
CSE462/562: Database Systems (Spring 22)

Lecture 7: Index

2/22/2022



Index
• Sometimes, we want to retrieve records by specifying the values in one or more fields

• Find all students in CSE

• Find all students admitted in year 2021

• Not very efficient to handle with heap file/sorted file
• Heap file: always need to linear scan

• Sorted file: only (somewhat) efficient for the sorted column

• i.e., can’t use binary search on a file sorted on major for specified adm_year

CSE462/562 (Spring 2022): Lecture 7 2

sid name major adm_year

100 Alice CS 2021

101 Bob CE 2020

102 Charlie CS 2021

103 David CS 2020

student

Meta
Page

Allocated Pages

Record

Record Record
Record

100 0 2 70 40 2



Index
• An index: a data structure that speeds up search on a few fields on a relation

• Maps index key 𝑘 to data entry 𝑘∗

• Any subset of the columns of a relation can be the index key 𝑘
• Index key is not (candidate/primary) key; doesn’t have to be unique

• Data entry 𝑘∗

• e.g., the data record itself
• Store the key k with the data entry 𝑘∗?

• Sometimes we do, sometimes we don’t
• Essentially an associative container, but more with more functionalities

• std::map/std::unordered_map in C++
• java.util.TreeMap/java.util.HashMap in Java
• dictionary in Python

CSE462/562 (Spring 2022): Lecture 7 3

sid name major adm_year

100 Alice CS 2021

101 Bob CE 2020

102 Charlie CS 2021

103 David CS 2020

student

Meta
Page

Allocated Pages

Record

Record Record
Record

Index

100 0 2 70 40 2



Index classification
• Representation of data entries in index

• i.e., what kind of info is the index actually storing?

• 3 alternatives

• What selections does it support

• Indexing techniques: tree/hash/other

• Primary vs. Secondary Indexes

• Unique indexes

• Clustered vs. Unclustered Indexes

• Single Key vs. Composite Indexes

CSE462/562 (Spring 2022): Lecture 7 4



Alternatives for the data entry 𝒌∗ in index
• Three alternatives:

• Alternative 1: the record itself (with its key 𝑘)

• Alternative 2: <𝑘, record ID of a matching record>

• Alternative 3: <k, list of record IDs of matching records>

• Choice of the alternative is orthogonal to the indexing technique
• Example of indexing techniques: B+-Tree, hash index, R-Tree, KD-Tree, and etc…

• A heap/sorted file can have multiple indexes
• e.g., a B-tree index on adm_year and a hash index on major for the heap file of student relation

• each usually stored as a separate file

• usually at most one alternative-1 index per file (why?)

CSE462/562 (Spring 2022): Lecture 7 5



More on the alternatives of the data entries in index

• Alternative 1: actual data record (with its key 𝑘∗)
• If this is used, it is another file organization for data records (just like heap file/sorted file)

• At most 1 alt-1 index

• Good: avoids record id/pointer lookups

• Bad: less efficient to maintain for insertion/deletion/update

• Alternative 2 & 3
<𝑘, record id of a matching record> or <𝑘, list of record ids of matching records>
• Good: Can have multiple alt-2/alt-3 indexes

• Good: more efficient to maintain than alternative 1

• Bad: additional record id/pointer lookup (usually random I/O)

• How to work around it? Include non-key columns.

• Alt-3 is more compact than alt-2, but the variation in data entry size can be much larger

• Harder to deal with when they need to be split/merged

• Alt-3: key skew could lead to extremely long record id lists

• Workaround: split them into shorter alt-3 data entries that fit into individual data pages

CSE462/562 (Spring 2022): Lecture 7 6



Index operations
• Inserts a data entry the index

• Deletes a data entry from the index

• Updates the value of a data entry
• Can you change the index key of a data entry?

• Search and scan
• Point lookup: find the data entry (entries) of a search key

• Range scan: enumerate all the data entries in a range of search keys

• e.g., adm_year ∈ [2020, 2021], adm_year > 2020, adm_year ≤ 2015

• sometimes the search key is a subset of the index key

• Full index scan: enumerate all data entries in an index

• Might be useful for ordering/efficiency

• Other search operations:

• String prefix matching

• 2-D, 3-D, or higher dimensional range search

• …
CSE462/562 (Spring 2022): Lecture 7 7



Index Types
• Tree and hash indexes are the two most common categories of indexes

• More details in the next 3-4 lectures

• Example: B-Tree and static hash index

CSE462/562 (Spring 2022): Lecture 7 8



Tree-based indexes

CSE462/562 (Spring 2022): Lecture 7 9

P0 K 1 P 1 K 2 P 2 K m P m

one  index entry

Internal

Pages

Pages 

(Sorted by search key)

Leaf

• Leaf pages contain data entries, and are chained (prev & next page ids)

• Internal pages have index entries; only used to direct searches

• Good for equality and range selection

• Results are ordered by index key

another index entry yet another index entry

An internal page



Example: B-Tree index

CSE462/562 (Spring 2022): Lecture 7 10

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

Data Entries <  17
Data Entries >=  17

Note how data entries
in leaf level are sorted

Pointers to Actual 
Data Pages  (rid)

Heap File for the Data Records

• Technically, this is the B+-Tree index, not the original B-Tree
• Difference: B+-Tree only stores keys rather than data entries in internal nodes

• But most DBMS uses B+-Tree, but use the term B-Tree…



Hash-based indexes
• Good for equality selections. 

• Index is a collection of buckets. 
• Bucket = primary page plus zero or more overflow pages. 

• Buckets contain data entries.

• Hashing function h:  h(r) = bucket in which (data entry for) record r belongs.
h looks at the index key fields of r.
• No need for “index entries” in this scheme.

CSE462/562 (Spring 2022): Lecture 7 11



Example: static hashing index
• Fixed number of primary pages = # of buckets (denoted as M)

• allocated sequentially; never de-allocated

• allocate overflow pages if needed

• h(k) % M = the bucket id for a data entry with index key k. 

CSE462/562 (Spring 2022): Lecture 7 12

h(key) mod M

h
key

Primary bucket pages Overflow pages

1

0

M-1

2*

3*

14*

16*

7* 5*

8*



Clustered vs unclustered index
• Clustered index

• An index over a file such that the order of the data records is the same as, or “close to” that of the 
index data entries

• A file can only be clustered on one index key

• Sorted file can be used for clustering, but may be expensive to maintain

• Can we use heap file? Yes, but with some tricks.

• Using Alternative 1 in a B+-tree implies clustered, but not vice-versa.

• aka clustered file

CSE462/562 (Spring 2022): Lecture 7 13



Clustered vs unclustered index
• Assume alternative 2 for data entries, and data records are stored in a heap file.

• To build clustered index

• first sort the heap file, with some free space on each block for future updates/inserts.

• The percentage of free space in the initial sort/append is called fill factor

• Overflow pages may be needed for inserts/updates. 

• Thus, the order of data records is “close to”, if not not identical to, the sort order.

CSE462/562 (Spring 2022): Lecture 7 14

Index entries

Data entries

direct search for 

(Index File)

(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED



Access cost of clustered vs unclustered index
• Cost of accessing data records through index varies greatly based on whether index is clustered!

• e.g. range scan with 𝑛 matching data records in a B-Tree

• assuming we ignore the buffer pool’s effect

• clustered: 𝐻 +
𝑛

𝑀
I/Os

• unclustered: 𝐻 +
𝑛

𝐵
− 1 + 𝑛 I/Os

CSE462/562 (Spring 2022): Lecture 7 15

Index entries

Data entries

direct search for 

(Index File)

(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED

H = number 
of levels

B data entries
per leaf page
on average

M data records per 
heap page on average



Tradeoffs between clustered and unclustered indexes

CSE462/562 (Spring 2022): Lecture 7 16

• What are the tradeoffs?

• Clustered Pros
• Efficient for range searches for records: sequential access in a sorted file

• May be able to do some types of compression

• Locality benefits

• Clustered Cons
• Expensive to maintain (on the fly or sloppy with reorganization)

• Unclustered
• Pros: easy and efficient to maintain, allow multiple indexes 

• Cons: expensive for range scans for records: 1 random IO for each matching record.



Primary, secondary and unique index
• Primary index: index key contains the primary key

• e.g., for student table, an index over (sid) is its primary index

• at most one per relation

• Unique index: index key contains a candidate key
• Primary index is a unique index, but not vice versa

• Can be clustered or unclustered.

• Secondary index (not well-defined but often used)
• It may have different meanings

• an index that is not indexed over the primary key

• unclustered

• or both

CSE462/562 (Spring 2022): Lecture 7 17



• There might be alternative file organization also considered/called as “index”
• e.g., columnstore index in MS SQL Server

• Good compression, fast scan, but more expensive to update in general

• What it really means: 
• It may be used as the primary storage format (aka clustered columnstore)

• i.e., may be thought of as a clustered file or a file organization
• It may also be used as a copy of the (subset of) data (aka unclustered columnstore)

• i.e., may be thought of as a secondary and unclustered index

• Takeaway: always read the fine prints of DBMS documentation

Unconventional “index”

CSE462/562 (Spring 2022): Lecture 7 18

sid

100

101

adm_year

2021

2020

name

Charlie

David

adm_year

2021

2020

sid

102

103

name

Alice

Bob

major

CS

CE

major

CS

CS

row group 1

row group 2

Column segment: 
compressed and has 
min/max stats 



Summary
• This lecture

• Index classification and types

• Index operations

• HW2 released today

• No submission needed

• Solution will be released in one week

• Next time
• Hash indexes

CSE462/562 (Spring 2022): Lecture 7 19


