CSE 302LR: Introduction to Experiential Learning/Research (Section B) - Fall 2025

Lecture 4: Plotting graphs using matplotlib 9/16/2025

Clemen 217, 3:30 pm - 4:50 pm. In-person attendance required.

Find more on course website:

https://cse.buffalo.edu/adblab/elrr/

Plotting graphs

- Experiment graphs
 - visualizes data from experimental results
 - helps convey key information

Example: system scalability under concurrency

- To demonstrate the scalability of a system in terms of data ingestion
 - Ab-tree vs baseline
 - Download: https://cse.buffalo.edu/adblab/elrr/fa25/plot/
 - Starter code: throughput.py
 - Data: abt_ingestion_throughput.csv
 - Your task: load data and generate throughput.pdf
 - Hint: to run the script

```
chmod +x throughput
./throughput.py
```

A not very readable graph

Things to consider when plotting graphs

- What're the key messages we'd like to send?
- Are we (accidentally) hiding any information?
 - Often time they are scrutinized by your peer reviewers.
- Is the graph misleading?
- Is the graph accessible?
 - Font size, color blindness friendly colors, color contrast in grayscale printing

How to make the graph readable?

How to make the following graph instead?

Is the graph good enough?

- There might be other hidden facts we fail to show in the graph, for instance,
 - Peak throughput vs average throughput?
 - You might want to throw out the warm up and cool down phases

- Does the trend change when we have more ingestion threads?
 - The test machine had 18 cores but 36 threads (hyperthreading)

- Update the graph following one of the above two directions
 - More data in rawdata/
- Demo your graph at 4:30 pm