
CSE462/562: Database Systems (Spring 22)

Lecture 2: Introduction to Taco-DB &
C++ primer

2/3/2022

Taco-DB
• Taco-DB is a teaching-oriented DBMS developed for course projects

• Also used at PSU this semester
• Language: C++11
• Build system: cmake
• Architecture: x86_64 (no ARM, e.g., Apple M1, Microsoft SQ1/SQ2, etc.)
• OS: Linux

• it’s known to work on Ubuntu 20.04, Fedora 35
• and CSE student servers (CentOS) with a few package customizations
• WSL2 or virtual machine with Linux are also ok

• Developed in house -- you won’t be able to find solutions or references online
• We expect you to keep it private indefinitely!

• Please do not make your repository public or share with current and/or future students
• It’s ok if you disclose it to non-students (e.g., in job/PhD interview)

• Send bug report to Piazza if any.
• That helps us to improve and reuse it for future CSE462/562.

CSE462/562 (Spring 2022): Lecture 2 2

Prerequisites for the course project
• It’s best if you know C/C++ and have some experience with large projects

• You’re likely to complete the projects with reasonable effort.

• If you at least know some static-typed object-oriented language
• Java, Scala, …

• Chances are you’ll need to spend (maybe significant) extra efforts though.

• If none of the above apply,
• you’ll probably have a hard time to catch up.

• This lecture’s agenda:
• An overview of Taco-DB

• Linux programming and git basics

• C++11 primer

CSE462/562 (Spring 2022): Lecture 2 3

Taco-DB architecture

CSE462/562 (Spring 2022): Lecture 2 4

GoogleTest
Basic Tests System Tests

Data Access Physical Storage

File ManagerBuffer Manager

FSFile

Heap File IndexData PageCatalog

System Tables

Schema

Catalog Cache

Transaction Manager
(not in this semester)

Concurrency
control

Crash Recovery

Query Processing

Query Optimizer Query Evaluator

Test plan generator
SQL parser

(N/A)

External libs

jemalloc

Abseil

Base & Utilities

Datum

Macro utilities

File utilities

logging

…

tree

bash basics
• bash is the default shell and/or available in many Linux OS

• CentOS on CSE student servers comes with tcsh by default – similar but not entirely the same

• You can switch to bash by typing “bash”

• A few commonly used commands:
• list the current directory: ls -al

• create a directory
mkdir repo # creates a new directory “repo”

• change directory
cd repo # changes working directory to “repo”
cd .. # changes working directory to the parent directory

• copy files/directories
cp README.md README2.md # copy “README.md” to “README2.md”
cp -r repo myrepo # copy the dir “repo” and its contents to “myrepo”

• move files/directories
mv lab0.tar.xz.2 lab0.tar.xz # rename “lab0.tar.xz.2” as “lab0.tar.xz”
mv lab0.tar.xz myrepo/ # move “lab0.tar.xz” into “myrepo” directory
mv myrepo myrepo2 # rename “my_repository” as “myrepo2” if the later does not exist

otherwise, move “my_repository” into “myrepo2”

• extract a tarball
tar -xf lab0.tar.xz # extracts “lab0.tar.xz” to the current directory

• run an executable
./setup_repo.sh # note: executable in current directory must begin with “./”

CSE462/562 (Spring 2022): Lecture 2 5

I find this tutorial written by Bruce Barnett quite useful for beginners:
POSIX Shell Tutorial (grymoire.com)

https://www.grymoire.com/Unix/Sh.html

Coding environment
• We recommend working on command line using a text editor

• Integrated Development Environments (aka IDE) are not recommended

• Use at your own risk! A list of reasons:

• code completion is often broken in many popular IDE for C/C++

• incompatible build system (we use cmake)

• sometimes it can be hard to import external dependencies

• If you’re not comfortable with vim/emacs
• use a good GUI code editor

• e.g., VSCode (free), Source Insight ($$$, but this is my personal favorite if available)

• However, still no guarantee if the code completion works/code analysis properly.

• Use command line for build/run/test.

CSE462/562 (Spring 2022): Lecture 2 6

Coding environment
• We recommend using your own computer for debugging

• x86_64, bare metal or virtual machine (incl. WSL2)

• Linux (not too old)

• gcc/g++ (>= 7) or clang/clang++ (not tested)

• cmake (>= 3.13)

• pkg-config (recommend >= 0.29, older versions are very slow on first build!)

• autoconf, make, python3

• If you don’t have access to x86_64 hardware, the alternative is
• CSE student servers (timberlake.cse.buffalo.edu or metallica.cse.buffalo.edu)

• Your home directory is mounted on an NFS – you can use either machine

• SSH and command line only

• Special instructions for setups (need specific packages in /util)

CSE462/562 (Spring 2022): Lecture 2 7

Setting up SSH for Github and CSE student servers

• If you have never generated the SSH authentication keys,
• it’s likely you need to set up that for Github and (optionally) CSE student server access
• check if you have ~/.ssh/id_rsa and ~/.ssh/id_ras.pub

• To generate a key pair
ssh-keygen # follow the prompts

• You should have
• a private key ~/.ssh/id_rsa, never share it with anyone
• and a public key ~/.ssh/id_rsa.pub, upload it to the severs you want to access

• Hint: use “cat ~/.ssh/id_rsa.pub” to print it to your terminal for copying
• Github -> Settings -> SSH and GPG keys
• CSE student servers (optional)
ssh-copy-id <your-ubitname>@timberlake.cse.buffalo.edu
or (the two servers store your home directory in a shared NFS)
ssh-copy-id <your-ubitname>@metallica.cse.buffalo.edu

CSE462/562 (Spring 2022): Lecture 2 8

git basics
• git is a fully distributed version control software

• Working locally on a full copy of your repository

• Usually there’s a remote server that maintains a copy for collaboration and sharing

CSE462/562 (Spring 2022): Lecture 2 9
Picture from Git - About Version Control (git-scm.com)

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

git basics
• Commits are snapshots of versioned files

CSE462/562 (Spring 2022): Lecture 2 10

Picture from Git - What is Git? (git-scm.com)

https://git-scm.com/book/en/v2/Getting-Started-What-is-Git%3F

git basics
• Lifecycle of files in a repository

CSE462/562 (Spring 2022): Lecture 2 11

Picture from Git - Recording Changes to the Repository (git-scm.com)

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository

git basics
• Initializing a new repository

mkdir myrepo && cd myrepo

git init

import/edit your initial files

git add –A

git commit –m “initial commit”

CSE462/562 (Spring 2022): Lecture 2 12

git basics
• To collaborate with others, you’ll need a hosting service for storing a copy

• Github is one example, and we’ll use Github for this course project

• Once you create a repository, you may find the SSH link
git@github.com:username/repository_name.git

• The link allows you to read/write the remote copy of the repository hosted on Github

• This is also the link to submit in project 1 – lab 0

• You must add buffalo-cse562-sp22 as a collaborator, as well as your teammate

• Don’t add anyone else! We log your list of collaborators if we find you have more
collaborators than allowed.

CSE462/562 (Spring 2022): Lecture 2 13

git basics
• Before you do anything, configure your git:

• Set your name
git config --global user.name “<Your name>”

• Set your email
git config --global user.email “<your email>”

• Optional but useful, set your text editor
git config --global core.editor “<editor-of-your-choice>”

CSE462/562 (Spring 2022): Lecture 2 14

git basics
• Setups (setup_repo.sh does everything below except pushing it to remote)

• Initialize a local repository
git init

• Track the remote repository
git remote add origin git@github.com:<username>/<reponame>.git

• Add git submodules (for external libraries)
git submodule add -b <branch-name> -- <git_repo_url>

• Initialize and/or update the submodules
git submodule update --init --recursive

• Adding files for staging
git add -A

• Commit changes
git commit -m “your commit message”

• Rename branch (optional)
git branch -m main

• Set the remote tracking branch and push it to remote
git push -u origin main # the remote branch name should match your local branch name

CSE462/562 (Spring 2022): Lecture 2 15

git basics
• To set up the repository on a different machine (or your teammate’s)

• Clone the repository
<username> is the one who created the repo, no necessarily the one who clones it
git clone git@github.com:<username>/<reponame>.git

• Initialize/update the submodules -- (only needed every time you clone it into a new directory)
git submodule update --init --recursive

• Basic workflow
• Edit/debug your source code

• git add -A

• git commit -m “blah blah”

• git push

CSE462/562 (Spring 2022): Lecture 2 16

git basics
• Branches

• Branches are movable pointers to commits

• automatically moves to your latest commit

• Usually used for tracking commits that are used for implementing some new things

• To create a new branch

git branch <branch_name>

CSE462/562 (Spring 2022): Lecture 2 17

Picture from Git - Branches in a Nutshell (git-scm.com)

https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell

git basics
• Checkout a branch

• git maintains a special pointer HEAD
• which points to a branch/detached commit you’re on

• To checkout a branch (i.e., set HEAD pointer)
git checkout <branch-name/commit_id/tag_name>

CSE462/562 (Spring 2022): Lecture 2 18

git basics
• Checkout a branch

• git maintains a special pointer HEAD

• which points to a branch/detached commit you’re on

CSE462/562 (Spring 2022): Lecture 2 19

git basics
• Checkout a branch

• git maintains a special pointer HEAD
• which points to a branch/detached commit you’re on

• To checkout a branch (i.e., set HEAD pointer)
git checkout testing

CSE462/562 (Spring 2022): Lecture 2 20

git basics
• One you commit something, the current branch and HEAD automatically get

updated
git add -A

git commit -m “blah”

CSE462/562 (Spring 2022): Lecture 2 21

git basics
• You may go back to another branch by checking out to it
git checkout master

CSE462/562 (Spring 2022): Lecture 2 22

git basics
• To merge newer branches into the current branch:
git merge testing

• Fast-forward merge if possible (just move the pointers)
• Otherwise, new commit after resolving conflicts

CSE462/562 (Spring 2022): Lecture 2 23

git basics
• To merge newer branches into the current branch:
git merge testing

• Fast-forward merge if possible (just move the pointers)
• Otherwise, new commit after resolving conflicts

CSE462/562 (Spring 2022): Lecture 2 24

git basics
• A possible way of using branches for team collaboration

CSE462/562 (Spring 2022): Lecture 2 25

main

git basics
• A possible way of using branches for team collaboration

• create a separate branch for your independent task(s) off the main branch

CSE462/562 (Spring 2022): Lecture 2 26

main

FSFile_open FSFile_allocate

git basics
• A possible way of using branches for team collaboration
git checkout main

git merge FSFile_open # fast-forward

CSE462/562 (Spring 2022): Lecture 2 27

main

FSFile_open FSFile_allocate

git basics
• A possible way of using branches for team collaboration
git checkout FSFile_allocate

git merge main # potentially with conflicts that can’t be automatically resolved!

CSE462/562 (Spring 2022): Lecture 2 28

main

FSFile_open

FSFile_allocate

git basics
• A possible way of using branches for team collaboration
git checkout main

git merge FSFile_allocate # fast-forward

CSE462/562 (Spring 2022): Lecture 2 29

main

FSFile_open

FSFile_allocate

git basics
• Tags

git tag some-tag-name

git push --tags

• A name for a specific commit, not movable

• When checking out a tag, it is in a detached state (i.e., not on any branch)

• The same as if you checkout the commit id

• When you make submission, we’d recommend making a tag instead of branching

• so that you can test your features independently

• You can’t submit a commit ID without a branch/tag name

• Read more at Git - Book (git-scm.com)

CSE462/562 (Spring 2022): Lecture 2 30

https://git-scm.com/book/en/v2

How to set up project repository
• For project 1, lab 0, each team should create a new Github Repository

• Download lab0.tar.xz from Autolab

• There might be a version suffix .x (currently .2)

• Extract the tarball (tar xf lab0.tar.xz)

• and rename the directory to your repo name

• Run setup_repo.sh, which does the following

• Initialize your local repository

• Set up Git submodule for external libs (jemalloc, Abeisl, GoogleTest)

• Make the first commit and rename the default branch to main

• At this point, your local repository should work fine, check if it builds and tests ok

• Push it to remote

CSE462/562 (Spring 2022): Lecture 2 31

How to build your code
• We use the cmake build system

• To create a new build directory from your repository root
cd myrepo

cmake -B build .

• To build your code
cd build

make

• -j flag does not work properly due to deps on a few code generation scripts

• For those who are using CSE student servers, follows instruction in project 1
to customize the compilers and pkg-config to use.

CSE462/562 (Spring 2022): Lecture 2 32

How to test your code
• We use GoogleTest with its ctest integration

• To run all test cases:
ctest -V # -V shows GoogleTest outputs

• To run a specific test case, say BasicTestRepoCompilesAndRuns.TestShouldAlawysSucceed
ctest -R “^BasicTestRepoCompilesAndRuns.TestShouldAlwaysSucceed$” -V

Or, assuming you’re in build directory
./tests/BasicTestRepoCompilesAndRuns --gtest_filter=“*.TestShouldAlwaysSucceed”

• Invoke test excutable with --disable_logs=false flag to enable logging output

• doesn’t work with ctest!

• Invoke test executable or ctest with --help for list of options

CSE462/562 (Spring 2022): Lecture 2 33

Using GDB
• GDB is a debugger that allows you to inspect a running program

• Common usages:
gdb ./tests/some-test-executable

• To set a breakpoint: b <filename>:<lineno>/<function_name>
• To list breakpoints: info br
• To start debugging: r [optional command line flags]
• Run to next line in the current function: n
• Step into a function: s
• Continue execution until end or some breakpoint: c
• Print a variable/expression: p [expr]

• Print array: p *some_array @ length

• Print stack trace: bt
• Kill the current debugging process: k
• Quit gdb: q or Ctrl+D
• Things that might also be useful for debugging:

• watchpoint (w) and auto display (display)

• Read more in GDB user manual

CSE462/562 (Spring 2022): Lecture 2 34

C++11 primer
• This is not meant to be a tutorial on C++!

• Assuming you are at least familiar with the major revision of C/C++ in the 90s

• C90/C99 and/or C++98/C++03

• Please find a good textbook if you’re not familiar with them

• C++ has many paradigms and caveats
• The newer syntax and libraries introduced in C++11

• The common pitfalls you might want to pay attention to

• The design choices we made in Taco-DB

CSE462/562 (Spring 2022): Lecture 2 35

Major features of C++11
• auto and decltype

• move semantics

• rvalue references

• smart pointers

• lambda expressions

• variadic templates

• list initialization

• nullptr

• range for-loop

• …

CSE462/562 (Spring 2022): Lecture 2 36

auto and decltype
• Define variables with type deduced from placeholder specifiers
auto x = 1; // type of x is int

auto v = new std::vector<int>(5,0); // type of v is std::vector<int>*

const auto &pv = v; // type of pv is const std::vector<int>&

// type of i is std::vector<int>::iterator

for (auto i = v.begin(); i != v.end(); ++i) {…}

• Declare types from an entity or an expression
decltype(v.at(0)) i = v.at(0); // type of i is int&

auto i = v.at(0); // type of i is int

// iterator is an alias of std::vector<int>::iterator

typedef decltype(v.begin()) iterator;

CSE462/562 (Spring 2022): Lecture 2 37

Placeholder type specifiers (since C++11) - cppreference.com
decltype specifier - cppreference.com

https://en.cppreference.com/w/cpp/language/auto
https://en.cppreference.com/w/cpp/language/decltype

Move semantics and rvalue references
• Move semantics

• Transfer the resource of an object to another

• which puts the old object in some valid but unspecified state

• usually means you can’t use the old object any more except for explicitly specified

• For instance, moving of an std::vector moves its internal array pointer from one to
another. After the move, the old vector is not safe for dereference (in GLIBC, it’s set to
nullptr).

CSE462/562 (Spring 2022): Lecture 2 38

Move semantics and rvalue references
• Value categories

• lvalue: an expr that determines the identity of an object or function
e.g., a variable or an lvalue reference, etc.

• prvalue: an expr that computes a built-in operator or initializes an object
e.g., 1 + 2, std::vector<int>(5, 0), etc.

• xvalue: an object that may be moved (i.e., resource can be reused)
e.g., std::move(v), a[1], b.x and etc.
where v is an std::vector, a is an array, b is a struct with member x

CSE462/562 (Spring 2022): Lecture 2 39

prvaluelvalue xvalue

glvalue: lvalue or xvalue rvalue: xvalue or prvalue

Value categories - cppreference.com

https://en.cppreference.com/w/cpp/language/value_category

Move semantics and rvalue references
• rvalue reference T&&

• May be binded to rvalues (extends its lifetime)
• move semantics (C++11) or

copy elision (compiler optimization or mandatory in certain cases since C++17)

• Move constructor and assignment
struct vector {

// move constructor, transfers resource from a to *this
vector(vector&& a): m_arr(a.m_arr) { a.m_arr = nullptr; }

// move assignment, deallocates resource in *this and
//transfers resource from a to *this
A& operator=(vector&& a) {

m_arr = a.m_arr; a.m_arr = nullptr; return *this;
}

int *m_arr;
};

• Converting an object to xvalue for invoking move semantics using std::move()
std::vector<int> v(5, 0);
std::vector<int> v1(std::move(v)); // invokes move constructor
std::vector<int> v2(v1); // invokes copy constructor
v = std::move(v2); // invokes move assignment
v2 = v1; // invokes copy assignment

CSE462/562 (Spring 2022): Lecture 2 40
Value categories - cppreference.com

https://en.cppreference.com/w/cpp/language/value_category

Smart pointers
• std::unique_ptr<T>

• Represents ownership of an object managed through a pointer (usually heap allocated)

• Automatically calls delete upon desctruction

• Not copiable; only movable

• absl::WrapUnique() and absl::make_unique()

• Drop-in replacement for missing functions in C++11

• Default delete invokes delete expressions (delete and delete[])

• We defined unique_malloced_ptr, which invokes free()in delete instead

• std::shared_ptr<T>
• Represents shared ownership of an object through reference counting

• We use this when there might be multiple ownerships of the same object (e.g., a
cached item)

CSE462/562 (Spring 2022): Lecture 2 41

RAII-style objects in Taco-DB
• taco::ResourceGuard<T>

• Very similar to std::unique_ptr, except that it represents ownership of objects that are not
necessarily pointers (e.g., buffer frame ID)

• Maybe replaced with std::unique_ptr with “fancy pointers”, but that’s a hassle

• taco::Datum
• Represents a type-erased objects consisting of consecutive bytes in memory
• i.e., values stored in the database
• A Datum conceptually “owns” its underlying object

• Not copiable; move only
• In reality, it may store a pointer to a buffer frame that must be pinned

• It may store a pointer to a temporary object that will be freed on destruction
• However, this helps us to reason about ownership of objects for memory management
• Also encodes nullness of an object

• References to Datum are DatumRef and NullableDatumRef – copiable
• Difference is that DatumRef can’t encode nullness but it fits in a register (8 bytes)
• NullableDatumRef is less compact (16 bytes)
• May only be “dereferenced” when the underlying Datum is alive

CSE462/562 (Spring 2022): Lecture 2 42

Lambda expression
• Constructs a function closure

[captures](parameters) -> return_type { function body }

• an anonymous function that may capture variables in its scope

• Useful for <algorithm> library

• For instance, to sort a vector using a customized comparator:
void sortIntVector(std::vector<int> &v, bool ascend = true) {

std::sort(v.begin(), v.end(),

[&](int x, int y) -> bool {

return ascend ? (x < y) : (x > y);

});

}

CSE462/562 (Spring 2022): Lecture 2 43

Lambda expressions (since C++11) - cppreference.com

https://en.cppreference.com/w/cpp/language/lambda

Logging and error handling in Taco-DB
• We provide a LOG()macro for logging and error handling

• LOG(level, fmt, …)

• Fmt and … are the arguments you would pass to printf() or absl::StrFormat()

• e.g., LOG(kInfo, “value of variable x is %d”, x);

• Four log severity levels (borrowed from Abseil)

• kInfo: regular log message

• kWarning: warnings

• kError: errors that are recoverable (doesn’t corrupt database)

• kFatal: fatal errors that are not recoverable, e.g., program bugs, disk failure

• LOG() in kError or kFatal will throw an exception TDBError

• Since we are not implementing recovery, kError and kFatal are actually the same

• Some test case will specifically check for the thrown severity levels required in the specification

CSE462/562 (Spring 2022): Lecture 2 44

Exception safety in destructor
• Since we’re using exceptions for propagating errors

• C++11 destructors are noexcept by default!

• Uncaught exception will cause the program to be terminated

• So, destructors must not log errors!

• If your class may have errors during destruction,

• consider add a separate Destroy() function.

• Some of the design in Taco-DB dictates that you can’t throw error, e.g.,

• FSFile::~FSFile() must close the file during destructor

• You can’t log errors if close() call fails

• Log a warning instead (see include/storage/FSFile.h)

CSE462/562 (Spring 2022): Lecture 2 45

Error handling for constructors
• Constructors are Ok to throw errors in C++

• However, sometimes we might still want to use factory functions for allocating and
constructing a new object.

• e.g., FSFile::Open() returns nullptr on failure

• This simplifies cases when the caller expects and handles errors

• No clumsy try-catch block and no efficiency loss

• E.g., file manager will use it to determine how many main data files there are

CSE462/562 (Spring 2022): Lecture 2 46

Summary
• We covered the basics of the course project

• Linux programming/coding environment

• How to access CSE student servers

• How to make submissions

• C++11 primer

• Project 1 – lab 0: project sign-up due next Tuesday, 2/8, 11:59 pm EST.

• Project 1 – lab1: FSFile due in less than two weeks, 2/15, 11:59 pm EST.

• Next lecture: relational model.

CSE462/562 (Spring 2022): Lecture 2 47

