
CSE462/562: Database Systems (Spring 22)

Lecture 9: Hashing Techniques

3/1/2022

Logistics updates
• Poll for final exam alternative date for those with conflicts

• 2-day extension to project 2
• Code due on 3/10, 11:59 pm. Write-up due on 3/12, 11:59 pm.

• Project 3 will still be released on 3/10

CSE462/562 (Spring 2022): Lecture 9 2

In this lecture
• Composite key in hash index

• How to design a good hash function?

CSE462/562 (Spring 2022): Lecture 9 3

Composite keys in hash index
• Composite key: multiple fields as the key (f1, f2, …, fk)

• How to handle composite keys in hash index?
• Combine the hash values of each field together

• Many libs available, e.g., boost::hash_combine, absl::Hash::combine(), etc …

e.g., in boost:
seed ^= hash_value + 0x9e3779b9 + (seed<<6) + (seed>>2);

• Search with composite keys
• Must specify all the keys, equality search only

• Can’t perform partial key search

• e.g., hash index on (sid, login)

• may be used for predicate sid = 12345 AND login = ‘alice’

• but not sid = 12345, nor loging = ‘Alice’

CSE462/562 (Spring 2022): Lecture 9 4

What might go wrong with hashing?
• Too many items with the same key

• Extendible hashing and linear hashing will also fail when that happens

• Why can that happen?
• Too many entries with the same key?

• Not much that we can do, but we can try to incorporate other fields to make the keys distinct if
it’s possible from the user’s perspective

• Alternatively, consider using other types of index

• Hash collision

• Some hash functions are prone to too many hash collisions

• For instance, you’re hashing pointers of int64_t,

• using modular hashing ℎ 𝑥 = 𝑥 𝑚𝑜𝑑 𝑚 with 𝑚 = 2𝑑 for some d is going to leave many
buckets completely empty

CSE462/562 (Spring 2022): Lecture 9 5

Designing Good Hash Functions
• Formal set up: let U=[N] denote the numbers {0, 1, 2, . . . , N − 1}. For any set S ⊆ U,

where |S|=n, we want to support:
• add(x): add the key x to S

• query(x): is the key q ∈ S?

• delete(x): remove the key x from S

efficiently!

We consider the static case here (fixed set S). Note that even though S is fixed, we don’t know S ahead
of time. Imagine it’s chosen by an adversary from 𝑵

𝒏
possible choices.

Our hash function needs to work well for any such (fixed) set S.

CSE462/562 (Spring 2022): Lecture 9 6

Static vs Dynamic
• Static: Given a set S of items, we want to store them so that we can do lookups quickly.

E.g., a fixed dictionary.

• Dynamic: here we have a sequence of insert, lookup, and perhaps delete requests. We
want to do these all efficiently.

CSE462/562 (Spring 2022): Lecture 9 7

Hash Function Basics
• We will perform inserts and lookups by

an array A of M buckets, and a hash function h : U → {0,... ,M − 1} (i.e., h : U → [M]).
Given an element x, the idea of hashing is we want to store it in A[h(x)].
• If N=|U| is small, this problem is trivial. But in practice, N is often big.

• Collision happens when 𝑥 ≠ 𝑦 ∧ ℎ 𝑥 = ℎ(𝑦)
• Open hashing with linked list/overflow pages

• Extendible/linear hashing can be used to alleviate the problem
but can’t handle it well if there is skewness in hash values

CSE462/562 (Spring 2022): Lecture 9 8

Desirable Properties
• Small probability of distinct keys colliding: if x ≠ y ∈ S then Prh←H [h(x) = h(y)] is “small”.

• h←H means the random choice over a family H of hash functions.

• Small range: we want M to be small. At odds with first desired property
• ideally M=O(n) but it takes too much space.

• Small number of bits to store a hash function h. This is at least Ω log2 |𝐻| .

• h should be easy to compute

• Given this, the time to lookup an item x is O(length of list A[h(x)])

CSE462/562 (Spring 2022): Lecture 9 9

Bad News
• One way to spread elements out nicely is to spread them randomly. Unfortunately, we

can’t just use a random number generator to decide where the next element goes
because then we would never be able to find it again. So, we want h to be something
“pseudorandom” in some formal sense.

• (Bad news) For any deterministic hash function h (i.e., |H|=1), if |U| ≥ (n − 1)M + 1, there
exists a set S of n elements that all hash to the same location.
• simple pigeon hole argument.

CSE462/562 (Spring 2022): Lecture 9 10

Randomness to Rescue
• Introduce a family of hash functions, H with |H|>1, that h will be randomly chosen from

for each key (but use the same choice for the same key).

• Universal Hashing: if x ≠ y ∈ S then Prh←H [h(x) = h(y)] ≤ 1/M.

• If H is universal, then for any set S ⊆ U of size n, for any x ∈ U (e.g., that we might want to
lookup, x may not come from S), if we choose h at random in a universal hash family H,
the expected number of collisions between x and other elements in S is at most n/M.

CSE462/562 (Spring 2022): Lecture 9 11

Property of Universal Hashing
• Proof:

• Each y ∈ S (y ≠ x) has at most a 1/M chance of colliding with x by the definition of “universal”. So

• Let 𝐶𝑥𝑦= 1 if x and y collide and 0 otherwise.

• Let 𝐶𝑥 denote the total number of collisions for x. So, 𝐶𝑥 = σ𝑦∈𝑆∧𝑦≠𝑥 𝐶𝑥𝑦.

• We know E[𝐶𝑥𝑦] = Pr(x and y collide) ≤ 1/M.

• So, by linearity of expectation, E[𝐶𝑥] = σ𝑦∈𝑆∧𝑦≠𝑥𝐸 𝐶𝑥𝑦 ≤ n/M.

CSE462/562 (Spring 2022): Lecture 9 12

How to Construct Universal Hashing?
• Consider the case where |U| = 2u and M = 2m

• Take an u × m matrix A and fill it with random bits. For x ∈ U, view x as a u-bit vector in
{0, 1} u , and define h(x) := Ax where the calculations are done modulo 2.

• There are 2um hash functions in this family H

CSE462/562 (Spring 2022): Lecture 9 13

Note that ℎ 0 = 0, so picking a random function from H does not map each key to a random place

Why it is a universal hash family?
• Proof:

• Let 𝐴 = 𝑐1, 𝑐2, … , 𝑐𝑚 , where 𝑟𝑖 is the 𝑖𝑡ℎ row of the matrix 𝐴.

• Let’s view 𝑥 ∈ 𝑈 as a vector of {0,1}, e.g., x = (0, 0, 1, 0, …, 1).

• Then h 𝑥 = 𝑥1𝑐1 + 𝑥2𝑐2 +⋯+ 𝑥𝑚𝑐𝑚.

• Suppose we have 𝑥 1 , 𝑥 2 ∈ 𝑈, s.t., 𝑥 1 ≠ 𝑥 2 .
They will differ in at least one bit. WLOG, say it’s bit 1 and 𝑥1

1
= 0, 𝑥1

2
= 1.

• For any 𝑐2, … 𝑐𝑚 ∈ 0,1 𝑢, let’s fix those vectors (except 𝑐1).
• No matter how 𝑐1 changes, ℎ 𝑥 1 = 𝑥2𝑐2 +⋯+ 𝑥𝑚𝑐𝑚 remain the same.

• On the other hand, ℎ 𝑥 2 = 𝑥1𝑐1 + ℎ 𝑥 1 are all different
• because each 𝑐1 will be different from any other vectors by at least one bit and the corresponding bit in the hash value is flipped.

• Thus we have only 1 out of 2𝑚 different 𝑐1 so that ℎ 𝑥 1 = ℎ 𝑥(2) .

• Pr ℎ 𝑥 1 = ℎ 𝑥(2) = σ𝑐2,…𝑐𝑚
Pr ℎ 𝑥 1 = ℎ 𝑥 2 |𝑐2, … 𝑐𝑚 Pr 𝑐2, … 𝑐𝑚

CSE462/562 (Spring 2022): Lecture 9 14

…𝑐1 𝑐2 𝑐𝑚
𝐴

= 𝑥1𝑐1 +⋯

ℎ 𝑥

…

𝑥1

𝑥2

𝑥𝑢

𝑥

This is not the only way to construct universal hash family though.

Perfect Hashing (for static case)
• We say a hash function is perfect for S if all lookups involve O(1) work.

• Naïve method: an 𝑂(𝑛2) space solution

• Let H be universal and 𝑀 = 𝑛2 . Then just pick a random h from H and try it out!

• Claim: If H is universal and 𝑀 = 𝑛2 , then Pr ℎ~𝐻 (𝑛𝑜 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠 𝑖𝑛 𝑆) ≥ 1/2

CSE462/562 (Spring 2022): Lecture 9 15

Naïve method: 𝑂(𝑛2) space
• Proof:

• How many pairs (x,y) in S are there? Answer:

• For each pair, the chance they collide is ≤ 1/M by definition of “universal”

• So, Pr(𝑒𝑥𝑖𝑠𝑡𝑠 𝑎 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛) ≤ 𝑛(𝑛 − 1)/2𝑀 = 𝑛(𝑛 − 1)/2𝑛2 < 1/2. (by union bound)

CSE462/562 (Spring 2022): Lecture 9 16

An O(n) space solution (for static S)
• first hash into a table of size n using universal hashing. This will produce some collisions

(unless we are extraordinarily lucky)

• then rehash each bin using Method 1, squaring the size of the bin to get zero collisions

Formally:

• a first-level hash function h and first-level table A,

• n second-level hash functions h1,... ,hn and n second-level tables A1,... ,An

• To lookup an element x, we first compute i = h(x) and then find the element in Ai [hi(x)].

• We omit the analysis of this method.

CSE462/562 (Spring 2022): Lecture 9 17

Dynamic S?
• Cuckoo hashing

• Linear space

• Constant lookup time

• Pagh, Rasmus; Rodler, Flemming Friche (2001). "Cuckoo Hashing". Algorithms — ESA 2001

CSE462/562 (Spring 2022): Lecture 9 18

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.4189

Summary
• Today’s lecture

• Multi-field index key in hash index

• How to construct a good hash function

CSE462/562 (Spring 2022): Lecture 9 19

