CSE 350: Advanced Data Structures and
Indexes (Spring 2026)

Lecture 3: External Memory Model
Common Techniques & Cost Analysis

1/29/2026

University at Buffalo

s Department of Computer Science
and Engineering
School of Engineering and Applied Sciences

Example: from list to heap file

 Example: a collection of unordered items -- assuming everything is unique
* Need to support
* insert(x)
e delete(x)
* lookup(x): reports whether the item x is found
* In-memory solution:

Array
size 0 1 2 3 4 5

4 100 200 300 400

CSE 350 (Spring 26): Lecture 3

Algorithms of list

// List L: (A, C, N)

Array A

Capacity C Size N
0 1 2 3
4 0
def init () :
return (array(4), 4, 0)
def insert (L, X): def resize (L, C2):
if L.N >= L.C then A2 <- array(C2)
resize (L, L.C * 2) N2 <- min(L.N, C2)
A[L.N] <= x A2[0..N-1] <= A[O0..N-1]

L.N <- L.N + 1 L <- (A2, C2, N2)

CSE 350 (Spring 26): Lecture 3

Complexity analysis of list

Assumptions:

In-memory: count # of steps def insert (L, x):

What counts as a step: if L.N >= L.C then

* assignment of each word <- resize (L, L.C * 2)
e arithmetic operations (+,-,%,/,%,...) A[L.N] <- x

» allocation/deallocation of memory -- regardless of size L.N <- L.N + 1

What about branch & loop? Depends
* Worst-case analysis
e Count the maximum number of steps
* Average-case analysis
e average number of steps
may need to derive/assume distribution

def resize (L, C2):

A2 <- array(C2)

N2 <- min(L.N, C2)
A2[0..N-1] <= A[O0..N-1]
L <- (A2, C2, N2)

complexity for size N In-memory List

insert(x)

delete(x)

lookup(x)

Valel e ulal fal + o Walll 1 . 3
CoT o oU(SPTrig =0 tecture

Asymptotic analysis

* Only trend matters, how to formalize this?
 Mathematical tool: limit

f:N >R lim f(n) =L iff

n—+oo

Ve > 0,anyg EN,Vn=>n,, |f(n) —L| < ¢

CSE 350 (Spring 26): Lecture 3

Asymptotic analysis

* Only trend matters, how to formalize this?
 Mathematical tool: limit

f:N >R nl_igloof(n):l' if f
Ve > 0,anyg EN,Vn=>n,, |f(n) —L| < ¢
* How to use it to express trends? Intuition:

* constants ¢y and ¢; has the same trend, regardless of how much they differ
* polynomials of the same degree have the same trend, regardless of their parameters
polynomials of a higher degree has a faster trend to increase in cost

Suppose f1(n) = co, fo(n) = ¢y, f5s(n) =3n+2,f4,(n) =5n —4,fs(n) =n® +n -3

Want to define (<,=) suchthatf, = f, < 3= f, = [

Does this work: two function have the same trend if their difference is bounded by constant?
No! Counter example: nl_ifpoolf?’ (n) — fa(n)| = nl_i)rPOOIZn — 6| which does not exist

CSE 350 (Spring 26): Lecture 3

Asymptotic analysis

* Only trend matters, how to formalize this?
 Mathematical tool: limit

f:N >R lim f(n) =L iff

n—+oo
Ve > 0,anyg EN,Vn=>n,, |f(n) —L| < ¢
* How to use it to express trends? Intuition:

* constants ¢y and ¢; has the same trend, regardless of how much they differ
* polynomials of the same degree have the same trend, regardless of their parameters
polynomials of a higher degree has a faster trend to increase in cost

Suppose f1(n) = co, fo(n) = ¢y, f5s(n) =3n+2,f4,(n) =5n —4,fs(n) =n® +n -3

Want to define (" <","=")suchthatfi=fL, < (=f1 =[5

Does this work: two function have the same trend if their difference is bounded by constant?
No! Counter example: nl_ifpoolf?’ (n) — fa(n)| = nl_i)rPOOIZn — 6| which does not exist

CSE 350 (Spring 26): Lecture 3

Asymptotic analysis

r(n)

g(n)
* does not exist (i.e., tends to +o) => f(n) grows faster than g(n)

* is constant => same trend
* is zero => f(n) grows slower than g(n)

* Whether the limit of the ratio of two functions lim,,_, ; o,

Suppose f1(n) = co, fob(n) = ¢y, f3(n) =3n+2,£4,(n) =5n —4,fs(n) =n*+n-3
Want to define (<,=) suchthatf, = f, < 3= f» = [

lim,_ o % = limn_>+002—: = Z—: = f1 and f5 has the same trend
) fi(n)) c
lim,, 4 oo % = lim,, 4o ﬁ =0 = f; grows slower than f3

) fe(n)) n2+n-3
lim,_ ;0 ek lim,, o TR f5 grows faster than f3

CSE 350 (Spring 26): Lecture 3

Asymptotic analysis

* Formally, we define following sets of all functions g: N - R* for f: N - R*

. _ PN g } Examples:
o(f) ={g € R*"| lim 40— 0 In? — 4 € O(n?)
y o means
. n
* w(f) = {g €RY | lim s = 0} 2n% — 4 grows at most as fast as n?

* O(f) = {g e R*"|3c € R*, lim) _ c}
n—+oo g(n) .
For convenience, we often

* Big oh and Big Oemga: write “=“ instead of “€”

* 0(f) = 0(fHUo(f)
* Q(f) = 0(H)HUw(f)

i.e., 2n? —4 = 0(n?)

CSE 350 (Spring 26): Lecture 3

Complexity analysis of list

Assumptions:

In-memory: count # of steps def insert (L, x):

What counts as a step: if L.N >= L.C then

* assignment of each word <- resize (L, L.C * 2)
e arithmetic operations (+,-,%,/,%,...) A[L.N] <- x

» allocation/deallocation of memory -- regardless of size L.N <- L.N + 1

What about branch & loop? Depends
* Worst-case analysis
e Count the maximum number of steps
* Average-case analysis
e average number of steps
may need to derive/assume distribution

def resize (L, C2):

A2 <- array(C2)

N2 <- min(L.N, C2)
A2[0..N-1] <= A[O0..N-1]
L <- (A2, C2, N2)

complexity for size N In-memory List

insert(x) O(N) (worst case)
©(1) (average case)

delete(x)

lookup(x)

Valel e ulal fal + o Walll 1 . 3
CoT o oU(SPTrig =0 tecture

External Memory (EM) Model

* Two levels in storage hierarchy
* 1/0 latency dominates computation/memory access latencies
* Complexity analysis will focus on # of 1/Os (i.e., # of blocks read/written)

Load/store/arithmetic op on words + Byte-addressable
CPU | Internal
_ Memory
\‘\\ ? I/O actions (read/write) on blocks
v
1/0 command (read/write) on blocks * \\A EXternaI
Block-addressable
Memory

* One block is a fixed number of consecutive bytes (e.g., 512 B, 4 KB), aligned to modulo = 0 boundaries.

+ A word is a unit of consecutive bytes for operations (e.g., a 4-byte integer).
CSE 350 (Spring 26): Lecture 3 11

Complexity Analysis for EM model

Assumptions:
EM model: count # of I/O operations

What counts as an |/O operation?
* reading up to a page
* writing up to a page
* |If a read/write crosses page boundaries, count both
Assuming 4 KiB pages
ssize t pread(int fd, void *buf, size t count, off t offset);
ssize t pwrite(int fd, const void *buf, size t count, off t offset);

Operation #1/0
pread(fd, buf, 4096, 0) 1

pwrite (fd, buf, 4096, O0) 1
pread (£fd, buf, 4096, 10 * 4096) 1
pread (fd, buf, 8, 512) 1
pread (£fd, buf, 4096, 2048) 2

CSE 350 (Spring 26): Lecture 3

Example: from list to heap file

 Example: a collection of unordered items -- assuming everything is unique
* Need to support
* insert(x)
e delete(x)
* lookup(x): reports whether the item x is found
* In-memory solution:

Array

size 0 1 2 3 4 5 6
4 100 200 300 400

External memory solution?

How about replace all memory loads with 4-byte disk read, and all memory stores with 4-byte disk writes?

CSE 350 (Spring 26): Lecture 3

Random access is expensive

How about replace all memory loads with 4-byte disk read, and all memory stores with 4-byte disk writes?

def insert (L, x): L is a file descriptor to a file

if L.N >= L.C then

resize (L, L.C * 2) Bytes 0 - 3: N

A[L.N] <- x Bytes 4(1 + 1) - 4(1 + 1) + 3: 1th wvalue
def resize (L, C2): def insert heap (L, x):

A2 <- array (C2) pread(L, &N, 4, 0)

N2 <- min(L.N, C2) N <= N+ 1

A2[0..N-1] <- A[0..N-1] pwrite (L, &N, 4, 0)

I <— (A2, C2., N2) pwrite (L, &x, 4, 4 * N)
complexity for size N In-memory List Naive heap file

But, 5 1/0 is around
5=0(1) (worst case) 50 ms for magnetic disks
or 500 us for SATA NAND SSD

insert(x) O(N) (worst case)
©(1) (average case)

delete(x)

in-memory: <= hundreds of ns

lookup(x)

CSE 350 (Spring 26)7 Lecture 3 14

Caching and page-granular |/O

def init heap with cache (£d) :

L 1is a file descriptor to a file pread (L, p, 4096, O0)
pn <- 0
Bytes 0 - 3: N N <- p[0:4]
Bytes 4(i + 1) - 4(i + 1) + 3: ith value return (fd, N, pn, p) // L
def insert heap with cache (L, x):
def insert heap (L, x): ‘ pn2 <- (L.N + 1) / 4096
pread (L, &N, 4, 0) off <- (L.N + 1) % 4096
N <- N + 1 1f pn2 !'= L.pn then
pwrite (L, 4, 0) pwrite (L.fd, L.p, 4096, L.pn * 4096)
pwrite (L, 4, 4 * N) pread (L.fd, L.p, 4096, pn2 * 4090)
L.pn = pnZ2
L.ploff:off + 4] <- x

complexity for size N

In-memory List

Naive heap file

def close heap with cache (L) :

insert(x)

O(N) (worst case)
©(1) (average case)

5=0(1) (worst case)

// write cached page L.p
// read page 0

delete(x)

// update N
// write page 0

lookup(x)

CSE 350 (Spring 26): Lecture 3

15

Caching and page-granular |/O

L is a file descriptor to a file

Bytes 0 - 3: N

def init heap with cache (£d) :
pread (L, p, 4096, O0)
pn <- 0
N <- p[0:4]

Bytes 4(i + 1) - 4(i + 1) + 3: ith value return (fd, N, pn, p) // L

def insert heap (L,
pread (L, &N, 4,
N <- N + 1

def insert heap with cache (L, x):

x) : pn2 <- (L.N + 1) / 4096
0) off <- (L.N + 1) % 4090

1f pn2 !'= L.pn then

pwrite (L, &N, 4, 0) pwrite (L.fd, L.p, 4096, L.pn * 4096)
pwrite (L, &x, 4, 4 * N) pread (L.fd, L.p, 4096, pn2 * 4090)
L.pn = pnZ2
L.ploff:off + 4] <- x
complexity for size N In-memory List Naive heap file Heap file with one page cache
insert(x) O(N) (worst case) 5=0(1) (worst case) | 2=0(1) (worst case)
©(1) (average case) 2/1024 = 0(1) (average case)
delete(x)
lookup(x)
CSE 350 (Spring 26): Lecture 3

16

Additional problems?

* Concurrency?
* Crash & recovery?

* How to further improve performance?

CSE 350 (Spring 26): Lecture 3

def init heap with cache (fd):
pread (L, p, 4096, O0)
pn <- 0
N <- p[0:4]
return (fd, N, pn, p) // L
def insert heap with cache (L, x):
pn2 <- (L.N + 1) / 4096
off <- (L.N + 1) % 4096
1f pn2 !'= L.pn then
pwrite(L.fd, L.p, 4096, L.pn * 40906)
pread (L.fd, L.p, 4096, pn2 * 4096)
L.pn = pn2
L.ploff:off + 4] <- x

def close heap with cache (L) :
// write cached page L.p
// read page 0
// update N
// write page O

17

	Slide 1: CSE 350: Advanced Data Structures and Indexes (Spring 2026)
	Slide 2: Example: from list to heap file
	Slide 3: Algorithms of list
	Slide 4: Complexity analysis of list
	Slide 5: Asymptotic analysis
	Slide 6: Asymptotic analysis
	Slide 7: Asymptotic analysis
	Slide 8: Asymptotic analysis
	Slide 9: Asymptotic analysis
	Slide 10: Complexity analysis of list
	Slide 11: External Memory (EM) Model
	Slide 12: Complexity Analysis for EM model
	Slide 13: Example: from list to heap file
	Slide 14: Random access is expensive
	Slide 15: Caching and page-granular I/O
	Slide 16: Caching and page-granular I/O
	Slide 17: Additional problems?

