
CSE462/562: Database Systems (Spring 22)

Lecture 4: SQL

2/10/2022

Structured Query Language (SQL)
• SQL stands for Structured Query Language

• It’s not only a “query language”

• Consists of

• Data Definition Language (DDL): define/modify schema, delete relations

• Integrity checks: foreign-key constraints, general constraints, triggers

• View definition, authorization specification, …

• Data Manipulation Language (DML): query/insert/update/delete in a DB instance

• Transaction control

• Stored procedure, embedded SQL, SQL Procedural language, …

• The most widely used relational query language. Latest standard is SQL-2016
• Each DBMS (e.g. MySQL/PostgreSQL) has some “unique” aspects

• We’ll only review the basics of SQL.

CSE462/562 (Spring 2022): Lecture 4 2

DDL - Create Table
• CREATE TABLE table_name ({

column_name data_type

} [,…])

• Data Types include:
• CHAR(n) – fixed-length character string

• VARCHAR(n) – variable-length character string with max length n

• SMALLINT, INTEGER, BIGINT – signed 2/4/8-byte integers

• NUMERIC[(p[,s])] – exact numeric of selectable precision

• REAL, DOUBLE – single/double floating point numbers

• DATE, TIME, TIMESTAMP, …

• SERIAL - unique ID for indexing and cross reference

• …

CSE462/562 (Spring 2022): Lecture 4 3

DDL - Create Table w/ Column Constraints
• CREATE TABLE table_name ({

column_name data_type

[column_constraint [, ...]]

} [,…])

• Column Constraints:
[CONSTRAINT constraint_name] {

DEFAULT default_expr |

NOT NULL | NULL | UNIQUE | PRIMARY KEY |

CHECK (boolean_expression) |

REFERENCES reftable [(refcolumn)] [ON DELETE action]

[ON UPDATE action] }

where action is one of:
NO ACTION, CASCADE, SET NULL, SET DEFAULT

CSE462/562 (Spring 2022): Lecture 4 4

can only reference the column’s value

DDL - Create Table w/ Table Constraints
• CREATE TABLE table_name ({

column_name data_type

[column_constraint [, ...]] |

table_constraint

} [,…])

•Table constraints:
[CONSTRAINT constraint_name]{

UNIQUE (column_name [, ...]) |

PRIMARY KEY (column_name [, ...]) |

CHECK (boolean_expression) |

FOREIGN KEY (column_name [, ...])

REFERENCES reftable [(refcolumn [, ...])]

[ON DELETE action] [ON UPDATE action]}

where action is one of:
NO ACTION, CASCADE, SET NULL, SET DEFAULT

CSE462/562 (Spring 2022): Lecture 4 5

can only reference multiple table column’s values

DDL -Create Table (Examples)
• CREATE TABLE student (

sid INTEGER PRIMARY KEY,

name VARCHAR(100) NOT NULL,

login VARCHAR(32) UNIQUE NOT NULL,

major VARCHAR(3),

adm_year DATE);

• CREATE TABLE enrollment(
sid INTEGER REFERENCES student ON DELETE SET NULL

semester VARCHAR(3),

cno INTEGER,

grade NUMERIC(2, 1)

PRIMARY KEY (sid, semester, cno));

CSE462/562 (Spring 2022): Lecture 4 6

Other DDL statements
• DROP TABLE table_name;

• ALTER TABLE table_name action [,…];
where action is one of
ADD column_name data_type [column_constraints [,…]]

DROP column_name data_type

ALTER coumn_name …

ADD table_constraint

DROP CONSTRAINT constraint_name

…

CSE462/562 (Spring 2022): Lecture 4 7

SQL DML
• SELECT statement

• INSERT statement

• DELETE statement

• UPDATE statement

CSE462/562 (Spring 2022): Lecture 4 8

SQL DML Semantics
• SQL uses multi-set relational algebra by default

• Multi-set semantics (i.e., allow duplicate rows), let 𝑄,𝑄′ be multi-set RA queries

• For projection 𝜋𝐴𝑄, no deduplication over the attribute set 𝐴

• For selection 𝜎𝑃𝑄, all copies of rows in 𝑄 that satisfies predicate 𝑃 are retained

• For cross product 𝑄 × 𝑄′, there are 𝑐𝑐′ copies of 𝑡 ∘ 𝑡′ if there are 𝑐 copies of 𝑡 in 𝑄 and 𝑐′ copies
of 𝑡′ in 𝑄′

• Deduplications are explicit via distinct keyword

• Set union, set difference and set intersection, see later discussion

• SQL also supports operators that can’t be expressed in the standard multi-set relational algebra

• sorting

• aggregation

CSE462/562 (Spring 2022): Lecture 4 9

Single-Table Query
• Single-table queries are straight-forward.

• To find all students admitted in 2021, we can write
SELECT *
FROM students S
WHERE S.adm_year = 2021;

CSE462/562 (Spring 2022): Lecture 4 10

sid name login major adm_year

100 Alice alicer34 CS 2021

101 Bob bob5 CE 2020

102 Charlie charlie7 CS 2021

103 David davel CS 2020

student

sid name login major adm_year

100 Alice alicer34 CS 2021

102 Charlie charlie7 CS 2021

result

Multi-Table Query
• We can express a join as follows

CSE462/562 (Spring 2022): Lecture 4 11

SELECT S.name, E.grade

FROM student S, enrollment E

WHERE S.sid=E.sid AND E.cno=562;

SELECT S.name, E.grade

FROM student S JOIN enrollment E

ON S.sid = E.sid

WHERE E.cno = 562;

or

sid name login major adm_year

100 Alice alicer34 CS 2021

101 Bob bob5 CE 2020

102 Charlie charlie7 CS 2021

103 David davel CS 2020

student

sid semester cno grade

100 s22 562 2.0

102 s22 562 2.3

100 f21 560 3.7

101 s21 560 3.3

102 f21 560 4.0

103 s22 460 2.7

101 f21 560 3.3

103 f21 250 4.0

enrollment

name grade

Alice 2.0

Charlie 2.3

Result

SQL Query Syntax
• SELECT and FROM clauses are mandatory

• WHERE clause is optional

• relation-list: a list of relation
• each possibly with a table alias (aka correlation name)

• target-list: a list of expressions that may reference columns in the relation list
• “*” to denote all the columns in the relation list

• each may be renamed with AS clause (e.g., S.name as student_name)

• DISTINCT: an optional keyword to deduplicate the result

• predicate: boolean expressions over the columns in the relation list, may contain
• comparisons such as <, >, <=, >=, =, <>, LIKE

• AND/OR/NOT

• nested query

• …

CSE462/562 (Spring 2022): Lecture 4 12

SELECT [DISTINCT] target-list

FROM relation-list

[WHERE predicate]

SQL supports string matching operator LIKE:
`_’ stands for any one character and `%’ stands for 0 or more arbitrary characters.
e.g., dname LIKE ‘%Engineering’ will match all departments that ends with
“Engineering” in its name

SQL Query Semantics
• A SQL query may be translated into the following multi-set relational algebra

Let 𝑅1, 𝑅2, … , 𝑅𝑛 be relations in the relation list
and 𝐸1, 𝐸2, … , 𝐸𝑚 be the expressions in the target list
and 𝑃 be the boolean predicate in the WHERE clause (P = true if WHERE clause is missing)

CSE462/562 (Spring 2022): Lecture 4 13

𝜋𝐸1,𝐸2,…𝐸𝑚𝜎𝑃𝑅1 × 𝑅2 ×⋯× 𝑅𝑛

• If there’s DISTINCT keyword in the select clause
• The final projection uses set semantics (in practice, implemented as a deduplication operator)

• This is a conceptual and probably the least efficient way of computing a SQL query
• Query optimizer will find more efficient strategies that produce the same result

A running example

CSE462/562 (Spring 2022): Lecture 4 14

SELECT S.name, E.grade

FROM student S, enrollment E

WHERE S.sid=E.sid AND E.cno=562;

sid name login major adm_year

100 Alice alicer34 CS 2021

101 Bob bob5 CE 2020

102 Charlie charlie7 CS 2021

103 David davel CS 2020

student S

sid semester cno grade

100 s22 562 2.0

102 s22 562 2.3

100 f21 560 3.7

101 s21 560 3.3

102 f21 560 4.0

103 s22 460 2.7

101 f21 560 3.3

103 f21 250 4.0

enrollment E

S.sid name login major adm_year E.sid semester cno grade

100 Alice alicer34 CS 2021 100 s22 562 2.0

100 Alice alicer34 CS 2021 102 s22 562 2.3

100 Alice alicer34 CS 2021 100 f21 560 3.7

100 Alice alicer34 CS 2021 100 s22 562 3.3

More results follows ……

𝑆 × 𝐸

A running example (cont’d)

CSE462/562 (Spring 2022): Lecture 4 15

SELECT S.name, E.grade

FROM student S, enrollment E

WHERE S.sid=E.sid AND E.cno=562;

S.sid name login major adm_year E.sid semester cno grade

100 Alice alicer34 CS 2021 100 s22 562 2.0

100 Alice alicer34 CS 2021 102 s22 562 2.3

100 Alice alicer34 CS 2021 100 f21 560 3.7

100 Alice alicer34 CS 2021 100 s22 562 3.3

More results follows ……

𝜎𝑆.𝑠𝑖𝑑=𝐸.𝑠𝑖𝑑 𝑎𝑛𝑑 𝐸.𝑐𝑛𝑜=562𝑆 × 𝐸

S.sid name login major adm_year E.sid semester cno grade

100 Alice alicer34 CS 2021 100 s22 562 2.0

102 Charlie charlie7 CS 2021 102 s22 562 2.3

A running example (cont’d)

CSE462/562 (Spring 2022): Lecture 4 16

S.sid name login major adm_year E.sid semester cno grade

100 Alice alicer34 CS 2021 100 s22 562 2.0

102 Charlie charlie7 CS 2021 102 s22 562 2.3

SELECT S.name, E.grade

FROM student S, enrollment E

WHERE S.sid=E.sid AND E.cno=562;

name grade

Alice 2.0

Charlie 2.3

𝜋𝑆.𝑛𝑎𝑚𝑒,𝐸.𝑔𝑟𝑎𝑑𝑒𝜎𝑆.𝑠𝑖𝑑=𝐸.𝑠𝑖𝑑 𝑎𝑛𝑑 𝐸.𝑐𝑛𝑜=562𝑆 × 𝐸

Final result =

ORDER BY Clause
• Optional ORDER BY clause sorts the final results before presenting them to the end user

• expr is some expression of the columns
in the relation list

• Sort lexicographically

• May also use positional notation (1, 2, 3, …)

• denotes expr in target list

• Default is ascending order ASC

• Specify DESC for descending order

• Examples
• ORDER BY E.grade DESC -- sort by descending order in grade

• ORDER BY 2 DESC -- same as above

• ORDER BY E.grade DESC, S.name

• sort by descending grade first; then for equal values of grade, sort by name in ascending order

• ORDER BY 2 DESC, 1 ASC -- same as above

CSE462/562 (Spring 2022): Lecture 4 17

SELECT [DISTINCT] target-list

FROM relation-list

[WHERE predicate]

[ORDER BY] expr [ASC|DESC] [,…]

Nested Query
• Nested queries may appear in FROM clause and/or WHERE clause

• Nested query in FROM clause: conceptually evaluates and creates a temporary table
-- find the names of all the students who’ve taken CSE562
SELECT S.name

FROM students S,

(SELECT sid FROM enrollment WHERE cno = 562) E

WHERE S.sid = E.sid;

• Nested query in WHERE clause (actually also HAVING clause, see later)
SELECT name

FROM students

WHERE sid in (SELECT sid FROM enrollment WHERE cno = 562);

• To find those who have not taken CSE562, use NOT IN operator

CSE462/562 (Spring 2022): Lecture 4 18

Nested Query (cont’d)
• Nested queries may also reference outer query relations

• Set operators in nested query
• EXISTS/NOT EXISTS: whether the result of the subquery is non-empty/empty
SELECT name

FROM student S

WHERE EXISTS (SELECT * FROM enrollment E WHERE S.sid = E.sid AND cno = 562);

• Set comparison op SOME/ALL: compares a value against a set (op is an operator such as <, <=, =, …)

• a > SOME (subquery): a is larger than some value in the result set of the subquery

• a > ALL (subquery): a is larger than all the values in the result set of the subquery
-- find the sid of all the students with the highest grade in CSE562

SELECT sid

FROM enrollment

WHERE cno = 562

AND grade >= ALL (SELECT grade FROM enrollment

WHERE cno = 562 AND grade is not NULL);

CSE462/562 (Spring 2022): Lecture 4 19

references outer query relation S

Aggregation
• Aggregation operator is an extension to relational algebra

• 𝛾𝐹 𝑒𝑥𝑝𝑟 ,…𝑄 where 𝐹 is an aggregation function

• Common aggregation function include:

• COUNT(*) – number of result rows

• COUNT(expr) – number of non-null rows

• MIN, MAX, SUM, AVG, VARIANCE, STDDEV

• Adding DISTINCT before the argument in the aggregation function

• Deduplicate the expr values before aggregation

• COUNT(DISTINCT *) is not valid!

• Examples
• SELECT MAX(grade) FROM enrollment WHERE cno = 562 -- find the highest grade in CSE562
• SELECT name from student where cno = 562

AND grade = (SELECT MAX(grade) from enrollment where cno = 562)

• find the names of the students who have the highest grade in CSE562

CSE462/562 (Spring 2022): Lecture 4 20

SELECT F([distinct] expr) [,…]

FROM relation-list

[WHERE predicate]

Aggregation with Grouping
• Can also have optional GROUP BY and HAVING clauses

• GROUP BY: group the rows by distinct values of the expressions

• expr can be any output column
or any expression over input columns

• target-list can have none/part/all of grouping exprs
and any number of aggregation functions

• aggregation functions are applied on a per-group basis

• HAVING: a selection operator over the groups

• can use any grouping expr or any aggregation function (not necessary in the target list)

• In extended relational algebra:

𝜋𝑡𝑎𝑟𝑔𝑒𝑡−𝑙𝑖𝑠𝑡𝜎ℎ𝑎𝑣𝑖𝑛𝑔−𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 𝑒𝑥𝑝𝑟1,𝑒𝑥𝑝𝑟2,…𝛾𝐹 𝑒𝑥𝑝𝑟1
′ ,…𝑄

where 𝑄 is the relational algebra for SELECT * FROM relation-list WHERE predicate;

CSE462/562 (Spring 2022): Lecture 4 21

SELECT target-list

FROM relation-list

[WHERE predicate]

[GROUP BY expr1, expr2, …

[HAVING having-predicate]]

Aggregation with Grouping (cont’d)
• Example 1: find the enrollment size of each 500-level or above courses

• SELECT semester, cno, COUNT(*) AS size FROM enrollment

GROUP by semester, cno HAVING cno >= 500;

CSE462/562 (Spring 2022): Lecture 4 22

sid semester cno grade

100 s22 562 2.0

102 s22 562 2.3

100 f21 560 3.7

101 s21 560 3.3

102 f21 560 4.0

103 s22 460 2.7

101 f21 560 3.3

103 f21 250 4.0

enrollment

semester cno size

s22 562 2

f21 560 3

s21 560 1

result

𝜎𝑐𝑛𝑜≥500 (𝑠𝑒𝑚𝑒𝑠𝑡𝑒𝑟,𝑐𝑛𝑜 𝛾𝐶𝑂𝑈𝑁𝑇 ∗ 𝑎𝑠 𝑠𝑖𝑧𝑒𝑒𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡)

Aggregation with Grouping (cont’d)
• Example 2: find the enrollment size of all course with average GPA >= 3.0

• SELECT semester, cno, COUNT(*) AS size FROM enrollment

GROUP by semester, cno HAVING AVG(grade) >= 3.0;

CSE462/562 (Spring 2022): Lecture 4 23

sid semester cno grade

100 s22 562 2.0

102 s22 562 2.3

100 f21 560 3.7

101 s21 560 3.3

102 f21 560 4.0

103 s22 460 2.7

101 f21 560 3.3

103 f21 250 4.0

enrollment

semester cno size

f21 560 3

s21 560 1

f21 250 1

result

𝜋𝑠𝑒𝑚𝑒𝑠𝑡𝑒𝑟,𝑐𝑛𝑜,𝑠𝑖𝑧𝑒𝜎𝑎𝑣𝑔𝑔𝑝𝑎≥3.0 (𝑠𝑒𝑚𝑒𝑠𝑡𝑒𝑟,𝑐𝑛𝑜 𝛾𝐶𝑂𝑈𝑁𝑇 ∗ 𝑎𝑠 𝑠𝑖𝑧𝑒,𝐴𝑉𝐺 𝑔𝑟𝑎𝑑𝑒 𝑎𝑠 𝑎𝑣𝑔𝑔𝑝𝑎𝑒𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡)

Null values
• Field values in a tuple are sometimes unknown (e.g., a rating has not been assigned) or

inapplicable (e.g., no spouse’s name).
• SQL provides a special value null for such situations.

• The presence of null complicates many issues. E.g.:
• Special operators needed to check if value IS/IS NOT NULL.

• Is rating>8 true or false when rating is equal to null? What about AND, OR and NOT?

• We need a 3-valued logic (true, false and unknown).

• Meaning of constructs must be defined carefully.
(e.g., WHERE clause eliminates rows that don’t evaluate to true.)

• New operators (in particular, outer joins) possible/needed.

• NULLs are usually ignored in aggregate functions

• Exercise: truth tables for OR and NOT operators?

CSE462/562 (Spring 2022): Lecture 4 24

op1 op2 result

TRUE TRUE TRUE

TRUE FALSE FALSE

FALSE FALSE FALSE

Truth table for SQL AND

op1 op2 result

TRUE TRUE TRUE

TRUE FALSE FALSE

FALSE FALSE FALSE

TRUE NULL NULL

FALSE NULL FALSE

NULL NULL NULL

Null values
• Seemingly “equivalent” queries may actually produce different results due to NULL values

• e.g., find the sid of all the students with the highest grade in CSE562

CSE462/562 (Spring 2022): Lecture 4 25

SELECT sid

FROM enrollment

WHERE cno = 562

AND grade >= ALL (SELECT grade FROM enrollment

WHERE cno = 562);

SELECT sid

FROM enrollment

WHERE cno = 562

AND grade = (SELECT MAX(grade) FROM enrollment WHERE cno = 562);

Returns empty set if there’s at least one NULL
grade value in CSE562.
How to correct it?

Outer Join
• Explicit join semantics needed unless it is an INNER join

CSE462/562 (Spring 2022): Lecture 4 26

SELECT (column_list)

FROM table_name

[INNER | {LEFT |RIGHT | FULL } OUTER] JOIN table_name

ON qualification_list

WHERE …

Set operations in SQL
• INTERSECT: ∩

• UNION: ∪

• EXCEPT: −

• Uses set semantics (i.e., deduplicate after the set operation)
• unless ALL keyword is specified (i.e., no deduplication)

CSE462/562 (Spring 2022): Lecture 4 27

query1 INTERSECT [ALL] query2

query1 UNION [ALL] query2

query1 EXCEPT [ALL] query2

Other DML Statements
INSERT [INTO] table_name [(column_list)] VALUES (value_list);

INSERT [INTO] table_name [(column_list)] <select statement>;

DELETE [FROM] table_name [WHERE qualification];

UPDATE SET column_name = expr [,…] [WHERE qualification];

CSE462/562 (Spring 2022): Lecture 4 28

Summary
• SQL review

• DDL & DML

• Multi-set relational algebra

• Next time: Physical Storage System

CSE462/562 (Spring 2022): Lecture 4 29

