

CSE 350: Advanced Data Structures and Indexes (Spring 2026)

Lecture 1: Introduction & Course Logistics;
Storage Hierarchy and External Memory Model

1/22/2026

Lecture: Norton 213, T&H 3:30 pm – 4:50 pm.

Recitation: Norton 213, H 5:00 pm – 5:50 pm.

In-person attendance required.

Find more on course website & Piazza:

https://cse.buffalo.edu/~zzhao35/teaching/cse350_spring26

<https://piazza.com/buffalo/spring2026/cse350/home>

Today's agenda

- Introduction
 - DataBase Management Systems (DBMS)
 - Storage hierarchy and data storage systems
 - External memory model
- Course logistics
- Recitation: Repository setup; C++ programming and POSIX I/O Interface

What is a Database?

- Database is
 - a collection of interrelated data
 - often organized in a certain structure for convenient and efficient access
- Databases are found almost everywhere, sometimes unnoticed
 - Business: sales, accounting, human resource, IT support, ...
 - Financial industry: banking, credit card, investment platform
 - University: student records, course registration, LMS (e.g., UB Learns), ...
 - Some less obvious examples of databases
 - Software package and configuration DB (e.g., windows registry)
 - Your photo library (e.g., Google Photos)
 - Your personal finance records
 - ...

Why using a DataBase Management System?

- DataBase Management System (DBMS) is a software system for convenient and efficient data access over databases,

which provides:

- **Data abstraction**
 - Flexible data manipulation and query interfaces
 - **Scalable data storage over storage hierarchy**
 - Efficient query and transaction processing
- Integrity checks
- Concurrency control and atomicity
- Fault tolerance
- Security and privacy
- ...

Data structures

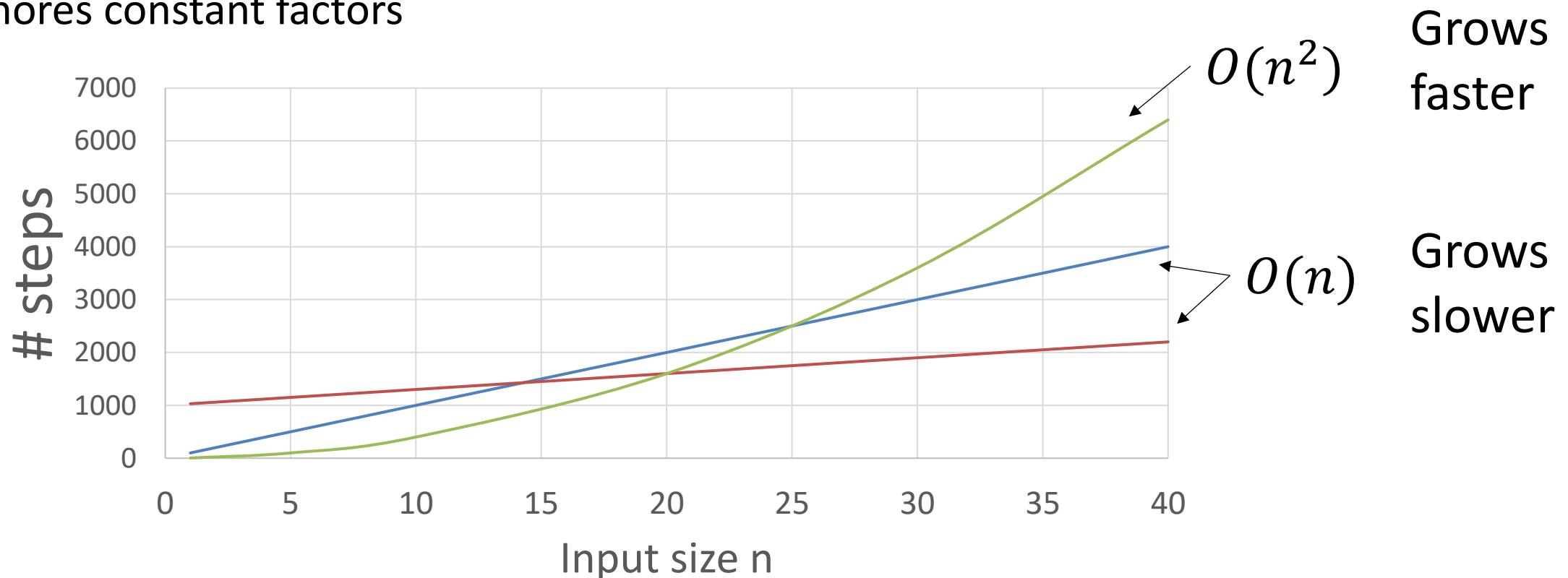
- Data storage (layout) + operations (algorithm)
- Example: in-memory data structures
 - 4 integers: 100, 200, 300, 400
 - Need to support lookup (whether the value exists)

size	0	1	2	3	4	5	6
4	100	200	300	400			

Array

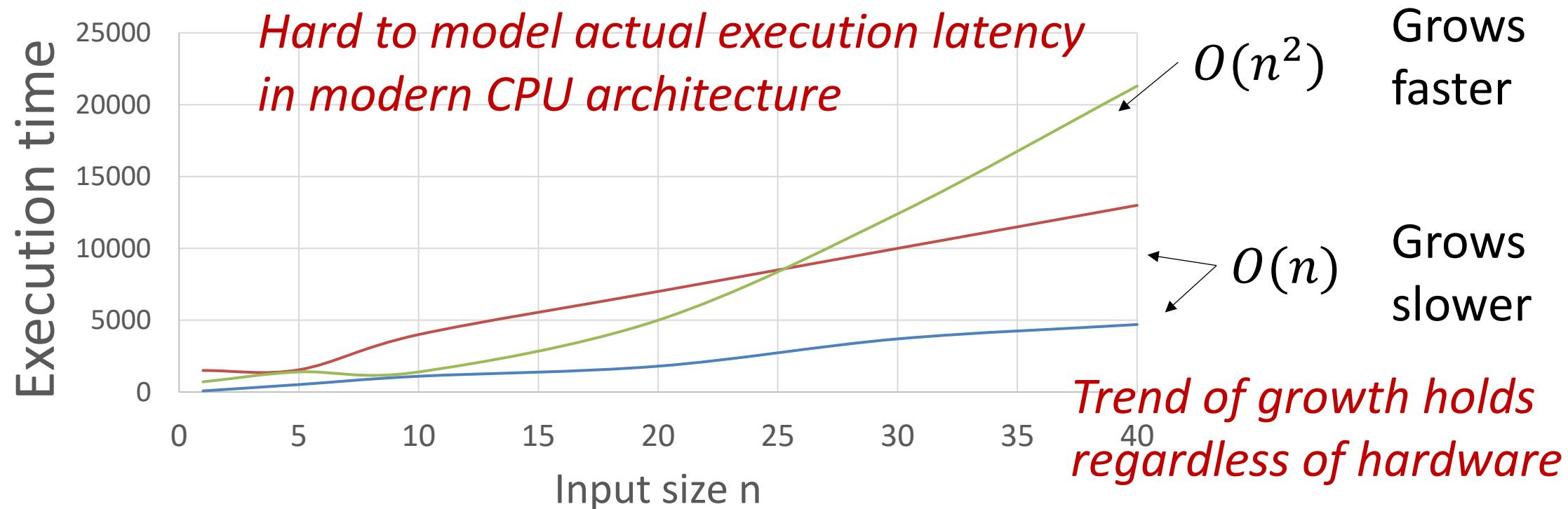
Space complexity:

Time complexity (lookup):

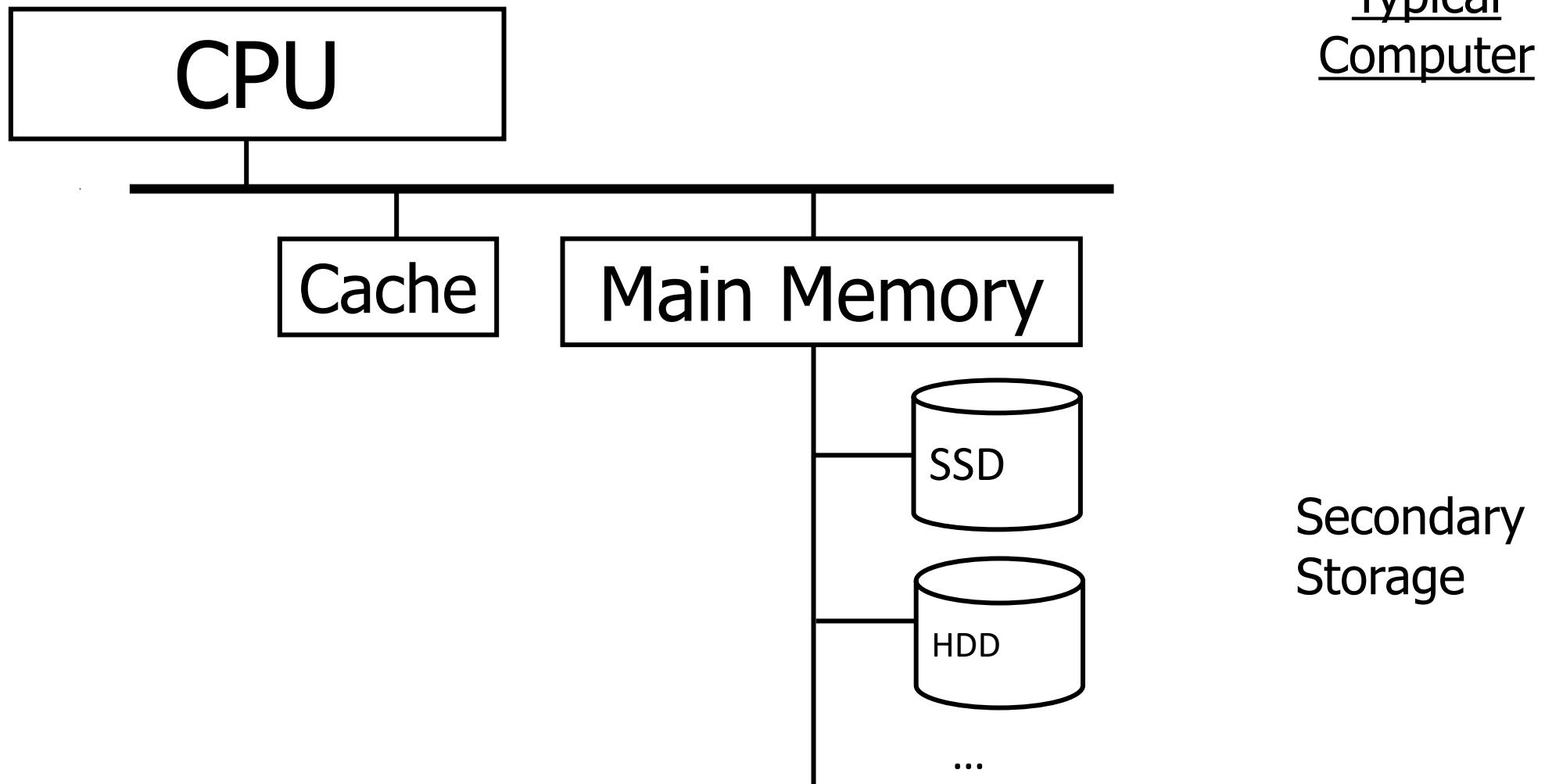

Linked list

Space complexity:

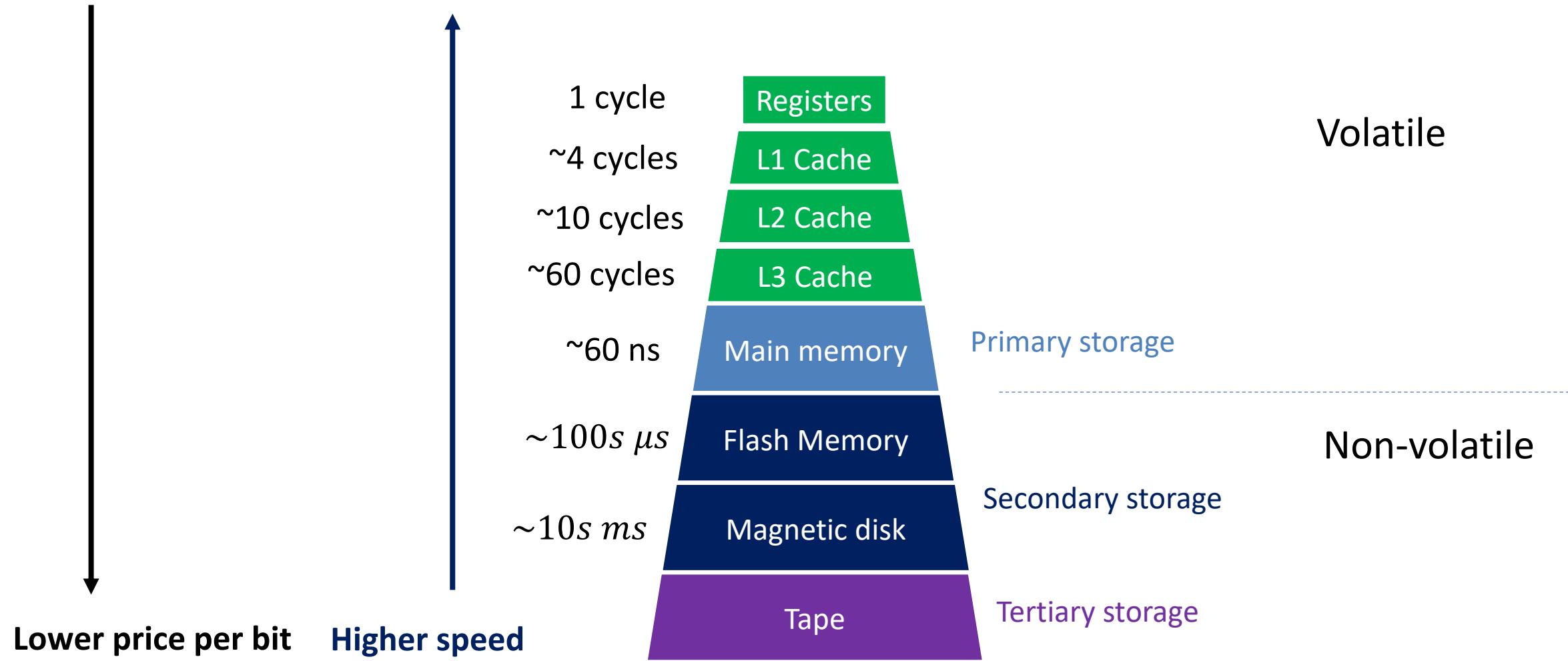
Time complexity (lookup):


Asymptotic complexity analysis for in-memory

- Assumption: each memory access/computation step takes constant time
 - Scalability matters
 - What is the trend of increase in #steps as input size increases?
 - Ignores constant factors

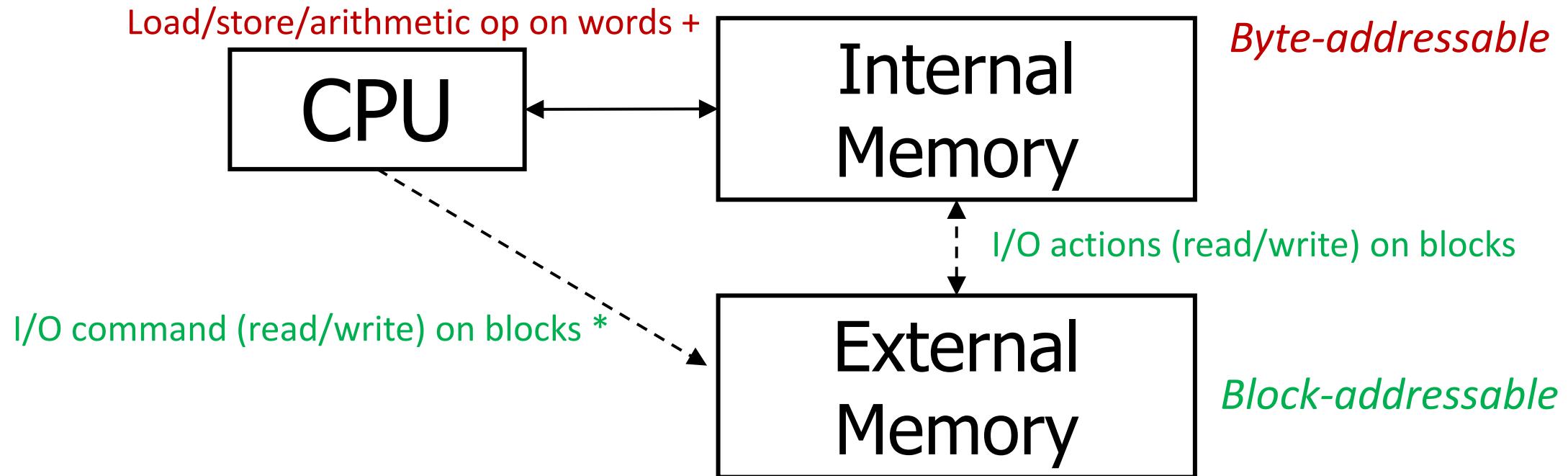

Asymptotic complexity analysis for in-memory

- Assumption: each memory access/computation step takes constant time
 - Scalability matters
 - What is the trend of increase in #steps as input size increases?
 - Ignores constant factors – why?



Typical (& oversimplified) computer architecture

- A simplistic view of a computer



Storage Hierarchy

External Memory Model

- Two levels in storage hierarchy
 - I/O latency dominates computation/memory access latencies
 - Complexity analysis will focus on # of I/Os (i.e., # of blocks read/written)

- * One block is a fixed number of consecutive bytes (e.g., 512 B, 4 KB), aligned to modulo = 0 boundaries.
- + A word is a unit of consecutive bytes for operations (e.g., a 4-byte integer).

What does this course cover?

- The design and analysis of data structures for external memory model
 - Simplified but widely applicable cost model
 - We'll also cover some SQL/relational model/database design to motivate use cases
- Note, this course is not about
 - Database design, use and administration (CSE 460)
 - Programming/data structure/algorithm analysis/math... (CSE191/CSE 220/250/CSE331)
 - Upper layers in DBMS including query and transaction processing (CSE 462)

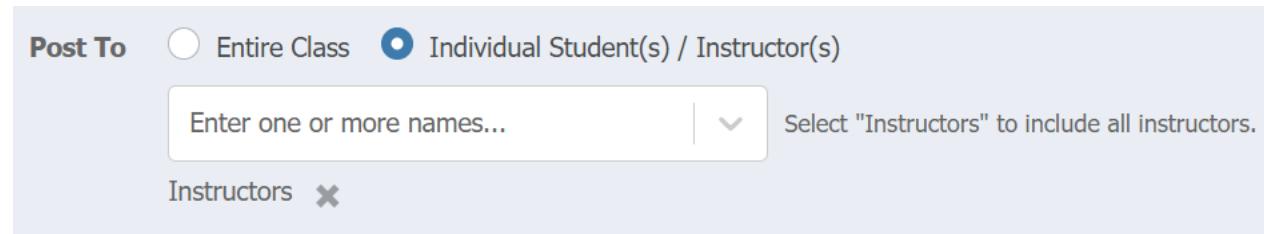
Why should I care about DBMS internals?

- > 90 billion dollar worth industry
 - Many more are directly or indirectly using DBMS products
- Many vendors and products:
 - Relational: MySQL, Oracle DB, Microsoft SQL Server, IBM Db2, PostgreSQL, SQLite...
 - Graph DB and Graph data processing: Neo4j, Virtuoso, GraphLab, Spark GraphX, ...
 - Stream Processing: Apache Flink, Spark Streaming, Apache Storm, ...
 - Semi-structured DB: MongoDB, CouchBase, DocumentDB, ...
 - Distributed database: Google Spanner, Microsoft CosmosDB, ...
 - ...
- Used by many other research and application areas:
 - Artificial Intelligence/data mining/search engine/social media/fintech/...

Why should I care about DBMS internals?

- Huge demand in industry for those who can
 - query/manipulate data in database efficiently
 - fine-tune the imperfect DBMS/big data processing systems
 - work seamlessly with the data infrastructure team
- An actively researched area that
 - has strong real-life impacts and connection to the industry
 - has many related open engineering and research positions
- The goal of this course:
 - understanding the common problems and solutions in data management
 - gaining hands-on experience with building a complex software system
 - to be helpful in your future industrial/academic career

Logistics



- Norton 213, T&H 3:30 pm – 4:50 pm (lecture), H 5:00 – 5:50 pm (recitation)
 - In-person attendance required for both lectures and recitations.
- Office hours:
 - No TA
 - Instructor (Zhuoyue Zhao)
 - No regular hours; message me for appointment
 - Rules:
 - First-come first-serve
 - Please come with concrete questions about course materials/projects/assignments/exams
 - Not intended for code debugging, troubleshooting of your dev environment, etc.
 - If you need help with troubleshooting of your dev environment, message me on Piazza
 - With screenshots or copy of error messages.
- Find more on course website:
https://cse.buffalo.edu/~zzhao35/teaching/cse350_spring26

Logistics

- We mainly use Piazza for communication:
 - <https://piazza.com/buffalo/spring2026/cse350/home>
 - Please post messages on Piazza instead of sending emails
- When you have any private question/request for me:
 - please select “Instructors” in Post To

Logistics

- Important Dates:
 - Mid-term exam: 3/5/2026, Norton 213 (in class), 3:40 pm – 5:40 pm (120 minutes)
 - Final exam: 5/12/2026, Norton 213, 3:40 – 5:40 pm (120 minutes)
- Exam conflict policy:
 - If you have final exam conflicts as defined by the Office of the Registrar
 - please notify the instructor on Piazza by 2/4/2026
 - (we might not have enough seats if you do not notify us by that date)
 - you may still opt for the original final exam at any time with one-week prior notice

Grading

- Grading
 - Programming assignments: 50%
 - Quizzes: 20%
 - Mid-term exam: 15%
 - Final exam: 15%
- Grading policy:
 - No curving.

$[0, 10)$	$[10, 20)$	$[20, 30)$	$[30, 40)$	$[40, 50)$	$[50, 60)$	$[60, 70)$	$[70, 80)$	$[80, 90)$	$[90, +\infty)$
F	D	C-	C	C+	B-	B	B+	A-	A

Exams and Written Assignments

- No written assignments
- Random In-class quizzes
 - Must hand-write answers and submit in class
 - Typically lasts 10 - 20 minutes
 - Please bring a pen and a calculator to every lecture and recitation
- Exams
 - Open-book exams
 - Only **paper-copy** of the course slides and lecture notes, the quizzes and solutions, the optional textbook, and your own lecture notes are allowed
 - No electronic devices except a calculator

Programming assignments

- Build an LSM tree in C++ 17 (4 projects)
- No teams
 - Must not collaborate on programming
 - see academic integrity policy for details
- **Using generative AI is disallowed**
 - No ChatGPT/Gemini/Claude/....
 - No Github Copilot (if you use an IDE, please make sure to disable it)
- Code must be kept in a **private** Github repository, even after this semester
 - You should not fork the repository or clone the repository outside the dev container

Academic Integrity Policy

- Academic integrity is critical to the learning process. It is your responsibility to understand and follow all the departmental and university academic integrity policies.
- **Zero tolerance** towards academic integrity violations, which includes but are not limited to
 - Sharing/copying code in programming assignments or
 - Plagiarizing write-ups
 - Cheating in exam
 - Making your code publicly available or available to any current or future students
 - Submitting code repository that does not belong to you
 - ***Use of generative AI in this class for any coursework***
- Any AI violation will result in **an F grade** and will be reported to the Office of Academic Integrity
 - Amnesty Policy: If you have concerns that you may have violated academic integrity on a particular assignment, and would like to withdraw the assignment, you may do so by sending your instructor an email **BEFORE THE VIOLATION IS DISCOVERED BY COURSE STAFF**. See PDF syllabus on the course website for details.

More on Academic Integrity Policy

- Examples of AI violation related to course project:
 - Viewing/committing/submitting code written by anyone else
 - *including those generated or adapted from outputs from generative AI software (e.g., ChatGPT, Cursor, Github CoPilot, etc.)*
 - Viewing/copying/rephrasing answers found online or from a past or current student (including CSE 4/562)
- What is allowed and encouraged (on Piazza/in lecture/offline, publicly or privately)
 - Ask questions about lectures/projects/homework assignments
 - Preparation for mid-term and final exams
 - Seek clarification about projects/homework assignments
 - If you're unsure, please do ask.

Programming assignments

- Instructions for projects:

Assignment pages contain very detailed instructions.

- If something requires clarification, it's most likely covered there.
- Still have questions on coding or found bugs?
 - Feel free to post it on Piazza (though we may point you back to the instructions).
 - You will get 1 extra credit towards your final grade for every validated bug or question that cannot be answered by the project instruction.

- Where to find project pages:

https://cse.buffalo.edu/~zzhao35/teaching/cse350_spring26

Late policy for programming assignments

- You will always be graded on the latest submission
- Up to 5 grace days in total and up to 2 grace days for each project
 - only applicable to final submissions
 - no grace days allowed for intermediate checkpoints
 - no penalty if submission is within allowed grace days