation overrides it. When tested against
the SuRE version shown in the previous subsection, CORAL performs better even
when a single module is used.
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# of edges
40 80 160 | 240 | 320
SuRE/controls 0.112 | 0.389 | 1.542 | 3.40 | 6.631
CORAL/controls || 0.02 0.04 0.08 | 0.11 | 0.17

In conclusion, while SuRE can declaratively express set-oriented operations using
subset clauses and partial order clauses, it incurs a performance penalty because
it must explicitly construct sets in certain cases. Not only does involve more time
in set-collection, it requires a set-equality check to determine whether a re-do is
needed. While one can note some similarities between SURE and CORAL with re-
spect to set terms, their approaches to handling aggregation is different. In CORAL
an aggregate operation such as min is supported via aggregate selection and a mul-
tiset operator min. But an aggregate operation such as sum which collects all the
intermediate results needs to use an annotation monotonic to avoid nontermination.
Whereas in SuRE the min operation can be expressed naturally via partial order
clauses, the sum operation must be expressed by first forming a set (using subset
clauses) and then summing its members.

XSB performs the best among the three systems on benchmark problems that
are common to these systems. Much of the efficiency in CORAL comes from so-
phisticated hashing and indexing, since it is critical in bottom-up evaluation to
perform duplicate tuple-checking and avoid unnecessary iterations. XSB also uses
clever data structures (tries) for representing terms. We feel that SURE can benefit
from adapting some of the techniques used in XSB and CORAL, thus providing
more efficient solutions while supporting set terms declaratively. Finally, we would
like to stress that the performance figures for the systems shown in this section
should be interpreted as snapshots at one point in their evolution. We expect that
all three systems will improve in time. Nevertheless we hope that the comparisons
show how typical problems can be expressed in these systems and also the relative
strengths of these systems for different problems.

6. Summary, Conclusions and Further Work

The paradigm of subset-logic programming provides a rich collection of declarative
features for processing sets. It should not be surprising that sets play a crucial role
in logic programming and deductive databases, since the semantics of relational
programs are, after all, given in terms of sets. By formulating a set-valued function
through subset clauses, one gains the flexibility of operating on the resulting in
different ways: eagerly, incrementally, as well as lazily. Subset clauses and, more
generally, partial-order clauses help render clear and efficient formulations to prob-
lems requiring setof operations, transitive closures, and monotonic aggregation in
deductive databases.

The two main implementation issues in a logic programming language are the
implementation of unification and the implementation of its control strategy. In
subset-logic programs, the former involves the implementation of set matching and
set unification. As noted earlier, this topic has been treated in other papers, hence
the main focus of this paper has been on the implementation of the control strategy.
Compared with Prolog, the needed control in subset-logic programs is more com-
plex, requiring memo-tables, re-execution of calls, as well as incremental and lazy



exploration of a search space. Notwithstanding these differences, the Warren Ab-
stract Machine [35] has been a suitable framework for implementing these features.
We summarize the salient points of our implementation:

e Apart from the instructions needed for compiling set-matching and set-
unification, only a few instructions were needed for compiling the control
strategy. Essentially one or two instructions were needed in order to make
function calls in each of the different modes: eager, incremental, memoized
(and lazy) modes.

e The main new storage structure needed is the memo-table, whose entries are
monotonically updated in the appropriate partial order. On the control stack
we introduce three new records: branch points (to keep track of branching
in set matching and unification), and lookup points (which identify the place
where a re-do is required). Finally, we make use of a redo-trail to help restore
the environment for conditional subset clauses.

¢ Although our current implementation of subset-logic programs has not been
optimized in any special way, our experiments with the implementation show
that memoization and re-do are practical computational mechanisms for a
set-oriented declarative language.

In this paper we have not discussed lazy evaluation of subset logic functions. As
noted earlier, a basic difference between lazy evaluation in the subset-logic paradigm
and the conventional functional paradigm is that the unevaluated portion of a
lazy set might be some control point in the search tree of a relational program.
We therefore represent this unevaluated part by a read-only variable, which when
matched against a set constructor will result in the search tree being explored.
Because this search space is explored only when this read-only variable is matched
against a set constructor, the space is pruned if the read-only variable is never
accessed again. Thus, by “objectifying” the search space as a set, we are able
to declaratively prune the search space. A key implementation problem here is
protecting the search space from being explored by normal backtracking. In our
current implementation, the programmer specifies lazy exploration of a search space
through an annotation, but we are examining ways of automating this decision
through static analysis.

Another opportunity for static analysis is the detection of the property of distri-
bution over union. In every non-contrived program that we have encountered, we
have observed that there are two very simple tests can be used determine that a
function distributes over union in some argument: (i) a set constructor, {H\T} or
{H\_}, appears in this argument at the head of the clause, and the remainder set T
is not subsequently used (e.g., as in intersect); or (ii) a variable appears in this
argument at the head of the clause and every occurrence of this variable on the
right-hand-side of the subset clause is in an argument position of a function that
distributes over union in this argument position (e.g., as in union, trivially).

As part of our future work, we are interested in executing efficiently functions
such as short, which are defined using partial-order clauses but whose result domain
is totally ordered (e.g., integers under <=). When this is the case, the computational
procedure can be adapted so that the search for an answer can be directed more
efficiently and unproductive subexpressions can be blocked from further evaluation.
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The resulting computational regime is similar to branch and bound algorithms.
Such “total-order clauses” also lend themselves to operations such as relaxation and
incremental recomputation. Using relaxation, we can determine, for example, the
second shortest distance from a source to a destination. Incremental recomputation
is useful in the database context in determining answers to queries when a small
change to an extensional relation is made.
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