CSE462/562: Database Systems (Spring 22)

Lecture 8: Hash Index
2/24/2022

University at Buffalo
s Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Hashing basics

* Hash function h: U — [m]
* U: key domain, [m] ={0,1,2,..m — 1}
* Deterministic
* Examples:
* Multiplicative hashing for integers: h(x) = |m - frac(x * a)|
* a:areal number with a good mixture of Os and 1s
* frac(y): the fractional part of a real number

* can be efficiently implemented as h(x) = (%) mod m for appropriately chosen integers a, g, m
e String hashing: SHA-1, MD5
» often available off the shelf
* can combine a salt to create different hash functions
* e.g., SHA-1(concat(a, s)) for some randomly chosen string a
* not that secure, but works for efficiency

CSE462/562 (Spring 2022): Lecture 8

Hashing basics

* (In-memory) hash table
* With a hash function h: U - [m]

m-2

m-1

CSE462/562 (Spring 2022): Lecture 8

Hashing basics

* (In-memory) hash table
* With a hash function h: U — [m]
 How to handle collision?

I\JBN

* Closed hashing vs open hashing

* Sometimes also called open addressing vs closed addressing

closed hashing with
linear probing

CSE462/562 (Spring 2022): Lecture 8

2 3 m-2 m-1
X Z Y
open hashing
with linked list
2 3 m-2 m-1
|
v \ 2
X Yy
v
Z

Hash-based index

* Hash-based index are best for equality searches
* Does not support range searches

» Difference from in-memory hash table
* Page oriented: multiple data entries per hash bucket
e Usually don’t use closed hashing -- hard to physically delete a data entry
* Rehashing is very expensive! (reading + writing all the pages)

 Static vs dynamic hashing techniques
* Static: fixed hash value domain [m]
* Easy to implement, no rehashing overhead
* Inefficient if number of records is large
* Dynamic: grow hash value domain over time
* Sometimes need to rehash, which are expensive
* How to amortize cost?
* Scales gracefully with number of records if choice of hash function is good

CSE462/562 (Spring 2022): Lecture 8

Static hashing

* # primary pages fixed, allocated sequentially, never de-allocated; overflow pages if
needed.

* h(k) mod M = bucket to which data entry with key k belongs. (M = # of buckets)

2* 8*—% © o o

h(key) mod M

7* 14*_ 5* — T o o o

key B
—(®)

M-13* 16*+——> =+ - -

Primary bucket pages Overflow pages

CSE462/562 (Spring 2022): Lecture 8

Static hashing

e Buckets contain data entries.

* Hash function works on search key field(s) of record r.
e Use its value MOD N to distribute values over range O ... N-1.

* Long overflow chains can develop over time and degrade performance.
* Extendible and Linear Hashing: dynamic techniques to fix this problem.

2* 8* o EEEE—— -3 - <

0
h(key) mod M

7T

5* — > o o o

key B U
—(®)

M-13 16*t+—> - - -

Primary bucket pages Overflow pages

CSE462/562 (Spring 2022): Lecture 8

Extendible hashing

* When the primary page of a bucket gets full,
* why not doubling the number of buckets and rehash?
* reading and writing all the pages are very expensive!

 |ldea: use directory of pointers to buckets (these pointers are page numbers)
* To double number of buckets, only need to double the directory size
* Only split the bucket about to overflow. No overflow page!

* Why this works?
* Directory is much smaller than the data files
e Uses a family of hash functions hp: U — [2P°]
* Trick is how to switch from hp to hp 1 without rehashing for doubling number of buckets

CSE462/562 (Spring 2022): Lecture 8

Extendible hashing example

* Hash function h: U — [232] (or [2°*] depending on the type of hash value)
* Define hp (k) = h(k) mod 2P -- therefore hy: U - [2P]
* Essentially taking the lowest i bits of the key hash as the hash value

* Directory: an array of pointers (page numbers) of size 27

e D: global depth

* Each points to a bucket p; (not necessarily unique ones)
» Adata entry with key k isin p; iff hp (k) = i

* Each bucket has a local depth d;

e Can be used to determine whether this

bucket is currently shared by two hash values 00 /

A bucket is not shared iff D ==d i

* hp(k) may be different in a bucket
* Question: what’s in common?
* hgy (k) are always the same

2 | LOCAL DEPT
4* 12* 32* 16*
GLOBAL DEPTV
b 7* 13*
///’////2'
01
10 ~ - o
11 7 10°
DIRECTORY ‘.\ we denote a

CSE462/562 (Spring 2022): Lecture 8

value by h(r).

H
Bucket A

Bucket B

Bucket C

data entry its hash

Handling inserts in extendible hashing

* Find the bucket p; where the insertion belongs

* If there’s room, insert it into p;

* If not, split p; before insertion

increment the local depth d;
allocate a new page with the same (new) local depth
redistribute the data entries with the new page

double the global depth if local depth is now larger
than global depth

 also duplicate the old directory if global depth is
doubled

set the pointer for the new page in the directory

4* 12* 32* 16*

1* 5* 7* 13*

10*

00 i -

01

10~

11 7
DIRECTORY

CSE462/562 (Spring 2022): Lecture 8

Bucket A

Bucket B

Bucket C

10

Example: inserting 21%,19%, 157

« 21 = (10101),
19 = (10011),
* 15 = (01111),
4 12+ 32+ 164 BUCKELA
00 ///7 1 5 211y UK Bh(k) mod 2% =1
o1l —1
1(1) =~ = Bucket C
N
DIRECTO R\ -
7% 10* 15% Bucket D

h(k) mod 2% = 3

CSE462/562 (Spring 2022): Lecture 8 11

Example: inserting 20™ (causing doubling)
. 20 = (10100),

 Last 2 bits (00) tell us 20* belongs to A or E
Last 3 bits needed to tell which. T3o% 164 BUCKetA
* Global depth of directory: Max # of bits needed to tell DIRECTORY
which bucket an entry belongs to.
* Local depth of a bucket: # of bits used to determine if an :
try bel to this bucket. i "
entry beiongs to tnis U.C e . 000 // 1* 5% 21* 13* Bucket B
* When does bucket split cause directory —
doubling? 001
« Before insert, local depth of bucket = global depth. Insert 010 ™~
causes local depth to become > global depth; directory is 011 Bucket C
doubled by copying it over and “fixing’ pointer to split A
image page. 100 T
12(]5 Y, 7% 19* 15¢* Bucket D
111 i N
4 12% 20 ucket

CSE462/562 (Spring 2022): Lecture 8 12

Notes on extendible hashing

* |f directory fits in memory, equality search answered with one disk access; else two.
* If the distribution of hash values is skewed, directory can grow large.
* Multiple entries with same hash value cause problems!
* What if we still don’t have space after split?

* Delete: If removal of data entry makes bucket empty, can be merged with “split image’.
If each directory element points to same bucket as its split image, can halve directory.

CSE462/562 (Spring 2022): Lecture 8

13

Linear hashing

* Another dynamic hashing scheme that handles long overflow chains without using a
directory.

* Page to split is chosen in a round-robin fashion, not where it will overflow
* LH allows using temporary overflow pages
 If the hash values are reasonably uniform -- overflows will be resolved quickly

CSE462/562 (Spring 2022): Lecture 8

14

Handling insertion in linear hashing

* Also uses a family of hash functions
* h;(k) = h(k) mod (2'N)
* Initial size N does not need to be power of 2

Proceeds in “rounds”.
Current round numberis called levell >= 0

There are N; = N * 2! buckets at the beginning
e Next initially set to O
* Invariant:
* Buckets [0, Next) has been split in this round
* Buckets [Next, N;) are to be split in this round

On insert
e |If the bucket for insertion is full
* Add an overflow page and insert the data entry
e Split Next bucket and increment Next
* Use h;,4 toredistribute entries for a split bucket

Round ends when Next = N,
 Startanewround, Next « 0,l <[+ 1

000
001
010
011

00
01
10
11

N =41=0
Next =0

Primary pages
32* | 44* | 36*
9* | 25% | 5%

14* | 18* | 10* | 30*
31* | 35* | 7* 11%*

CSE462/562 (Spring 2022): Lecture 8

15

Example: insert 43* (101011),

000
001
010
011
100

Overflow pages

N =41=0
Next =1
N Primary pages
0
00 3%
01 N\ 9* | 25*% | 5*
10 14* | 18* | 10* | 30*
11 31*% | 35% | 7* | 11*
00 44* | 36*

43*

CSE462/562 (Spring 2022): Lecture 8

16

Example: end of a round

Insert 50* (110010),

000
001
010
011
100
101
110

00
01
10
11
00
01
10

N =41=0
Next = 3

Primary pages

Overflow pages

32*

9* 25%

66* | 18* | 10* | 34*
31* | 35*% | 7* 11*
44* | 36*

5* 37* | 29*

14* | 30* | 22*

\ 4

43*

CSE462/562 (Spring 2022): Lecture 8

17

Example: end of a round (cont’d)

Insert 50* (110010),

000
001
010
011
100
101
110
111

N =41[1=1
Next =0

Primary pages

Overflow pages

32*

9* 25%

66* | 18* | 10* | 34*
43* | 35* | 11*

44* | 36*

5* 37* | 29*

14* | 30* | 22*

31*% [7*

\ 4

50*

CSE462/562 (Spring 2022): Lecture 8

18

Linear Hashing Search Algorithm

* To find the bucket for a data entry k*
» Compute h;(k) = h(k) mod (2'N)

* If hj(k) = Next

» Bucket h;(k) is the bucket for k* (because it hasn’t been split in this round)

* Otherwise,

« k* could belong to either bucket h; (k) or bucket h;(k) + 2!N

» Compute h; (k) to find out

Find 32*?
Find 14*?
Find 43*?

000
001
010
011
100

00
01
10
11
00

N =41=0
Next =1

Primary pages

Overflow pages

32%*

9* 25*% | 5*

14* | 18* | 10* | 30*
31* | 35*% | 7% 11*
44* | 36*

43*

CSE462/562 (Spring 2022): Lecture 8

19

Notes on linear hashing

e |f hash values are skewed

* because of key skew or bad hash function
* then will still have long overflow chains

* Delete: the reverse of insertion algorithm

CSE462/562 (Spring 2022): Lecture 8

20

Summary

* This lecture
* Hashing basics
e Static hashing
* Dynamic hashing
* Extendible hashing
* Linear hashing

e Next lecture

 How to choose a good hash function
* Hash-based sketches

CSE462/562 (Spring 2022): Lecture 8

21

