
Implementation of Subset Logic LanguagesPh.D. Dissertation DefenseKyonghee MoonDepartment of Computer ScienceState University of New York at Bu�alo

Outline1. Contributions2. Background and Related Work3. The SuRE Programming Language: Overview4. Abstract Machine for SuRE5. Static Analysis6. Experimental Results7. Further Work

1

1. Contributions of this DissertationThe design and implementation of a declarative language withpowerful set processing capabilities� Use of sets for unifying functional and logic programming� Novel use of memo-tables and lazy-evaluation{ Monotonic Memo-table{ Lazy exploration of Search Space� Static Analysis for subset clauses{ Distribution over Union{ Detection of Memoization and Avoidance of Re-do

2

2. Background and Related Works� Sets in Programming Languages{ imperative language (Pascal, SETL){ Functional Language (Miranda){ Declarative Language (Prolog)� Warren Abstract Machine (WAM){ Abstract Machine for Prolog{ Compilation of uni�cation and control stragegy into high-level instructions{ Run-time stack (environments and choice points) and Heap� XSB & CORAL{ XSB:� SLG resolution, a table-oriented resolution that com-bines SLD resolution with memoization� does not support set terms{ CORAL:� deductive database system that employs bottom-up eval-uation� supports ground sets and multisets
3

Warren Abstract Machine (WAM)Uni�cation : get, unify, put instruction.e.g. eq(X, X).get_variable X2, A1get_value X2, A2e.g. gp(X, Y) :- p(X, Z), p(Z, Y).get_variable Y1, A1get_variable Y2, A2put_value Y1, A1put_variable Y3, A2call p/1put_value Y3, A1put_value Y2, A2execute p/1Control Strategy: Indexing Instructionsswitch on term, try me else, retry me else, trust me.- link together the di�erent clauses that make up a procedure andare responsible for �ltering out a subset of those clauses that couldpotentially match a given procedure clause and responsible for back-tracking. 4

Exampleappend([], L, L).append[X|L1], L2, [X|L3]) :- append(L1,L2,L3).append/3: switch_on_term C1a,C1,C2,failC1a: try_me_else C2aC1: get_nil A1get_variable X3, A1get_value X3, A2proceedC2a: trust_me_else failC2: get_list A1unify_variable X4unify_variable X5get_variable X6, A2get_list A3unify_value X4unify_variable X7put_value X5, A1put_value X6, A2put_value X7, A3execute append/3 5

SEL = Subset-Equational Language:f(terms) contains expr.f(terms) equals expr.SEL is a proper subset of SuRE, and is a functional programminglanguage.� Compilation of set-matching� Speci�cation of functions that distribute over union via modedeclaration� No detection of cyclic calls - No memoizationSuRE = SEL + SRL + conditional equational clause

6

3. The SuRE Language: OverviewSuRE = Subset, Relational, and Equational LanguageEquational Clause:f(terms) equals expression.� many Prolog programs are essentially functional programs [DW89]� equations are clearer (no cuts) and more e�cient (no backtrack-ing)Subset Clause: f(terms) contains expression.� helps avoid common uses of setof and modes� helps avoid some uses of assert, retract, and cut� e�cient formulations of set operations, including transitive clo-sures and dynamic programming algorithms� helps render clear and concise formation to problems involvingaggregate operations and recursion in database query.3.1 Syntax of SuRE Programs3.2 Set Constructors in SuRE3.3 Strati�ed SuRE Programs3.4 From Subset to Partial-order Clauses3.5 Lazy Enumeration 7

3.1 Syntax of SuRE Programsf(terms) contains expr.f(terms) contains expr :- condition.f(terms) equals expr.f(terms) equals expr :- condition.p(terms').p(terms') :- condition.whereterm is made of constants, variables, constructors, {__},term' is same as term except it uses a set term of {_/_},expr is made of terms and user-de�ned function symbol, andcondition is made of p(terms), not p(terms), and set enumerationgoals:(i) f (terms) 3 term: incremental enumeration of set elements(ii) lazy f (terms) = set: lazy enumeration of set elements(iii) f (terms) = set: eager enumeration of set elements
8

3.2 Set Constructors in SuRESets are represented by two novel constructors: fxntg & fx=tgphi stand for the empty setfxntg stands for a set s where x 2 s and t = s� fxg.e.g. Matching fxntg against f1; 2; 3g yields:x 1; t f2; 3gx 2; t f1; 3gx 3; t f1; 2gfx=tg stands for a set s = fxg [tl.h.s. of fun l.h.s. of pred r.h.s. of fun r.h.s. of predfxntg p X X Xfx=tg X p p pSet Terms in Relations and Set-of Operationsmember(X, {X/_}).- to verify set membership, ?- member(b, {a,b,c}).- to generate the elements of a set one at a time, ?- member(X, {a,b,c})- to insert an element in a set, ?- member(a, S).
9

append([], X, X).append([H|T], Y, [H|T]) :- append(T, Y, Z).The Prolog goalsetof([X|Y], append(X, Y, [1,2,3]), Answer)can be replaced using a conditional subset clause, as follows,parts(List) contains {[X, Y]} :- append(X, Y, List).?- parts([1,2,3]).{[[], [1,2,3]], [[1], [2,3]], [[1,2],[3]], [[1,2,3],[]]}Subset clauses often yield compact, nonrecursive de�nitions:union(S1,S2) contains S1union(S1,S2) contains S2setproduct({X_}, {Y_}) contains {[X|Y]}intersect({X_}, {X_}) contains {X}? setproduct({1,2}, {3,4}){[1|3],[1|4],[2|3],[2|4]}10

3.3 Strati�ed SuRE ProgramsInformal De�nitions- A logic program is said to be strati�ed if there are no recursivecalls on a predicate through negation.- A logic program is said to be locally strati�ed if there are nocyclic calls on a predicate through negation- A function p is subset-monotonic in some argument ifs1 � s2) p(: : : ; s1; : : :) � p(: : : ; s2; : : :)� Recursive Subset Clause- Commonly arises in recursive subset clauses of the formf (: : :, {X\T}, : : :) contains : : : f (: : :, T, : : :) : : :Example 1:list permutations of a setperms(phi) contains phi.perms({X\T} contains distr(X, perms(T)).distr(X, {H_}) contains {[X|H]}.
11

� Memoization for loop detectionExample 2:memo reach/1/phi.reach(V) contains {V}.reach({X_}) contains reach(edge(X)).edge(1) contains {2}.edge(2) contains {1}.In general, they are useful in problems such as data-ow analysis incompilers, graph theory, etc.Amemo-table is a (run-time) data structure to record the resultof a function call, so subsequent calls of that function with identicalargument can be reduced to table look-up.There is more to a memo function than just memoization ...
12

� Cyclic function de�nition via monotonic functionExample 3: Dataow Analysis in a Compiler [AU77]memo out/1, in/1, allout/1.out(B) contains diff(in(B), kill(B)).out(B) contains gen(B).in(B) contains allout(pred(B)).allout({P_}) contains out(P).diff({X_},S) contains if member(X,S) then phi else {X}.When general circular containment constraints exist, there is a needto assume a provisional value for the inner recursive call (when theloop is detected), and to revise this estimate and re-execute the calluntil a �xed point is reached. This process is guaranteed to yield aunique answer if one memo function is de�ned in terms of anotherthrough subset-monotonic functions.
13

The Need for Re-doWe explain how re-do works for a smaller example ...

14

3.4 From Subset to Partial-order ClausesExamples of Monotonic AggregationCompany-controlsmemo controls/2/false.controls(X,Y) equals sum(owns(X,Y)) > 50.owns(X,Y) contains {s(X,Y,N)} :- shares(X,Y,N).owns(X,Y) contains {s(Z,Y,N)} :- shares(Z,Y,N), controls(X,Z)=true.sum(phi) equals 0.sum({s(_,_,C)\T}) equals C+sum(T).Shortest-pathshort(X,Y) <= C :- edge(X,Y,C).short(X,Y) <= C+short(Z,Y) :- edge(X,Z,C).
15

3.5 Lazy EnumerationLazy goal, lazy f(t) = s, means s is the set of values generated byf (t), but the elements of s are generated lazily.Example:solve(N, Ans) :- generate(N,N,Boards),test(Boards,phi,Ans).generate(1,N,[R]) :- lazy rows(1,N) = R.generate(I,N,[R|B]) :- I > 1,lazy rows(I,N) = R,I - 1 = J,generate(J,N,B).rows(I,N) contains {pos(I,J)} :- digit(1,N,J).....Call-one vs. Lazy call- Call-one invocation of a subset goal simply generates elements oneat a time- Lazy call accumulates all generated elements as neededApproach to implementation of lazy call- Uses partially constructed set with read-only variable as the re-mainder set- Each such read-only variable is unique and has a resumption pointassociated with it, where further elements can be obtained16

4. Abstract Machine for SuREWarren Abstract Machine
Code Area

Heap

Stack

Environment

P
CP

S

Registers:

HP

CE

(high)

(low)

arity

1st argument

nth argument

A1

CE

CP

Cont. Environ

An

n

Cont . Pointer

1st local variable

th local variablen

CE

CP

Y1

Cont. Environ

Yn

Choice Point
MRCP

Choice Point Record:

Environment Record:

MRCP

Cont. Pointer

MR Choice Point

A1,A2,...,An
Argument Registers:

Trail Stack PDL

17

Abstract Machine for SEL
A1,A2,...,An
Argument Registers:

 PC Branch Address

Branch Point Record:
Code Area

Heap

Stack

Environment

P
CP

S

Registers:

HP

CE

(high)

(low)

arity

1st argument

nth argument

A1

CE

CP

Cont. Environ

An

n

Cont . Pointer

1st local variable

th local variablen

CE

CP

Y1

Cont. Environ

Yn

Choice Point
MRCP

BP

Choice Point Record:

Environment Record:

Ptr to Set Element

Ptr to Set Remainder

Branch Point

Branch Registers:
B1,B2,...,Bn
Mode Register

MRCP

Cont. Pointer

MR Choice Point

18

Extended WAM for SuRE
Code Area

Heap

Stack

P
CP

S

Registers:

HP

(low)

Look-up Point

Branch Registers:

A1,A2,...,An

B1,B2,...,Bn

Argument Registers:

f(terms) result lookup ptr

Memo Table

Mode Register

(high)

Environment
CE

Choice Point

MRLP

MRCP

Lazy Choice Point
LCP

Trail Stack Redo Trail

 PDL

19

Comparing Execution ModelsofSEL, SuRE, and PrologData ControlProlog Uni�cation BacktrackingSEL Set-Matching Collect-allCall-one/Call-allBranchingMemoizationRe-DoSuRE Set-Uni�cation Lazy Set Enumeration
20

Instruction SetsGet Instructionsget variable Vn; Ai get value Vn; Aiget constant C;Ai get nil Aiget structure F;Ai get list Aiget set Ai, VjMatch Instructionsmatch variable Vn match variable Vnmatch value Vn match value Xnmatch constant C match nilSet-Matching Instructionsadj set head Yiadj set Yiadj set with copy YiStore indirect Instructionsstore indirect variable Vn; Ai store indirect value Vn; Aistore indirect set Ai store indirect list Aistore indirect str n;Ai store indirect const C;Aistore indirect nil Ai store indirect phi Ai21

Put Instructionsput variable Vn; Ai put value Vn; Aiput constant C;Ai put nil Aiput structure F;Ai put list Aiput set AiStore Instructionsstore variable Vn store variable Vnstore value Vn store value Xnstore constant C store nilUnify Instructionsunify variable Vn unify variable Vnunify value Vn unify value Xnunify constant C unify nilSet-Uni�cation Instructionsw getstructure F; Yi w getlist Yiw getset Yiwrite variable Vn write variable Vnwrite value Vn write value Xn22

write constant C write nilwrite phiProcedural Instructioncall all P, N call one P, Nlast call one P execute Pcall memo P, N execute memo Pcall lazy P, N execute lazy Pexecute nr P, Nallocate deallocatecollect Vi, Vjupdatememo Vi, VjproceedIndexing Instructionswitch on ground terms switch on termstry equ else try me elsetry sub and trust me
23

reach(V) contains {V}.reach(V) contains reach(W) :- edge(V, W).edge(1, 2). edge(2, 1).reach(V) contains S1 :- edge(V, W), all(W) = s1.all(W) contains reach(W).reach/1: label reach/1try sub and L1allocate 3getvariable Y1, A1 % reach(V)save choice pointstoreindvar Y2, A2 % containsputset Y3 % fstorevalue Y1 % Vstorephi % gcollect Y2, Y3 % [VL1: label reach/1allocate 4getvariable Y1, A1 % reach(V)save choice point % containsstoreindvar Y2, A2 % S1 :-putvalue Y1, A1 % edge(V,putvariable Y3, A2 % W),call edge/2putvalue Y3, A1 % all(W)putvariable Y4, A2 % = S224

execute all/1collect Y2, Y4 % S1 := S1 [S2all: label all/1allocate 3getvariable Y1, A1 % all(W)save choice point % containsstoreindvar Y2, A2 % S1 :-putvalue Y1, A1 % reach(W)putvariable Y3, A2 % = S2execute memo reach/1update memo reach, 1, Y3collect Y2, Y3 % S1 := S1 [S24.1 Implementation of Memo Functions4.2 Set Uni�cation4.3 Implementation of Lazy Enumeration
25

Top Level

Choice Point reach(1)

Top Level

Environ for reach1 (1)

Environ for reach2 (1)

Environ for all(2)

reach(1) = phi

Top Level

Environ for reach2 (1)

Environ for all(2)

Choice point reach(2)

Environ for reach1 (2)

Top Level

Environ for reach2 (1)

Environ for all(2)

Environ for reach2 (2)

Environ for all(1)

Look-up reach(1)

(a) (b)

(c) (d)

reach(1) = {1, 2}

reach(2) = {2}

26

4.1 Implementation of Memo FunctionsInstructions and Its Operationscall memo and execute memo f=nif f/n is called first timeinsert into memo-tableelselook-up the memo-tableInsert into Memo-table- Create the memo-table entry for f (t) and initialize its value to phior an initial value given.Look-up- Retrieve the value of f (t) and control transfers to the next instruc-tion instead of executing f (t)- Create look-up point frame on the stack and save necessary in-formation for re-doUpdating memo-table- When the computation of f (t) is completed- If the new value of f (t) is di�erent from old value and there is anintervening look-up, a re-do is triggeredRe-Do- Control is transferred to the point where the look-up of f (t) oc-curred for the �rst time 27

4.2 Set Uni�cationRules [JP89, JJ94]:1. ft1=s1g = ft2=s2g(a) t1 = t2, s1 = s2(b) s1 = ft2=zg, s2 = ft2=zg where z is a new variable2. x = ft1=s1g(a) x does not occur in ft1=s1g: x ft1=s1g.(b) x occurs in t1. The equality is unsolvable.(c) x does not occur in t1 but occurs in s1. The equality issolvable i� s1 is either x or ft2=xg or ft2=ft3=xgg, etc.where x does not occur in any ti. The unifying substitutionis respectively either x ft1=zg, or x ft1=ft2=zgg,etc., where z is a new variable.3. fx1; : : : ; xm=sg = fy1; : : : ; yn=sg and for i = 1; : : : ;m; j =1; : : : ; n, xi 6= yj: s fx1 : : : xm; y1; : : : ; yn=zg, where z is anew variable.4. fx1; : : : ; xm=sg = fy1; : : : ; yn=sg and some of the xi's and yi'sare identical. Generate a new equation by deleting commonground terms on both sides of the equality.5. fx=sg = fx=fx=sgg 28

4.3 Implementation of Lazy Evaluation- A new read-only variable will be generated only when the currentcalling mode is lazy and there is an outstanding choice points relatedto the current environement. Such choice point is designated as alazy choice point.- Whenever a read-only variable is matched against a set patternfxntg or with another read-only variable, the next element of thecorresponding set is generated with a new read-only variable at-tached.- To protect the search space assocated with a read-only variablefrom normal backtracking, MRCP is updated to point to the mostrecent choice point below the environment of the lazy call.Examplenums(N) contains {N}.nums(N) contains S :- N + 1 = K, lazy nums(K) = S.test({X_}) contains {X} :- X = 2.|?- lazy nums(1) = S, Answer in test(S).
Lazy Choice Point for R1

Environment for test({1/R1})

Choice Point in test({1/R1})

Lazy Choice Point for R2

CE

LCP

MRCP

Environment for nums (2)

Environment for nums (1)

Environment for nums (1)

1

2

1 29

Compiler and Run-Time SystemThe phases of compilation are as follows:
Lexical & Syntactic

 Analysis

Transformation &

 Flattening

Semantic

Analysis

 Code

Generation� Compiler 12900{ Syntactic Analysis 2700{ Static Analysis 2800� Emulator 15200{ Memoization 870{ Lazy Enumeration 400

30

5. Static Analysis� Static Analysis is a form of compile time analysis to gather infor-mation that will assist in producing a more e�cient program.� Static Analysis in Imperative Languagee.g. available expressions analysis for common subexpression elimi-nation, reaching de�nitions analysis for code motion.� Static Analysis in Prolog- E�cient Compilation of Uni�cation- Mode Inference� Static Analysis in SuRE- Correctness* Groundness Analysis- E�ciency* Detection of Distribution-over-Union* Detection of Memo function and Avoidance of Re-Do
31

5.1 Distribution Over UnionAn operation f distributes over union in some argument iff (: : : ; x [y; : : :) = f (: : : ; x; : : :) [f (: : : ; y; : : :)e.g. union, setproduct, intersect distribute over union in boththeir argument positions. However, the following function, perms,does not distribute over union in its argument (but the functiondistr does in its second argument):perms(phi) contains {phi}perms({X\T}) contains distr(X, perms(T))distr(X, {L_}) contains {[X|L]}Advantages- can avoid checking for duplicate elements- can avoid forming intermediate setsPotential Disadvantage- might overcompute if there are duplicatesCall-one mode vs. Call-all modecall-one mode : when a set-valued function is called to produce oneelement of its resulting set rather than the entire set.call-all mode : when a set-valued function is called to return theentire set. 32

Approach1. A set constructor {H\T} appears in an argument position at thehead of the clause, and the remainder set T is not subsequently used2. A variable appears in an argument position at the head of theclause and every occurrence of this variable on the right-hand-sideof the subset clause is in an argument position of a function thatdistributes over union in this arugment position.Example:scc({X\T},E) equals scc1(int(reach(X,E),b_reach(X,E)), {X\T}, E).scc1(S,_,_) contains {S}.scc1(S,T,E) contains scc(diff(T,S),E).reach(X,_) contains {X}.reach(X,E) contains allreach(dadj(X,E),E).allreach({X_},E) contains reach(X,E).dadj(X,{[X|Y]_}) contains {Y}.b_reach(X,_) contains {X}.b_reach(X,E) contains b_allreach(b_adj(X,E),E).b_allreach({X_},E) contains b_reach(X,E).33

b_adj(X,{[Y|X]_}) contains {Y}.% Helper Functionsint({X_},{X_}) contains {X}.diff({X_}, S) contains if member(X,S) then phi else {X}.member(X,{X_}) equals true.member(_, _) equals false.LimitationIn general, if a cycle is involved in the call sequence, the algorithmwill fails to detect the property.

34

5.2 Memoization and Re-DoDetection of Memo functions- Builds an AND-OR tree of or a forest of AND-OR tree- A cycle can be detected easily by doing a preorder traversal on it.Example:
owns/2

owns/2 owns/2

sum/1

controls/2shares/3

sum/1

shares/3 controls/2

[]

shares/3

shares/3

[] [][]

[] *

controls/2

Detection of No Re-Do- When there is no function that takes the value of closure functionas an argument, there is no need for a re-do- Such case can be detected syntactically during attening stage ofcompilation and can be proven to be sound [OJ93]35

5.3 Groundness AnalysisCorrectnessgroundness of negated goal: to ensure soundness of negation-as-failuregroundness of subset and equational goal: argument to subset andequational clause must be groundE�ciencye�cient compilation of set terms in relational goal: set uni�cationcan be reduced to set matchingApproachSuRE = SEL + SRLsubset clauses in SEL : f (terms) contains exprsubset clauses in SRL : f (terms) contains expr :- Cond- calling a function de�ned in SEL from SRL : the argument to afunction must be certi�ed to be ground- calling a function de�ned in SRL from SEL : the argument to afunction is guaranteed to be groundAnalysis Phases1. Identify variables that must be ground because they are usedin functional goal in the clauses body - initial calling pattern of arelational clause2. Identify variables that are called with ground terms or thatreturns a ground result - return pattern36

3. Propagate bindings of a variable from left to right - calling patternExamplesset2list(phi, []).set2list({X/T}, [X|L]) :- set2list(T, L).perms(S) contains {L} :- set2list(S, L).member(X, {X_}).diff(S1, S2) contains {X} :- member(X, S1), not member(X, S2).

37

6. Experimental Results6.1 Performance of SuREPerformance of Memoizationshort1(X,Y,1) <= C :- edge(X,Y,C).short1(X,Y,L) <= short1(X,Y,L-1) :- L > 1.short1(X,Y,L) <= C+short1(Z,Y,L-1) :- L > 1, edge(X,Z,C).# of nodes (# of edges)8(18) 16(38) 25(58)with memo 0.0032(2) 0.0303(6) 0.09799(10)without memo 0.0027(2) 0.6398(6) 155.274(10)perms(phi) contains {[]}.perms({X\T}) contains distr(X, perms(T)).distr(X, {L_}) contains {[X|L]}.Size of argument set3 4 5 6 7with memo 0.0030 0.0102 0.0663 0.4389 13.59without memo 0.0026 0.0115 0.1006 0.6157 15.36
38

Call-all Mode: Size of input set3 4 5 6 7with bags 0.0026 0.0115 0.1006 0.6157 15.36with sets 0.0027 0.0149 0.1592 3.185 -Call-one Mode: Size of argument set3 4 5 6 7with bag 0.0026 0.0127 0.1046 0.6083 10.92with set 0.0028 0.0156 0.1496 2.844 127.8Performance of Re-Do# of nodes (# of edges)program 8(18) 16(38) 24(58) 32 (78)short1 0.0032(2) 0.0303(6) 0.0979(10) 0.242(14)short2 0.0072(3) 0.0156(6) 0.0238(9) 0.0324(12)
39

6.2 Comparisons with XSB and CORALXSB- supports aggregations by two basic aggregate operators, bagRe-duce/4 and bagPO/3 and HiLog predicates.:- import bagMin/2 from aggregs.:- hilog short.short(X, Y)(D) :- edge(X,Y,D).short(X, Y)(D) :-bagMin(short(X,Z), D1),edge(Z,Y,D2),D is D1 + D2.short_dist(X,Y,D) :- bagMin(short(X,Y),D).# of edges18 38 58 78 138 495SuRE/short2 0.0072 0.0156 0.0238 0.0324 0.0569 0.125XSB/short2 0.02 0.021 0.02 0.02 0.02 0.059
40

CORAL- needs di�erent annotations depending on the aggregate operationto guarantee correct executionmodule declad_eg6a.export mincost(bbf).cost(X,Y,C) :- edge(X,Y,C).cost(X,Y,C) :- edge(X,Z,C1), cost(Z,Y,C2), C=C1+C2.@aggregate_selection cost[bbf] (X,Y,C) (X,Y) min(C).mincost(X,Y,min(<C>)) :- cost(X,Y,C).end_module. # of edges18 38 58 78SuRE/short2 0.0072 0.0156 0.0238 0.0324CORAL/short 0.02(0.06) 0.03(0.15) 0.07(0.29) 0.07(0.43)SuRE CORALaggregate selection defaulttree 0.0349 0.13(1.53) 0.14(1.53)dag 0.125 0.41(7.94) 4.14(12.29)41

7. Further Work� Checking for duplicate elements when taking the union of theresulting sets� Better representations for sets and better implementations forthe primitive set operations.� E�cient execution of functions whose result domain is totallyordered.� Automatic Detection of lazy enumeration� Garbage collection

42

