
CSE462/562: Database Systems (Spring 22)

Lecture 8: Hash Index

2/24/2022

Hashing basics
• Hash function ℎ: 𝑈 → 𝑚

• 𝑈: key domain, 𝑚 = 0,1,2, …𝑚 − 1

• Deterministic

• Examples:

• Multiplicative hashing for integers: ℎ 𝑥 = 𝑚 ⋅ 𝑓𝑟𝑎𝑐 𝑥 ∗ 𝑎

• 𝑎: a real number with a good mixture of 0s and 1s

• 𝑓𝑟𝑎𝑐 𝑦 : the fractional part of a real number

• can be efficiently implemented as ℎ 𝑥 =
𝑎𝑥

2𝑞
𝑚𝑜𝑑 𝑚 for appropriately chosen integers a, q, m

• String hashing: SHA-1, MD5

• often available off the shelf

• can combine a salt to create different hash functions

• e.g., SHA-1(concat(a, s)) for some randomly chosen string 𝑎

• not that secure, but works for efficiency

CSE462/562 (Spring 2022): Lecture 8 2

Hashing basics
• (In-memory) hash table

• With a hash function ℎ: 𝑈 → 𝑚

CSE462/562 (Spring 2022): Lecture 8 3

0 1 2 3 … m-2 m-1

h(x) = 2
h(y) = m-2

x y

Hashing basics
• (In-memory) hash table

• With a hash function ℎ: 𝑈 → 𝑚
• How to handle collision?

• Closed hashing vs open hashing
• Sometimes also called open addressing vs closed addressing

CSE462/562 (Spring 2022): Lecture 8 4

0 1 2 3 … m-2 m-1

h(x) = 2
h(y) = m-2
h(z) = 2

x y

0 1 2 3 … m-2 m-1

x y

closed hashing with
linear probing

z

open hashing
with linked list

z

Hash-based index
• Hash-based index are best for equality searches

• Does not support range searches

• Difference from in-memory hash table
• Page oriented: multiple data entries per hash bucket
• Usually don’t use closed hashing -- hard to physically delete a data entry
• Rehashing is very expensive! (reading + writing all the pages)

• Static vs dynamic hashing techniques
• Static: fixed hash value domain 𝑚

• Easy to implement, no rehashing overhead
• Inefficient if number of records is large

• Dynamic: grow hash value domain over time
• Sometimes need to rehash, which are expensive

• How to amortize cost?
• Scales gracefully with number of records if choice of hash function is good

CSE462/562 (Spring 2022): Lecture 8 5

Static hashing
• # primary pages fixed, allocated sequentially, never de-allocated; overflow pages if

needed.

• ℎ(𝑘) 𝑚𝑜𝑑 𝑀 = bucket to which data entry with key k belongs. (𝑀 = # of buckets)

CSE462/562 (Spring 2022): Lecture 8 6

h(key) mod M

h
key

Primary bucket pages Overflow pages

1

0

M-1

2*

3*

14*

16*

7* 5*

8*

Static hashing
• Buckets contain data entries.

• Hash function works on search key field(s) of record r.
• Use its value MOD N to distribute values over range 0 ... N-1.

• Long overflow chains can develop over time and degrade performance.
• Extendible and Linear Hashing: dynamic techniques to fix this problem.

CSE462/562 (Spring 2022): Lecture 8 7

h(key) mod M

h
key

Primary bucket pages Overflow pages

1

0

M-1

2*

3*

14*

16*

7* 5*

8*

Extendible hashing
• When the primary page of a bucket gets full,

• why not doubling the number of buckets and rehash?

• reading and writing all the pages are very expensive!

• Idea: use directory of pointers to buckets (these pointers are page numbers)
• To double number of buckets, only need to double the directory size

• Only split the bucket about to overflow. No overflow page!

• Why this works?
• Directory is much smaller than the data files

• Uses a family of hash functions ℎ𝐷: 𝑈 → [2𝐷]

• Trick is how to switch from ℎ𝐷 to ℎ𝐷+1 without rehashing for doubling number of buckets

CSE462/562 (Spring 2022): Lecture 8 8

2

1

Extendible hashing example
• Hash function ℎ:𝑈 → 232 (or [264] depending on the type of hash value)

• Define ℎ𝐷 𝑘 = ℎ 𝑘 𝑚𝑜𝑑 2𝐷 -- therefore ℎ𝐷: 𝑈 → [2𝐷]

• Essentially taking the lowest 𝑖 bits of the key hash as the hash value

• Directory: an array of pointers (page numbers) of size 2𝐷

• D: global depth

• Each points to a bucket 𝑝𝑖 (not necessarily unique ones)

• A data entry with key 𝑘 is in 𝑝𝑖 iff ℎ𝐷 𝑘 = 𝑖

• Each bucket has a local depth 𝑑𝑖
• Can be used to determine whether this

bucket is currently shared by two hash values
A bucket is not shared iff D == d_i

• ℎ𝐷 𝑘 may be different in a bucket

• Question: what’s in common?

• ℎ𝑑𝑖 𝑘 are always the same

CSE462/562 (Spring 2022): Lecture 8 9

2

2

13*00

01

10

11

LOCAL DEPTH

GLOBAL DEPTH

DIRECTORY

Bucket A

Bucket B

Bucket C
10*

1* 7*

4* 12* 32* 16*

5*

we denote a data entry its hash
value by h(r).

Handling inserts in extendible hashing
• Find the bucket 𝑝𝑖 where the insertion belongs

• If there’s room, insert it into 𝑝𝑖

• If not, split 𝑝𝑖 before insertion
• increment the local depth 𝑑𝑖
• allocate a new page with the same (new) local depth

• redistribute the data entries with the new page

• double the global depth if local depth is now larger
than global depth

• also duplicate the old directory if global depth is
doubled

• set the pointer for the new page in the directory

CSE462/562 (Spring 2022): Lecture 8 10

2

12

2

13*00

01

10

11

DIRECTORY

Bucket A

Bucket B

Bucket C
10*

1* 7*

4* 12* 32* 16*

5*

Example: inserting 21∗, 19∗, 15∗

• 21 = 10101 2

• 19 = 10011 2

• 15 = 01111 2

CSE462/562 (Spring 2022): Lecture 8 11

2

12

2

13*00

01

10

11

DIRECTORY

Bucket A

Bucket B

Bucket C
10*

1* 7*

4* 12* 32* 16*

5*

2

2

Bucket D7*

ℎ 𝑘 𝑚𝑜𝑑 22 = 1

ℎ 𝑘 𝑚𝑜𝑑 22 = 3

21*

19* 15*

Example: inserting 20∗ (causing doubling)
• 20 = 10100 2

• Last 2 bits (00) tell us 20* belongs to A or E
Last 3 bits needed to tell which.
• Global depth of directory: Max # of bits needed to tell

which bucket an entry belongs to.

• Local depth of a bucket: # of bits used to determine if an
entry belongs to this bucket.

• When does bucket split cause directory
doubling?
• Before insert, local depth of bucket = global depth. Insert

causes local depth to become > global depth; directory is
doubled by copying it over and `fixing’ pointer to split
image page.

CSE462/562 (Spring 2022): Lecture 8 12

2

22

2

13*00

01

10

11

DIRECTORY

Bucket A

Bucket B

Bucket C
10*

1* 21*

4* 12* 32* 16*

5*

2

Bucket D7* 19* 15*

3

Bucket E

3

4* 12*

3

0

0

0

0

100

101

110

111
20*

Notes on extendible hashing
• If directory fits in memory, equality search answered with one disk access; else two.

• If the distribution of hash values is skewed, directory can grow large.

• Multiple entries with same hash value cause problems!

• What if we still don’t have space after split?

• Delete: If removal of data entry makes bucket empty, can be merged with `split image’.
If each directory element points to same bucket as its split image, can halve directory.

CSE462/562 (Spring 2022): Lecture 8 13

Linear hashing
• Another dynamic hashing scheme that handles long overflow chains without using a

directory.

• Page to split is chosen in a round-robin fashion, not where it will overflow
• LH allows using temporary overflow pages

• If the hash values are reasonably uniform -- overflows will be resolved quickly

CSE462/562 (Spring 2022): Lecture 8 14

Handling insertion in linear hashing
• Also uses a family of hash functions

• ℎ𝑖 𝑘 = ℎ 𝑘 𝑚𝑜𝑑 2𝑖𝑁

• Initial size 𝑁 does not need to be power of 2

• Proceeds in “rounds”.
Current round number is called level 𝑙 >= 0

• There are 𝑁𝑙 = 𝑁 ∗ 2𝑙 buckets at the beginning
• Next initially set to 0

• Invariant:

• Buckets [0, Next) has been split in this round

• Buckets [Next, 𝑁𝑙) are to be split in this round

• On insert
• If the bucket for insertion is full

• Add an overflow page and insert the data entry

• Split Next bucket and increment Next

• Use ℎ𝑙+1 to redistribute entries for a split bucket

• Round ends when 𝑁𝑒𝑥𝑡 = 𝑁𝑙
• Start a new round, 𝑁𝑒𝑥𝑡 ← 0, 𝑙 ← 𝑙 + 1

CSE462/562 (Spring 2022): Lecture 8 15

32* 44* 36*

9* 25* 5*

14* 18* 10* 30*

31* 35* 7* 11*

Primary pages
ℎ0

00

01

10

11

𝑁 = 4, 𝑙 = 0

Next = 0

ℎ1 ℎ0

000 00

001 01

010 10

011 11

Example: insert 43∗ 101011 2

CSE462/562 (Spring 2022): Lecture 8 16

32* 44* 36*

9* 25* 5*

14* 18* 10* 30*

31* 35* 7* 11*

Primary pages

𝑁 = 4, 𝑙 = 0

Next = 0

ℎ1 ℎ0

000 00

001 01

010 10

011 11 43*

ℎ1 ℎ0

000 00

001 01

010 10

011 11

100 00

32* 44* 36*

9* 25* 5*

14* 18* 10* 30*

31* 35* 7* 11*

44* 36*

Next = 1

Overflow pages

Example: end of a round

CSE462/562 (Spring 2022): Lecture 8 17

Insert 50∗ 110010 2

32*

9* 25*

66* 18* 10* 34*

31* 35* 7* 11*

44* 36*

5* 37* 29*

14* 30* 22*

Primary pages

𝑁 = 4, 𝑙 = 0

Next = 3

ℎ1 ℎ0

000 00

001 01

010 10

011 11

100 00

101 01

110 10

Overflow pages

43*

Example: end of a round (cont’d)

CSE462/562 (Spring 2022): Lecture 8 18

Insert 50∗ 110010 2

32*

9* 25*

66* 18* 10* 34*

31* 35* 7* 11*

44* 36*

5* 37* 29*

14* 30* 22*

Primary pages

𝑁 = 4, 𝑙 = 0

Next = 3

ℎ1 ℎ0

000 00

001 01

010 10

011 11

100 00

101 01

110 10

111 11

Overflow pages

43*

50*

43* 35* 11*

31* 7*

𝑁 = 4, 𝑙 = 1

Next = 0

ℎ1

000

001

010

011

100

101

110

111

Linear Hashing Search Algorithm
• To find the bucket for a data entry 𝑘∗

• Compute ℎ𝑙 𝑘 = ℎ 𝑘 𝑚𝑜𝑑 2𝑙𝑁

• If ℎ𝑙 𝑘 ≥ 𝑁𝑒𝑥𝑡

• Bucket ℎ𝑙 𝑘 is the bucket for 𝑘∗ (because it hasn’t been split in this round)

• Otherwise,

• 𝑘∗ could belong to either bucket ℎ𝑙 𝑘 or bucket ℎ𝑙 𝑘 + 2𝑙𝑁

• Compute ℎ𝑙+1 𝑘 to find out

CSE462/562 (Spring 2022): Lecture 8 19

32* 44* 36*

9* 25* 5*

14* 18* 10* 30*

31* 35* 7* 11*

Primary pages

𝑁 = 4, 𝑙 = 0

Next = 0

ℎ1 ℎ0

000 00

001 01

010 10

011 11 43*

ℎ1 ℎ0

000 00

001 01

010 10

011 11

100 00

32* 44* 36*

9* 25* 5*

14* 18* 10* 30*

31* 35* 7* 11*

44* 36*

Next = 1

Overflow pages

Find 32∗?
Find 14∗?
Find 43∗?

Notes on linear hashing
• If hash values are skewed

• because of key skew or bad hash function

• then will still have long overflow chains

• Delete: the reverse of insertion algorithm

CSE462/562 (Spring 2022): Lecture 8 20

Summary
• This lecture

• Hashing basics

• Static hashing

• Dynamic hashing

• Extendible hashing

• Linear hashing

• Next lecture
• How to choose a good hash function

• Hash-based sketches

CSE462/562 (Spring 2022): Lecture 8 21

