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Taco-DB
• Taco-DB is a teaching-oriented DBMS developed for course projects

• Also used at PSU this semester
• Language: C++11
• Build system: cmake
• Architecture: x86_64 (no ARM, e.g., Apple M1, Microsoft SQ1/SQ2, etc.)
• OS: Linux

• it’s known to work on Ubuntu 20.04, Fedora 35
• and CSE student servers (CentOS) with a few package customizations
• WSL2 or virtual machine with Linux are also ok

• Developed in house -- you won’t be able to find solutions or references online
• We expect you to keep it private indefinitely!

• Please do not make your repository public or share with current and/or future students
• It’s ok if you disclose it to non-students (e.g., in job/PhD interview)

• Send bug report to Piazza if any.
• That helps us to improve and reuse it for future CSE462/562.
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Prerequisites for the course project
• It’s best if you know C/C++ and have some experience with large projects

• You’re likely to complete the projects with reasonable effort.

• If you at least know some static-typed object-oriented language
• Java, Scala, …

• Chances are you’ll need to spend (maybe significant) extra efforts though.

• If none of the above apply,
• you’ll probably have a hard time to catch up.

• This lecture’s agenda:
• An overview of Taco-DB

• Linux programming and git basics

• C++11 primer
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Taco-DB architecture
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bash basics
• bash is the default shell and/or available in many Linux OS

• CentOS on CSE student servers comes with tcsh by default – similar but not entirely the same

• You can switch to bash by typing “bash”

• A few commonly used commands:
• list the current directory: ls -al

• create a directory
mkdir repo # creates a new directory “repo”

• change directory
cd repo             # changes working directory to “repo”
cd .. # changes working directory to the parent directory

• copy files/directories
cp README.md README2.md   # copy “README.md” to “README2.md”
cp -r repo myrepo # copy the dir “repo” and its contents to “myrepo”

• move files/directories
mv lab0.tar.xz.2 lab0.tar.xz # rename “lab0.tar.xz.2” as “lab0.tar.xz”
mv lab0.tar.xz myrepo/ # move “lab0.tar.xz” into “myrepo” directory
mv myrepo myrepo2 # rename “my_repository” as “myrepo2” if the later does not exist

# otherwise, move “my_repository” into “myrepo2”

• extract a tarball
tar -xf lab0.tar.xz       # extracts “lab0.tar.xz” to the current directory

• run an executable
./setup_repo.sh # note: executable in current directory must begin with “./”
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I find this tutorial written by Bruce Barnett quite useful for beginners: 
POSIX Shell Tutorial (grymoire.com)

https://www.grymoire.com/Unix/Sh.html


Coding environment
• We recommend working on command line using a text editor

• Integrated Development Environments (aka IDE) are not recommended

• Use at your own risk! A list of reasons:

• code completion is often broken in many popular IDE for C/C++

• incompatible build system (we use cmake)

• sometimes it can be hard to import external dependencies

• If you’re not comfortable with vim/emacs
• use a good GUI code editor

• e.g., VSCode (free), Source Insight ($$$, but this is my personal favorite if available)

• However, still no guarantee if the code completion works/code analysis properly.

• Use command line for build/run/test.
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Coding environment
• We recommend using your own computer for debugging

• x86_64, bare metal or virtual machine (incl. WSL2)

• Linux (not too old)

• gcc/g++ (>= 7) or clang/clang++ (not tested)

• cmake (>= 3.13)

• pkg-config (recommend >= 0.29, older versions are very slow on first build!)

• autoconf, make, python3

• If you don’t have access to x86_64 hardware, the alternative is
• CSE student servers (timberlake.cse.buffalo.edu or metallica.cse.buffalo.edu)

• Your home directory is mounted on an NFS – you can use either machine

• SSH and command line only

• Special instructions for setups (need specific packages in /util)
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Setting up SSH for Github and CSE student servers

• If you have never generated the SSH authentication keys,
• it’s likely you need to set up that for Github and (optionally) CSE student server access
• check if you have ~/.ssh/id_rsa and ~/.ssh/id_ras.pub

• To generate a key pair
ssh-keygen # follow the prompts

• You should have
• a private key ~/.ssh/id_rsa, never share it with anyone
• and a public key ~/.ssh/id_rsa.pub, upload it to the severs you want to access

• Hint: use “cat ~/.ssh/id_rsa.pub” to print it to your terminal for copying
• Github -> Settings -> SSH and GPG keys
• CSE student servers (optional)
ssh-copy-id <your-ubitname>@timberlake.cse.buffalo.edu
# or (the two servers store your home directory in a shared NFS)
ssh-copy-id <your-ubitname>@metallica.cse.buffalo.edu
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git basics
• git is a fully distributed version control software

• Working locally on a full copy of your repository

• Usually there’s a remote server that maintains a copy for collaboration and sharing
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https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control


git basics
• Commits are snapshots of versioned files
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Picture from Git - What is Git? (git-scm.com)

https://git-scm.com/book/en/v2/Getting-Started-What-is-Git%3F


git basics
• Lifecycle of files in a repository
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Picture from Git - Recording Changes to the Repository (git-scm.com)

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository


git basics
• Initializing a new repository

mkdir myrepo && cd myrepo

git init

# import/edit your initial files

git add –A

git commit –m “initial commit”
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git basics
• To collaborate with others, you’ll need a hosting service for storing a copy

• Github is one example, and we’ll use Github for this course project

• Once you create a repository, you may find the SSH link
git@github.com:username/repository_name.git

• The link allows you to read/write the remote copy of the repository hosted on Github

• This is also the link to submit in project 1 – lab 0

• You must add buffalo-cse562-sp22 as a collaborator, as well as your teammate

• Don’t add anyone else! We log your list of collaborators if we find you have more 
collaborators than allowed.
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git basics
• Before you do anything, configure your git:

• Set your name
git config --global user.name “<Your name>”

• Set your email
git config --global user.email “<your email>”

• Optional but useful, set your text editor
git config --global core.editor “<editor-of-your-choice>”
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git basics
• Setups (setup_repo.sh does everything below except pushing it to remote)

• Initialize a local repository
git init

• Track the remote repository
git remote add origin git@github.com:<username>/<reponame>.git

• Add git submodules (for external libraries)
git submodule add -b <branch-name> -- <git_repo_url>

• Initialize and/or update the submodules
git submodule update --init --recursive

• Adding files for staging
git add -A

• Commit changes
git commit -m “your commit message”

• Rename branch (optional) 
git branch -m main

• Set the remote tracking branch and push it to remote
git push -u origin main   # the remote branch name should match your local branch name
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git basics
• To set up the repository on a different machine (or your teammate’s)

• Clone the repository
# <username> is the one who created the repo, no necessarily the one who clones it
git clone git@github.com:<username>/<reponame>.git

• Initialize/update the submodules -- (only needed every time you clone it into a new directory)
git submodule update --init --recursive

• Basic workflow
• Edit/debug your source code

• git add -A

• git commit -m “blah blah”

• git push
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git basics
• Branches

• Branches are movable pointers to commits

• automatically moves to your latest commit

• Usually used for tracking commits that are used for implementing some new things

• To create a new branch

git branch <branch_name>
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Picture from Git - Branches in a Nutshell (git-scm.com)

https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell


git basics
• Checkout a branch

• git maintains a special pointer HEAD
• which points to a branch/detached commit you’re on

• To checkout a branch (i.e., set HEAD pointer)
git checkout <branch-name/commit_id/tag_name>

CSE462/562 (Spring 2022): Lecture 2 18



git basics
• Checkout a branch

• git maintains a special pointer HEAD

• which points to a branch/detached commit you’re on
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git basics
• Checkout a branch

• git maintains a special pointer HEAD
• which points to a branch/detached commit you’re on

• To checkout a branch (i.e., set HEAD pointer)
git checkout testing
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git basics
• One you commit something, the current branch and HEAD automatically get 

updated
git add -A

git commit -m “blah”
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git basics
• You may go back to another branch by checking out to it
git checkout master
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git basics
• To merge newer branches into the current branch:
git merge testing

• Fast-forward merge if possible (just move the pointers)
• Otherwise, new commit after resolving conflicts
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git basics
• To merge newer branches into the current branch:
git merge testing

• Fast-forward merge if possible (just move the pointers)
• Otherwise, new commit after resolving conflicts
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git basics
• A possible way of using branches for team collaboration
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main



git basics
• A possible way of using branches for team collaboration

• create a separate branch for your independent task(s) off the main branch
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main

FSFile_open FSFile_allocate



git basics
• A possible way of using branches for team collaboration
git checkout main

git merge FSFile_open # fast-forward
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git basics
• A possible way of using branches for team collaboration
git checkout FSFile_allocate

git merge main  # potentially with conflicts that can’t be automatically resolved!

CSE462/562 (Spring 2022): Lecture 2 28

main

FSFile_open

FSFile_allocate



git basics
• A possible way of using branches for team collaboration
git checkout main

git merge FSFile_allocate # fast-forward
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git basics
• Tags

git tag some-tag-name

git push --tags

• A name for a specific commit, not movable

• When checking out a tag, it is in a detached state (i.e., not on any branch)

• The same as if you checkout the commit id

• When you make submission, we’d recommend making a tag instead of branching

• so that you can test your features independently

• You can’t submit a commit ID without a branch/tag name

• Read more at Git - Book (git-scm.com)
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https://git-scm.com/book/en/v2


How to set up project repository
• For project 1, lab 0, each team should create a new Github Repository

• Download lab0.tar.xz from Autolab

• There might be a version suffix .x (currently .2)

• Extract the tarball (tar xf lab0.tar.xz)

• and rename the directory to your repo name

• Run setup_repo.sh, which does the following

• Initialize your local repository

• Set up Git submodule for external libs (jemalloc, Abeisl, GoogleTest)

• Make the first commit and rename the default branch to main

• At this point, your local repository should work fine, check if it builds and tests ok

• Push it to remote
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How to build your code
• We use the cmake build system

• To create a new build directory from your repository root
cd myrepo

cmake -B build .

• To build your code
cd build

make

• -j flag does not work properly due to deps on a few code generation scripts

• For those who are using CSE student servers, follows instruction in project 1
to customize the compilers and pkg-config to use.
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How to test your code
• We use GoogleTest with its ctest integration

• To run all test cases:
ctest -V   # -V shows GoogleTest outputs

• To run a specific test case, say BasicTestRepoCompilesAndRuns.TestShouldAlawysSucceed
ctest -R “^BasicTestRepoCompilesAndRuns.TestShouldAlwaysSucceed$” -V

Or, assuming you’re in build directory
./tests/BasicTestRepoCompilesAndRuns --gtest_filter=“*.TestShouldAlwaysSucceed”

• Invoke test excutable with --disable_logs=false flag to enable logging output

• doesn’t work with ctest!

• Invoke test executable or ctest with --help for list of options
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Using GDB
• GDB is a debugger that allows you to inspect a running program

• Common usages:
gdb ./tests/some-test-executable

• To set a breakpoint: b <filename>:<lineno>/<function_name>
• To list breakpoints: info br
• To start debugging: r [optional command line flags]
• Run to next line in the current function: n
• Step into a function: s
• Continue execution until end or some breakpoint: c
• Print a variable/expression: p [expr]

• Print array: p *some_array @ length

• Print stack trace: bt
• Kill the current debugging process: k
• Quit gdb: q or Ctrl+D
• Things that might also be useful for debugging:

• watchpoint (w) and auto display (display)

• Read more in GDB user manual
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C++11 primer
• This is not meant to be a tutorial on C++!

• Assuming you are at least familiar with the major revision of C/C++ in the 90s

• C90/C99 and/or C++98/C++03

• Please find a good textbook if you’re not familiar with them

• C++ has many paradigms and caveats
• The newer syntax and libraries introduced in C++11

• The common pitfalls you might want to pay attention to

• The design choices we made in Taco-DB
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Major features of C++11
• auto and decltype

• move semantics

• rvalue references

• smart pointers

• lambda expressions

• variadic templates

• list initialization

• nullptr

• range for-loop

• …
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auto and decltype
• Define variables with type deduced from placeholder specifiers
auto x = 1;    // type of x is int

auto v = new std::vector<int>(5,0);  // type of v is std::vector<int>*

const auto &pv = v; // type of pv is const std::vector<int>&

// type of i is std::vector<int>::iterator

for (auto i = v.begin(); i != v.end(); ++i) {…}

• Declare types from an entity or an expression
decltype(v.at(0)) i = v.at(0); // type of i is int&

auto i = v.at(0); // type of i is int

// iterator is an alias of std::vector<int>::iterator

typedef decltype(v.begin()) iterator;
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Placeholder type specifiers (since C++11) - cppreference.com
decltype specifier - cppreference.com

https://en.cppreference.com/w/cpp/language/auto
https://en.cppreference.com/w/cpp/language/decltype


Move semantics and rvalue references
• Move semantics

• Transfer the resource of an object to another

• which puts the old object in some valid but unspecified state

• usually means you can’t use the old object any more except for explicitly specified

• For instance, moving of an std::vector moves its internal array pointer from one to 
another. After the move, the old vector is not safe for dereference (in GLIBC, it’s set to 
nullptr).
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Move semantics and rvalue references
• Value categories

• lvalue: an expr that determines the identity of an object or function
e.g., a variable or an lvalue reference, etc.

• prvalue: an expr that computes a built-in operator or initializes an object
e.g., 1 + 2, std::vector<int>(5, 0), etc.

• xvalue: an object that may be moved (i.e., resource can be reused)
e.g., std::move(v), a[1], b.x and etc.
where v is an std::vector, a is an array, b is a struct with member x
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prvaluelvalue xvalue

glvalue: lvalue or xvalue rvalue: xvalue or prvalue

Value categories - cppreference.com

https://en.cppreference.com/w/cpp/language/value_category


Move semantics and rvalue references
• rvalue reference T&&

• May be binded to rvalues (extends its lifetime)
• move semantics (C++11) or

copy elision (compiler optimization or mandatory in certain cases since C++17)

• Move constructor and assignment
struct vector {

// move constructor, transfers resource from a to *this
vector(vector&& a): m_arr(a.m_arr) { a.m_arr = nullptr; }

// move assignment, deallocates resource in *this and
//transfers resource from a to *this
A& operator=(vector&& a) {

m_arr = a.m_arr; a.m_arr = nullptr; return *this;
}

int *m_arr;
};

• Converting an object to xvalue for invoking move semantics using std::move()
std::vector<int> v(5, 0);
std::vector<int> v1(std::move(v)); // invokes move constructor
std::vector<int> v2(v1);           // invokes copy constructor
v = std::move(v2);                 // invokes move assignment
v2 = v1;                           // invokes copy assignment
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Smart pointers
• std::unique_ptr<T>

• Represents ownership of an object managed through a pointer (usually heap allocated)

• Automatically calls delete upon desctruction

• Not copiable; only movable

• absl::WrapUnique() and absl::make_unique()

• Drop-in replacement for missing functions in C++11

• Default delete invokes delete expressions (delete and delete[])

• We defined unique_malloced_ptr, which invokes free()in delete instead

• std::shared_ptr<T>
• Represents shared ownership of an object through reference counting

• We use this when there might be multiple ownerships of the same object (e.g., a 
cached item)
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RAII-style objects in Taco-DB
• taco::ResourceGuard<T>

• Very similar to std::unique_ptr, except that it represents ownership of objects that are not 
necessarily pointers (e.g., buffer frame ID)

• Maybe replaced with std::unique_ptr with “fancy pointers”, but that’s a hassle

• taco::Datum
• Represents a type-erased objects consisting of consecutive bytes in memory
• i.e., values stored in the database
• A Datum conceptually “owns” its underlying object

• Not copiable; move only
• In reality, it may store a pointer to a buffer frame that must be pinned

• It may store a pointer to a temporary object that will be freed on destruction
• However, this helps us to reason about ownership of objects for memory management
• Also encodes nullness of an object

• References to Datum are DatumRef and NullableDatumRef – copiable
• Difference is that DatumRef can’t encode nullness but it fits in a register (8 bytes)
• NullableDatumRef is less compact (16 bytes)
• May only be “dereferenced” when the underlying Datum is alive
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Lambda expression
• Constructs a function closure

[captures](parameters) -> return_type { function body }

• an anonymous function that may capture variables in its scope

• Useful for <algorithm> library

• For instance, to sort a vector using a customized comparator:
void sortIntVector(std::vector<int> &v, bool ascend = true) {

std::sort(v.begin(), v.end(),

[&](int x, int y) -> bool {

return ascend ? (x < y) : (x > y);

});

}
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Lambda expressions (since C++11) - cppreference.com

https://en.cppreference.com/w/cpp/language/lambda


Logging and error handling in Taco-DB
• We provide a LOG()macro for logging and error handling

• LOG(level, fmt, …)

• Fmt and … are the arguments you would pass to printf() or absl::StrFormat()

• e.g., LOG(kInfo, “value of variable x is %d”, x);

• Four log severity levels (borrowed from Abseil)

• kInfo: regular log message

• kWarning: warnings

• kError: errors that are recoverable (doesn’t corrupt database)

• kFatal: fatal errors that are not recoverable, e.g., program bugs, disk failure

• LOG() in kError or kFatal will throw an exception TDBError

• Since we are not implementing recovery, kError and kFatal are actually the same

• Some test case will specifically check for the thrown severity levels required in the specification
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Exception safety in destructor
• Since we’re using exceptions for propagating errors

• C++11 destructors are noexcept by default!

• Uncaught exception will cause the program to be terminated

• So, destructors must not log errors!

• If your class may have errors during destruction,

• consider add a separate Destroy() function.

• Some of the design in Taco-DB dictates that you can’t throw error, e.g.,

• FSFile::~FSFile() must close the file during destructor

• You can’t log errors if close() call fails

• Log a warning instead (see include/storage/FSFile.h)
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Error handling for constructors
• Constructors are Ok to throw errors in C++

• However, sometimes we might still want to use factory functions for allocating and 
constructing a new object.

• e.g., FSFile::Open() returns nullptr on failure

• This simplifies cases when the caller expects and handles errors

• No clumsy try-catch block and no efficiency loss

• E.g., file manager will use it to determine how many main data files there are
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Summary
• We covered the basics of the course project

• Linux programming/coding environment

• How to access CSE student servers

• How to make submissions

• C++11 primer

• Project 1 – lab 0: project sign-up due next Tuesday, 2/8, 11:59 pm EST.

• Project 1 – lab1: FSFile due in less than two weeks, 2/15, 11:59 pm EST.

• Next lecture: relational model.

CSE462/562 (Spring 2022): Lecture 2 47


