
CSE462/562: Database Systems (Spring 22)

Lecture 5: Physical Storage and Buffer
Management

2/15/2022

Slide credit to Dong Xie @ PSU

Big Picture

CSE462/562 (Spring 2022): Lecture 5 2

Operating System

CPU Memory
Secondary
Storages

Hardware devices

DBMS

User applications

Buffer Management

Disk space/File management

File Organization/Access Methods

Query Execution

SQL Parser/API

Typical (& oversimplified) computer architecture

• A simplistic view of a computer

CSE462/562 (Spring 2022): Lecture 5 3

CPU

Cache Main Memory

SSD

HDD

Typical
Computer

Secondary
Storage

…

Storage Hierarchy

CSE462/562 (Spring 2022): Lecture 5 4

L1 Cache

Registers

L2 Cache

L3 Cache

Main memory

Flash Memory

Magnetic disk

Lower price per bit Higher speed

Volatile

Non-volatile

~4 cycles

~10 cycles

~60 cycles

~60 ns

~100𝑠 𝜇𝑠

~10𝑠 𝑚𝑠

1 cycle

Tape

Primary storage

Secondary storage

Tertiary storage

Tape

Data Transfers

CSE462/562 (Spring 2022): Lecture 5

L1 Cache

Registers

L2 Cache

L3 Cache

Main memory

Flash Memory

Magnetic disk

Volatile

Non-volatile

Between cache and main memory:
hardware/OS controlled
usually in small units of cache lines

Between main memory and secondary storage:
DBMS controlled (read/write)
usually with large block I/O

CPU operates on main memory (byte addressable)

Volatile storage
• Register

• Very fast but very limited amount

• CPU directly operates on registers

• Cache
• Faster than main memory but takes multiple cycles to access

• Stores cache lines that are likely to be read/write again

• Usually managed by CPU

• Main memory
• Still quite fast albeit it takes hundreds of cycles

• CPU instructions can read/write byte addressable data into/from registers

CSE462/562 (Spring 2022): Lecture 5 6

Why not store everything in memory?
• Too expensive

• Data growth is much faster than what you can afford

• Volatile
• Power loss -> data loss

• Typical storage hierarchy in (traditional) DBMS
• Main memory as buffer/working space

• Disk as the main database storage

• Tape for archiving old data

• Main memory DB actually uses memory for main database storage

• Persistency of data? Logging/replication (later lectures)

CSE462/562 (Spring 2022): Lecture 5 7

Non-volatile storage
• Common non-volatile (secondary) storage

• Flash memory (e.g., SSD)

• Magnetic disk

• Advantages
• Cheaper -- can store much more data than memory with the same cost

• Non-volatile – data are saved in server shutdown/power failure

• Disadvantages
• Block device: read/write in the units of sectors (usually 512B/4096B)

• Higher latency: usually >= 1 – 2 orders of magnitude slower than main memory

• Tertiary storage: tape (sequential I/O only)
• Very slow but inexpensive; good for archiving data

CSE462/562 (Spring 2022): Lecture 5 8

Magnetic disk organization
• Multiple platters

• Each platter has two surfaces for data storage
• Platters spin at the same rate (e.g., 7200 rpm)
• A ring on a surface is called a track

• A track is divided into many sectors of fixed size (usually
512 bytes)

• A sector is the smallest unit of I/O

• A single arm assembly with multiple disk heads
• Can only move inward/outward together
• The vertical stack of tracks is called a cylinder

• Disk heads can be over the tracks of the same cylinder
at the same time

• Usually one read/writes at the same time

• Address of a sector: cylinder - head - sector
• (0, 0, 0) : first sector; (0, 0, 1): second sector, …

(0, 1, 0) : the 𝑆𝑡ℎ sector, (1, 0, 0) the 𝑆𝐻𝑡ℎ

where S is the max # of sectors/track and H is the # of heads
• Reality: today’s disks use logical block addressing (linear

block #)
• Translated to the actual geometry by disk controller

CSE462/562 (Spring 2022): Lecture 5 9

Magnetic disk I/O latency
• File systems perform I/O in units of multiple

sector (page)
• 4KB~16KB are most common

• Break-down of I/O latency of a page
• Seek time: moving arms to the cylinder

• 2 ~ 20 ms per seek
• 4 ~ 10 ms on average

• Rotation delay:
wait for the sector to be under a head
• Depending on rotation speed (5400 rpm -

15000 rpm)
• E.g, 7200 rpm = 120 rotations/second

=> 1/120 = 8.33 ms / rotation
on average it needs a half rotation
=> 8.33 / 2 = 4.17 ms on average

• Transfer time: time for reading/writing data
• Data transfer rate: 50 - 200 MB/s
•  0.02 ~ 0.08 ms for 4KB pages

• Average access time
• 4KB page, 7200 rpm: roughly 8 ~ 15 ms

CSE462/562 (Spring 2022): Lecture 5 10

Impact of I/O pattern on magnetic disk
• I/O pattern has a huge impact on I/O performance

• E.g., 4KB page size

• Sequential read/write: usually 100 ~ 200+ MB/s

• Random read/write: 50 ~ 200 IOPS  200 KB ~ 800 KB /s

• > 2 orders of magnitude difference in terms of data transfer rate

• Rule of thumb:

• Random I/O: very slow; avoid reading a lot of data from random location

• Sequential I/O: better for accessing a lot of data

CSE462/562 (Spring 2022): Lecture 5 11

Flash Memory / solid state drive
• NAND Flash is the most storage media for solid state drives

• SSD that uses (e.g., Intel 3D XPoint and etc.)

• No mechanical parts (magnetic disk can have head crash => data corruption/loss)
• More reliable; less likely to fail due to physical shocks

• Faster than magnetic disk

CSE462/562 (Spring 2022): Lecture 5 12

Flash memory / solid state drive
• NAND SSD has asymmetric read/write performance

• 4KB page, typical SSD internal performance numbers

• Read latency: 20 to 100 𝜇𝑠 ; throughput: > 500 MB/s

• Write latency: 200 𝜇𝑠; throughput: > 500 MB/s

• Erase latency: ~2 ms

• Three ops: read/write/erase

• Read/write works on pages (usually 4KB)

• Write can only change some bits from 1 to 0 (not the other way around!)

• Muse erase before write a page.

• Erase works on blocks (e.g., 256 KB)

• Resets all bits in a block to 1

• Flash translation layer: indirection of page numbers to physical pages

• Solves two problems: slow erase and flash wear

• Actual performance also often bound by peripheral bus’s bandwidth and IOPS

CSE462/562 (Spring 2022): Lecture 5 13

Flash memory / solid state drive
• NAND SSD has asymmetric read/write performance

• The performance from DB stand of view?

• No single answer depending on how you use it

• I/O queue depth, I/O api, access pattern, page size, peripheral bus type and etc.

• But they have much better random I/O performance than magnetic disk

• 10k - 1M IOPS

• and higher bandwidth as well

• up to 7GB on PCIe 4.0, ~500MB on SATA

CSE462/562 (Spring 2022): Lecture 5 14

Big Picture

CSE462/562 (Spring 2022): Lecture 5 15

Operating System

CPU Memory
Secondary
Storages

Hardware devices

DBMS

User applications

Buffer Management

Disk space/File management

File Organization/Access Methods

Query Execution

SQL Parser/API

Disk Space Management
• Lowest layer of DBMS software manages space on disk

• Disk space is usually organized in pages
• which may not necessarily directly be mapped to disk sectors/file system pages!
• common choices are 4KB, 8KB, 16KB, etc.

• Using the OS file system or not? Some do and some don’t!
• Even with file system

• How to organize pages (in one file/multiple files)?
• How to deal with concurrency/recovery?
• …

• Higher levels call upon this layer to:
• allocate/de-allocate a page
• read/write a page

• Best if a request for a sequence of pages is satisfied by pages stored sequentially on disk!
• Responsibility of disk space manager.
• Higher levels don’t know how this is done, or how free space is managed.
• Though they may assume sequential access for files!

• Hence, disk space manager should do a decent job.

CSE462/562 (Spring 2022): Lecture 5 16

Disk Space Management in course project Taco-DB
• A flat main data storage page from page 0 to page 232 − 1

• Stored as 64GB files on the local file system;
• FileManager manages many (virtual) files -- (not FSFile)

• Each is a double-linked list of pages, allocated in groups of 64 consecutive pages
• Each file maintains its own free list

• Concurrency? Recovery? (to be done)

CSE462/562 (Spring 2022): Lecture 5 17

FileManager

0 4

…

M-4 M

…

2M-4

……

232-M

…

232 − 4

1 5 M-3 M+1 2M-3 232-M+1 232 − 3

2 6 M-2 M+2 2M-2 232-M+2 232 − 2

3 7 M-1 M+3 2M-1 232-M+3 232 − 1

Main Data Storage Space

FSFile FSFile FSFile……

Big Picture

CSE462/562 (Spring 2022): Lecture 5 18

Operating System

CPU Memory
Secondary
Storages

Hardware devices

DBMS

User applications

Disk space/File management

File Organization/Access Methods

Query Execution

SQL Parser/API

Buffer Management

How does database access data pages?
• Data pages usually need to be in main memory for DBMS to operate on it

• Suppose we want to read/write a 32-bit integer on a data page
• Option 1: read/write the entire page before reading/writing the integer <- very slow

• Option 2: read all data pages into memory at the beginning <- very expensive

• May not fit in memory

• What to do on modify?

• Immediately write back? Or Flush when program shutsdown?

• Data persistence?

• Solution?

CSE462/562 (Spring 2022): Lecture 5 19

Buffer management in DBMS
• Buffer manager manages a fixed-size pool of in-memory page frames which

• are of the same size as the data pages

• buffer data pages being read/written or to be read/written

• Meta information table contains an entry for each buffer frame:
• <frame#, page_id, pin_count, dirty>

CSE462/562 (Spring 2022): Lecture 5 20

DB files

Main memory

Secondary storage

buffered disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

choice of frame dictated

by replacement policy

<frame# = 0, pid=0x100,
pin_count = 1, dirty = false>

<frame# = 11, pid=0,
pin_count = 0, dirty = false>

How to handle a page request
• Meta information table contains an entry for each buffer frame:

• <frame#, page_id, pin_count, dirty>

• If the request page is not found in the buffer pool
• Choose an unpinned frame for eviction

• If the chosen frame is dirty, write it back to disk

• Read the requested page into the chosen frame

• Then,
• Add 1 to the pin count of the frame that has the requested page

• Return the address to the buffer frame

• If the caller modifies the page -> must set the dirty bit

• When the caller no longer needs the page
• Subtract 1 from the pin count of the frame that has the page

CSE462/562 (Spring 2022): Lecture 5 21

Buffer eviction policy
• Page eviction policy (aka replacement policy)

• An algorithm for choosing unpinned frames when there’s no free frame

• Many choices:

• Least recently used (LRU)

• Most recently used (MRU)

• Clock

• Random

• …

• It can have huge impacts on the # of I/Os, depending on the access pattern

CSE462/562 (Spring 2022): Lecture 5 22

Least recently used policy
• Least Recently Used (LRU)

• for each page in buffer pool, the order of the pages were last unpinned

• replace the frame which has the oldest (earliest) time

• very common policy: intuitive and simple

• Works well for repeated accesses to popular pages -> typical transactional workload

• Problems?
• Sequential flooding:

• LRU + repeated sequential scans.

• # buffer frames < # pages in file means each page request causes an I/O.

• Idea: MRU better in this scenario?

• DB may know the access pattern before hand so that it can adapt its replacement policies
• Switching MRU? Small ring buffer?

• How to implement?

CSE462/562 (Spring 2022): Lecture 5 23

Clock policy
• Approximate LRU

• Each buffer frame has a clock bit
• Set upon page pinned

• When we need an eviction, move the clock hand
• If bit is set, clear it

• If bit is clear, evict it

• i.e., second chance

• Can use third/fourth chance, with a small capped count

• Why this might be faster than LRU?

CSE462/562 (Spring 2022): Lecture 5 24

10

0

CLOCK hand

0

1

0

0

0

0
10

0

1

1

0

0

1

0

1
1 0 0

0

1

DBMS vs. OS File System

OS does disk space & buffer management as well: why not let OS manage these tasks?

• Some limitations, e.g., files can’t span disks.

• Buffer management in DBMS requires ability to:
• pin a page in buffer pool, force a page to disk & order writes (important for implementing CC,

concurrency control, & recovery)

• adjust replacement policy, and pre-fetch pages based on access patterns in typical DB operations.

25

Summary
• This lecture

• Storage hierarchy and storage devices

• Disk space management

• Buffer management

• Next lecture
• File organization in DBMS

CSE462/562 (Spring 2022): Lecture 5 26

