CSE462/562: Database Systems (Spring 22) Lecture 12: Query processing - single-table query 3/31/2022

Single-table queries

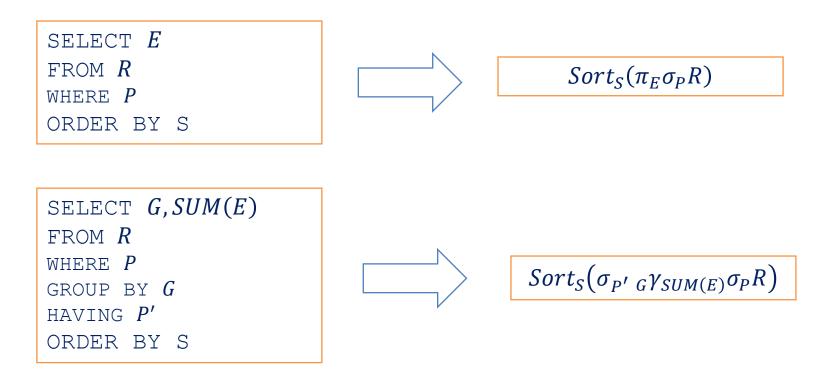
- We'll start with the simplest single-table queries w/o or w/ aggregations
 - How to translate it into a query plan?
 - How to implement each operator?
 - How to measure the cost of each operator?

SELECT <i>E</i>	
from <i>R</i>	
WHERE P	
ORDER BY	S

SELECT G,SUM(E)		
FROM <i>R</i>		
WHERE P		
GROUP BY G		
HAVING P'		
ORDER BY S		

SQL -> logical plan

- We'll start with the simplest single-table queries w/o or w/ aggregations
 - How to translate it into a query plan?
 - How to implement each operator?
 - How to measure the cost of each operator?



Logical plan -> physical plan

- We'll start with the simplest single-table queries w/o or w/ aggregations
 - How to translate it into a query plan?
 - How to implement each operator?
 - How to measure the cost of each operator?

- A few basic operators
 - Selection: σ
 - Projection: π (w/ and w/o deduplication)
 - Aggregation: γ w/o or w/ group by
 - Set operators: U, −,∩
 - Hashing or Sorting (later lectures)
 - Cartesian product: × or Join: ⋈ (later lectures)
- Question: what are the alternatives? How to evaluate their efficiency?

Measuring cost

- We'll start with the simplest single-table queries w/o or w/ aggregations
 - How to translate it into a query plan?
 - How to implement each operator?
 - How to measure the cost of each operator?
- For disk-based systems, we mainly measure the number of I/Os
 - Differences between random I/O and sequential I/O
 - Faster storage -> also need to measure the CPU cost
- A simple cost model
 - t_T : average time to transfer a page of data (data transfer time)
 - t_S : average time to randomly seek data (seek time + rotation delay)
 - For SSD, time overhead for initiating an I/O request
 - Cost = $B \times t_T + S \times t_S$
 - *B*: number of pages read/written; *S*: number of random I/O

Typical t_T and T_S

	HDD*	SSD†
t_T (ms)	0.1	0.01
<i>t_S</i> (ms)	4	0.09

Data from DB Concept book (Ch. 15.2). Assuming 4KB pages.

- * typical HDD with 40 MB/s transfer rate,
- 15000 rpm disk in 2018
- ⁺ typical SATA SSD that supports 10K IOPS (QD-

1), 400 MB/s sequential read rate

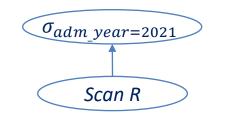
Measuring cost

- Other assumptions
 - Ignoring the buffer effect for random pages
 - Do consider the private workspace size *M* for the operators
 - Omitting the cost of transferring output to the user/disk
 - Common to any equivalent plan
- Notations: for relation *R*
 - T_R : number of records, N_R : number of pages in its heap file, B_R : (average) number of tuples per page
 - h_I : height of a B-tree index I over the file
 - *M*: private workspace size in pages
- Running example
 - $t_S = 4 ms$, $t_T = 0.1 ms$, 4000-byte page
 - Student: R(sid: int, name: varchar(19), login: varchar(19), major: char(2), adm_year: int)
 - 50 bytes/tuple, $B_R = 80$, $T_R = 40,000$, $N_R = 500$
 - Enrollment: E(sid: int, semester: char(3), cno: int, grade: double)
 - 20 bytes/tuple, $B_E = 200$, $T_E = 200,000$, $N_E = 1000$

Selection σ

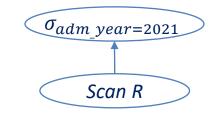
- Scan is usually the leaf-level of logical plans
 - Represents reading an entire relation -- not really a relational operator
- Selection $\sigma_P Q$
 - *P* is usually conjunctions or disjunctions *Q*. *attr op value* but can also be User-Defined Functions (UDF)
 - selects records satisfying some predicate from the child
 - Child may be a scan or some other operators
 - Many possible implementation of selection depending on
 - the predicate **P**
 - the available file/index for the scan

op is an operator: <, <=, =, <>, >, >=, ...



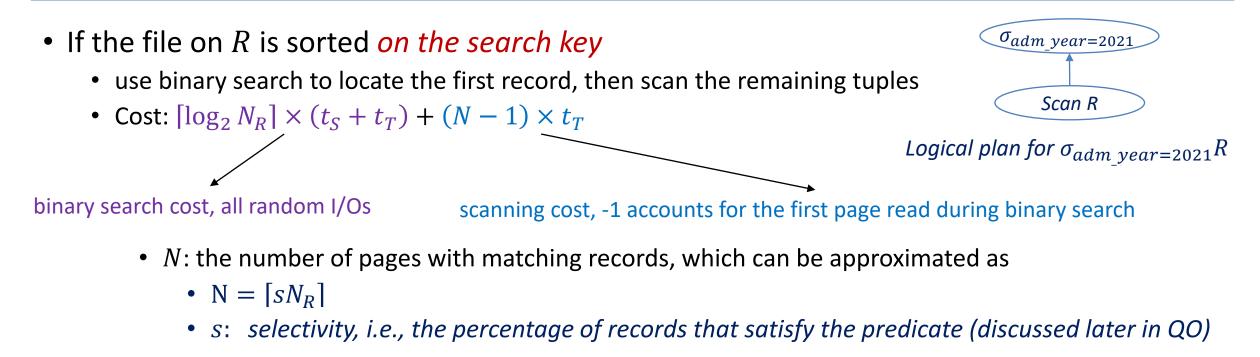
Simple selection: linear scan

- Consider a simple selection $\sigma_{R.attr op value} R$
 - Assume that the child is a relation stored in some disk file/index
- Most straight-forward implementation is linear scan
 - Scan each page and each record on the page
 - emits a record only if the predicate *R*. *attr op value* evaluates to true
 - Applies to any predicate *P* or file
 - Also works for pipelining -- can do selection on the fly without writing temporary files
- Cost: $t_S + N_R \times t_T$
 - 1 seek to the start of the file and N_R pages to read
 - the "last resort" -- usually the slowest implementation
 - cost for $\sigma_{adm \ year=2021} R$: $t_S + 500 \times t_T = 54 \ ms$



Logical plan for $\sigma_{adm_year=2021}R$

Simple selection: binary search on sorted file



- Running example: suppose R is sorted on adm_year and selectivity is s = 10%
 - $\cos t = [\log_2 500] \times (t_s + t_T) + ([0.1 \times 500] 1) * t_T = 41.8 ms$

Simple selection: index scan

T: # of matching recordsF: # of data entries per leaf pageN: # of pages with matching records

- If the file has a B-Tree index I over the search key, assuming alternative 2 for data entries
 - cost varies depending on whether it's clustered
- Assuming selectivity is s = 0.1, the number of matching records is T and the number of pages with matching records is N, assume h = 3
 cost =
 - $h_I \times (t_T + t_S)$ for finding qualifying data entries +
 - cost for retrieving the heap records
 - clustered: $t_S + N \times t_T \approx t_S + [sN_R] \times t_T$ (total = 12.3 + 9 = 21.3 ms)

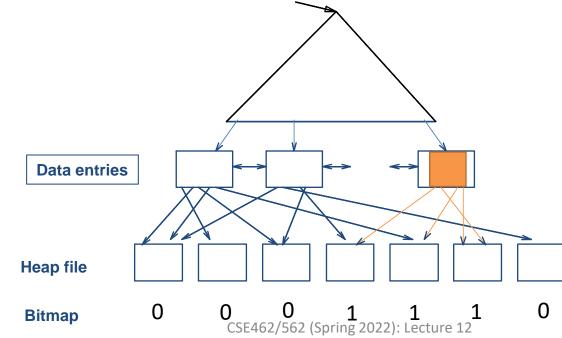
• unclustered:
$$\left(\left[\frac{T}{F}\right] - 1\right) \times t_T + T \times (t_T + t_S)$$

= $\left(\left[\frac{[sT_R]}{F}\right] - 1\right) \times t_T + [sT_R] \times (t_T + t_S)$ (total = 12.3 + 16401.3 = 16413.3 ms)

• can we do better?

Simple selection: index scan (cont'd)

- Refinement for unclustered index scan: bitmap index scan
 - 1. Initialize a bitmap with one bit for each page in the file (usually fits in mem even for a large file)
 - 2. Find the first qualifying data entry
 - 3. Scan all the data entries and mark all the unique pages with the matching records in the bitmap
 - 4. Scan all the pages with bit 1 (linear scan on page)
- Alternative: collect all RID in memory in step 3, sort and fetch tuples in RID order
 - more expensive unless RIDs fit in memory
 - might make sense for faster storage (thus CPU cost matters)



Simple selection: index scan (cont'd)

T: # of matching records *F*: # of data entries per leaf page N: # of pages with matching records

- Cost of bitmap index scan =
 - (tree search) $h \times (t_{s} + t_{T}) +$
 - (scan of data entries) $\left(\left[\frac{T}{r}\right] 1\right) \times t_T$ + (assuming leaf level is consecutive from bulk loading)
 - (scan of data pages) $N \times (t_S + t_T)$ (when N is small and thus most involve random seeks) or $t_S + N \times t_T$ (when N is close to N_R and it's close to sequential scan)
- Example 1 (large selectivity): s = 0.9, F = 300, $T = [sT_R] = 36000$, $N = 500 \Rightarrow$ $cost = 4.1 \times 3 + 0.1 \times \left(\left[\frac{36000}{300} \right] - 1 \right) + 4 + 0.1 \times 500 = 78.2 \text{ ms (unclustered)} \\ vs 4.1 \times 3 + 4 + 0.1 \times [0.9 \times 500] = 61.3 \text{ ms (clustered)}$
- Example 2 (moderate selectivity): s = 0.1, F = 300, $T = [sT_R] = 4000$, $E[N] \approx 500$ (think: why?) $cost = 4.1 \times 3 + 0.1 \times \left(\left[\frac{4000}{300} \right] - 1 \right) + 4 + 0.1 \times 500 = 67.6 \text{ ms} \text{ (unclustered)}$ vs $4.1 \times 3 + 4 + 0.1 \times [0.1 \times 500] = 21.3 ms$ (clustered)
- Example 3 (small selectivity): s = 0.0001, F = 300, $T = [sT_R] = 4$, N = 4 $cost = 4.1 \times 3 + 0.1 \times ([\frac{4}{200}] - 1) + 4.1 \times 4 = 28.7 ms$ (unclustered) vs $4.1 \times 3 + 4 + 0.1 \times [0.0001 \times 500] = 16.4 ms$ (clustered)
- Trade-offs:
 - Only slightly more expensive than a linear scan when selectivity is close to 1
 - Only slightly more expensive than a regular secondary index scan when selectivity is close to 0 (<< linear scan)
 - Only works poorly when the selectivity is moderate -- better off with clustered index
 - To show that, let $I_i = 1$ if page i has any matching record (an indicator variable) and assume uniform distribution in search key

•
$$E[N] = \sum_{1 \le i \le N_R} E[I_i] = \sum_{1 \le i \le N_R} \Pr\{I_i = 1\} = N_R (1 - (1 - s)^{B_R})$$

General selection predicates

- Atom predicate: *attr op value* or UDF
- General predicates:
 - Conjunction ∧ (and), disjunction ∨ (or), negation ¬ (not) of atoms or general predicates
 - e.g., $\sigma_{(adm_year \ge 2019 \lor major = 'CS') \land sid \ge 1000}R$
- Most general cases can always be handled by linear scans
 - Slow!
- Optimization for special cases:
 - Conjunction of simple selection predicates $\theta_1 \wedge \theta_2 \wedge \cdots \wedge \theta_r$
 - where θ_i is an atom
 - Disjunction of selection predicates $\theta_1 \vee \theta_2 \vee \cdots \vee \theta_r$
 - Transforming a predicate *P* into *Conjunctive Normal Form (CNF)* or *Disjunction Normal Form (DNF)* for additional optimization opportunities
 - e.g., $(adm_year \ge 2019 \lor major =' CS') \land sid \ge 1000$ (CNF) $\Leftrightarrow (adm_year \ge 2019 \land sid \ge 1000) \lor (major =' CS' \land sid \ge 1000)$ (DNF)

Conjunctive selection with one index

- $\theta_1 \wedge \theta_2 \wedge \cdots \wedge \theta_r$
 - Choosing one or a prefix of predicates that can be answered using one index
 - Apply the rest of the predicates over the result on the fly
 - For instance, a B-Tree over (f_1, f_2) can select for predicates over a prefix of its index keys
 - $f_1 \text{ op value}$ (where $op \in \{<, \le, =, >, \ge\}$)
 - $f_1 = value \land f_2 op value$ (where $op \in \{<, \leq, =, >, \geq\}$)
 - If allow using skip scan (jump scan), f_2 op value or f_1 op value $\land f_2$ op value
 - What if there're multiple choices?
 - Considerations: selectivity, type of indexes, actual cost (access path selection in QO)
 - Cost is the same as index scans/bitmap index scans

Conjunctive selection with multiple indexes

- $\theta_1 \wedge \theta_2 \wedge \cdots \wedge \theta_r$
 - What if the atoms or several conjunctions of atoms can be answered by different indexes?
 - Example: $\sigma_{major='CS' \land adm \ year=2021}R$ when we have two indexes $I_1(major)$ and $I_2(adm_year)$
- Algorithm:
 - 1. Collect all the RIDs using both indexes
 - 2. Compute the intersection of the RIDs
 - 3. Fetch the heap records of the RIDs in the result set
- Cost: index search + collecting data entries+ sort + intersection + fetching heap records

Partial matches for conjunctive selection

- $\bullet \ \theta_1 \wedge \theta_2 \wedge \cdots \wedge \theta_r$
 - What if only part of the predicates can be optimized with indexes
 - Apply the remaining predicates over the result and discard those that do not satisfy
 - e.g., $\sigma_{major='CS' \land adm_year=2021}$ with a hash index I(major)
 - Index Scan for all CS majors using I(major)
 - Apply the predicate $adm_year = 2021$ over the heap records on the fly
 - Note the remaining predicates do not need to be in conjunctive normal form!
 - Can be arbitrary predicates (e.g., UDF)

Disjunction selection with multiple indexes

- $\theta_1 \vee \theta_2 \vee \cdots \vee \theta_r$
 - Only optimizable if all clauses θ_i can be optimized using some index
 - Otherwise, fall back to linear scan
- Algorithm:
 - 1. Collect all the RIDs using both indexes
 - 2. Compute the union of the RIDs
 - 3. Fetch the heap records of the RIDs in the result set
- Cost: index search + collecting data entries + sort + union + fetching heap records

Projection π

- Without deduplication
 - evaluate projection list for the records on the fly
 - cost: no additional I/O
 - sometimes baked into other operators (i.e., all operators can be followed by an implicit projection)
- With deduplication
 - Requires materialization (blocking)
 - Hash or Sort
 - Hash -> build a hash table where duplicates are dropped
 - Sort -> emit a record only if it is the first record or it is different from the previous one
 - Result set fits in memory => easy to implement (does not add I/O cost)
 - When result sets exceed configured workspace size *M*,
 - Need to use external hashing and sorting algorithms (next lecture)
 - Optimization opportunities
 - Will come back to this later after we discuss external hashing and sorting

Projection over selection: Index only scan

- For $\pi_{E_1,E_2,\ldots,E_k}\sigma_P R$
 - Let Var(E) be the set of attributes in the expression E
 - e.g., $Var(R.sid > 100) = \{R.sid\}$ $Var(length(R.name) + length(R.login)) = \{R.name, R.login\}$
 - Suppose there's an index I over R whose index key is K_I , such that
 - $\bigcup_{1 \le i \le k} Var(E_i) \cup Var(P) \subseteq K_I$
 - we can perform an index scan without fetching the heap records (index-only scan)
 - Note: attributes that only appear in the projection list can be non-key columns in index
 - Might be useful even if search key does not match the index key
 - Cheaper than heap scan due to high fan-out
 - Cost = tree search cost + cost for scanning all matching data entries

 $= h \times (t_S + t_T) + \left(\left[\frac{T}{F} \right] - 1 \right) \times t_T$ (assuming leaf level is consecutive on disk due to bulk loading)

- Example: $\pi_{adm_year,sid}\sigma_{adm_year=2021}R$, B-Tree index on $R(adm_year,sid)$ h = 3, s = 0.1, T = $[sT_R] = 4000, F = 300$
 - cost of index-only scan = $3 \times 4.1 + \left(\left[\frac{4000}{300} \right] 1 \right) \times 0.1 = 13.6 \text{ ms}$ vs cost of index scan (clustered) = $3 \times 4.1 + 4 + 0.1 \times [0.1 \times 500] = 21.3 \text{ ms}$

- $\gamma_{F_1(E_1),F_2(E_2),...,F_k(E_k)}Q$
 - Blocking
 - Only produce one row of output

• An aggregation can be expressed as three functions: $F = (F^{init}, F^{acc}, F^{final})$

- Initialization F^{init} : $void \rightarrow A$ (where A is some internal state of the aggregation)
- Accumulation $F^{acc}: (A, T) \rightarrow A \text{ or } (A, T) \rightarrow void$
- Finalization $F^{final}: A \rightarrow V$ (where V is the final type of the aggregation)
- Some systems also have an optional combine function $F^{combine}$: $(A, A) \rightarrow A$
 - allows parallelizing the aggregation
- Example: AVG of integers
 - AVG^{init} (): create a pair of (s, c) -- s: sum of values, c: number of values
 - $AVG^{acc}((s,c),x) = (s+x,c)$
 - $AVG^{final}((s,c)) = 1.0 * s / c$
- Cost: does not add additional I/O cost

F is an aggregation function, e.g., SUM, COUNT, VAR, STDDEV, AVG, MIN, MAX or UDA etc.

• Example: AVG of integers

F is an aggregation function, e.g.,

- AVG^{init} (): create a pair of (s, c) -- s: sum of value SUM, COUNT, VAR, STDDEV, AVG, MIN, MAX or UDA etc.
- $AVG^{acc}((s,c),x) = (s+x,c)$
- $AVG^{final}((s,c)) = 1.0 * s / c$
- Consider a column in a table with the following values
 - 5, 4, 1, 3, 2
 - Steps:
 - $AVG^{init}() = (0.0, 0)$
 - $AVG^{acc}((0.0, 0), 5) = (5.0, 1)$
 - $AVG^{acc}((5.0, 1), 4) = (9.0, 2)$
 - $AVG^{acc}((9.0, 2), 1) = (10.0, 3)$
 - $AVG^{acc}((10.0, 3), 3) = (13.0, 4)$
 - $AVG^{acc}((13.0, 4), 2) = (15.0, 5)$
 - $AVG^{final}((15.0,5)) = 3.0 = \frac{5+4+1+3+2}{5}$

- $G_1, G_2, ..., G_n \gamma_{F_1(E_1), F_2(E_2), ..., F_k(E_k)} Q$
 - Blocking
 - One record per group (distinct values in G_1, G_2, \dots, G_n)
 - Let group by columns be $\mathcal{G} = (G_1, G_2, \dots, G_n)$
 - Solution: sorting or hashing

- $G_1, G_2, ..., G_n \gamma_{F_1(E_1), F_2(E_2), ..., F_k(E_k)} Q$
 - Blocking
 - One record per group (distinct values in G_1, G_2, \dots, G_n)
 - Let group by columns be $\mathcal{G} = (G_1, G_2, \dots, G_n)$
 - Sort-based solution: sort all tuples in Q on G; for each result t
 - 1. If *t* is the first one, $g \leftarrow \pi_{\mathcal{G}} t$ and $a_1 \leftarrow F_1^{init}(), \dots a_k \leftarrow F_k^{init}()$
 - 2. If *t* is not the first and $\pi_{\mathcal{G}}t \neq g$, emit $g \circ \left(F_1^{final}(a_1), \dots, F_k^{final}(a_k)\right)$
 - Then, $g \leftarrow \pi_{\mathcal{G}} t$ and $a_1 \leftarrow F_1^{init}(), ..., a_k \leftarrow F_k^{init}()$
 - 3. Otherwise, $a_1 \leftarrow F_1^{acc}(a_1, \pi_{E_1}t), \dots a_k \leftarrow F_k^{acc}(a_k, \pi_{E_k}t)$
 - 4. After the last record is read, emit the last group as $g \circ (F_1^{final}(a_1), ..., F_k^{final}(a_k))$
 - If there are too many groups, use external sorting
 - Optimization opportunities (next lecture)

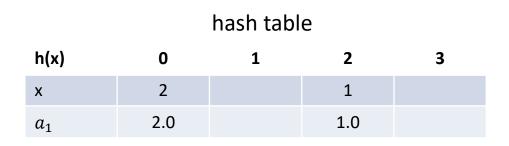
- Example for sort-based solution:
 - Consider two columns (x, y) with the following values
 - (1,1.0), (2,2.0), (1,4.0), (2,6.0)
 - *xΥSUM*(*y*)
 - Step 1: sort by x
 - (1,1.0), (1,4.0), (2,2.0), (2,6.0)
 - Step 2: scan and calculate the group aggregates
 - Scan (1, 1.0): $g \leftarrow x = 1, a_1 \leftarrow 0.0 + 1.0 = 1.0$
 - Scan (1, 4.0): $a_1 \leftarrow a_1 + 4.0 = 5$
 - Scan (2, 2.0):
 - Since $x = 2 \neq g = 1$, emit $(g, a_1) = (1, 5.0)$ as a result
 - $g \leftarrow x = 2, a_1 \leftarrow 0.0 + 2.0 = 2.0$
 - Scan (2, 6.0): $a_1 \leftarrow a_1 + 6.0 = 8.0$
 - Step 3: emit the final group: $(g, a_1) = (2, 8.0)$

Result

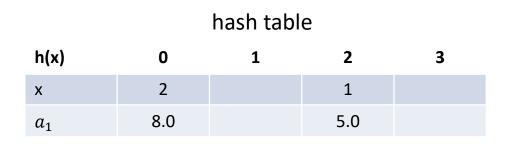
x	SUM(y)
1	5.0
2	8.0

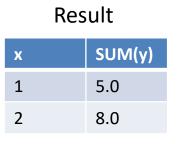
- $G_1, G_2, \dots, G_n \gamma_{F_1(E_1), F_2(E_2), \dots, F_k(E_k)} Q$
 - Blocking
 - One record per group (distinct values in G_1, G_2, \dots, G_n)
 - Let group by columns be $\mathcal{G} = (G_1, G_2, \dots, G_n)$ or $\bigcup_{1 \le i \le n} Var(G_i)$
 - Hash-based solution: create a hash table from \mathcal{G} to (A_1, A_2, \dots, A_k)
 - Maintain the hash table using the aggregation functions while reading records from Q
 - After deplete the records in Q, scan the hash table, and
 - emit one row for each distinct value in *G* and compute its final value using the finalization functions
 - Again, if there are too many groups, use external hashing
 - Optimization opportunities (next lecture)

- Example for hash-based solution:
 - Consider two columns (x, y) with the following values
 - (1,1.0), (2,2.0), (1,4.0), (2,6.0)
 - assume h(1) = 2, h(2) = 0
 - $x \gamma_{SUM(y)}$
 - Step 1: create an empty hash table
 - Step 2: scan records and maintain aggregates
 - scan (1, 1.0): $x[h(1)] \leftarrow x = 1$, $a_1[h(1)] \leftarrow 0.0 + y = 1.0$
 - scan (2, 2.0): $x[h(2)] \leftarrow x = 2, a_1[h(2)] \leftarrow 0.0 + y = 2.0$



- Example for hash-based solution:
 - Consider two columns (x, y) with the following values
 - (1,1.0), (2,2.0), (1,4.0), (2,6.0)
 - assume h(1) = 2, h(2) = 0
 - $x \gamma_{SUM(y)}$
 - Step 1: create an empty hash table
 - Step 2: scan records and maintain aggregates
 - scan (1, 1.0): $x[h(1)] \leftarrow x = 1$, $a_1[h(1)] \leftarrow 0.0 + y = 1.0$
 - scan (2, 2.0): $x[h(2)] \leftarrow x = 2, a_1[h(2)] \leftarrow 0.0 + y = 2.0$
 - scan (1, 4.0): $a_1[h(1)] \leftarrow a_1[h(1)] + y = 1.0 + 4.0 = 5.0$
 - scan (2, 6.0): $a_1[h(2)] \leftarrow a_1[h(2)] + y = 2.0 + 6.0 = 8.0$
 - Step 3: scan hash table and emit results





Set operators $\cup, \cap, -$

- SQL performs deduplication before the set operators by default, unless one specifies ALL
 - e.g., A = {1, 1, 2}, B = {1, 2}
 - SELECT * FROM A EXCEPT SELECT * FROM B; -- result is empty
 - SELECT * FROM A EXCEPT ALL SELECT * FROM B; -- result is {1} (one row)
 - UNION ALL can be made pipelining: emit everything from LHS and then RHS
 - All the others are similar: using UNION as an example
 - Solution: sorting or hashing
 - sorting: sort A and B separately, merge them together by removing any duplicates
 - Similar to a sort-merge join we will discuss in later lectures
 - hashing: create a hash table over all the attributes, scan A and B
 - Only keep the first occurrence of each distinct value
 - Once again, optimization opportunities exist when the result set(s) of A and/or B do not fit in memory

Summary

- This lecture:
 - Operators for single-table queries and their cost
- Next lecture:
 - External hashing and sorting in query processing