CSE462/562: Database Systems (Spring 22)

Lecture 6: File Organization and Access
Methods

2/17/2022

University at Buffalo
s Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Big Picture

User applications

DBMS SQL Parser/API

Query Execution

File Organization/Access Methods

Buffer Management

Disk space/File management

Operating System

Hardware devices

s —

CSE462/562 (Spring 2022): Lecture 5

s
Secondary
Storages

Database storage architecture

e Database is logically a collection of relations, which are (multi-)sets of records (rows)

* Physical mapping (in a traditional row-oriented DBMS)
* Database -> files
* Records -> contiguous bytes on fixed-size pages (e.g., 4KB) enrollment

* Assumption: each record fits in a page mmm

e What if a record does not fit?

student — — L 102 s22 562 2.3
MMIE_/ Record Record N4 00 1 560 37
Record

Alice alicer34 / page page 101 s21 560 3.3
101 Bob bob5 Record Record r’
/ i

: . / Record Record 102 f21 560 4.0
102 Charlie charlie7 / Record - . 460 -
103 David davel page page

f21 560 3.3
«‘ File
e What about relations?

f21 250 4.0
One/several file(s) per relation? Mixing records from correlated relations in one/several file(s)?

CSE462/562 (Spring 2022): Lecture 6 3

Database catalog

Column

» Catalogs are DBMS defined relations that

1
2
100
101

* stores meta-information about 1
* Relation schemas
* Physical storage format and location .
 And many other important internal states 2
e Can be implemented as regular relations 2
2
Table 100
TABLE /dbdata/1 100
COLUMN /dbdata/2 101
STUDENT /dbdata/100 101
ENROLLMENT /dbdata/101 101
101

CSE462/562 (Spring 2022): Lecture 6

N P O N P O W N P ODN -

3

TABID
TABNAME
TABFPATH
TABID
COLID
COLNAME
COLTYPNAME
SID

NAME
LOGIN

SID
SEMESTER
CNO
GRADE

TABID | COLID COLNAME COLTYPNAME

VARCHAR(64)
VARCHAR(256)
OID

INT2
VARCHAR(64)
VARCHAR(64)
SERIAL
VARCHAR(32)
VARCHAR(40)
INTEGER
CHAR(3)
INTEGER
DOUBLE

Record format: fixed-length

* Fixed-length record
e Assuming all fields F1, F2, F3, ... have known (maximum) length
e Base address B: may be a file offset or a memory address
e Lengths L1, L2, L3, ... can be found using system catalog

Null bitmap Fl F2 F3 F4
[#NF/S] <~ 11 —— L2 L3 L4
Base address (B) Address = B+L1+L2

#NF: number of nullable fields

 How to handle NULL values?
* Null bitmap
* Is this practical? How to deal with variable-length types (consider VARCHAR (n))?
* Waste of space (e.g., names are rarely very long, but we must reserve space for the longest name)

CSE462/562 (Spring 2022): Lecture 6

Record format: variable-length

 Variable-length record
* Two main approaches:
* Using offset array

* random access to fields given B, but takes more space

F2 F3 F4

i1o}20§30%50 T K

"""""""""""" e
*/ Using self-contained data field (with separator/encoded offset)

 Computed offsets (e.g., offset of F3 = L1 + L2); but is usually more compact
F1 F2 F3 F4

—~ 0! 5\01[105 “205

Base address (B) \/ | \/

Field Delimited by Special Symbols Field Delimited prefixed with its length
* Handling NULLs? Null bitmap!

* Many possible designs with minor tweaks for different space/time efficiency trade-offs
e (Can also combine both fixed-length and variablesdength record fermats

\ 4

Data alignment in records

e Alignment requirements?

» Alignment example: to read/write a 32-bit integer, it should be at some address mod 4 ==

* Most architecture has alignment requirements

* Some requires alignment (most RISC arch, e.g., ARM v5 or earlier)
* Some don’t but have restrictions/performance loss/atomicity issues (e.g., x86_64/newer ARM)

* By default, compilers automatically align values properly that for you

* DB records? Two choices:
* Pack everything, and memcpy the field before access
* Less efficient, but save space
* Align offsets manually
* More efficient field access, but waste space

CSE462/562 (Spring 2022): Lecture 6

struct A {
int32 t x;
intleo t y;
into4d t z;
} 7

// alignof (A)

// offsetof (A, x) ==
// offsetof (A, y) ==
// offsetof (A, =z

Page layout for fixed-length records

* Why not storing record consecutively in a file?
e Hard to update/delete!

 How do we store records in fixed-size pages?
* Fixed-length record: easy
* Not usually used as it wastes space

Slot 1
Slot 2
Free
et Space
Slot N

number
PACKED of records

Slot 1
Slot 2
Slot
Slot M
1

0

M ...
UNPACKED, BITMAP

CSE462/562 (Spring 2022): Lecture 6

321

\Y/ T—\
number
of slots

Page layout for variable-length records

 What about variable-length records?

* Solution: slotted data page Page |

Free space

Free space

offset
to the free space

N e 2 1 # SlOtS

Slot array 2 Siores offsets to the beginning of the page

Can move records within a page without changing its record id.

CSE462/562 (Spring 2022): Lecture 6 9

Page layout for variable-length record

 What about variable-length records?
* Solution: slotted data page Page |

Occupied space

Free space offset
to the free space
N . 2 1 # slots
Design space: ~
Slot array 2 Siores offsets to the beginning of the page

» Store record length with record / in slot array?
* Allow free space within the occupied space?

* Eager vs lazy compaction?
e Optional page header?

CSE462/562 (Spring 2022): Lecture 6 10

Organizing pages in a heap file

* Heap file is the most basic and common way of managing pages for a single relation
* Consists of a collection of fixed-size pages
* Pages/records are unordered

* Heap files must support
* Efficient insertion/deletion/update of records
* Efficient access of a record
 Efficient enumeration of all the records
* Management of free space (also managed by disk space manager/file system)

* Note
* A heap file does not necessarily map to a single file on FS
* A heap file can span multiple FS files (e.g., PostgreSQL)
* A file on FS does not necessarily only store pages for a single heap file
* All heap files are stored in a single FS File (i.e., single-file DBMS such as SQLite)
e Our course project Taco-DB: stores pages of different heap files across a number of files on FS

Organizing pages in a heap file

* Many possible alternatives and variants
* We consider the most representative two of them

CSE462/562 (Spring 2022): Lecture 6

12

Heap file alternative 1: doubly-linked lists

Meta
Page

S|

Data
Page

B |

N
P N N
N T T 'S

"

Allocated Pages

Free pages

Data Data
Page Page
2 N

The header page id and Heap file name must be stored someplace.
* Database catalog

Each page contains 2 ‘pointers’ plus data.

* What are these pointers? Page Number and/or File ID?

Supports sequential access

* Random access? Only if you know the page number (and the underlying file system supports random seek)

Does enumerating the pages through the next pointers always incur sequential 1/0?

* Not necessarily! Depending on how you allocate pages.

CSE462/562 (Spring 2022): Lecture 6

13

Heap file alternative 2: page directory

Header
Page

S

DIRECTORY

* The entry for a page can include the number of free bytes on the page.
* Or use free space bitmap on a contiguous space.

* The directory is a collection of pages; linked list implementation is just one alternative.

e Can also allocate contiguous pages for page directory for faster random access
and/or using hierarchical page directory

* PD is much smaller than the all data pages!

CSE462/562 (Spring 2022): Lecture 6

14

Revisit of the big picture of file organization

* Fields = Records — Pages — Heap Files (— Files on File System) — Storage Device

 What we support:

* Insert a record -- easy
Update/delete of a record with known record ID
Enumerating all data records

How do | find the student with name “Alice”?
* Linear search for record ID
Can we do better?
* Binary search? Binary tree? B-tree? Hash table? Partitioning
* Do we always need to store records as a whole?
* Needs alternative file organization

* Sometimes also called access methods (a name comes from mainframe OS)
» data structures and algorithms for sequentially or randomly retrieving data by keys

CSE462/562 (Spring 2022): Lecture 6

15

Alternative file organization

* Heap file: unordered, good for enumerating all records

 Sorted file: best for random retrieval by search key and/or in search key order

* A search key is a set of attributes (can be a single attribute) that the underlying file is sorted w.r.t.
* Has nothing to do with (primary/candidate) keys!

* Must be based on files that support random access of data pages with consecutive page numbers
e e.g., for a sorted file with M pages, page numbers are0, 1, 2, ..., M-1.
* Need support for random access of page i efficiently without linear traversal

e Compare the costs of record insertion/deletion/search in sorted file vs heap file?

Cost Model for Analysis

* We assume fixed-length records and ignore CPU costs, for simplicity:
N: the number of records
* B: Number of records per page

* T: Number of matching record in a search

* Cost model: # of I/Os (also ignoring pre-fetching and/or random vs sequential access), and thus even
|/O cost is loosely approximated.

* Average-case analysis (unless o/w specified); based on several simplistic assumptions.
* Good enough for knowing the overall trends.
* Reality is a lot messier than this.

* Additional assumptions
* Single record to insert and delete; unless o/w specified
» Equality selection - exactly one match; unless o/w specified
* Heap Files:
* Insert always appends to end of file.
e Sorted Files:
* Two alternatives:
* No need to compact the file after deletions.
* Files compacted after deletions.
* Selections on search key (the attribute(s) used for sorting).

17

Cost of operations

N: Number of records
N/B: The number of data pages
B: Number of records per page

T: Number of matching records

matching record

of 1/Os Heap File Sorted File
Scan all records N/B N/B
Equality Search: if we | 0.5N/B, log, (N/B)
know there’sonly 1 | Best Case: 1, Best case: 1.

Worst Case: N/B

Range Search

for sorted file

N/B log, (N/B) + #match pages =
log, (N/B) + T/B
Insert: compact for 2 log, (N/B) + N/B (read + write
sorted file for 0.5N/B pages on average)
Delete: no compact 0.5N/B + 1 log, (N/B) + 1

CSE462/562 (Spring 2022): Lecture 6

18

Cost of operations

N: Number of records
N/B: The number of data pages
B: Number of records per page

T: Number of matching records

matching record

of 1/Os Heap File Sorted File
Scan all records N/B N/B
Equality Search: if we | 0.5N/B, log, (N/B)
know there’sonly 1 | Best Case: 1, Best case: 1.

Worst Case: N/B

Range Search

sorted file

N/B log, (N/B) + #match pages =
log, (N/B) + T/B
Insert: compact for 2 log, (N/B) + N/B (read + write
sorted file for 0.5N/B pages on average)
Delete: compactfor | g5n/B+1 log, (N/B) + N/B

CSE462/562 (Spring 2022): Lecture 6

19

Alternative file organization (others)

Heap file: unordered, good for enumerating all records

Sorted file: best for random retrieval by search key and/or in search key order

* A search key is a set of attributes (can be a single attribute) that the underlying file is sorted w.r.t.
* Has nothing to do with (primary/candidate) keys!

e Columnar store: store individual column/column sets in separate files
* Also called vertical partitioning
* Good for queries with projection -- saves I/0, SIMD friendly

Index files (next lecture)
e Clustered index vs unclustered index
* Primary index vs secondary index

CSE462/562 (Spring 2022): Lecture 6

20

Summary

* This lecture
* Data storage layout
* File organization
* Cost analysis of heap file and sorted file access methods

* Next time:
* Index files

 HW1 solution released today

* Project 2 released today

* Dueon 3/8/2022, 11:59 pm EST; start early and read the project page!
e Write-up due on 3/10/2022, 11:59 pm EST.

CSE462/562 (Spring 2022): Lecture 6

21

