
CSE462/562: Database Systems (Spring 22)

Lecture 6: File Organization and Access
Methods

2/17/2022

Big Picture

CSE462/562 (Spring 2022): Lecture 5 2

Operating System

CPU Memory
Secondary
Storages

Hardware devices

DBMS

User applications

Disk space/File management

Query Execution

SQL Parser/API

Buffer Management

File Organization/Access Methods

Database storage architecture
• Database is logically a collection of relations, which are (multi-)sets of records (rows)

• Physical mapping (in a traditional row-oriented DBMS)
• Database -> files

• Records -> contiguous bytes on fixed-size pages (e.g., 4KB)

• Assumption: each record fits in a page

• What if a record does not fit?

CSE462/562 (Spring 2022): Lecture 6 3

• What about relations?
One/several file(s) per relation? Mixing records from correlated relations in one/several file(s)?

sid name login

100 Alice alicer34

101 Bob bob5

102 Charlie charlie7

103 David davel

student

sid semester cno grade

100 s22 562 2.0

102 s22 562 2.3

100 f21 560 3.7

101 s21 560 3.3

102 f21 560 4.0

103 s22 460 2.7

101 f21 560 3.3

103 f21 250 4.0

enrollment

File
File

pagepage

pagepage

Record
Record

Record
Record

Record
Record
Record

Record
Record

Database catalog
• Catalogs are DBMS defined relations that

• stores meta-information about

• Relation schemas

• Physical storage format and location

• And many other important internal states

• Can be implemented as regular relations

CSE462/562 (Spring 2022): Lecture 6 4

TABID TABNAME TABFPATH

1 TABLE /dbdata/1

2 COLUMN /dbdata/2

100 STUDENT /dbdata/100

101 ENROLLMENT /dbdata/101

Table

TABID COLID COLNAME COLTYPNAME

1 0 TABID OID

1 1 TABNAME VARCHAR(64)

1 2 TABFPATH VARCHAR(256)

2 0 TABID OID

2 1 COLID INT2

2 2 COLNAME VARCHAR(64)

2 3 COLTYPNAME VARCHAR(64)

100 0 SID SERIAL

100 1 NAME VARCHAR(32)

100 2 LOGIN VARCHAR(40)

101 0 SID INTEGER

101 1 SEMESTER CHAR(3)

101 2 CNO INTEGER

101 3 GRADE DOUBLE

Column

Record format: fixed-length
• Fixed-length record

• Assuming all fields F1, F2, F3, … have known (maximum) length

• Base address B: may be a file offset or a memory address

• Lengths L1, L2, L3, … can be found using system catalog

CSE462/562 (Spring 2022): Lecture 6 5

• How to handle NULL values?
• Null bitmap

• Is this practical? How to deal with variable-length types (consider VARCHAR(n))?
• Waste of space (e.g., names are rarely very long, but we must reserve space for the longest name)

Base address (B)

L1 L2 L3 L4

F1 F2 F3 F4

Address = B+L1+L2

Null bitmap

⌈#𝑁𝐹/8⌉

#NF: number of nullable fields

Record format: variable-length
• Variable-length record

• Two main approaches:

• Using offset array

• random access to fields given B, but takes more space

• Using self-contained data field (with separator/encoded offset)

• Computed offsets (e.g., offset of F3 = L1 + L2); but is usually more compact

CSE462/562 (Spring 2022): Lecture 6 6

\0

Field Delimited by Special Symbols

F1 F2

\0

Field Delimited prefixed with its length

10 20

• Handling NULLs? Null bitmap!
• Many possible designs with minor tweaks for different space/time efficiency trade-offs

• Can also combine both fixed-length and variable-length record formats

10 20 30 50

F3 F4

F1 F2 F3 F4

Base address (B)

Data alignment in records
• Alignment requirements?

• Alignment example: to read/write a 32-bit integer, it should be at 𝑠𝑜𝑚𝑒 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 𝑚𝑜𝑑 4 == 0

• Most architecture has alignment requirements

• Some requires alignment (most RISC arch, e.g., ARM v5 or earlier)

• Some don’t but have restrictions/performance loss/atomicity issues (e.g., x86_64/newer ARM)

• By default, compilers automatically align values properly that for you

• DB records? Two choices:

• Pack everything, and memcpy the field before access

• Less efficient, but save space

• Align offsets manually

• More efficient field access, but waste space

CSE462/562 (Spring 2022): Lecture 6 7

struct A {

int32_t x;

int16_t y;

int64_t z;

};

// alignof(A) == 8

// offsetof(A, x) == 0

// offsetof(A, y) == 4

// offsetof(A, z) == 8 (not 6!)

Page layout for fixed-length records
• Why not storing record consecutively in a file?

• Hard to update/delete!

• How do we store records in fixed-size pages?
• Fixed-length record: easy

• Not usually used as it wastes space

CSE462/562 (Spring 2022): Lecture 6 8

Slot 1
Slot 2

Slot N

.

N M10. . .

M ... 3 2 1

PACKED UNPACKED, BITMAP

Slot 1
Slot 2

Slot N

Free
Space

Slot M

11

number
of records

number
of slots

Page layout for variable-length records
• What about variable-length records?

• Solution: slotted data page

CSE462/562 (Spring 2022): Lecture 6 9

Page i

Rid = (i,N)

Rid = (i,1)

Rid = (i,2)

offset
to the free space

Slot array

N . . . 2 1

20 100 40 N

slots

Stores offsets to the beginning of the page

Free space

Free space

Can move records within a page without changing its record id.

Page layout for variable-length record
• What about variable-length records?

• Solution: slotted data page

CSE462/562 (Spring 2022): Lecture 6 10

Page i

Rid = (i,N)

Rid = (i,1)

Rid = (i,2)

offset
to the free space

Slot array

N . . . 2 1

20 100 40 N

slots

Stores offsets to the beginning of the page

Free space

Occupied space

Design space:
• Store record length with record / in slot array?
• Allow free space within the occupied space?

• Eager vs lazy compaction?
• Optional page header?

Organizing pages in a heap file
• Heap file is the most basic and common way of managing pages for a single relation

• Consists of a collection of fixed-size pages

• Pages/records are unordered

• Heap files must support
• Efficient insertion/deletion/update of records

• Efficient access of a record

• Efficient enumeration of all the records

• Management of free space (also managed by disk space manager/file system)

• Note
• A heap file does not necessarily map to a single file on FS

• A heap file can span multiple FS files (e.g., PostgreSQL)

• A file on FS does not necessarily only store pages for a single heap file

• All heap files are stored in a single FS File (i.e., single-file DBMS such as SQLite)

• Our course project Taco-DB: stores pages of different heap files across a number of files on FS
CSE462/562 (Spring 2022): Lecture 6 11

Organizing pages in a heap file
• Many possible alternatives and variants

• We consider the most representative two of them

CSE462/562 (Spring 2022): Lecture 6 12

Heap file alternative 1: doubly-linked lists

CSE462/562 (Spring 2022): Lecture 6 13

• The header page id and Heap file name must be stored someplace.

• Database catalog

• Each page contains 2 `pointers’ plus data.
• What are these pointers? Page Number and/or File ID?

• Supports sequential access
• Random access? Only if you know the page number (and the underlying file system supports random seek)

• Does enumerating the pages through the next pointers always incur sequential I/O?
• Not necessarily! Depending on how you allocate pages.

Meta
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Free pages

Allocated Pages

Heap file alternative 2: page directory

CSE462/562 (Spring 2022): Lecture 6 14

• The entry for a page can include the number of free bytes on the page.
• Or use free space bitmap on a contiguous space.

• The directory is a collection of pages; linked list implementation is just one alternative.
• Can also allocate contiguous pages for page directory for faster random access

and/or using hierarchical page directory

• PD is much smaller than the all data pages!

Data
Page 1

Data
Page 2

Data
Page N

Header
Page

DIRECTORY

Revisit of the big picture of file organization
• Fields → Records → Pages → Heap Files (→ Files on File System) → Storage Device

• What we support:
• Insert a record -- easy
• Update/delete of a record with known record ID
• Enumerating all data records

• How do I find the student with name “Alice”?
• Linear search for record ID

• Can we do better?
• Binary search? Binary tree? B-tree? Hash table? Partitioning
• Do we always need to store records as a whole?
• Needs alternative file organization

• Sometimes also called access methods (a name comes from mainframe OS)
• data structures and algorithms for sequentially or randomly retrieving data by keys

CSE462/562 (Spring 2022): Lecture 6 15

Alternative file organization
• Heap file: unordered, good for enumerating all records

• Sorted file: best for random retrieval by search key and/or in search key order
• A search key is a set of attributes (can be a single attribute) that the underlying file is sorted w.r.t.

• Has nothing to do with (primary/candidate) keys!

• Must be based on files that support random access of data pages with consecutive page numbers

• e.g., for a sorted file with M pages, page numbers are 0, 1, 2, …, M-1.

• Need support for random access of page i efficiently without linear traversal

• Compare the costs of record insertion/deletion/search in sorted file vs heap file?

CSE462/562 (Spring 2022): Lecture 6 16

Cost Model for Analysis
• We assume fixed-length records and ignore CPU costs, for simplicity:

• N: the number of records
• B: Number of records per page
• T: Number of matching record in a search
• Cost model: # of I/Os (also ignoring pre-fetching and/or random vs sequential access), and thus even

I/O cost is loosely approximated.
• Average-case analysis (unless o/w specified); based on several simplistic assumptions.

• Good enough for knowing the overall trends.
• Reality is a lot messier than this.

• Additional assumptions
• Single record to insert and delete; unless o/w specified
• Equality selection - exactly one match; unless o/w specified
• Heap Files:

• Insert always appends to end of file.
• Sorted Files:

• Two alternatives:
• No need to compact the file after deletions.
• Files compacted after deletions.

• Selections on search key (the attribute(s) used for sorting).

17

Cost of operations

CSE462/562 (Spring 2022): Lecture 6 18

N: Number of records
N/B: The number of data pages
B: Number of records per page
T: Number of matching records

of I/Os Heap File Sorted File

Scan all records

Equality Search: if we
know there’s only 1
matching record

Range Search

Insert: compact for
sorted file

Delete: no compact
for sorted file

N/B N/B

0.5N/B,

Best Case: 1,

Worst Case: N/B

log2 (N/B)

Best case: 1.

N/B log2 (N/B) + #match pages =

log2 (N/B) + T/B

2 log2 (N/B) + N/B (read + write
for 0.5N/B pages on average)

0.5N/B + 1 log2 (N/B) + 1

Cost of operations

CSE462/562 (Spring 2022): Lecture 6 19

N: Number of records
N/B: The number of data pages
B: Number of records per page
T: Number of matching records

of I/Os Heap File Sorted File

Scan all records

Equality Search: if we
know there’s only 1
matching record

Range Search

Insert: compact for
sorted file

Delete: compact for
sorted file

N/B N/B

0.5N/B,

Best Case: 1,

Worst Case: N/B

log2 (N/B)

Best case: 1.

N/B log2 (N/B) + #match pages =

log2 (N/B) + T/B

2 log2 (N/B) + N/B (read + write
for 0.5N/B pages on average)

0.5N/B + 1 log2 (N/B) + N/B

Alternative file organization (others)
• Heap file: unordered, good for enumerating all records

• Sorted file: best for random retrieval by search key and/or in search key order
• A search key is a set of attributes (can be a single attribute) that the underlying file is sorted w.r.t.

• Has nothing to do with (primary/candidate) keys!

• Columnar store: store individual column/column sets in separate files
• Also called vertical partitioning

• Good for queries with projection -- saves I/O, SIMD friendly

• Index files (next lecture)
• Clustered index vs unclustered index

• Primary index vs secondary index

CSE462/562 (Spring 2022): Lecture 6 20

Summary
• This lecture

• Data storage layout

• File organization

• Cost analysis of heap file and sorted file access methods

• Next time:
• Index files

• HW1 solution released today

• Project 2 released today
• Due on 3/8/2022, 11:59 pm EST; start early and read the project page!

• Write-up due on 3/10/2022, 11:59 pm EST.

CSE462/562 (Spring 2022): Lecture 6 21

