
CSE 350: Advanced Data Structures and
Indexes (Spring 2026)

Lecture 3: External Memory Model
Common Techniques & Cost Analysis

1/29/2026

Example: from list to heap file
• Example: a collection of unordered items -- assuming everything is unique

• Need to support
• insert(x)
• delete(x)
• lookup(x): reports whether the item x is found

• In-memory solution:

0 1 2 3 4 5 6

100 200 300 400

Array

4

size

CSE 350 (Spring 26): Lecture 3 2

Algorithms of list
// List L: (A, C, N)

def init():

 return (array(4), 4, 0)

0 1 2 3

Array A

4

Capacity C

0

Size N

def insert(L, x):

 if L.N >= L.C then

 resize(L, L.C * 2)

 A[L.N] <- x

 L.N <- L.N + 1

def resize(L, C2):

 A2 <- array(C2)

 N2 <- min(L.N, C2)

 A2[0..N-1] <- A[0..N-1]

 L <- (A2, C2, N2)

CSE 350 (Spring 26): Lecture 3 3

Complexity analysis of list
Assumptions:
In-memory: count # of steps
What counts as a step:
• assignment of each word <-
• arithmetic operations (+,-,*,/,%,…)
• allocation/deallocation of memory -- regardless of size
What about branch & loop? Depends
• Worst-case analysis

• Count the maximum number of steps
• Average-case analysis

• average number of steps
may need to derive/assume distribution

def insert(L, x):

 if L.N >= L.C then

 resize(L, L.C * 2)

 A[L.N] <- x

 L.N <- L.N + 1

def resize(L, C2):

 A2 <- array(C2)

 N2 <- min(L.N, C2)

 A2[0..N-1] <- A[0..N-1]

 L <- (A2, C2, N2)

complexity for size N In-memory List

insert(x)

delete(x)

lookup(x)

CSE 350 (Spring 26): Lecture 3 4

Asymptotic analysis
• Only trend matters, how to formalize this?

• Mathematical tool: limit

𝑓: 𝑁 → 𝑅 lim
𝑛→+∞

𝑓(𝑛) = 𝐿 𝑖𝑓𝑓

 ∀𝜀 > 0, ∃𝑛0 ∈ 𝑁, ∀𝑛 ≥ 𝑛0, 𝑓 𝑛 − 𝐿 ≤ 𝜀

CSE 350 (Spring 26): Lecture 3 5

Asymptotic analysis
• Only trend matters, how to formalize this?

• Mathematical tool: limit

𝑓: 𝑁 → 𝑅 lim
𝑛→+∞

𝑓(𝑛) = 𝐿 𝑖𝑓𝑓

 ∀𝜀 > 0, ∃𝑛0 ∈ 𝑁, ∀𝑛 ≥ 𝑛0, 𝑓 𝑛 − 𝐿 ≤ 𝜀

• How to use it to express trends? Intuition:
• constants 𝑐0 and 𝑐1 has the same trend, regardless of how much they differ
• polynomials of the same degree have the same trend, regardless of their parameters
• polynomials of a higher degree has a faster trend to increase in cost

Suppose 𝑓1 𝑛 = 𝑐0, 𝑓2 𝑛 = 𝑐1, 𝑓3 𝑛 = 3𝑛 + 2, 𝑓4 𝑛 = 5𝑛 − 4, 𝑓5 𝑛 = 𝑛2 + 𝑛 − 3

Want to define ≺, ≡ such that 𝑓1 ≡ 𝑓2 ≺ 𝑓3 ≡ 𝑓4 ≡ 𝑓5

Does this work: two function have the same trend if their difference is bounded by constant?

No! Counter example: lim
𝑛→+∞

𝑓3 𝑛 − 𝑓4 𝑛 = lim
𝑛→+∞

2𝑛 − 6 which does not exist

CSE 350 (Spring 26): Lecture 3 6

Asymptotic analysis
• Only trend matters, how to formalize this?

• Mathematical tool: limit

𝑓: 𝑁 → 𝑅+ lim
𝑛→+∞

𝑓(𝑛) = 𝐿 𝑖𝑓𝑓

 ∀𝜀 > 0, ∃𝑛0 ∈ 𝑁, ∀𝑛 ≥ 𝑛0, 𝑓 𝑛 − 𝐿 ≤ 𝜀

• How to use it to express trends? Intuition:
• constants 𝑐0 and 𝑐1 has the same trend, regardless of how much they differ
• polynomials of the same degree have the same trend, regardless of their parameters
• polynomials of a higher degree has a faster trend to increase in cost

Suppose 𝑓1 𝑛 = 𝑐0, 𝑓2 𝑛 = 𝑐1, 𝑓3 𝑛 = 3𝑛 + 2, 𝑓4 𝑛 = 5𝑛 − 4, 𝑓5 𝑛 = 𝑛2 + 𝑛 − 3

Want to define " ≺ ", " ≡ " such that 𝑓1 ≡ 𝑓2 ≺ 𝑓3 ≡ 𝑓4 ≡ 𝑓5

Does this work: two function have the same trend if their difference is bounded by constant?

No! Counter example: lim
𝑛→+∞

𝑓3 𝑛 − 𝑓4 𝑛 = lim
𝑛→+∞

2𝑛 − 6 which does not exist

CSE 350 (Spring 26): Lecture 3 7

Asymptotic analysis

• Whether the limit of the ratio of two functions lim𝑛→+∞
𝑓(𝑛)

𝑔 𝑛

• does not exist (i.e., tends to +∞) => 𝑓 𝑛 grows faster than 𝑔 𝑛

• is constant => same trend

• is zero => 𝑓 𝑛 grows slower than 𝑔 𝑛

Suppose 𝑓1 𝑛 = 𝑐0, 𝑓2 𝑛 = 𝑐1, 𝑓3 𝑛 = 3𝑛 + 2, 𝑓4 𝑛 = 5𝑛 − 4, 𝑓5 𝑛 = 𝑛2 + 𝑛 − 3

Want to define ≺, ≡ such that 𝑓1 ≡ 𝑓2 ≺ 𝑓3 ≡ 𝑓4 ≡ 𝑓5

lim𝑛→+∞
𝑓1 𝑛

𝑓2 𝑛
= lim𝑛→+∞

𝑐0

𝑐1
=

𝑐0

𝑐1
 ⇒ 𝑓1 and 𝑓2 has the same trend

lim𝑛→+∞
𝑓1 𝑛

𝑓3 𝑛
= lim𝑛→+∞

𝑐0

3𝑛+2
= 0 ⇒ 𝑓1 grows slower than 𝑓3

lim𝑛→+∞
𝑓5 𝑛

𝑓3 𝑛
= lim𝑛→+∞

𝑛2+𝑛−3

3𝑛+2
 → +∞ ⇒ 𝑓5 grows faster than 𝑓3

CSE 350 (Spring 26): Lecture 3 8

Asymptotic analysis
• Formally, we define following sets of all functions 𝑔: 𝑁 → 𝑅+ for 𝑓: 𝑁 → 𝑅+

• 𝑜 𝑓 = 𝑔 ∈ 𝑅+𝑁
| lim

𝑛→+∞

𝑔 𝑛

𝑓 𝑛
= 0

• 𝜔 𝑓 = 𝑔 ∈ 𝑅+𝑁
| lim

𝑛→+∞

𝑓 𝑛

𝑔 𝑛
= 0

• Θ 𝑓 = 𝑔 ∈ 𝑅+𝑁
|∃𝑐 ∈ 𝑅+, lim

𝑛→+∞

𝑓 𝑛

𝑔 𝑛
= 𝑐

• Big oh and Big Oemga:

• 𝑂 𝑓 = Θ 𝑓 ⋃𝑜 𝑓

• Ω f = Θ 𝑓 ⋃𝜔 𝑓

Examples:
2𝑛2 − 4 ∈ O n2

 means
2𝑛2 − 4 grows at most as fast as 𝑛2

For convenience, we often
write “=“ instead of “∈”

i.e., 2𝑛2 − 4 = 𝑂 𝑛2

CSE 350 (Spring 26): Lecture 3 9

Complexity analysis of list

complexity for size N In-memory List

insert(x)

delete(x)

lookup(x)

Assumptions:
In-memory: count # of steps
What counts as a step:
• assignment of each word <-
• arithmetic operations (+,-,*,/,%,…)
• allocation/deallocation of memory -- regardless of size
What about branch & loop? Depends
• Worst-case analysis

• Count the maximum number of steps
• Average-case analysis

• average number of steps
may need to derive/assume distribution

def insert(L, x):

 if L.N >= L.C then

 resize(L, L.C * 2)

 A[L.N] <- x

 L.N <- L.N + 1

def resize(L, C2):

 A2 <- array(C2)

 N2 <- min(L.N, C2)

 A2[0..N-1] <- A[0..N-1]

 L <- (A2, C2, N2)

Θ 𝑁 (worst case)

Θ 1 (average case)

CSE 350 (Spring 26): Lecture 3 10

External Memory (EM) Model
• Two levels in storage hierarchy

• I/O latency dominates computation/memory access latencies

• Complexity analysis will focus on # of I/Os (i.e., # of blocks read/written)

CPU
Internal
Memory

External
Memory

Byte-addressable

Block-addressable

* One block is a fixed number of consecutive bytes (e.g., 512 B, 4 KB), aligned to modulo = 0 boundaries.
+ A word is a unit of consecutive bytes for operations (e.g., a 4-byte integer).

Load/store/arithmetic op on words +

I/O command (read/write) on blocks *

I/O actions (read/write) on blocks

CSE 350 (Spring 26): Lecture 3 11

Complexity Analysis for EM model
Assumptions:
EM model: count # of I/O operations
What counts as an I/O operation?

• reading up to a page
• writing up to a page
• If a read/write crosses page boundaries, count both

Operation # I/O

pread(fd, buf, 4096, 0)

pwrite(fd, buf, 4096, 0)

pread(fd, buf, 4096, 10 * 4096)

pread(fd, buf, 8, 512)

pread(fd, buf, 4096, 2048)

Assuming 4 KiB pages

ssize_t pread(int fd, void *buf, size_t count, off_t offset);

ssize_t pwrite(int fd, const void *buf, size_t count, off_t offset);

1

1

1

1

2

CSE 350 (Spring 26): Lecture 3 12

Example: from list to heap file
• Example: a collection of unordered items -- assuming everything is unique

• Need to support
• insert(x)
• delete(x)
• lookup(x): reports whether the item x is found

• In-memory solution:

0 1 2 3 4 5 6

100 200 300 400

Array

4

size

External memory solution?

How about replace all memory loads with 4-byte disk read, and all memory stores with 4-byte disk writes?

CSE 350 (Spring 26): Lecture 3 13

Random access is expensive

def insert(L, x):

 if L.N >= L.C then

 resize(L, L.C * 2)

 A[L.N] <- x

 L.N <- L.N + 1

def resize(L, C2):

 A2 <- array(C2)

 N2 <- min(L.N, C2)

 A2[0..N-1] <- A[0..N-1]

 L <- (A2, C2, N2)

How about replace all memory loads with 4-byte disk read, and all memory stores with 4-byte disk writes?

L is a file descriptor to a file

Bytes 0 - 3: N

Bytes 4(i + 1) - 4(i + 1) + 3: ith value

def insert_heap(L, x):

 pread(L, &N, 4, 0)

 N <- N + 1

 pwrite(L, &N, 4, 0)

 pwrite(L, &x, 4, 4 * N)

complexity for size N In-memory List Naïve heap file

insert(x) Θ 𝑁 (worst case)
Θ 1 (average case)

delete(x)

lookup(x)

5 = Θ 1 (worst case)

But, 5 I/O is around
 50 ms for magnetic disks
or 500 𝜇𝑠 for SATA NAND SSD

in-memory: <= hundreds of ns

CSE 350 (Spring 26): Lecture 3 14

Caching and page-granular I/O
L is a file descriptor to a file

Bytes 0 - 3: N

Bytes 4(i + 1) - 4(i + 1) + 3: ith value

def insert_heap(L, x):

 pread(L, &N, 4, 0)

 N <- N + 1

 pwrite(L, &N, 4, 0)

 pwrite(L, &x, 4, 4 * N)

complexity for size N In-memory List Naïve heap file

insert(x) Θ 𝑁 (worst case)
Θ 1 (average case)

5 = Θ 1 (worst case)

delete(x)

lookup(x)

def init_heap_with_cache(fd):

 pread(L, p, 4096, 0)

 pn <- 0

 N <- p[0:4]

 return (fd, N, pn, p) // L

def insert_heap_with_cache(L, x):

 pn2 <- (L.N + 1) / 4096

 off <- (L.N + 1) % 4096

 if pn2 != L.pn then

 pwrite(L.fd, L.p, 4096, L.pn * 4096)

 pread(L.fd, L.p, 4096, pn2 * 4096)

 L.pn = pn2

 L.p[off:off + 4] <- x

def close_heap_with_cache(L):

 // write cached page L.p

 // read page 0

 // update N

 // write page 0

CSE 350 (Spring 26): Lecture 3 15

Caching and page-granular I/O
L is a file descriptor to a file

Bytes 0 - 3: N

Bytes 4(i + 1) - 4(i + 1) + 3: ith value

def insert_heap(L, x):

 pread(L, &N, 4, 0)

 N <- N + 1

 pwrite(L, &N, 4, 0)

 pwrite(L, &x, 4, 4 * N)

complexity for size N In-memory List Naïve heap file Heap file with one page cache

insert(x) Θ 𝑁 (worst case)
Θ 1 (average case)

5 = Θ 1 (worst case)

delete(x)

lookup(x)

def init_heap_with_cache(fd):

 pread(L, p, 4096, 0)

 pn <- 0

 N <- p[0:4]

 return (fd, N, pn, p) // L

def insert_heap_with_cache(L, x):

 pn2 <- (L.N + 1) / 4096

 off <- (L.N + 1) % 4096

 if pn2 != L.pn then

 pwrite(L.fd, L.p, 4096, L.pn * 4096)

 pread(L.fd, L.p, 4096, pn2 * 4096)

 L.pn = pn2

 L.p[off:off + 4] <- x

2 = Θ 1 (worst case)
2/1024 = Θ 1 (average case)

CSE 350 (Spring 26): Lecture 3 16

Additional problems?
• Concurrency?

• Crash & recovery?

• How to further improve performance?

def init_heap_with_cache(fd):

 pread(L, p, 4096, 0)

 pn <- 0

 N <- p[0:4]

 return (fd, N, pn, p) // L

def insert_heap_with_cache(L, x):

 pn2 <- (L.N + 1) / 4096

 off <- (L.N + 1) % 4096

 if pn2 != L.pn then

 pwrite(L.fd, L.p, 4096, L.pn * 4096)

 pread(L.fd, L.p, 4096, pn2 * 4096)

 L.pn = pn2

 L.p[off:off + 4] <- x

def close_heap_with_cache(L):

 // write cached page L.p

 // read page 0

 // update N

 // write page 0

CSE 350 (Spring 26): Lecture 3 17

	Slide 1: CSE 350: Advanced Data Structures and Indexes (Spring 2026)
	Slide 2: Example: from list to heap file
	Slide 3: Algorithms of list
	Slide 4: Complexity analysis of list
	Slide 5: Asymptotic analysis
	Slide 6: Asymptotic analysis
	Slide 7: Asymptotic analysis
	Slide 8: Asymptotic analysis
	Slide 9: Asymptotic analysis
	Slide 10: Complexity analysis of list
	Slide 11: External Memory (EM) Model
	Slide 12: Complexity Analysis for EM model
	Slide 13: Example: from list to heap file
	Slide 14: Random access is expensive
	Slide 15: Caching and page-granular I/O
	Slide 16: Caching and page-granular I/O
	Slide 17: Additional problems?

