Implementation of Subset Logic Languages

Ph.D. Dissertation Defense

Kyonghee Moon

Department of Computer Science
State University of New York at Buffalo

Outline

1. Contributions

Background and Related Work

The SuURE Programming Language: Overview
Abstract Machine for SuRE

Static Analysis

Experimental Results

Further Work

A N I

1. Contributions of this Dissertation

The design and implementation of a declarative language with
powerful set processing capabilities

e Use of sets for unifying functional and logic programming

e Novel use of memo-tables and lazy-evaluation

— Monotonic Memo-table

— Lazy exploration of Search Space
e Static Analysis for subset clauses

— Distribution over Union

— Detection of Memoization and Avoidance of Re-do

2. Background and Related Works

e Sets in Programming Languages

— imperative language (Pascal, SETL)
— Functional Language (Miranda)

— Declarative Language (Prolog)
e Warren Abstract Machine (WAM)

— Abstract Machine for Prolog

— Compilation of unification and control stragegy into high-
level instructions

— Run-time stack (environments and choice points) and Heap
e XSB & CORAL
— XSB:

x SLG resolution, a table-oriented resolution that com-
bines SLD resolution with memoization

x does not support set terms
— CORAL:

x deductive database system that employs bottom-up eval-
uation

% supports ground sets and multisets

Warren Abstract Machine (WAM)

Unification : get, unify, put instruction.

e.g. eq(X, X).

get_variable X2, Al
get_value X2, A2

eg. gpX, Y) :- p(X, Z2), p(Z, Y).

get_variable Y1, Al
get_variable Y2, A2
put_value Y1, Al
put_variable Y3, A2
call p/1

put_value Y3, Al
put_value Y2, A2
execute p/1

Control Strategy: Indexing Instructions

switch_on term, try me else, retry me else, trust.me.

- link together the different clauses that make up a procedure and
are responsible for filtering out a subset of those clauses that could
potentially match a given procedure clause and responsible for back-
tracking.

Example

append([], L, L).
append [X|L1], L2, [X|L3]) :- append(L1,L2,L3).

append/3: switch_on_term Cla,C1,C2,fail

Cla: try_me_else C2a

Cl: get_nil A1l
get_variable X3, Al
get_value X3, A2
proceed

C2a: trust_me_else fail

C2: get_list Al
unify_variable X4
unify_variable X5
get_variable X6, A2
get_list A3
unify_value X4
unify_variable X7
put_value X5, Al
put_value X6, A2
put_value X7, A3
execute append/3

SEL = Subset-Equational Language:

f(terms) contains expr.
f(terms) equals expr.

SEL is a proper subset of SuRE, and is a functional programming
language.
e Compilation of set-matching

e Specification of functions that distribute over union via mode
declaration

e No detection of cyclic calls - No memoization

SuRE = SEL + SRL + conditional equational clause

3. The SuRE Language: Overview
SuRE = Subset, Relational, and Equational Language

Equational Clause:

f(terms) equals expression.

e many Prolog programs are essentially functional programs [DW89]
e cquations are clearer (no cuts) and more efficient (no backtrack-
ing)
Subset Clause:

f(terms) contains expression.

e helps avoid common uses of setof and modes
e helps avoid some uses of assert, retract, and cut

o cfficient formulations of set operations, including transitive clo-
sures and dynamic programming algorithms

e helps render clear and concise formation to problems involving
aggregate operations and recursion in database query.

3.1 Syntax of SuRE Programs
3.2 Set Constructors in SuRE
3.3 Stratified SURE Programs
3.4 From Subset to Partial-order Clauses

3.5 Lazy Enumeration

3.1 Syntax of SuRE Programs

f(terms) contains expr.
f(terms) contains expr :- condition.

f(terms) equals expr.
f(terms) equals expr :- condition.

p(terms’).
p(terms’) := condition.

where
term is made of constants, variables, constructors, {__}7},

term’is same as term except it uses a set term of {_/_},
expr is made of terms and user-defined function symbol, and

condition is made of p(terms), not p(terms), and set enumeration
goals:

(i) f(terms) > term: incremental enumeration of set elements
(ii) lazy f(terms) = set: lazy enumeration of set elements

(ii1) f(terms) = set: cager enumeration of set elements

3.2 Set Constructors in SuRE
Sets are represented by two novel constructors: {z\t} & {z/t}

phi stand for the empty set

{z\t} stands for a set s where z € s and t = s — {z}.
c.g. Matching {x\t} against {1, 2,3} yields:
x— 1,t — {2,3}
x— 2,t—{1,3}
x— 3,t— {1,2}

{z/t} stands for a set s = {x} Ut

l.h.s. of fun| Lh.s. of pred| r.h.s. of fun|r.h.s. of pred
{z\t} V X X X
{z/t} X Vv Vv Vv

Set Terms in Relations and Set-of Operations

member (X, {X/_}).

- to verify set membership, ?7- member (b, {a,b,c}).

- to generate the elements of a set one at a time, 7- member (X, {a,b,c})

- to insert an element in a set, 7— member(a, S).

append([], X, X).
append ([H|T], Y, [HIT]) :- append(T, Y, Z).

The Prolog goal

setof ([X|Y], append(X, Y, [1,2,3]), Answer)

can be replaced using a conditional subset clause, as follows,
parts(List) contains {[X, Y]} :- append(X, Y, List).
7- parts([1,2,3]).
{1, [1,2,311, C[(1]1, (2,311, [[1,2]1,03]1, [[1,2,3],0[1]1}

Subset clauses often yield compact, nonrecursive definitions:

union(S1,S82) contains Si1
union(S1,S2) contains S2

setproduct ({X_}, {Y_}) contains {[X|Y]}
intersect ({X_}, {X_}) contains {X}
7 setproduct({1,2}, {3,4})

{01137, [114],[213], [2]14]}

10

3.3 Stratified SuURE Programs

Informal Definitions

- A logic program is said to be stratified if there are no recursive
calls on a predicate through negation.

- A logic program is said to be locally stratified if there are no
cyclic calls on a predicate through negation

- A function p is subset-monotonic in some argument if

s1Cso=p(..y81,...) Cp(i..,59,...)
e Recursive Subset Clause

- Commonly arises in recursive subset clauses of the form

flo o {X\T}, ...) contains ... f(...,T,...)...

Example 1:

list permutations of a set

perms (phi) contains phi.
perms ({X\T} contains distr(X, perms(T)).

distr(X, {H_}) contains {[X|H]}.

11

e Memoization for loop detection

Example 2:

memo reach/1/phi.

reach(V) contains {V}.
reach({X_}) contains reach(edge(X)).

edge(1) contains {2}.
edge(2) contains {1}.

In general, they are useful in problems such as data-flow analysis in
compilers, graph theory, etc.

A memo-table is a (run-time) data structure to record the result
of a function call, so subsequent calls of that function with identical
argument can be reduced to table look-up.

There is more to a memo function than just memoization ...

12

e Cyclic function definition via monotonic function

Example 3: Dataflow Analysis in a Compiler [AU77]
memo out/1, in/1, allout/1.

out (B) contains diff(in(B), kill(B)).
out(B) contains gen(B).

in(B) contains allout(pred(B)).
allout ({P_}) contains out(P).
diff ({X_},S) contains if member(X,S) then phi else {X}.

When general circular containment constraints exist, there is a need
to assume a provisional value for the inner recursive call (when the
loop is detected), and to revise this estimate and re-execute the call
until a fized point is reached. This process is guaranteed to yield a
unique answer if one memo function is defined in terms of another
through subset-monotonic functions.

13

The Need for Re-do

We explain how re-do works for a smaller example ...

14

3.4 From Subset to Partial-order Clauses

Examples of Monotonic Aggregation

Company-controls

memo controls/2/false.
controls(X,Y) equals sum(owns(X,Y)) > 50.

owns (X,Y) contains {s(X,Y,N)} :- shares(X,Y,N).
owns (X,Y) contains {s(Z,Y,N)} :- shares(Z,Y,N), control

sum(phi) equals O.
sum({s(_,_,C)\T}) equals C+sum(T).

Shortest-path

short (X,Y) <= C :- edge(X,Y,C).
short (X,Y) <= C+short(Z,Y) :- edge(X,Z,C).

15

3.5 Lazy Enumeration

Lazy goal, lazy f(f) = s, means s is the set of values generated by
f(%), but the elements of s are generated lazily.

Example:
solve(N, Ans) :- generate(N,N,Boards),
test (Boards,phi,Ans).

generate(1,N, [R]) :- lazy rows(1,N) = R.

generate(I,N,[R|B]) :- I > 1,
lazy rows(I,N) = R,
I -1-=17,
generate(J,N,B).

rows(I,N) contains {pos(I,J)} :- digit(1,N,J).

Call-one vs. Lazy call

- Call-one invocation of a subset goal simply generates elements one
at a time

- Lazy call accumulates all generated elements as needed

Approach to implementation of lazy call

- Uses partially constructed set with read-only variable as the re-
mainder set

- Each such read-only variable is unique and has a resumption point
associated with it, where further elements can be obtained

16

4. Abstract Machine for SuRE
Warren Abstract Machine

Registers: CodeArea
P
CP —=>
(low)
s Heap
HP
Stack
MRCP - -
Choice Point
CE -
Environment
(high)

Trail Stack PDL

Argument Registers:
ALA2,..An

Choice Point Record:

n

arity

Al

1st argument

An

nth argument

CE

Cont. Environ

CP

Cont. Pointer

MRCP MR Choice Point

Environment Record:

CE

Cont. Environ

CP

Cont . Pointer

Y1

1st local variable

Yn

nth local variable

17

Abstract Machine for SEL

Argument Registers:
ALA2,...An

Branch Registers:
B1,B2,...,.Bn
Mode Register

Branch Point Record:

PC Branch Address

Ptr to Set Element

Ptr to Set Remainder

Choice Point Record:

n arity

Al 1st argument

An nth argument

CE Cont. Environ

CP Cont. Pointer

MRCP MR Choice Point

BP Branch Point

Environment Record:

CE Cont. Environ

Regigters: Code Area
P —=
CP —
(low)
s - Heap
HP
Stack
MRCP - -
Choice Point
CE -
Environment
(high)

CP Cont . Pointer

Y1 1stlocal variable

Yn nthloca variable

18

Extended WAM for SuRE

Argument Registers:

AlA2,..An

Branch Registers:

B1,B2,...Bn
Mode Register
Memo Table
f(terms) | result lookup ptr
Trail Stack Redo Trail

Registers: Code Area
P —
CP —=
(low)
s —= Heap
HP
Stack
MRLP — -
Look-up Paint
LCP —
Lazy Choice Poing
MRCP — - -
Choice Point
CE — :
Environment
(high)

PDL

19

Comparing Execution Models

of
SEL, SuRE, and Prolog

Data Control

Prolog Unification Backtracking

SEL Set-Matching Collect-all
Call-one/Call-all
Branching
Memoization

Re-Do

SuRE Set-Unification Lazy Set Enumeration

20

Instruction Sets

Get Instructions

get_variable V,,, A, get_value V,,, A;
get_constant C, A; get_nil A;

get_structure F, A; get_list A;
get_set A;, V;

Match Instructions

match_variable V,, match_variable V,,
match_value V,, match_value X,
match_constant C match_nil

Set-Matching Instructions

adj_set_head Y,
adj_set Y]
adj_set_with_copy Y;

Store_indirect Instructions

store_indirect_variable V,,, A; store_indirect_value V,,, A,

store_indirect_set A, store_indirect_list A;
store_indirect_str n, A; store_indirect_const C, A;
store_indirect_nil A; store_indirect_phi A,

21

Put Instructions

put_variable V;,, A, put_value V,,, A;
put_constant C, A; put_nil A,
put_structure F, A, put_list A,
put_set A;

Store Instructions

store_variable V, store_variable V,
store_value V, store_value X,
store_constant C store_nil

Unify Instructions

unify_variable V, unify_variable V,
unify_value V,, unify_value X,
unify_constant C' unify nil

Set-Unification Instructions

w_getstructure F’,Y; w_getlist Y;

w_getset Y]
write_variable V,, write_variable V,,
write_value V,, write_value X,

22

write_constant C' write_nil
write_phi

Procedural Instruction

call_all P, N call_one P, N
last_call_one P execute P
call_memo P, N execute_memo P
call lazy P, N execute_lazy P
execute_nr P, N

allocate deallocate
collect V;, V;

updatememo V;, V;

proceed

Indexing Instruction

switch_on_ground_terms switch_on_terms
try_equ_else try_me_else
try_sub_and trust_me

23

reach(V) contains {V}.
reach(V) contains reach(W) :- edge(V, W).

edge(1l, 2). edge(2, 1).

reach(V) contains S1 :- edge(V, W), all(W) = sli.
all(W) contains reach(W).

reach/1: label reach/1
try_sub_and L1
allocate 3
getvariable Y1, Al % reach(V)
save_choice_point
storeindvar Y2, A2 % contains
putset Y3 % |
storevalue Y1 h V
storephi %}
collect Y2, Y3 %h UV

L1: label reach/1
allocate 4
getvariable Y1, Al % reach(V)
save_choice_point % contains
storeindvar Y2, A2 % S1 :-
putvalue Y1, A1l % edge(V,
putvariable Y3, A2 % W),
call edge/2
putvalue Y3, Al % all(W)
putvariable Y4, A2 h = S2

24

execute all/1

collect Y2, Y4
all: label all/1
allocate 3

getvariable Y1, Al
save_choice_point

storeindvar Y2, A2
putvalue Y1, A1l
putvariable Y3, A2
execute_memo reach/1
update_memo reach, 1, Y3
collect Y2, Y3

4.1 Implementation of Memo Functions
4.2 Set Unification

4.3 Implementation of Lazy Enumeration

25

T
T
T
T
T

T

51

al

=51 U

1(W)

contains

51
re

51

ach (W)
S2

=51 U

52

52

Environ for reach, (1)

Environ for al(2)

Choice Point reach(1)

Environ for reach,, (1)

Top Leve

Top Leve

@

(b)

reach(1) = phi

Look-up reach(1)

Environ for reach, (2)

Environ for al(1)

Choice point reach(2)

Environ for reach,, (2)

Environ for al(2)

Environ for dl(2)

Environ for reach,, (1)

Environ for reach,, (1)

Top Leve

Top Leve

(©)

(d)

reach(2) ={2}

reach(1) ={1, 2}

26

4.1 Implementation of Memo Functions

Instructions and Its Operations

call memo and execute memo f/n

if f/n is called first time
insert i1nto memo-table
else
look-up the memo-table

Insert into Memo-table

- Create the memo-table entry for f() and initialize its value to phi
or an initial value given.

Look-up

- Retrieve the value of f(#) and control transfers to the next instruc-
tion instead of executing f(%)

- Create look-up point frame on the stack and save necessary in-
formation for re-do

Updating memo-table

- When the computation of f(f) is completed

- If the new value of f(f) is different from old value and there is an
intervening look-up, a re-do is triggered

Re-Do

- Control is transferred to the point where the look-up of f(#) oc-
curred for the first time

27

4.2 Set Unification
Rules [JP89, JJ94]:

1. {tl/Sl} = {tQ/SQ}

(a) Yfl = tg, S1 = S$9

(b) s1 = {t2/z}, s9 = {t2/2} where z is a new variable

2. x = {Yfl/Sl}

a) x does not occur in {t;/s1}: @ «— {t1/s1}.
b) = occurs in t;. The equality is unsolvable.

(¢) z does not occur in t; but occurs in s1. The equality is
solvable iff sy is either x or {ts/z} or {t2/{t3/x}}, etc.
where x does not occur in any ¢;. The unifying substitution
is respectively either x «— {t1/z}, or & «— {t,/{t2/2}},
etc., where z is a new variable.

3.{x1,...,xn/st = {y1,...,yn/s} and for i = 1,....m,j =
Lo.ooon,z; #yp s —{xr. . Zmu Y1, - .., Y/ 2}, where 2 is a
new variable.

4Axy, .. xn/st ={y1, ..., yn/s} and some of the z;’s and y;’s
are identical. Generate a new equation by deleting common
ground terms on both sides of the equality.

O {wfst = {x/iw/s}}

28

4.3 Implementation of Lazy Evaluation

- A new read-only variable will be generated only when the current
calling mode is lazy and there is an outstanding choice points related
to the current environement. Such choice point is designated as a
lazy choice point.

- Whenever a read-only variable is matched against a set pattern
{z\t} or with another read-only variable, the next element of the

corresponding set is generated with a new read-only variable at-
tached.

- To protect the search space assocated with a read-only variable
from normal backtracking, MRCP is updated to point to the most
recent choice point below the environment of the lazy call.

Example

nums (N) contains {N}.
nums (N) contains S :- N + 1 = K, lazy nums(K) = S.

test ({X_}) contains {X} :- X = 2.

|?7- lazy nums(1) = S, Answer in test(S).

CE - Environment for nums, (2)

LCP — Lazy Choice Point for R2

Environment for nums,, (1)
MRCP — Choice Point in test({ /R1})
Environment for test({ /R1})

Environment for nums, (1)

Lazy Choice Point for R1

29

Compiler and Run-Time System

The phases of compilation are as follows:

Lexical & Syntactic . Transformation & . Semantic . Code
Anaysis Flattening Analysis Generation

e Compiler 12900

— Syntactic Analysis 2700
— Static Analysis 2800

e Emulator 15200

— Memoization 870

— Lazy Enumeration 400

30

5. Static Analysis

e Static Analysis is a form of compile time analysis to gather infor-
mation that will assist in producing a more efficient program.

e Static Analysis in Imperative Language

e.g. available expressions analysis for common subexpression elimi-
nation, reaching definitions analysis for code motion.

e Static Analysis in Prolog
- Efficient Compilation of Unification

- Mode Inference

e Static Analysis in SuRE
- Correctness
* Groundness Analysis
- Efficiency
* Detection of Distribution-over-Union

* Detection of Memo function and Avoidance of Re-Do

31

5.1 Distribution Over Union

An operation f distributes over union in some argument if

flo.aUy,.)=f(.. oz, ..)Uf(L .y, ..)
e.2. union, setproduct, intersect distribute over union in both
their argument positions. However, the following function, perms,

does not distribute over union in its argument (but the function
distr does in its second argument):

perms (phi) contains {phi}
perms ({X\T}) contains distr(X, perms(T))

distr(X, {L_}) contains {[X|L]}

Advantages

- can avoid checking for duplicate elements

- can avoid forming intermediate sets

Potential Disadvantage

- might overcompute if there are duplicates

Call-one mode vs. Call-all mode

call-one mode : when a set-valued function is called to produce one
element of its resulting set rather than the entire set.

call-all mode : when a set-valued function 1s called to return the
entire set.

32

Approach

1. A set constructor {H\T} appears in an argument position at the
head of the clause, and the remainder set T is not subsequently used

2. A variable appears in an argument position at the head of the
clause and every occurrence of this variable on the right-hand-side
of the subset clause is in an argument position of a function that
distributes over union in this arugment position.

Example:

scc({X\T},E) equals sccl(int(reach(X,E),b_reach(X,E)), {X\T

sccl1(S,_,_) contains {S}.
sccl1(S,T,E) contains scc(diff(T,S),E).

reach(X,_) contains {X}.
reach(X,E) contains allreach(dadj(X,E),E).

allreach({X_},E) contains reach(X,E).
dadj (X,{[XIYJ_}) contains {Y}.

b_reach(X,_) contains {X}.
b_reach(X,E) contains b_allreach(b_adj(X,E),E).

b_allreach({X_},E) contains b_reach(X,E).

33

b_adj (X,{[Y[X]I_}) contains {Y}.

% Helper Functions

int ({X_},{X_}) contains {X}.

diff ({X_}, S) contains if member(X,S) then phi else {X}.

member (X,{X_}) equals true.
member(_, _) equals false.

Limitation

In general, if a cycle is involved in the call sequence, the algorithm
will fails to detect the property.

34

5.2 Memoization and Re-Do

Detection of Memo functions

- Builds an AND-OR tree of or a forest of AND-OR tree

- A cycle can be detected easily by doing a preorder traversal on it.

Example:
controls/2
owns/2 sum/1
owns/2 owns/2 [sum/1*

SN n

shares/3 shares/3 controls/2

shares/3 shares/3 controls/2

[l (l [l

Detection of No Re-Do

- When there 1s no function that takes the value of closure function
as an argument, there is no need for a re-do

- Such case can be detected syntactically during flattening stage of
compilation and can be proven to be sound [0.J93]

35

5.3 Groundness Analysis

Correctness

egroundness of negated goal: to ensure soundness of negation-as-
failure

egroundness of subset and equational goal: argument to subset and
equational clause must be ground

Efficiency

efficient compilation of set terms in relational goal: set unification
can be reduced to set matching

Approach

SuRE = SEL + SRL

subset clauses in SEL : f(terms) contains expr

subset clauses in SRL : f(terms) contains expr := Cond

- calling a function defined in SEL from SRL : the argument to a
function must be certified to be ground

- calling a function defined in SRL from SEL : the argument to a
function is guaranteed to be ground

Analysis Phases

1. Identify variables that must be ground because they are used
in functional goal in the clauses body - initial calling pattern of a
relational clause

2. Identify variables that are called with ground terms or that
returns a ground result - return pattern

36

3. Propagate bindings of a variable from left to right - calling pattern

Examples

set2list(phi, []).
set2list ({X/T}, [XIL]) :- set2list(T, L).

perms (S) contains {L} :- set2list(S, L).

member (X, {X_}).
diff(S1, S2) contains {X} :- member(X, S1), not member/(

37

6. Experimental Results
6.1 Performance of SuRE

Performance of Memoization

short1(X,Y,1) <= C :- edge(X,Y,C).
short1(X,Y,L) <= short1(X,Y,L-1) :- L > 1.
short1(X,Y,L) <= C+short1(Z,Y,L-1) :- L > 1, edge(X,Z,C

of nodes (# of edges)

3(18) | 16(38) | 25(58)
with memo | 0.0032(2) | 0.0303(6) | 0.09799(10)
without memo | 0.0027(2) | 0.6398(6) | 155.274(10)

perms (phi) contains {[]}.

perms ({X\T}) contains distr(X, perms(T)).

distr(X, {L_}) contains {[XI|L]}.

Size of argument set
3 4 5 6 7
with memo 0.0030 | 0.0102 | 0.0663 | 0.4389 | 13.59
without memo | 0.0026 | 0.0115 | 0.1006 | 0.6157 | 15.36

38

Call-all Mode:

Size of input set
3 4 5 § 7
with bags | 0.0026 | 0.0115| 0.1006 | 0.6157 | 15.36
with sets | 0.0027]0.01490.1592 | 3.185 -
Call-one Mode:
Size of argument set
3 4 5 § 7
with bag | 0.0026 | 0.0127 | 0.1046 | 0.6083 | 10.92
with set | 0.0028 | 0.0156 | 0.1496 | 2.844 | 127.8
Performance of Re-Do
of nodes (# of edges)
program | 8(18) 16(38) 24(58) 32 (78)
short1 |0.0032(2) | 0.0303(6) | 0.0979(10) | 0.242(14)
short2 | 0.0072(3) | 0.0156(6) | 0.0238(9) |0.0324(12)

39

6.2 Comparisons with XSB and CORAL

XSB

- supports aggregations by two basic aggregate operators, bagRe-

duce/4 and bagPO/3 and HilLog predicates.

:— import bagMin/2 from aggregs.
:— hilog short.

short (X, Y) (D)
short (X, Y) (D)
bagMin(short(X,Z), D1),

:- edge(X,Y,D).

edge(Z,Y,D2),
D is D1 + D2.

short_dist(X,Y,D)

:— bagMin(short(X,Y),D).

of edges
18 38 58 78 138 | 495
SuRE/short2|0.0072 | 0.0156 | 0.0238 | 0.0324 | 0.0569 | 0.125
XSB/short2 | 0.02 | 0.021 | 0.02 | 0.02 | 0.02 |0.059

40

CORAL

- needs different annotations depending on the aggregate operation
to guarantee correct execution

module declad_egba.
export mincost(bbf) .

cost(X,Y,C) :- edge(X,Y,C).
cost(X,Y,C) :- edge(X,Z,Cl), cost(Z,Y,C2), C=C1+C2.

Qaggregate_selection cost[bbf] (X,Y,C) (X,Y) min(C).
mincost(X,Y,min(<C>)) :- cost(X,Y,C).

end_module.

of edges
18 38 58 78
SuRE/short2 0.0072 0.0156 0.0238 0.0324

CORAL/short | 0.02(0.06) | 0.03(0.15) | 0.07(0.29) | 0.07(0.43)

SuRFE CORAL
aggreqate_selection | default
tree | 0.0349 0.13(1.53) 0.14(1.53)
dag | 0.125 0.41(7.94) 4.14(12.29)

41

7. Further Work

e Checking for duplicate elements when taking the union of the
resulting sets

e Better representations for sets and better implementations for
the primitive set operations.

o Efficient execution of functions whose result domain is totally
ordered.

e Automatic Detection of lazy enumeration

e Garbage collection

42

