
CSE462/562: Database Systems (Spring 22)

Lecture 10 & 11: Tree Index

3/3/2022 & 3/8/2022

Range Searches
• Find all the students admitted in or after 2020?

• If data is in sorted file, we can do binary search to find the first; and then scan to find others.
𝑂 log2

𝑁

𝐵ℎ
+ 𝑠𝑐𝑎𝑛 𝑐𝑜𝑠𝑡 -- 𝑁: number of records; 𝐵ℎ: number of records per heap page

• Cost of binary search can be quite high. Hard to maintain.

• Simple idea: create an index file
• binary search on the (smaller) index file
• But the index file could still be quite large

• Solution: build a new level of indirections

CSE462/562 (Spring 2022): Lecture 10 & 11 2

sid name major adm_year

100 Alice CS 2021

101 Bob CE 2020

102 Charlie CS 2021

103 David CS 2020

student

Page 1 Page 2 Page N/BPage 3 Data File

With Data Pages

k2k1 k4k3 Leaf Page 2 Leaf Page 3 Leaf Page M

Leaf Pages with

Data Entries:

1) One data entry

per record!

2) Sort data entries

k’2 k’Mk’1

Internal pages:

Take the smallest search

key value from each

leaf page to build the

index entries!

Tree-based Indexes

• Recall: 3 alternatives for data entries k*:
• Data record with key value k

• <k, rid of data record with search key value k>

• <k, list of rids of data records with search key k>

• Choice is orthogonal to the indexing technique used to locate data entries k*.

• Tree-structured indexing techniques support both range searches and equality
searches.

• ISAM: static structure; B+ tree: dynamic, adjusts gracefully under inserts and
deletes.

3

Index Entries

An index entry has the following format: (search key value, page id). The following shows an index page
with m index entries (pay attention to the special “left-most pointer”)

Note: entry 0 does not have a key; the range is implicitly defined by left child and K1

P
0

K
1 P

1
K 2 P

2
K

m
P m

index entry

4

separator key

−∞,𝐾1
or 𝐾0, 𝐾𝑝
where 𝐾0 is the key of the
parent page’s index entry
that points to this page

𝐾1, 𝐾2 𝐾2, 𝐾3
𝐾𝑚, +∞

or 𝐾𝑚, 𝐾𝑝+1
where 𝐾𝑝+1 is the key of the

next index entry of that
points to this pageQuestion: can we use left-open and right-closed ranges?

ISAM
• Static structure built based on the content of a heap file.

• Supports insert/delete/search.
• Overflow pages for excessive insertions

CSE462/562 (Spring 2022): Lecture 10 & 11 5

Leaf pages contain data entries.

Non-leaf

Pages

Pages

Overflow
page

Primary pages

Leaf

ISAM Details

CSE462/562 (Spring 2022): Lecture 10 & 11 6

• File creation: With data pages in a heap file loaded.
Leaf (data) pages allocated sequentially, and data entries sorted by search key;
Then index pages allocated.
Then space for overflow pages.

• Index entries: <search key value, page id>; they `direct’ search for data entries, which are in leaf pages.

• Search: Start at root; use key comparisons to go to leaf.
I/O cost: 𝑂 log𝐹

𝑁

𝐵0
F = fan-out, i.e., # entries per index page, N = # data entries, 𝐵0 = # data entries / leaf page

• Insert: Find leaf where data entry belongs, put it there.
(Could be on an overflow page).

• Delete: Find and remove from leaf; if empty overflow page, de-allocate.

• Static tree structure: inserts/deletes affect only leaf pages.
• Not good for files with a lot of insertions/deletions

• Could have skews/long overflow chains

• No support for variable-length records in the original ISAM design
• MyISAM supports variable-length records, but no transaction support, no foreign-key integrity constraint support

• In any case, you should not use ISAM in practice. But it is a good starting point for learning tree indexes.

Example ISAM
• e.g., each node can hold 2 data entries or 1 + 2 index entries

• no need for `next-leaf-page’ pointers. (Why?)

CSE462/562 (Spring 2022): Lecture 10 & 11 7

Sequential leaf pages

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

Leaf Pages

Internal

Pages

Primary

−∞, 40

−∞, 20
[20, 33)

[33,40) [40,51) [63, +∞)

[51,63)

40, +∞

ISAM Insertion Examples
• Inserting 23*, 48*, 41*, 42*

CSE462/562 (Spring 2022): Lecture 10 & 11 8

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

23* 48* 41*

42*

Overflow

Pages

Leaf

Index

Pages

Pages

Primary

ISAM Deletion Examples
• Deleting 42*, 51*, 97*

CSE462/562 (Spring 2022): Lecture 10 & 11 9

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

23* 48* 41*

42*

Overflow

Pages

Leaf

Index

Pages

Pages

Primary

Note that 51 appears in index levels, but 51* not in leaf!

B-Tree: the most widely used index
• Dynamic structure

• Adapts to insertion/deletion
• Data entries are stored in the leaf pages; Index entries in internal pages
• Balanced: all paths from root to leaf page has the same length -- called tree height h

• There’s a min occupancy for each page except for root (usually 50%)

• Each node in the tree is a page in the file
• B-Tree internal/leaf node ≡ B-Tree internal/leaf page

• Actually, it’s a B+-Tree

CSE462/562 (Spring 2022): Lecture 10 & 11 10

Internal

Pages

Pages

(Sorted by search key)

Leaf

B-Tree example

CSE462/562 (Spring 2022): Lecture 10 & 11 11

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

Data entries (index entries) on the
same level are sorted in each level.

Pointers to Actual
Data Pages (rid)

Heap File for the Data Records

Height h = 3

−∞, 17 17,+∞

Where is the root pointer stored?

27,30
17,27

Let’s assume unique and fixed-length keys for now. Leaf node capacity: 𝐵 = 4. Fan-out 𝐹 = 5.

B-Tree search

CSE462/562 (Spring 2022): Lecture 10 & 11 12

• Find 28*? 29*? All > 15* and < 30*
• Starting from root and use key comparison to follow the correct pointers until reaching leaf.
• To scan a range

• Locate the lower bound of the key range
• move right on the data entries until there’re no left or you find one that’s out of range

• Can we locate the upper bound and move left instead?

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29* Pointers to Actual
Data Pages (rid)

Heap File for the Data Records

−∞, 17 17,+∞

27,30
17,27

Cost of B-tree search: ℎ I/Os

B-Tree insertion
• Find correct leaf L.

• Which one? see next slide

• Put data entry onto L.
• If L has enough space, done!

• Else, must split L (into L and a new node L2)

• Redistribute entries evenly, copy up middle key.

• Insert index entry pointing to L2 into parent of L with the middle key.

• This can happen recursively
• To split index node, redistribute entries evenly, but push up middle key. (Contrast with leaf splits.)

• Splits “grow” tree; root split increases height.
• Tree growth: gets wider or one level taller at top.

CSE462/562 (Spring 2022): Lecture 10 & 11 13

B-Tree insertion example -- inserting 15*
• Inserting 15*

CSE462/562 (Spring 2022): Lecture 10 & 11 14

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

15* 16*

Find the subtree where you would do search for the insertion key.

B-Tree insertion example -- inserting 8*
• Inserting 8*

CSE462/562 (Spring 2022): Lecture 10 & 11 15

Root

17 24 30

2* 3* 5* 7* 14* 15* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

16*

• Leaf page is full, what now? Split the page!
• After that, the root page also needs to be split because there’s no room for a new index entry

B-Tree insertion example -- inserting 8*

• Observe how minimum
occupancy is guaranteed in both
leaf and index page splits.

• Note difference between copy-
up and push-up; be sure you
understand the reasons for this.

CSE462/562 (Spring 2022): Lecture 10 & 11 16

2* 3* 5* 7* 8*

5

Entry to be inserted in parent node.

(Note that 5 is
continues to appear in the leaf.)

copied up and

5 24 30

17

13

Entry to be inserted in parent node.

(Note that 17 is pushed up and only

appears once in the index. Contrast this
with a lefa split.

…

B-Tree insertion example -- Inserting 8*

Notice that root was split, leading to increase in height.

In this example, we can avoid split by re-distributing entries; however, this is usually not done in practice.

2* 3*

Root

17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

17

Cost of B-Tree insertion: ℎ + 1 to 4ℎ + 1 = 𝑂 ℎ I/Os

B-Tree deletion
• Start at root, find leaf L where entry belongs.

• Remove the entry.
• If L is at least half-full, done!
• If L has less than half full,

• Try to merge L and a sibling sharing a common parent.
• Pull down the key in the parent if this is an internal page

• Or redistribute keys (i.e., rebalance) between L and a sibling sharing a common parent
• Need to update the key in the parent after rebalancing
• Rebalancing is rarely implemented in practice, why?

• If merge occurred, must delete an index entry from parent of L. Which one?
• The one on the right.

• If redistribute occurs, must update the index entry from parent of L. Which one?
• Still the one on the right.

• Merge could propagate to root, decreasing height.

CSE462/562 (Spring 2022): Lecture 10 & 11 18

B-Tree deletion example -- deleting 19*
• Deleting 19* is easy.

CSE462/562 (Spring 2022): Lecture 10 & 11 19

2* 3*

Root

17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8* 20* 22*

Cost = ℎ + 1 I/Os.

B-Tree deletion example -- deleting 20* with merging
• Deleting 20* with merging. Index entry pointing the right sibling is deleted.

CSE462/562 (Spring 2022): Lecture 10 & 11 20

2* 3*

Root

17

24 30

14* 16* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

B-Tree deletion example -- deleting 20* with merging
• Deleting 20* with merging. Index entry pointing the right sibling is deleted.

CSE462/562 (Spring 2022): Lecture 10 & 11 21

2* 3*

Root

17

24 30

14* 16* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

B-Tree deletion example -- deleting 20* with merging
• Deleting 20* with merging. Index entry pointing the right sibling is deleted.

• Internal page is also under-utilized at this point, merge it with sibling.

CSE462/562 (Spring 2022): Lecture 10 & 11 22

2* 3*

Root

17

30

14* 16* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

B-Tree deletion example -- deleting 20* with merging
• Deleting 20* with merging. Index entry pointing the right sibling is deleted.

• Internal page is also under-utilized at this point, merge it with sibling.
• Root would have only one pointer at this point if we remove the index entry to the right sibling

• need to remove the root page at this point

CSE462/562 (Spring 2022): Lecture 10 & 11 23

2* 3*

Root

17

14* 16* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

17 30

Where’s this 17 from?

B-Tree deletion example -- deleting 20* with merging

CSE462/562 (Spring 2022): Lecture 10 & 11 24

2* 3*

Root

14* 16* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

17 30

• Deleting 20* with merging. Index entry pointing the right sibling is deleted.
• Internal page is also under-utilized at this point, merge it with sibling.

• Root would have only one pointer at this point if we remove the index entry to the right sibling

• need to remove the root page at this point

Cost = up to 4ℎ I/Os.

B-Tree deletion example -- deleting 20* with rebalancing

• Deleting 20* with rebalancing. Index entry pointing the right sibling is updated.
• Copy up of the smallest key on the right page

CSE462/562 (Spring 2022): Lecture 10 & 11 25

2* 3*

Root

17

24 30

14* 16* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

B-Tree deletion example -- deleting 20* with rebalancing

• Deleting 20* with merging. Index entry pointing the right sibling is updated.
• Copy up of the smallest key on the right page

CSE462/562 (Spring 2022): Lecture 10 & 11 26

2* 3*

Root

17

27 30

14* 16* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

Cost = h + 5 I/Os.

Where’s this 24 from?

Where’s this 27 from?

B-Tree example of non-leaf rebalancing

CSE462/562 (Spring 2022): Lecture 10 & 11 27

• Suppose this is the tree we have and we just deleted 24* from the tree
• which caused a deletion of an index entry on an internal page

Root

135 17 20

22

30

14* 16* 17* 18* 20* 33* 34* 38* 39*22* 27* 29*21*7*5* 8*3*2*

24 deleted from here

B-Tree example of non-leaf rebalacing (cont’d)
• Intuitively, entries are re-distributed by `pushing through’ the splitting entry in the parent

• Two choices: either keep 3 or 4 entries on the left page

CSE462/562 (Spring 2022): Lecture 10 & 11 28

14* 16* 33* 34* 38* 39*22* 27* 29*17* 18* 20* 21*7*5* 8*2* 3*

Root

135

17

3020 22

Where’s this 22 from?

Bulk loading of a B-Tree
• If we have a large collection of records, and we want to create a B+ tree on some field,

doing so by repeatedly inserting records is very slow.
• Also leads to minimal leaf utilization --- why?

• Bulk loading can be done much more efficiently.
• fill factor: the default utilization ratio for leaf and internal pages (may vary for leaf and internal pages)

typical values: 70%/80%

• Initialization: Sort all data entries, insert pointer to first (leaf) page in a new (root) page.

CSE462/562 (Spring 2022): Lecture 10 & 11 29

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Sorted pages of data entries; not yet in B+ tree
Root

Bulk loading of a B-Tree

• Index entries for leaf pages always
entered into right-most index page just
above leaf level. When this fills up, it
splits. (Split may go up right-most path to
the root.)

• Much faster than repeated inserts,
especially when one considers locking!

CSE462/562 (Spring 2022): Lecture 10 & 11 30

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Root

Data entry pages

not yet in B+ tree
3523126

10 20

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

6

Root

10

12 23

20

35

38

not yet in B+ tree

Data entry pages

Analysis of B-Tree storage cost
• Suppose the usable page size is 𝑃 (bytes), each record is 𝑟 (bytes), the index key is 𝑘

bytes, record ID or page number is 𝑞 bytes, and 𝑁 records in total in the heap file.

• Assume we use alternative 2 for the data entries.

• Bottom-up analysis:
• Number of pages in the heap file: 𝑀 = ⌈

𝑁

⌊𝑃/𝑟⌋
⌉.

• Number of data entries: N (one per record)
• Size of a data entry: 𝑘 + 𝑞 bytes (without considering alignments)
• Number of pages in leaf level:

• 𝑁′ = ⌈
𝑁

⌊𝑃/(𝑘+𝑞)⌋
⌉

• If the average leaf page utilization ratio is 𝑢:

𝑁′ = ⌈
𝑁

⌊𝑃 ∗ 𝑢/(𝑘 + 𝑞)⌋
⌉

• Let 𝐵 be the number of data entries per leaf page

• 𝐵 = 𝑃 ∗ 𝑢/(𝑘 + 𝑞)

CSE462/562 (Spring 2022): Lecture 10 & 11 31

Analysis of B-Tree storage cost
• Internal levels:

• Fan-out/number of index entries per page

𝑓 =
𝑃×𝑢−𝑞

𝑘+𝑞
+ 1 (u is the average utilization ratio: [0.5, 1))

• Number of entries in the index level right above the leaf level: N’ (one entry per leaf-level page)

• Number of pages required in this level: 𝑁′/𝑓

• Number of entries in the level above: 𝑁′/𝑓

• Number of pages in the level above: 𝑁′/𝑓2

• Recursively pages in each level:

• N’, N’/f, N’/f2 , N’/f3 …. 1=N’/fh-1

• So ℎ = log𝑓 𝑁
′ + 1 = log𝑓⌈

𝑁

𝐵
⌉ + 1

• total number of internal pages 1 + 𝑓 + …+ 𝑓ℎ−1 =
𝑓ℎ−1

𝑓−1
= 𝑂 𝑁′ = 𝑂 𝑁/𝐵

• Total number of pages in a B-Tree: 𝑂 𝑁′ = 𝑂(
𝑁

𝐵
)

CSE462/562 (Spring 2022): Lecture 10 & 11 32

fill factor: the default utilization ratio
when bulk loading the tree

Data access cost using B-Tree
• Recall clustered vs. unclustered: if order of data records is the same as, or `close to’,

order of index data entries, then called clustered index.
• Cost of using B-Tree to access records varies a lot depending on whether it is clustered or not

CSE462/562 (Spring 2022): Lecture 10 & 11 33

Index entries

Data entries

direct search for

(Index File)

(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED

Cost of range scan with clustered B-Tree index
• All records with key >= 24. Clustered index with alternative 2.

• 6 I/Os
• 2 random I/O
• 4 sequential I/O if heap file is laid out sequentially

CSE462/562 (Spring 2022): Lecture 10 & 11 34

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

Cost of range scan with unclustered B-Tree index
• All records with key >= 24. Unclustered index with alternative 2.

• 10 I/Os

• All random I/Os

CSE462/562 (Spring 2022): Lecture 10 & 11 35

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

Cost of range scan with clustered B-Tree file
• All records with key >= 24. Clustered index with alternative 1.

• 6 I/Os
• 3 Random I/O
• 3 Sequential I/O if the leaf level is sequential in the file

CSE462/562 (Spring 2022): Lecture 10 & 11 36

Root

3934

24* 27* 29* 33* 34* 38* 39*

207 243

……

16 29

Trade-offs with B-Tree
• Clustered B-Tree

• One per table
• Both are good for large range scans, small range scans and point lookups
• Alternative 2/3 (clustered index)

• A bit easier to maintain – can be lax on the heap record order (“close to” the data entry order)
• Alternative 1 (clustered file)

• Harder to maintain – strictly clustered
• Need to reorganize the leaf level to make sure they are sequential

• Save space on data entries (no duplication of keys)
• Might have larger tree height

• Unclustered B-Tree
• Usually alternative 2/3
• Easiest to maintain
• Not very efficient when range scan covers too many records

• Rule of thumb: Scan no more than a tiny fraction of rows
e.g., 0.01% on 7200 rpm HDD, 0.1% on consumer-level Nand SSD
(empirical value, it may vary depending on your DBMS and storage device)

CSE462/562 (Spring 2022): Lecture 10 & 11 37

B-Tree in practice: page and record layout
• So far, we considered fixed-length keys => fixed-fanout

• Easy to define page occupancy in terms of number of slots

• Easy to implement leaf and internal nodes

• Option 1: alternating pointers and keys

• Option 2: two arrays for pointers and keys

• Both with fixed offsets!

CSE462/562 (Spring 2022): Lecture 10 & 11 38

header 𝑝0 𝑘1 𝑝1 𝑘2 𝑝2

…..

𝑝𝑓𝑘𝑓

0 H H+q H+q+k H+2q+k H+2q+2k

H+fq+fkH+fq+(f-1)k

header

0 H

𝑝0 𝑝1

𝑝𝑓 𝑘1 𝑘2

𝑘𝑓

…..

H+q

H+fq H+(f+1)q H+(f+1)q+k

H+(f+1)q+(f-1)k

B-Tree in practice: page and record layout
• But, we could have variable-length keys

• Nullable columns, string keys

• How do you organize the B-tree nodes?
• Use slotted data page

CSE462/562 (Spring 2022): Lecture 10 & 11 39

Header

slot 1slot 2…slot n

index record 2

unoccupied

child_pid key payload

recid index key

Data entry (alternative 2)

Index entry

B-Tree in practice: structural modification
• How do you define page utilization?

• How many bytes are used? How many slots there are?

• Issues?

• Page split – that’s usually ok

• Page merge
• Leaf page merge – no problem

• Internal page merge -- the key to pull down from the parent page may not fit!

• Page rebalance
• Leaf or internal page rebalance

• the key to copy/push up may not fit in the parent page!

• Internal page rebalance:

• the key to pull down from the parent page may not fit here!

• Rarely implemented -- also makes concurrency control hard

CSE462/562 (Spring 2022): Lecture 10 & 11 40

B-Tree in practice: multi-field keys
• Multi-field keys are totally ordered in the lexicographical order (aka dictionary order)

• e.g., (a, b, c), order by a first, then b, finally c

• Multi-field keys in B-Tree is very useful
• You can answer certain queries with predicates of a prefix of the keys

• For instance, with a B-Tree over 𝑎𝑔𝑒, 𝑔𝑝𝑎 , it may be used for answering the following queries:

• 𝑎𝑔𝑒 ≥ 20 ∧ 𝑎𝑔𝑒 ≤ 25

• 𝑎𝑔𝑒 = 20 ∧ 𝑔𝑝𝑎 ≥ 3.0

• What about 𝑎𝑔𝑒 ≥ 20 ∧ 𝑔𝑝𝑎 ≥ 3.0 ?

• Strategy 1: using B-Tree to locate the first data entries with
𝑎𝑔𝑒 = 20 ∧ 𝑔𝑝𝑎 ≥ 3.0 ∨ 𝑎𝑔𝑒 > 20

then scan all data entries starting from that

• Strategy 2: for each of the distinct age >= 20, locate the first data entry with gpa >= 3.0

then scan data entries starting from these first data entries separately
(aka index skip scan (e.g., Oracle) /jump scan (e.g., DB2) in various systems)

Strategy 2 only works when there are few distinct values in the prefix column

CSE462/562 (Spring 2022): Lecture 10 & 11 41

B-tree in practice: NULL values
• We need to index NULL values in B-tree indexes

• because indexed columns may have NULLs

• Caveat: SQL 3-value logic
• NULL < anything is unknown!

• B-tree requires a total order of the key

• Solution: don’t use the SQL 3-value logic
• For instance, define NULL = NULL, NULL < any non-NULL value

• Alternatively, NULL = NULL, NULL > any non-NULL value

• Some systems support both

• In the course project Taco-DB, we assume NULL < any non-NULL value for indexing

CSE462/562 (Spring 2022): Lecture 10 & 11 42

B-Tree in practice: non-unique keys
• So far, we assumed unique keys, but

• we might create indexes over non-unique columns (e.g., name)

• B-Tree can be modified to support duplicate keys, but
• How do you find the data entry for a specific record for update?

• What if we still want to uniquely identify keys in the tree?
• Include record ID as the last column

• record IDs are always unique

• Then a search with key in B-Tree only becomes prefix search:

• e.g., key = (age, gpa), actual key = (age, gpa, record id)

• Query: 𝑎𝑔𝑒 = 22 ∧ 𝑔𝑝𝑎 = 3.7?

• Locate the first data entry such that 𝑎𝑔𝑒 = 22 ∧ 𝑔𝑝𝑎 ≥ 3.7 ∨ 𝑎𝑔𝑒 > 22

• Then scan the data entries until it falls out of range

• To uniquely locate a data entry for a record: use the full search key

CSE462/562 (Spring 2022): Lecture 10 & 11 43

B-Tree in practice: unique constraints
• B-Tree are often used for enforcing UNIQUE constraints

• e.g., sid SERIAL PRIMARY KEY

• e.g., login VARCHAR(20) UNIQUE

• Build unique B-tree index
• Reject insertion of a data entry whose key already exists in another data entry in the index

• even if the record id does not match

• However, what about NULLs?
• Nullable unique column is allowed to contain multiple NULLs (because they are unknown values)

• Reality: some allow and some don’t

• Some DBMS disallows inserting multiple NULLs into unique B-Tree index

• non-conformant to SQL, but easier to implement (no special case handling)

• Some do allow that

• SQL-conforming, but need special handling logic for that

CSE462/562 (Spring 2022): Lecture 10 & 11 44

B-Tree in practice: handling concurrency
• Lock-based (e.g., reader-writer lock, in DBMS jargon: latches)

• Many issues:
• Should lock at most c pages at a time (c usually is 1/2/3)
• Lock coupling order (deadlock avoidance)
• Insertion:

• Split will cause key space shift (how does concurrent search handle this?)
• Root split? How to install the new root with concurrent readers?

• Deletion (harder):
• Page merge/reducing tree height: also causes key space changes

• Some design avoids them by deleting a page only when it’s completely empty
• Some design use mini transactions to handle SMO

• File space management:
• What if a page is deleted but a concurrent reader reaches the deleted page?

• Recovery: what if crashes and we have to roll back a half completed B-tree update?

• Lock-free
• Using CAS and additional indirection (J. Levandoski, D. Lomet, S. Sengupta. ICDE ‘13)
• Other considerations?

CSE462/562 (Spring 2022): Lecture 10 & 11 45

https://www.microsoft.com/en-us/research/publication/the-bw-tree-a-b-tree-for-new-hardware/

B-Tree in practice: key compression
• We want high fan-out → low tree height → faster query/update

• But string keys are often quite long (tens of bytes vs 4 bytes/8 bytes)

• Prefix key compression: extract the common prefix and only store the unique suffix
• Sorted keys tend to have a short common prefix

• Suffice truncation: store only the prefix that is enough for differentiating the subtree range
• Works for both string/multi-field keys

CSE462/562 (Spring 2022): Lecture 10 & 11 46

CompressionCompute Compile ressionute ileComp

David Smith
Dannon
Yogurt

Devarakonda
Murthy

DevDavDan

(2,3)(1,5) (2,4) (2,4)(2,NULL)(1, NULL)

Summary
• These lectures:

• ISAM

• B-Tree index

• How to search and scan/insert/delete in B-Tree

• Analysis of B-Tree index/file

• B-Tree in practice

• Next lecture:
• Single-table query processing/mid-term review

CSE462/562 (Spring 2022): Lecture 10 & 11 47

