
Subset-logic Programming: Application and Implementation

Bharat Jayaraman

Anil Nair

Department of Computer Science

University of North Carolina at Chapel Hill

Chapel Hill, NC 27514

U.S.A.

Abstract

Subset-logic programming is a paradigm of programming with

subset and equality assertions. Computationally, equality and subset

assertions are treated as rewrite rules, where the matching operation

is a restricted form of associative-commutative (a-c) matching. The

multiple matching substitutions arising from a-c matching effectively

serve to iterate over the elements of sets, thus permitting many useful

set operations to be stated non-recursively. We present a language

called SEL to illustrate the approach. We also show that WAM-

like instructions can be used to compile restricted a-c matching. An

important property of a SEL function is whether or not it ‘distributes

over union’ in a particular argument. If it does, we can avoid checking

for duplicates in this argument, and also avoid constructing the set

corresponding to this argument.

1. Introduction

The term ‘logic programming’ is often taken to be synonymous with

predicate-logic programming, owing to the latter’s simple semantics

[5] and the success of Prolog. In recent years, other forms of logic

programming have been proposed, most notably equational-logic [9]

and constraint-logic programming [3]. We contribute another such

approach in this paper, called subset-logic programming. The goal

of our work is to provide a rigorous basis for programming with sets.

Existing approaches, such as the ‘setof’ constructs of Prolog systems

[8], are not supported by an underlying logic although they are very

1

useful in practice. In our proposed approach, a program is a collection

of two kinds of assertions:

(i) f(terms) = expression

(ii) f(terms) ⊇ expression

The declarative meaning of an equality (resp. subset) assertion is

that, for all its ground instances, the function f operating on the

argument ground terms is equal to (resp. superset of) the ground term

denoted by the expression on the right-side. We adopt a ‘closed world’

assumption, so that the meaning of a set-valued function f operating

on ground terms can be equated to the union of the respective sets

defined by the different subset assertions for f. The top-level query is

of the form

? expr

where expr is a ground expression. The meaning of this query is the

ground term g such that expr = g is a logical consequence of the

program assertions supplemented with those equality assertions that

are derived from closed-world considerations.

The language framework for conveying these ideas is called SEL,

for Set-Equation Language. The data objects in SEL, called terms,

are the finite objects built up from atoms and data-constructors.

(There are no infinite or higher-order objects in the current version of

SEL.) Terms are distinguished from more general expressions, which

may also contain function applications. Apart from the usual data-

constructors of Prolog, we also permit the associative-commutative

(a-c) constructor ∪, for set union. The ∪ constructor is our means of

defining sets.

Computation with these assertions is a process of ‘replacing equals

by equals’. Both equality and subset assertions are oriented left-to-

right for rewriting. All constructors and user-defined functions are

strict in all arguments; thus, nested function applications are per-

formed innermost-first. Because arguments to functions are ground

terms, function application requires one-way matching, rather than

unification. The matching operation is associative-commutative (a-c)

matching [10], because of the presence of the ∪ constructor. In this

paper, we restrict the use of ∪ in program assertions in a manner that

2

supports clear programming as well as efficient implementation. The

associated matching algorithm is referred to as restricted a-c match-

ing.

SEL is essentially a functional programming language in which

sets are ‘first class’ objects, i.e., not simulated by lists. Its benefits

for functional and logic programming are: (i) many operations over

sets can be stated non-recursively, thanks to the implicit iteration

over sets provided by restricted a-c matching; (ii) nondeterministic

search can be specified without the use of ‘cuts’; (iii) efficient (non-

backtrackable) execution is possible with equations; and (iv) checks

for duplicate elements in argument sets and formation of intermediate

sets can be avoided when operations using these sets ‘distribute over

union’ (discussed in section 2).

SEL does not support unification or backward reasoning. We be-

lieve these capabilities are already well-supported in predicate- and

constraint-logic programming. A unified language with both capa-

bilities can be designed, but this issue is beyond the scope of this

paper.

In order to demonstrate the practicality of our approach, we also

present in this paper the implementation of SEL programs. Our im-

plementation model is essentially a stack-heap model based on struc-

ture copying. It turns out that ‘WAM’-like instructions [13] are very

appropriate for the compilation of restricted a-c matching. Because

we employ one-way matching, we can identify at compile-time the

‘read’ and ‘write’ modes of WAM’s ‘get’ instruction. Another inter-

esting contrast from Prolog implementations is that backtracking in

a SEL implementation could occur both on success as well as fail-

ure. The former occurs because multiple branch points could arise

in the invocation of a single subset assertion—due to branching in

a-c matching—and the successful completion of one such branch re-

quires backtracking to repeat the same right-side, but using a different

matching substitution.

We described the formal operational semantics of subset-logic

programming in our earlier paper [4], and are in the process of com-

pleting a formal declarative semantics. The presentation in this pa-

3

per is therefore informal; our main objective is to present the basic

intuition behind subset-logic programming, to describe restricted a-c

matching, and also to demonstrate that it can be implemented ef-

ficiently using WAM-like instructions. The rest of this paper is or-

ganized as follows: section 2 informally presents the features of SEL,

restricted a-c matching, and examples; section 3 describes an abstract

machine for SEL: its execution model, instruction set, and the com-

piled code for a typical program; and section 4 presents conclusions,

possible extensions, and further comments on related work.

2. Subset-logic Programming

We first specify the syntactic structure of term and expression.

term ::= atom | variable | { } | {term} | term ∪ term |

constructor(terms)

terms ::= term | term , terms

expr ::= term | {expr} | expr ∪ expr | constructor(exprs) |

function(exprs) | if expr then expr else expr

exprs ::= expr | expr , exprs

We use the [...] notation for writing lists, as in Prolog, and also the

notation [h | t] to refer to a non-empty list, with head h and tail t.

Similarly, we use the {. . .} notation for sets, e.g. {1, 2, 3}, and also use

{x | t} to refer a non-empty set, one of whose elements is x and the

remainder of the set is t. Thus, {x | t} ≡ {x} ∪ t. The set {1, 2, 3}

may be represented as {1} ∪ {2} ∪ {3} ∪ { }. Other permutations,

such as {2} ∪ {1} ∪ {3} ∪ { }, {1} ∪ {3} ∪ {2} ∪ { }, etc., represent

the same set.

2.1 Restricted A-C Matching

The associative-commutative matching problem may be stated as fol-

lows: Given two terms t1 (possibly non-ground) and t2 (ground),

some constructors of which may be associative-commutative, is there

a substitution θ such that t1θ =ac t2? This problem was first posed by

Plotkin [10] and has since been studied quite extensively in the liter-

ature, and recently been shown to be NP-complete [1]. In this paper,

we propose a restriction that preserves programming convenience and

4

makes possible efficient compilation. We disallow explicit use of the

∪ constructor in SEL assertions. Instead, we permit arbitrary combi-

nations of patterns of the form

{term | term}.

Basically, this restriction permits iteration over the elements of a set,

rather than iteration over the subsets of a set. While some expres-

sive convenience is sacrificed by this restriction, most practical cases

are unaffected. This restriction turns out to be very important for

compilability of SEL programs. We refer to the associated matching

operation as restricted a-c matching.

Note that the equality =ac is based only the associative and com-

mutative properties, but not the idempotent property. Thus, for

example, matching {h | t} with {1, 2, 3} cannot yield the matching

substitution {h← 1, t← {1, 2, 3}}. The reason for disallowing the

idempotent property during matching will be clear when we consider

recursive SEL assertions. Because a singleton set {1} is represented in-

ternally as {1} ∪ { }, it can match {h | t} yielding {h← 1, t← { }};

thus the identity property is not explicitly required during matching.

Below we present a Prolog program to specify more precisely the

behavior of the restricted matching algorithm. (However, we do not

literally follow this recursive procedure in our proposed implementa-

tion of a-c matching in section 3.) The first argument of match is a

possibly non-ground term, representing the head of an assertion, and

the second argument is a ground term, representing the arguments of

a function call. In case a match is possible, the variables in the first

input argument are instantiated appropriately. Multiple matches are

produced one at a time. For simplicity, only lists and sets are consid-

ered; other constructors can be treated similarly.

match(A, A) :-

atomic(A), !.

match({ }, { }).

match(V, Arg) :-

var(V), !,

V = Arg.

match([T1 | T2], [Arg1 | Arg2]) :-

5

match(T1, Arg1),

match(T2, Arg2).

match({Elem1 | Set1}, ArgSet) :-

generate(ArgSet, Elem2, Set2),

match(Elem1, Elem2),

match(Set1, Set2).

generate({Elem | Set}, Elem, Set).

generate({Elem | Set}, Elem2, {Elem | Set2}) :-

generate(Set, Elem2, Set2).

2.2 Program Assertions

As mentioned in the introduction, program assertions are either of

the form

f(terms) = expression or f(terms) ⊇ expression.

We require that every variable on the right-side of an equality or

subset assertion must be present on its left-side. There are no free

variables in SEL. We informally explain the operational semantics of

these assertions; a more formal account is given in our earlier paper

[4] in terms of rewrite rules.

For example, when matching an expression distr(10, {1, 2, 3})

with the left-side of a subset assertion

distr(x, {h | t}) ⊇ {[x | h]}

all three matches are considered, namely, {x← 10, h← 1, t← {2, 3}},

{x← 10, h← 2, t← {1, 3}}, and {x← 10, h← 3, t← {1, 2}}. The

right-side of the assertion for distr, namely {[x | h]}, is then fully

reduced for each of these matches, and the union of the fully reduced

results is defined as the value for distr(10, {1, 2, 3}). Thus, the value

returned in this case would be {[10|1], [10|2], [10|3]}. In general,

duplicate elements are eliminated while taking this union—we men-

tion in section 2.4 when we can avoid checking for duplicates and also

avoid constructing this set. If multiple subset assertions match a call,

their respective right-sides are similarly reduced, and the union of all

such results is taken as the result of the call. Because the union oper-

ation is strict, it will not terminate if any of these reductions does not

6

terminate. However, because of the closed-world assumption, if any of

one these reductions terminates with a non-term expression, its result

can be assumed to be { } for the purpose of the union. This marks

another difference between the language described here and that of

our earlier description [4].

Unlike subset assertions, when computing with equality asser-

tions, only one of the potentially many a-c matches is considered

in reducing the matching assertion, because we assume the result of

rewriting is independent of which particular match is considered. For

example, when matching an expression size({1, 2, 3}) with the left-

side of an assertion

size({h | t}) = 1+ size(t)

any one of the three matches for h and t may be taken, and the

others ignored. It is left to the programmer to ensure that the result

of rewriting is independent of the particular match considered—in

our earlier paper [4], we mentioned methods of proving confluence for

equational programs with a-c matching. An example of an assertion

that violates this property is: set2list({h | t}) = [h | set2list(t)].

Finally, we define the conditional expression as follows:

if true then e1 else e2 = e1, and

if x then e1 else e2 = e2, if x terminates and x 6= true

That is, the conditional expression implements a form of negation by

failure [2].

2.3 Examples of SEL Programs

List Operations:

reverse([]) = []

reverse([h | t]) = append(reverse(t), [h])

append([], y) = y

append([h | t], y) = [h | append(t, y)]

First-order functional programming with lists can be carried out in the

usual way with equations, as the above example is meant to suggest.

Set Operations:

7

crossproduct({x | }, {y | }) ⊇ {[x | y]}

intersect({x | }, {x | }) ⊇ {x}

union(s1, s2) ⊇ s1

union(s1, s2) ⊇ s2

In crossproduct and intersect, no assertions are needed for the

cases when the argument sets are empty; the result is the empty set in

these cases, by the closed-world assumption. The anonymous variable

is similar to that of Prolog. An important difference here, however,

is that considerable space and time can be saved by not constructing

the remainder of the set.

Permutations:

perms({ }) = {[]}

perms({x | t}) ⊇ distr(x, perms(t))

distr(x, {y | }) ⊇ {[x | y]}

The function perms takes a set of elements as input and produces as

output the set of permutations of these elements. The function distr

expects a set of lists as its second argument. Its result is a set whose

elements are constructed by “consing” its first argument to each list

in its second-argument set.

Four Queens Problem:

queens(col, safeset) =

if eq(col, 5) then safeset

else placequeen(col, {1, 2, 3, 4}, safeset)

placequeen(col, {row | }, safeset) ⊇

if safe([col | row], safeset)

then queens(col + 1, {[col | row] | safeset})

else { }

safe([c1 | r1], { }) = true

safe([c1 | r1], {[c2 | r2] | s}) =

(r1 6= r2) and (abs(c1− c2) 6= abs(r1− r2))

and safe([c1 | r1], s)

?queens(1, { })

The above example illustrates how a search may be specified. The

algorithm places a queen on each successive column, beginning from

8

column 1, as long as each new queen placed is safe with respect to all

queens in the preceding columns. A solution is found if a queen can be

thus be placed on all columns. The second argument to placequeen,

viz., the set {1, 2, 3, 4}, enumerates the row positions in each column.

If a particular row-column position is not safe, placequeen returns

the empty set { }, thereby pruning this line of search. The function

safe specifies the safety condition—we assume that SEL has the usual

complement of arithmetic operations.

2.4 Remarks

1. Note that the set operations crossproduct, etc., are all stated

non-recursively. It is possible to compile these definitions so that no

recursive calls occur even during matching.

2. The permutations example also illustrates why the idempo-

tence property is not used during matching. If it were used, a set

{1, 2, 3}, for example, could match {x | t} in the second assertion for

perms yielding {x← 1, t← {1, 2, 3}} as one of the matches. When

the right-side of the assertion is reduced with this substitution, an

infinite recursion would result.

3. In the permutations example, the n different matches of an n-

element set with the pattern {x | t} can be constructed, in a sequential

implementation, in O(n) space rather than O(n2) space. Each new

remainder set for t can be constructed by destructively modifying the

preceding value of t. In general, it is possible to construct these n

remainder sets in O(n) space if t is not being returned (either directly

or indirectly) as part of the function’s result. Detecting this case

necessitates data-flow analysis of the program assertions.

4. We say that an operation f distributes over union in its i-th

argument iff

f(. . . , x ∪ y, . . .) = f(. . . , x, . . .) ∪ f(. . . , y, . . .)

where the i-th argument of f is the one shown above. Functions that

compute some aggregate property of a set, e.g. size and perms, do

not distribute over union. Functions, such as distr and intersect,

that are defined in terms of the elements of the set do distribute over

union. There are two benefits of knowing that a function distributes

over union in a particular argument:

9

(i) We can avoid checking for duplicate elements in this argument;

the function is simply applied to the singleton-sets that make up the

argument set, and the individual results propagated. Because argu-

ment sets are usually free from duplicates, this can lead to substantial

savings in execution time.

(ii) When several such functions are composed together, we effec-

tively avoid constructing intermediate sets, thus saving space as well.

This optimization is similar to the avoidance of constructing interme-

diate lists when composing a series of ‘map’ functions in functional

languages.

At this stage of its development, we assume that a SEL program-

mer specifies, through suitable ‘mode’ declarations, in which argu-

ments a function distributes over union.

3. Implementation

We now present here the salient aspects of an abstract machine for im-

plementing SEL. This abstract machine is very similar to the WAM,

being based on a stack-heap model with structure-copying. We there-

fore concentrate on the differences in this presentation. We assume

that the reader has some familiarity with the WAM implementation

of Prolog [13].

The basic approach is as follows: At compile-time, we flatten all

expressions in accordance with innermost-first semantics, so that the

arguments of all function calls are terms. Temporary variables are

introduced as necessary. We illustrate by showing the flattened form

of perms below.

perms({ }) = {[]}

perms({x | t}) ⊇ v1 : − perms(t) ⊇ v2, distr(x, v2) = v1

Note that the operation distr distributes over union (in its second ar-

gument); this is distinguished in the flattened code by using ⊇ rather

= in the goal containing the call to perms. Equality and subset as-

sertions can be assumed to be mutually exclusive, i.e., an equality

and a subset assertion cannot both match a given call. Furthermore,

equality assertions can be assumed to be mutually exclusive among

themselves; in case of overlap, the choice is arbitrary. Within each

10

class, the assertions are indexed on their first argument, as in the

WAM. We try all equality assertions first, followed by subset asser-

tions.

The main data areas are: (i) the static code area, (ii) the control

stack, and (iii) the heap. There is no need for a trail stack, because

the matching is strictly one-way; trying alternative branches during

a-c matching requires changes only to local variables. In addition to

these areas, a push-down list is maintained in order to traverse nested

structures during matching—similar to that needed for unification.

As in the WAM, the control stack is made up environments and

choice-points. Environment trimming and last-call optimization are

applicable to both equality assertions and subset assertions, although

in the latter case these optimizations are applicable only to the last

match among the multiple a-c matches. The heap stores lists, struc-

tures, and sets. Unlike the WAM, we do not need to identify global

variables, because all returned values must be ground. In other words,

all variables can be allocated on the control stack.

3.1 Execution Model

A function defined exclusively by equality assertions is invoked by a

call instruction. An environment record is created on the control

stack for this call if the matching assertion has permanent variables,

as in the WAM. If there is no match, failure is signalled, which causes

failure-backtracking to the most recent choice-point (discussed further

below) or to the top-level if there is none. Successful completion of

an equality assertion causes normal return to its caller, and is accom-

panied by deletion of the corresponding environment record.

If there are no (applicable) equality assertions for a given call,

control transfers to any applicable subset assertions. If there are

no applicable subset assertions either, failure-backtracking is initi-

ated. The multiple subset assertions that match a given call and the

multiple a-c matches within a single subset assertion are attempted

sequentially—depth-first computation of subsets is a complete strat-

egy because ∪ is strict. We create a choice-point record on the con-

trol stack to keep track of these alternatives. A single choice-point

can record multiple branch-points during a-c matching; for example,

11

{{h1 | t1} | {h2 | t2}} has three branch-points, one for each occur-

rence of “|”. The number of branch-points is known at compile-time.

When invoking a function defined by subset assertions, we dis-

tinguish two modes of calls: call-one and call-all. The former

is used to call a function—such as perms—that appears as an argu-

ment to a function—such as distr—that distributes over union in

this argument; otherwise the latter is used. An environment record is

created if the subset assertion matching this call has at least one call

in its body. In other words, all variables within a subset assertion are

assumed to be permanent if the assertion has any function call.

If a subset assertion is invoked by a call-all instruction, each

successful completion of the assertion causes success-backtracking to

the most recent choice-point; if it is invoked with a call-one in-

struction, each successful completion causes an exit back to the caller.

The compiled code for each subset assertion ends with a collect?

instruction, which tests a ‘mode’ register to determine whether to

initiate success-backtracking or exit—the environment record is not

deleted at this time. Once all branch-points within a choice-point have

been exhausted, the next subset assertion that matches the call is en-

tered, and the current environment record is deleted. As each subset

is computed, it is added to the overall set after removing duplicates.

When failure-backtracking transfers control to a choice-point, the sub-

set computed for this path is assumed to be empty, and execution

continues as if success-backtracking had occurred.

Note that the heap is not retracted upon success-backtracking,

because the data-structures created along all success backtrack paths

are collectively needed. The heap is retracted upon failure backtrack-

ing. Garbage collection—not discussed in this paper—is needed to

reclaim inaccessible objects in the heap.

3.2 Instruction Set

The state of a SEL program is given by the content of the data areas,

as well as certain registers. The following registers and their intended

use are identical to that of the WAM: P, current program code pointer;

CP, continuation program code pointer; E, last environment pointer;

B, last choice-point; A, top of stack pointer; H, top of heap pointer;

12

HB, heap backtrack pointer; S, structure pointer (to top of heap); A1,

A2, ..., argument registers; and X1, X2, ..., temporary variables.

In addition, we need the following new registers: M, mode of the

current call; CB, current branch-point; and B1, B2, ... branch-point

registers.

Similar to the WAM, there are several classes of instructions: get,

put, store, match, procedural, and indexing. The main differences are

the following:

(i) WAM’s unify instructions have been replaced by match and

store instructions. The ‘read’ and ‘write’ modes of WAM’s get in-

structions for lists and structures can be identified at compile-time.

All uses of WAM’s get and unify in the ‘read’ mode are replaced by

get and match instructions; all uses of WAM’s get and unify in ‘write’

mode are replaced by store instructions. All uses of WAM’s put and

unify instructions are replaced by put and store instructions.

(ii) For sets, in addition to the usual get, put, and store instruc-

tions, we have the following new instructions: adj set head, adj set,

and adj set with copy. These are used immediately after a get set

instruction. The difference between adj set head and adj set is that

the former does not construct the remainder of the set. In the latter

case, the n different remainders of an n-element set are constructed

in O(n) space, using destructive modification. Each invocation of

the adj set instruction constructs only one of the remainders. The

adj set with copy instruction is used when the remainders cannot

be constructed in O(n) space. All three instructions establish branch-

points, by setting the CB and branch-point registers appropriately.

(iii) The procedural instructions of the WAM are augmented with

the call-one, call-all, and collect? instructions described ear-

lier. The collect? instruction is responsible for constructing the

resulting set and removing duplicates, in case the mode register indi-

cates a call-all invocation.

(iv) The indexing instructions differ from the WAM in that they

do not create choice-points. Choice points are created explictly with

a save choice point instruction. We use try equ else instructions

to link equality assertions, and try sub and to link subset assertions.

13

We use a switch on ground term instruction for indexing equality

and subset assertions, with four cases: constant, list, structure, and

set.

We conclude the description of the implementation by showing

how the two assertions for perms are compiled with these instructions.

Each line of the compiled code is commented at the end by showing

the corresponding program fragment that it implements. Note that

the address of the result of a function is passed as an extra argument

(the last), and that the set {[]} is represented as {[] | { }}.

perms/2: switch on ground term C1, fail, fail, C2

C1: get empty set A1 % perms({ }) =

store set A2 % {

store constant [] % [] |

store constant { } % { }}

proceed

C2: allocate

get set A1, Y0 % perms({

adj set Y0

match variable Y1 % x |

match variable Y2 % t}) ⊇

get variable Y3, A2 % v1

save choice point % :-

put value Y2, A1 % perms(t) ⊇

put variable Y4, A2 % v2,

call-one perms/2

put value Y1, A1 % distr(x,

put value Y4, A2 % v2) =

put value Y5, A3 % v3

call-all distr/3

collect? Y3, Y5 % v1 := v1 ∪ v3

4. Conclusions

The two main ideas behind subset-logic programming are: (i)

programming with subset and equality assertions, and (ii) comput-

ing with restricted a-c matching and innermost reduction. We have

14

illustrated the paradigm through examples, and shown that it is prac-

tical by sketching how it can be efficiently implemented using exist-

ing technology. The term ‘subset-logic programming’ was coined by

O’Donnell in his recent paper [9]. Our approach, which was indepen-

dently developed, differs from that of [9] in two important respects:

the emphasis on (restricted) a-c matching, and the provision of func-

tions that are not always required to distribute over union over their

argument sets.

There is an acknowledged need for a declarative approach to sets

in both functional and logic programming [12, 8]. Recent approaches,

surveyed in [6], differ from ours in that they are motivated by the need

to provide sets in relational databases, and are based on Horn clauses

rather than subset assertions. Compilation concerns are emphasized

in [11], where an efficient scheme for commutative-idempotent match-

ing is proposed. While our approach to subset-logic programming was

motivated by the need to collect all solutions, further work is needed

to integrate subset-logic and predicate-logic programming, so that

Prolog’s ‘setof’ construct can be captured declaratively. We are also

trying to automatically characterize as much as possible (at compile-

time) the confluence of equality assertions with a-c constructors and

also the distribution of functions over union. At the time of finaliz-

ing this paper, we have nearly completed the implementation of SEL

using the approach described here [7].

Acknowledgments

Thanks to David Plaisted for discussions which helped formulate

these ideas, and to the anonymous referees for their detailed comments

and suggestions. This research is supported by grant DCR-8603609

from the National Science Foundation and contract N 00014-86-K-

0680 from the Office of Naval Research.

References

[1] D. Benanav, D. Kapur, and P. Narendran, “On the complexity

of matching problems,” In Rewriting Techniques and Applica-

tions, pp. 417-429, Dijon, May 1985.

15

[2] K. L. Clark, “Negation as Failure,” In Logic and Data Bases,

Ed. H. Gallaire and J. Minker, Plenum Press, New York, 1978,

pp. 293–322.

[3] J. Jaffar, J.-L. Lassez, “Constraint Logic Programming,” In

14th ACM POPL, pp. 111-119, Munich, 1987.

[4] B. Jayaraman and D.A. Plaisted, “Functional Programming

with Sets,” In Third Int’l Conference on Functional Program-

ming Languages and Computer Architecture, pp. 194-210, Port-

land, 1987.

[5] R.A. Kowalski, “Predicate Logic as Programming Language,”

IFIP Proc., 1974, pp. 569-574.

[6] G.M. Kuper, “On the Expressive Power of Logic Programming

Languages with Sets,” In 7th ACM PODS, pp. 10-14, 1988.

[7] A. Nair, “Compilation of Subset-logic Programs,” M.S. Thesis,

University of N. Carolina at Chapel Hill, expected August 1988.

[8] L. Naish, “All Solutions Predicates in Prolog,” In Symp. on

Logic Programming, Boston, 1985, pp. 73-77.

[9] M. J. O’Donnell, “Term-rewriting Implementation of Equa-

tional Logic Programming,” In Rewriting Techniques and Ap-

plications, pp. 1-12, Bordeaux, 1987.

[10] G. Plotkin “Building-in equational theories,” In Machine Intel-

ligence 7, pp. 73-90, 1972.

[11] O. Shmueli, S. Tsur, C. Zaniolo, “Compilation of Rules Con-

taining Set Terms in a Logic Data Language (LDL),” MCC TR

DB-222-87, July 1987.

[12] D. A. Turner, “Miranda: A non-strict functional language with

polymorphic types,” in Conf. on Functional Prog. Langs. and

Comp. Arch., Nancy, Sep. 1985, pp. 1-16.

[13] D. H. D. Warren, “An Abstract Prolog Instruction Set,” Tech.

Note 309, SRI International, Menlo Park, 1983.

16

