
CSE462/562: Database Systems (Fall 24)
Lecture 3: Physical Storage, POSIX I/O Interface and

Buffer Management

9/3/2024

Last Update: 8/30/24, 1:00 PM

Big Picture

CSE462/562 (Fall 2024): Lecture 3 2

Operating System

CPU Memory
Secondary
Storages

Hardware devices

DBMS

User applications

Buffer Management

Disk space/File management

File Organization/Access Methods

Query Execution

SQL Parser/API

Typical (& oversimplified) computer architecture

• A simplistic view of a computer

CSE462/562 (Fall 2024): Lecture 3 3

CPU

Cache Main Memory

SSD

HDD

Typical
Computer

Secondary
Storage

…

Storage Hierarchy

CSE462/562 (Fall 2024): Lecture 3 4

L1 Cache

Registers

L2 Cache

L3 Cache

Main memory

Flash Memory

Magnetic disk

Lower price per bit Higher speed

Volatile

Non-volatile

~4 cycles

~10 cycles

~60 cycles

~60 ns

~100𝑠 𝜇𝑠

~10𝑠 𝑚𝑠

1 cycle

Tape

Primary storage

Secondary storage

Tertiary storage

Tape

Data Transfers

CSE462/562 (Fall 2024): Lecture 3

L1 Cache

Registers

L2 Cache

L3 Cache

Main memory

Flash Memory

Magnetic disk

Volatile

Non-volatile

Between cache and main memory:
hardware/OS controlled
usually in small units of cache lines

Between main memory and secondary storage:
DBMS controlled (read/write)
usually with large block I/O

CPU operates on main memory (byte addressable)

5

Non-volatile storage
• Common non-volatile (secondary) storage

• Flash memory (e.g., SSD)
• Magnetic disk

• Advantages
• Cheaper -- can store much more data than memory with the same cost
• Non-volatile – data are saved in server shutdown/power failure

• Disadvantages
• Block device: read/write in the units of sectors (usually 512B/4096B)
• Higher latency: usually >= 1 – 2 orders of magnitude slower than main memory

• Tertiary storage: tape (sequential I/O only)
• Very slow but inexpensive; good for archiving data

CSE462/562 (Fall 2024): Lecture 3 6

Closer look at non-volatile storage
• We need to know the performance characteristics of non-volatile storage

• to optimize database storage design

CSE462/562 (Fall 2024): Lecture 3 7

Magnetic disk (HDD) Solid State Drive (SSD)

This Photo by Unknown Author is licensed under CC BY

http://flickr.com/photos/intelfreepress/6345916908
https://creativecommons.org/licenses/by/3.0/

Magnetic disk organization
• Multiple platters

• Each platter has two surfaces for data storage
• Platters spin at the same rate (e.g., 7200 rpm)

• A ring on a surface is called a track

• A track is divided into many sectors of fixed size (512 B)
• A sector is the smallest unit of I/O

• A single arm assembly with multiple disk heads
• Can only move inward/outward together

• The vertical stack of tracks is called a cylinder

• Disk heads can be over the tracks of the same cylinder at the
same time

• Usually one read/writes at the same time

• Address of a sector: cylinder - head - sector
• (0, 0, 0) : first sector; (0, 0, 1): second sector, …

(0, 1, 0) : the 𝑆𝑡ℎ sector, (1, 0, 0) the (𝑆𝐻)𝑡ℎ

where S is the max # of sectors/track and H is the # of heads
• Reality: today’s disks use logical block addressing (linear block #)

• Translated to the actual geometry by disk controller

• Nevertheless, this is still a good model for understanding
HDD performance.

CSE462/562 (Fall 2024): Lecture 3 8

Magnetic disk I/O latency
• File systems perform I/O in units of

multiple sector (page)
• 4KB~16KB are most common

• Break-down of I/O latency of a page
• Seek time: moving arms to the cylinder

• 2 ~ 20 ms per seek
• 4 ~ 10 ms on average

• Rotation delay:
wait for the sector to be under a head

• Depending on rotation speed (5400 rpm - 15000
rpm)

• E.g, 7200 rpm = 120 rotations/second
=> 1/120 = 8.33 ms / rotation
on average it needs a half rotation
=> 8.33 / 2 = 4.17 ms on average

• Transfer time: time for reading/writing data
• Data transfer rate: 50 - 200 MB/s
• 0.02 ~ 0.08 ms for 4KB pages

• Average access time
• 4KB page, 7200 rpm: roughly 8 ~ 15 ms

CSE462/562 (Fall 2024): Lecture 3 9

Impact of I/O pattern on magnetic disk
• I/O pattern has a huge impact on I/O performance

• E.g., 4KB page size

• Sequential read/write: usually 100 ~ 200+ MB/s

• Random read/write: 50 ~ 200 IOPS 200 KB ~ 800 KB /s

• > 2 orders of magnitude difference in terms of data transfer rate

• Rule of thumb:

• Random I/O: very slow; avoid reading a lot of data from random location

• Sequential I/O: better for accessing a lot of data

CSE462/562 (Fall 2024): Lecture 3 10

Flash memory / solid state drive
• NAND Flash is the most common storage media for solid state drives

• No mechanical parts (magnetic disk can have head crash => data
corruption/loss)
• More reliable; less likely to fail due to physical shocks

• Faster than magnetic disk

CSE462/562 (Fall 2024): Lecture 3 11

Flash memory / solid state drive
• NAND SSD has asymmetric read/write performance

• 4KB page, typical SSD internal performance numbers
• Read latency: 20 to 100 𝜇𝑠 ; throughput: > 500 MB/s
• Write latency: 200 𝜇𝑠; throughput: > 500 MB/s
• Erase latency: ~2 ms

• Three ops: read/write/erase
• Read/write works on pages (usually 4KB)

• Write can only change some bits from 1 to 0 (not the other way around!)
• Muse erase before write a page.

• Erase works on blocks (e.g., 256 KB)
• Resets all bits in a block to 1
• Flash translation layer: indirection of page numbers to physical pages

• Solves two problems: slow erase and flash wear
• Actual performance also often bound by peripheral bus’s bandwidth and IOPS

CSE462/562 (Fall 2024): Lecture 3 12

Flash memory / solid state drive
• NAND SSD has asymmetric read/write performance

• The performance from DB stand of view?

• No single answer depending on how you use it

• I/O queue depth, I/O api, access pattern, page size, peripheral bus type and
etc.

• In a typical case:

• Sequential I/O is still preferred, although random I/O isn’t as bad as in HDD

• SSDs have much better random I/O performance than magnetic disk

• 10k - 1M IOPS

• and higher bandwidth as well

• up to 7GB/s on PCIe 4.0, ~500MB/s on SATA

CSE462/562 (Fall 2024): Lecture 3 13

File System Interface
• POSIX I/O interface

• A standard synchronous I/O interface

• Agnostic to the underlying storage device/file system

CSE462/562 (Fall 2024): Lecture 3 14

open(2): open and possibly create a file -> file descriptor (int)

A file descriptor is a reference to an open file
description, an entry in the system-wide
table of open files that records file offsets
and file status flags.

int fd = open(“/data/a.dat”, O_RDONLY | O_CREAT, 0644);

opens the file at path
/data/a.dat

1. read-only access
2. create the file if it

does not exist

The permission bits if the file is created.
0644 = rw allowed for user (file owner);
 read only for group & others.

Case 1: fd >= 0 on success.
Case 2: fd == -1 if an error occurred -- check errno for reasons; also see strerror(3)

File System Interface
• POSIX I/O interface

• A standard synchronous I/O interface

• Agnostic to the underlying storage device/file system

CSE462/562 (Fall 2024): Lecture 3 15

open(2): open and possibly create a file -> file descriptor (int)

A file descriptor is a reference to an open file
description, an entry in the system-wide
table of open files that records file offsets
and file status flags.

pread(2), pwrite(2): read from or write to a file descriptor at a given offset
 char buf[4096];

 ssize_t sz = pread(fd, buf, 4096, 1048576);

 if (sz == 4096) /* success */; else /* error */;

reading 4096 bytes at file offset 1048576 = 4096 * 256 (i.e., reading page 255 from a file assuming 4KB pages)

int fd = open(“/data/a.dat”, O_RDONLY | O_CREAT, 0644);

File System Interface
• POSIX I/O interface

• A standard synchronous I/O interface

• Agnostic to the underlying storage device/file system

CSE462/562 (Fall 2024): Lecture 3 16

open(2): open and possibly create a file -> file descriptor (int)

A file descriptor is a reference to an open file
description, an entry in the system-wide
table of open files that records file offsets
and file status flags.

pread(2), pwrite(2): read from or write to a file descriptor at a given offset

posix_fallocate(3), fallocate(2)

fsync(2), fdatasync(2),

close(2)

int fd = open(“/data/a.dat”, O_RDONLY | O_CREAT, 0644);

Check man pages for more details.

Big Picture

Operating System

CPU Memory
Secondary
Storages

Hardware devices

DBMS

User applications

Disk space/File management

File Organization/Access Methods

Query Execution

SQL Parser/API

Buffer Management

CSE462/562 (Fall 2024): Lecture 3 17

How does database access data pages?
• Data pages are stored in disk file

• suppose we want to count how many rows there are in a database table
• need to scan all pages

• page must be loaded into memory before any computation happens

db.dat

p0 p1 p2 p3 … pnp0 p1 p2 p3 pn

Read: ~10 ms Computation: < 1 𝜇𝑠

CSE462/562 (Fall 2024): Lecture 3 18

How does database access data pages?
• Data pages are stored in disk file

• suppose we want to count how many rows there are in a database table

• need to scan all pages

• page must be loaded into memory before any computation happens

db.dat

p0 p1 p2 p3 … pnp1 p2 p3 pn

Read: ~10 ms Computation: < 1 𝜇𝑠

p0

• Repeat for all the n pages
• Execution time dominated by I/O

CSE462/562 (Fall 2024): Lecture 3 19

How does database access data pages?
• Data pages are stored in disk file

• suppose we want to count how many rows there are in a database table
• need to scan all pages

• page must be loaded into memory before any computation happens

• What if we want to scan the data file for multiple passes?
• Option 1: read/write the entire page on demand before reading/writing the integer <- very

slow
• Option 2: read all data pages into memory at the beginning <- not scalable

• May not fit in memory
• What to do on modify?

• Immediately write back? Or Flush when program shutsdown?
• Data persistence?

• Solution: buffer pool

CSE462/562 (Fall 2024): Lecture 3 20

Buffer management in DBMS
• Buffer manager manages a fixed-size pool of in-memory page frames which

• are of the same size as the data pages (e.g., 4KB)

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 m - 1

Frames … Buffer Pool

buffer pool size

4KB 4KB 4KB

Buffer Manager

char *frames =

 malloc(PAGE_SIZE * m bytes);

CSE462/562 (Fall 2024): Lecture 3 21

Handling a page request (buffer miss)
• Handling page request

• Suppose we want to read/write a page in the file with page number = 100

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 m - 1

Frames … Buffer Pool

buffer pool size

4KB 4KB 4KB

Upper level
components

Buffer Manager

1 HandlePageRequest(pid):

2 if pid exists in some buffer frame i:

3 return &frames[i]

4 else:

5 find a free frame i

6 ReadPage(pid, &frames[i])

7 return &frames[i]

frames

CSE462/562 (Fall 2024): Lecture 3 22

Handling a page request (buffer miss)
• Handling page request

• Suppose we want to read/write a page in the file with page number = 100

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 m - 1

Frames … Buffer Pool

buffer pool size

4KB 4KB 4KB

Upper level
components

Buffer Manager

request pid = 100

1 HandlePageRequest(pid): // pid = 100

2 if pid exists in some buffer frame i:

3 return &frames[i]

4 else:

5 find a free frame i

6 ReadPage(pid, &frames[i])

7 return &frames[i]

frames

CSE462/562 (Fall 2024): Lecture 3 23

Handling a page request (buffer miss)
• Handling page request

• Suppose we want to read/write a page in the file with page number = 100

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 m - 1

Frames … Buffer Pool

buffer pool size

4KB 4KB 4KB

Upper level
components

Buffer Manager

request pid = 100

1 HandlePageRequest(pid): // pid = 100

2 if pid exists in some buffer frame i:

3 return &frames[i]

4 else:

5 find a free frame i

6 ReadPage(pid, &frames[i])

7 return &frames[i]

frames

CSE462/562 (Fall 2024): Lecture 3 24

Handling a page request (buffer miss)
• Handling page request

• Suppose we want to read/write a page in the file with page number = 100

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 m - 1

Frames … Buffer Pool

buffer pool size

4KB 4KB 4KB

Upper level
components

Buffer Manager

request pid = 100

1 HandlePageRequest(pid): // pid = 100

2 if pid exists in some buffer frame i:

3 return &frames[i]

4 else:

5 find a free frame i // i = 0

6 ReadPage(pid, &frames[i])

7 return &frames[i]

frames

CSE462/562 (Fall 2024): Lecture 3 25

Handling a page request (buffer miss)
• Handling page request

• Suppose we want to read/write a page in the file with page number = 100

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 m - 1

Frames … Buffer Pool

buffer pool size

4KB 4KB 4KB

Upper level
components

Buffer Manager

request pid = 100

1 HandlePageRequest(pid): // pid = 100

2 if pid exists in some buffer frame i:

3 return &frames[i]

4 else:

5 find a free frame i // i = 0

6 ReadPage(pid, &frames[i])

7 return &frames[i]

frames

p100

CSE462/562 (Fall 2024): Lecture 3 26

Handling a page request (buffer miss)
• Handling page request

• Suppose we want to read/write a page in the file with page number = 100

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 m - 1

Frames … Buffer Pool

buffer pool size

4KB 4KB 4KB

Upper level
components

Buffer Manager

request pid = 100

1 HandlePageRequest(pid): // pid = 100

2 if pid exists in some buffer frame i:

3 return &frames[i]

4 else:

5 find a free frame i // i = 0

6 ReadPage(pid, &frames[i])

7 return &frames[i]

frames

p100

&frames[0]

Cost: 1 I/O

CSE462/562 (Fall 2024): Lecture 3 27

Handling a page request (buffer hit)
• Handling page request

• Suppose we want to read the same page again (pid = 100)

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 m - 1

Frames … Buffer Pool

buffer pool size

4KB 4KB 4KB

Upper level
components

Buffer Manager

1 HandlePageRequest(pid):

2 if pid exists in some buffer frame i:

3 return &frames[i]

4 else:

5 find a free frame i

6 ReadPage(pid, &frames[i])

7 return &frames[i]

frames

p100

CSE462/562 (Fall 2024): Lecture 3 28

Handling a page request (buffer hit)
• Handling page request

• Suppose we want to read the same page again (pid = 100)

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 m - 1

Frames … Buffer Pool

buffer pool size

4KB 4KB 4KB

Upper level
components

Buffer Manager

second request
for pid = 100

1 HandlePageRequest(pid): // pid = 100

2 if pid exists in some buffer frame i:

3 return &frames[i]

4 else:

5 find a free frame i

6 ReadPage(pid, &frames[i])

7 return &frames[i]

frames

p100

CSE462/562 (Fall 2024): Lecture 3 29

Handling a page request (buffer hit)
• Handling page request

• Suppose we want to read the same page again (pid = 100)

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 m - 1

Frames … Buffer Pool

buffer pool size

4KB 4KB 4KB

Upper level
components

Buffer Manager

second request
for pid = 100

1 HandlePageRequest(pid): // pid = 100

2 if pid exists in some buffer frame i:

3 return &frames[i] // i = 0

4 else:

5 find a free frame i

6 ReadPage(pid, &frames[i])

7 return &frames[i]

frames

p100

&frames[0]

Cost: 0 I/O

CSE462/562 (Fall 2024): Lecture 3 30

Map page numbers to buffer frames
• How to implement line 2?

• Need to store the page numbers, but where?

• For each buffer frame, we maintain a metadata structure which includes pid.

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 m - 1

Frames … Buffer Pool

buffer pool size

4KB 4KB 4KB

2 if pid exists in some buffer frame i:

frames

p100

BufferId 0 1 2 3 4 m - 1

pid = 100 …

Buffer Meta Infometa

CSE462/562 (Fall 2024): Lecture 3 31

Map page numbers to buffer frames
• How to implement line 2?

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 m - 1

Frames … Buffer Pool

buffer pool size

4KB 4KB 4KB

2 if pid exists in some buffer frame i:

frames

p100

BufferId 0 1 2 3 4 m - 1

pid = 100 …

Buffer Meta Infometa

for (BufferId i = 0; i < m; ++i) {

 if (meta[i].pid == 100)

 return i;

}

return InvalidBufferId;

O(m) time -- slow!

CSE462/562 (Fall 2024): Lecture 3 32

Map page numbers to buffer frames
• How to implement line 2?

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 m - 1

Frames … Buffer Pool

buffer pool size

4KB 4KB 4KB

2 if pid exists in some buffer frame i:

frames

p100

BufferId 0 1 2 3 4 m - 1

pid = 100 …

Buffer Meta Infometa

h(pid) 0 1 2 … K-1

BufferId Hash table H

suppose h(100) == 2

0

if (H.find(100) != H.end())

 return H[100];

return InvalidBufferId

O(1) time in expectation

CSE462/562 (Fall 2024): Lecture 3 33

Map page numbers to buffer frames
• Practical consideration for hash tables

• DBMS usually has its own hash tables implementation for buffer manager -- why?

• memory constraints, efficiency, concurrency control, …

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 m - 1

Frames … Buffer Pool

buffer pool size

4KB 4KB 4KB

frames

p100

BufferId 0 1 2 3 4 m - 1

pid = 100 …

Buffer Meta Infometa

h(pid) 0 1 2 … K-1

BufferId Hash table H0

CSE462/562 (Fall 2024): Lecture 3 34

Map page numbers to buffer frames
• Practical consideration for hash tables

• For Project 2: feel free to use libraries (e.g., absl::flat_hash_map)
• Tips for time and memory efficiency: avoid rehashing

• Set the initial bucket count K >= m / max_load_factor()

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 m - 1

Frames … Buffer Pool

buffer pool size

4KB 4KB 4KB

frames

p100

BufferId 0 1 2 3 4 m - 1

pid = 100 …

Buffer Meta Infometa

h(pid) 0 1 2 … K-1

BufferId Hash table H0

CSE462/562 (Fall 2024): Lecture 3 35

Buffer eviction
• What if we run out of buffer frames?

• e.g., we are scanning a table with N = 100 pages, but buffer pool size m = 10

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 9

Frames … Buffer Pool

4KB 4KB 4KB

frames

p100

BufferId 0 1 2 3 4 9

…

Buffer Meta Infometa

p101 p102 p103 p104 p109

pid = 101 pid = 102 pid = 103 pid = 104 pid = 109pid = 100
request pid = 110

CSE462/562 (Fall 2024): Lecture 3 36

Buffer eviction
• What if we run out of buffer frames?

• Buffer eviction: choose a victim to remove from the buffer pool

• Several possible policies (more on this later)

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 9

Frames … Buffer Pool

4KB 4KB 4KB

frames

p100

BufferId 0 1 2 3 4 9

…

Buffer Meta Infometa

p101 p102 p103 p104 p109

pid = 101 pid = 102 pid = 103 pid = 104 pid = 109pid = 100
request pid = 110

CSE462/562 (Fall 2024): Lecture 3 37

Buffer eviction
• What if we run out of buffer frames?

• Buffer eviction: choose a victim to remove from the buffer pool

• Several possible policies (more on this later)

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 9

Frames … Buffer Pool

4KB 4KB 4KB

frames

BufferId 0 1 2 3 4 9

…

Buffer Meta Infometa

p101 p102 p103 p104 p109

pid = 101 pid = 102 pid = 103 pid = 104 pid = 109
request pid = 110

CSE462/562 (Fall 2024): Lecture 3 38

Buffer eviction
• What if we run out of buffer frames?

• Buffer eviction: choose a victim to remove from the buffer pool

• Several possible policies (more on this later)

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 9

Frames … Buffer Pool

4KB 4KB 4KB

frames

p110

BufferId 0 1 2 3 4 9

…

Buffer Meta Infometa

p101 p102 p103 p104 p109

pid = 101 pid = 102 pid = 103 pid = 104 pid = 109pid = 110
request pid = 110

CSE462/562 (Fall 2024): Lecture 3 39

Page requested for writes
• Potential problem with page eviction?

• What if the evicted page is modified? (e.g., UPDATE A SET x = x + 10
WHERE …)

• We must write modified page back before eviction

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 9

Frames … Buffer Pool

4KB 4KB 4KB

frames

p100

BufferId 0 1 2 3 4 9

…

Buffer Meta Infometa

p101 p102 p103 p104 p109

pid = 101 pid = 102 pid = 103 pid = 104 pid = 109pid = 100
dirty = true dirty = false dirty = true dirty = true

request pid = 110

dirty = false dirty = false

WritePage(100, &frames[0])
CSE462/562 (Fall 2024): Lecture 3 40

Page requested for writes
• Potential problem with page eviction?

• What if the evicted page is modified? (e.g., UPDATE A SET x = x + 10
WHERE …)

• We must write modified page back before eviction

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 9

Frames … Buffer Pool

4KB 4KB 4KB

frames

BufferId 0 1 2 3 4 9

…

Buffer Meta Infometa

p101 p102 p103 p104 p109

pid = 101 pid = 102 pid = 103 pid = 104 pid = 109
dirty = false dirty = true dirty = true

request pid = 110

dirty = false dirty = false

CSE462/562 (Fall 2024): Lecture 3 41

Page requested for writes
• Potential problem with page eviction?

• What if the evicted page is modified? (e.g., UPDATE A SET x = x + 10
WHERE …)

• We must write modified page back before eviction

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 9

Frames … Buffer Pool

4KB 4KB 4KB

frames

p110

BufferId 0 1 2 3 4 9

…

Buffer Meta Infometa

p101 p102 p103 p104 p109

pid = 101 pid = 102 pid = 103 pid = 104 pid = 109pid = 110
dirty = false dirty = false dirty = true dirty = true

request pid = 110

dirty = false dirty = false

ReadPage(110, &frames[0])
CSE462/562 (Fall 2024): Lecture 3 42

Buffer pins
• Problems with concurrency

• One thread reading a block while the other tries to evict it

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 9

Frames … Buffer Pool

4KB 4KB 4KB

frames

p110

BufferId 0 1 2 3 4 9

…

Buffer Meta Infometa

p101 p102 p103 p104 p109

pid = 101 pid = 102 pid = 103 pid = 104 pid = 109pid = 110
dirty = false dirty = false dirty = true dirty = true dirty = false dirty = false

T1: char * frame = BufMgr.HandlePageRequest(110) // &frames[0]

CSE462/562 (Fall 2024): Lecture 3 43

Buffer pins
• Problems with concurrency

• One thread reading a block while the other tries to evict it

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 9

Frames … Buffer Pool

4KB 4KB 4KB

frames

p99

BufferId 0 1 2 3 4 9

…

Buffer Meta Infometa

p101 p102 p103 p104 p109

pid = 101 pid = 102 pid = 103 pid = 104 pid = 109pid = 99
dirty = false dirty = false dirty = true dirty = true dirty = false dirty = false

T1: char * f1 = BufMgr.HandlePageRequest(110)

T2: char * f2 = BufMgr.HandlePageRequest(99)

// &frames[0]

// &frames[0]

f1 now contains a wrong page for T1

CSE462/562 (Fall 2024): Lecture 3 44

Buffer pins
• Solution: introducing a buffer pin count per buffer frame

• Upon page request, pin count++
• Upon page release, pin count--
• Never evict a page with pin count > 0

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 9

Frames … Buffer Pool

4KB 4KB 4KB

frames

p110

BufferId 0 1 2 3 4 9

…

Buffer Meta Infometa

p101 p102 p103 p104 p109

pid = 101 pid = 102 pid = 103 pid = 104 pid = 109pid = 110
dirty = false dirty = false dirty = true dirty = true dirty = false dirty = false
pin_count = 0 pin_count = 0pin_count = 0 pin_count = 0 pin_count = 0 pin_count = 0

CSE462/562 (Fall 2024): Lecture 3 45

Buffer pins
• Solution: introducing a buffer pin count per buffer frame

• Upon page request, pin count++
• Upon page release, pin count--
• Never evict a page with pin count > 0

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 9

Frames … Buffer Pool

4KB 4KB 4KB

frames

p110

BufferId 0 1 2 3 4 9

…

Buffer Meta Infometa

p101 p102 p103 p104 p109

pid = 101 pid = 102 pid = 103 pid = 104 pid = 109pid = 110
dirty = false dirty = false dirty = true dirty = true dirty = false dirty = false
pin_count = 1 pin_count = 0pin_count = 0 pin_count = 0 pin_count = 0 pin_count = 0

T1: BufferId b1 = BufMgr.PinPage(110, &f1) // b1 = 0

CSE462/562 (Fall 2024): Lecture 3 46

Buffer pins
• Solution: introducing a buffer pin count per buffer frame

• Upon page request, pin count++
• Upon page release, pin count--
• Never evict a page with pin count > 0

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 9

Frames … Buffer Pool

4KB 4KB 4KB

frames

p110

BufferId 0 1 2 3 4 9

…

Buffer Meta Infometa

p101 p102 p103 p104 p109

pid = 99 pid = 102 pid = 103 pid = 104 pid = 109pid = 110
dirty = false dirty = false dirty = true dirty = true dirty = false dirty = false
pin_count = 1 pin_count = 0pin_count = 1 pin_count = 0 pin_count = 0 pin_count = 0

T1: BufferId b1 = BufMgr.PinPage(110, &f1) // b1 = 0

T2: BufferId b2 = BufMgr.PinPage(99, &f2) // b2 = 1

CSE462/562 (Fall 2024): Lecture 3 47

Buffer pins
• Solution: introducing a buffer pin count per buffer frame

• Upon page request, pin count++
• Upon page release, pin count--
• Never evict a page with pin count > 0

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 9

Frames … Buffer Pool

4KB 4KB 4KB

frames

p110

BufferId 0 1 2 3 4 9

…

Buffer Meta Infometa

p101 p102 p103 p104 p109

pid = 99 pid = 102 pid = 103 pid = 104 pid = 109pid = 110
dirty = false dirty = false dirty = true dirty = true dirty = false dirty = false
pin_count = 0 pin_count = 0pin_count = 1 pin_count = 0 pin_count = 0 pin_count = 0

T1: BufferId b1 = BufMgr.PinPage(110, &f1) // b1 = 0

T2: BufferId b2 = BufMgr.PinPage(99, &f2) // b2 = 1

T1: BufMgr.UnpinPage(b1)

CSE462/562 (Fall 2024): Lecture 3 48

Buffer pins
• Solution: introducing a buffer pin count per buffer frame

• Upon page request, pin count++
• Upon page release, pin count--
• Never evict a page with pin count > 0

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 9

Frames … Buffer Pool

4KB 4KB 4KB

frames

p110

BufferId 0 1 2 3 4 9

…

Buffer Meta Infometa

p101 p102 p103 p104 p109

pid = 99 pid = 102 pid = 103 pid = 104 pid = 109pid = 110
dirty = false dirty = false dirty = true dirty = true dirty = false dirty = false
pin_count = 0 pin_count = 0pin_count = 1 pin_count = 0 pin_count = 0 pin_count = 0

T1: BufferId b1 = BufMgr.PinPage(110, &f1) // b1 = 0

T2: BufferId b2 = BufMgr.PinPage(99, &f2) // b2 = 1

T1: BufMgr.UnpinPage(b1)

Question: are buffer pins necessary when the DBMS is single-threaded?

Yes. Think about why?

CSE462/562 (Fall 2024): Lecture 3 49

Eviction policy
• How do we choose a victim for eviction?

• Randomly? The one with the lowest buffer ID that is not pinned? (Inefficient!)

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 9

Frames … Buffer Pool

4KB 4KB 4KB

frames

p110

BufferId 0 1 2 3 4 9

…

Buffer Meta Infometa

p101 p102 p103 p104 p109

pid = 99 pid = 102 pid = 103 pid = 104 pid = 109pid = 110
dirty = false dirty = false dirty = true dirty = true dirty = false dirty = false
pin_count = 0 pin_count = 0pin_count = 0 pin_count = 0 pin_count = 0 pin_count = 0

CSE462/562 (Fall 2024): Lecture 3 50

Eviction policy
• Eviction policy (aka replacement policy)

• An algorithm for choosing unpinned frames when there’s no free frame

• It can have huge impacts on the # of I/Os, depending on the access pattern

• Many common choices:

• Least recently used (LRU)

• Most recently used (MRU)

• Clock

• Database workload specific policies

• …

CSE462/562 (Fall 2024): Lecture 3 51

Least Recently Used (LRU) policy
• Least Recently Used (LRU)

• for each page in buffer pool, the order of the pages were last unpinned
• replace the frame which has the oldest (earliest) time
• very common policy: intuitive and simple

• Works well for repeated accesses to popular pages -> typical transactional workload

• Example: P stands for PinPage, and U stands for UnpinPage, m = 3
• P(1), P(2), P(3), U(2), U(3), P(4), U(1), P(3), U(3)

BufferId 0 1 2

Frames

pincount

CSE462/562 (Fall 2024): Lecture 3 52

Least Recently Used (LRU) policy
• Least Recently Used (LRU)

• for each page in buffer pool, the order of the pages were last unpinned
• replace the frame which has the oldest (earliest) time
• very common policy: intuitive and simple

• Works well for repeated accesses to popular pages -> typical transactional workload

• Example: P stands for PinPage, and U stands for UnpinPage, m = 3
• P(1), P(2), P(3), U(2), U(3), P(4), U(1), P(3), U(3)

BufferId 0 1 2

Frames

pincount

p1 p2 p3

CSE462/562 (Fall 2024): Lecture 3 53

1 1 1

Least Recently Used (LRU) policy
• Least Recently Used (LRU)

• for each page in buffer pool, the order of the pages were last unpinned
• replace the frame which has the oldest (earliest) time
• very common policy: intuitive and simple

• Works well for repeated accesses to popular pages -> typical transactional workload

• Example: P stands for PinPage, and U stands for UnpinPage, m = 3
• P(1), P(2), P(3), U(2), U(3), P(4), U(1), P(3), U(3)

BufferId 0 1 2

Frames

pincount 1 0 1

p1 p2 p3

LRU list:

H 1
next

prev

CSE462/562 (Fall 2024): Lecture 3 54

Least Recently Used (LRU) policy
• Least Recently Used (LRU)

• for each page in buffer pool, the order of the pages were last unpinned
• replace the frame which has the oldest (earliest) time
• very common policy: intuitive and simple

• Works well for repeated accesses to popular pages -> typical transactional workload

• Example: P stands for PinPage, and U stands for UnpinPage, m = 3
• P(1), P(2), P(3), U(2), U(3), P(4), U(1), P(3), U(3)

BufferId 0 1 2

Frames

pincount 1 0 0

p1 p2 p3

LRU list:

H 1 2
next

prev

How to implement in practice?
Exercise: how to remove a node in the middle of LRU list when there’s a buffer hit?

CSE462/562 (Fall 2024): Lecture 3 55

Least Recently Used (LRU) policy
• Least Recently Used (LRU)

• for each page in buffer pool, the order of the pages were last unpinned
• replace the frame which has the oldest (earliest) time
• very common policy: intuitive and simple

• Works well for repeated accesses to popular pages -> typical transactional workload

• Example: P stands for PinPage, and U stands for UnpinPage, m = 3
• P(1), P(2), P(3), U(2), U(3), P(4), U(1), P(3), U(3)

BufferId 0 1 2

Frames

pincount 1 0 0

p1 p2 p3

LRU list:

H 2
next

prev

1 victim for eviction

p4

1

CSE462/562 (Fall 2024): Lecture 3 56

Least Recently Used (LRU) policy
• Least Recently Used (LRU)

• for each page in buffer pool, the order of the pages that were last unpinned
• replace the frame which has the oldest (earliest) time
• very common policy: intuitive and simple

• Works well for repeated accesses to popular pages -> typical transactional workload

• Problems?
• Sequential flooding:

• # buffer frames < # pages in file means every existing page in the buffer gets evicted
• Prevents buffer hit for other transactions working on other files

• DB may know the access pattern before hand so that it can adapt its
replacement policies
• e.g., using a small ring buffer for sequential scan to avoid flooding the entire buffer pool

CSE462/562 (Fall 2024): Lecture 3 57

Clock policy
• Approximate LRU

• Each buffer frame has a clock bit
• Set upon page pinned or unpinned (why?)

• When we need an eviction, move the clock
hand
• Ignore any page that is still pinned

• Otherwise

• If bit is set, clear it

• If bit is clear, evict it

• i.e., second chance 10

0

CLOCK hand

0

1

0

0

0
10

0

1

1

0

0

1

0

1
1 0 0

0

1

0

CSE462/562 (Fall 2024): Lecture 3 58

Clock policy
• Approximate LRU

• Each buffer frame has a clock bit
• Set upon page pinned or unpinned (why?)

• When we need an eviction, move the clock
hand
• Ignore any page that is still pinned

• Otherwise

• If bit is set, clear it

• If bit is clear, evict it

• i.e., second chance 10

0

CLOCK hand

0

1

0

0

0
10

0

1

1

0

0

1

0

1
1 0 0

0

1

0

0

clock bit
cleared

CSE462/562 (Fall 2024): Lecture 3 59

Clock policy
• Approximate LRU

• Each buffer frame has a clock bit
• Set upon page pinned or unpinned (why?)

• When we need an eviction, move the clock hand
• Ignore any page that is still pinned
• Otherwise

• If bit is set, clear it
• If bit is clear, evict it
• i.e., second chance

• Why this might be faster and easier to
implement than LRU?
• Hint: put the clock bit into the buffer meta structures

• scan buffer meta structures instead
10

0

CLOCK hand

0

1

0

0

0
10

0

1

1

0

0

1

0

1
1 0 0

0

1

0

0

evicted

CSE462/562 (Fall 2024): Lecture 3 60

Clock policy
• Approximate LRU

• Each buffer frame has a clock bit
• Set upon page pinned or unpinned (why?)

• When we need an eviction, move the clock hand
• Ignore any page that is still pinned
• Otherwise

• If bit is set, clear it
• If bit is clear, evict it
• i.e., second chance

• Alternative: third/fourth/… chance
• allowing clock counters up to 2/3/… 10

0

CLOCK hand

0

1

0

0

0
10

0

1

1

0

0

1

0

1
1 0 0

0

1

0

CSE462/562 (Fall 2024): Lecture 3 61

Buffer flush
• When are dirty pages written back to disk?

• When evicted

• During shutdown

• Forced flush: flushing certain dirty pages to disk

• when data need to be persisted for data consistency

• only unpinned page may be flushed

• other constraints apply (discussed later this semester)

CSE462/562 (Fall 2024): Lecture 3 62

DBMS vs. OS File System

OS does disk space & buffer management as well: why not let OS manage
these tasks?

• Some limitations, e.g., files can’t span disks.

• Buffer management in DBMS requires ability to:
• pin a page in buffer pool, force a page to disk & order writes (important for

implementing CC, concurrency control, & recovery)

• adjust eviction policy, and prefetch pages based on access patterns in typical DB
operations.

CSE462/562 (Fall 2024): Lecture 3 63

	Slide 1: CSE462/562: Database Systems (Fall 24)
	Slide 2: Big Picture
	Slide 3: Typical (& oversimplified) computer architecture
	Slide 4: Storage Hierarchy
	Slide 5: Data Transfers
	Slide 6: Non-volatile storage
	Slide 7: Closer look at non-volatile storage
	Slide 8: Magnetic disk organization
	Slide 9: Magnetic disk I/O latency
	Slide 10: Impact of I/O pattern on magnetic disk
	Slide 11: Flash memory / solid state drive
	Slide 12: Flash memory / solid state drive
	Slide 13: Flash memory / solid state drive
	Slide 14: File System Interface
	Slide 15: File System Interface
	Slide 16: File System Interface
	Slide 17: Big Picture
	Slide 18: How does database access data pages?
	Slide 19: How does database access data pages?
	Slide 20: How does database access data pages?
	Slide 21: Buffer management in DBMS
	Slide 22: Handling a page request (buffer miss)
	Slide 23: Handling a page request (buffer miss)
	Slide 24: Handling a page request (buffer miss)
	Slide 25: Handling a page request (buffer miss)
	Slide 26: Handling a page request (buffer miss)
	Slide 27: Handling a page request (buffer miss)
	Slide 28: Handling a page request (buffer hit)
	Slide 29: Handling a page request (buffer hit)
	Slide 30: Handling a page request (buffer hit)
	Slide 31: Map page numbers to buffer frames
	Slide 32: Map page numbers to buffer frames
	Slide 33: Map page numbers to buffer frames
	Slide 34: Map page numbers to buffer frames
	Slide 35: Map page numbers to buffer frames
	Slide 36: Buffer eviction
	Slide 37: Buffer eviction
	Slide 38: Buffer eviction
	Slide 39: Buffer eviction
	Slide 40: Page requested for writes
	Slide 41: Page requested for writes
	Slide 42: Page requested for writes
	Slide 43: Buffer pins
	Slide 44: Buffer pins
	Slide 45: Buffer pins
	Slide 46: Buffer pins
	Slide 47: Buffer pins
	Slide 48: Buffer pins
	Slide 49: Buffer pins
	Slide 50: Eviction policy
	Slide 51: Eviction policy
	Slide 52: Least Recently Used (LRU) policy
	Slide 53: Least Recently Used (LRU) policy
	Slide 54: Least Recently Used (LRU) policy
	Slide 55: Least Recently Used (LRU) policy
	Slide 56: Least Recently Used (LRU) policy
	Slide 57: Least Recently Used (LRU) policy
	Slide 58: Clock policy
	Slide 59: Clock policy
	Slide 60: Clock policy
	Slide 61: Clock policy
	Slide 62: Buffer flush
	Slide 63: DBMS vs. OS File System

