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Single-table queries

« We'll start with the simplest single-table queries w/o or w/ aggregations

 How to translate it into a query plan?
* How to implement each operator?
 How to measure the cost of each operator?

SELECT E
FROM R
WHERE P
ORDER BY S

SELECT G,SUM(E)

FROM R
WHERE P
GROUP BY G
HAVING P’
ORDER BY S
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SQL -> logical plan

« We'll start with the simplest single-table queries w/o or w/ aggregations
 How to translate it into a query plan?

SELECT E

FROM R So'rts(ﬂEO'pR)
WHERE P

ORDER BY S

SELECT G,SUM(E)
FROM R

WHERE P
GROUP BY G S 0”5(0 p' ¢Ysum(g)OpR )

HAVING P’
ORDER BRY S
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Logical plan -> physical plan

« We'll start with the simplest single-table queries w/o or w/ aggregations

* How to implement each operator?

* A few basic operators
e Selection: o
* Projection: m (w/ and w/o deduplication)
» Aggregation: y w/o or w/ group by
* Set operators: U, —,N
e Hashing or Sorting (later lectures)
e Cartesian product: X or Join: X (later lectures)

* Question: what are the alternatives? How to evaluate their efficiency?
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Measuring cost

« We'll start with the simplest single-table queries w/o or w/ aggregations

 How to measure the cost of each operator?

* For disk-based systems, we mainly measure the number of |/Os
 Differences between random I/O and sequential I/0

* Faster storage -> also need to measure the CPU cost Typical t; and T
. | oo | s
* Asimple cost model
* tr:average time to transfer a page of data (data transfer time) tr (ms) 24 Luth

* ts: average time to randomly seek data (seek time + rotation delay)

: . ts (ms) 4 0.09
* For SSD, time overhead for initiating an I/O request

e Cost=B Xtr+ S Xts
* B:number of pages read/written; S: number of random I/O
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Measuring cost

e Other assumptions
* lIgnoring the buffer effect for random pages
* Do consider the private workspace size M for the operators
* Omitting the cost of transferring output to the user/disk
« Common to any equivalent plan

* Notations: for relation R
e Tr: number of records, Np: number of pages in its heap file, Bp: (average) number of tuples per page
* h;: height of a B-tree index I over the file
e M: private workspace size in pages

* Running example
* ts = 4 ms, tr = 0.1 ms, 4000-byte page
« Student: R(sid: int, name: varchar(19), login: varchar(19), major: char(2), adm_year: int)
* 50 bytes/tuple, B = 80, T = 40,000, N, = 500
* Enroliment: E(sid: int, semester: char(3), cno: int, grade: double)
* 20 bytes/tuple, By = 200, Tz = 200,000, N; = 1000
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Selection o

* Scan is usually the leaf-level of logical plans
* Represents reading an entire relation -- not really a relational operator

e Selection GPQ op is an operator: <, <=, =, <>, >, >=, ...
P is usually conjunctions or disjunctions Q. attr op value
but can also be User-Defined Functions (UDF)
 selects records satisfying some predicate from the child ~—
* Child may be a scan or some other operators
« Many possible implementation of selection depending on Logical plan for 0aam year=2021R

* the predicate P
* the available file/index for the scan
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Simple selection: linear scan

* Consider a simple selection dr 4¢tr op vatue R Oadm year=2o21

A

Logical p/an fOI’ Uadm_year=2021R

* Assume that the child is a relation stored in some disk file/index

* Most straight-forward implementation is linear scan
* Scan each page and each record on the page
* emits a record only if the predicate R. attr op value evaluates to true

* Applies to any predicate P or file
* Also works for pipelining -- can do selection on the fly without writing temporary files

* Cost:tg + Np X tp
* 1 seek to the start of the file and Ny pages to read
* the “last resort” -- usually the slowest implementation

e cost for Oadm year=2021 R: tS + 500 X tT = 54‘ ms
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Simple selection: binary search on sorted file

* If the file on R is sorted on the search key @
e use binary search to locate the first record, then scan the remaining tuples
« Cost: [log, Ne| X (ts + tr) + (N — 1) X t7 _scank >
/ \ LOgiCGI p/an fOf' O-adm_year=2021R
binary search cost, all random 1/0s scanning cost, -1 accounts for the first page read during binary search

 N:the number of pages with matching records, which can be approximated as
* N — [SNR]
* s: selectivity, i.e., the percentage of records that satisfy the predicate (discussed later in QO)

* Running example: suppose R is sorted on adm year and selectivity is s = 10%
e cost = [log, 500] X (ts + t7) + ([0.1 X 500] — 1) *t; = 41.8 ms
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T: # of matching records

Simple selection: index scan F  of data entries per leaf page

N: # of pages with matching records

* If the file has a B-Tree index I over the search key, assuming alternative 2 for data entries
* cost varies depending on whether it’s clustered

* Assuming selectivity is s = 0.1, the number of matching records is T and the number of
pages with matching records is N, assume h = 3
cost =

* h; X (tp + ts) for finding qualifying data entries +
 cost for retrieving the heap records
* clustered: tg + N X t; = tg + [sNi| X t; (total = 12.3 + 9 = 21.3 ms)

. unclustered:( g — 1) Xtr+T X (tr + tg)
[[SIT:R]} — 1) Xty + [sTg] X (t7 + t5) (total = 12.3 + 16401.3 = 16413.3 ms)

e can we do better?
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Simple selection: index scan (cont’d)

e Refinement for unclustered index scan: bitmap index scan
1. Initialize a bitmap with one bit for each page in the file (usually fits in mem even for a large file)
2. Find the first qualifying data entry
3. Scan all the data entries and mark all the unique pages with the matching records in the bitmap
4. Scan all the pages with bit 1 (linear scan on page)

» Alternative: collect all RID in memory in step 3, sort and fetch tuples in RID order
* more expensive unless RIDs fit in memory
* might make sense for faster storage (thus CPU cost matters)

Data entries

Heap file

Bitmap 0 0 0 1 1 1 0
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T: # of matching records

Simple selection: index scan (cont’d) F:#of dats entries per eaf page

N: # of pages with matching records
* Cost of bitmap index scan =

* (treesearch) h X (tg + ty) +

* (scan of data entries) (E] — 1) X tr + (assuming leaf level is consecutive from bulk loading)

* (scan of data pages) N X (tg + t) (when N is small and thus most involve random seeks) or
t¢+ N X tr (when Nisclose to N and it’s close to sequential scan)

Example 1 (large selectivity): s = 0.9,F = 300, T = [sTr] = 36000,N = 500 =>
cost=4.1x3 + 0.1 X ngo 0] — g) + 4+ 0.1 X 500 = 78.2 ms (unclustered)
vs4.1x3+4+ 0.1 x]0.9 x 500] = 61.3 ms (clustered)

Example 2 (moderate selectivity): s = 0.1, F = 300,T = [sTg] = 4000, E[N] =~ 500 (think: why?)
cost=4.1%x3 + 0.1 X ([%] - 1) +4+0.1x500 = 67.6 ms (unclustered)
vs 41X 3+4+0.1X%X[0.1x500] =21.3 ms (clustered)

Example 3 (small selectivity): s = 0.0001, F = 300,T = [sTg] = 4,N = 4
cost=4.1x3 + 0.1 X ([%] — 1) + 4.1 X 4 = 28.7 ms (unclustered)
vs 4.1 X 3 + 4 + 0.1 X |0.0001 x 500] = 16.4 ms (clustered)

Trade-offs:

* Onlyslightly more expensive than a linear scan when selectivity is close to 1
* Only slightly more expensive than a regular secondary index scan when selectivity is close to 0 (<< linear scan)
* Only works poorly when the selectivity is moderate -- better off with clustered index
* Toshow that, let I; = 1 if page i has any matching record (an indicator variable) and assume uniform distribution in search key
* E[N] = leisNR Ell;] = leisNR Pr{l; = 1} =Ng(1 - (1 — s)Pr)
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General selection predicates

* Atom predicate: attr op value or UDF

* General predicates:
e Conjunction A (and), disjunction V (or), negation = (not) of atoms or general predicates

* €.8. 0(adm year>=2019v major="'cs’) Asid >= 10008

* Most general cases can always be handled by linear scans
* Slow!

* Optimization for special cases:
* Conjunction of simple selection predicates 8; A6, A--- A 6.
* where 6; is an atom
* Disjunction of selection predicates 8, V8, V---V 0,
* Transforming a predicate P into Conjunctive Normal Form (CNF) or Disjunction Normal Form (DNF) for
additional optimization opportunities
* e.g., (ad'm_year >= 2019 V major =’ CS’) A sid >= 1000 (CNF)
= (adm_year >= 2019 A sid = 1000) V (major =" CS' Asid = 1000) (DNF)
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Conjunctive selection with one index

c O, AO, A NB,
* Choosing one or a prefix of predicates that can be answered using one index
* Apply the rest of the predicates over the result on the fly
* For instance, a B-Tree over (f, f>) can select for predicates over a prefix of its index keys
* f; op value (where op € {<, <, =,>,2))
* f; = value A f, op value (where op € {<, <, =,>,>})
* If allow using skip scan (jump scan), f, op value or f; op value A f, op value
 What if there’re multiple choices?
* Considerations: selectivity, type of indexes, actual cost (access path selection in QO)

* Cost is the same as index scans/bitmap index scans
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Conjunctive selection with multiple indexes

¢ 01/\02 AAH?‘
 What if the atoms or several conjunctions of atoms can be answered by different indexes?
* Example: 0 qior="cs’ A adm year=2021R when we have two indexes I; (major) and I,(adm_year)

e Algorithm:
1. Collect all the RIDs using both indexes
2. Compute the intersection of the RIDs
3. Fetch the heap records of the RIDs in the result set

* Cost: index search + collecting data entries+ sort + intersection + fetching heap records
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Partial matches for conjunctive selection

¢ 01/\02 AAH?‘
* What if only part of the predicates can be optimized with indexes
* Apply the remaining predicates over the result and discard those that do not satisfy

* e.g.,0 'cs' A adm year=2021 With @ hash index I(major)

major=
* Index Scan for all CS majors using I(major)

* Apply the predicate adm year = 2021 over the heap records on the fly

* Note the remaining predicates do not need to be in conjunctive normal form!
e Can be arbitrary predicates (e.g., UDF)
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Disjunction selection with multiple indexes

¢ 91V92 VVHT
* Only optimizable if all clauses 6; can be optimized using some index
* Otherwise, fall back to linear scan

e Algorithm:
1. Collect all the RIDs using both indexes

2. Compute the union of the RIDs
3. Fetch the heap records of the RIDs in the result set

e Cost: index search + collecting data entries+ sort + union + fetching heap records
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Projection it

* Without deduplication
* evaluate projection list for the records on the fly
e cost: no additional I/O
* sometimes baked into other operators (i.e., all operators can be followed by an implicit projection)

* With deduplication
* Requires materialization (blocking)
* Hash or Sort
* Hash -> build a hash table where duplicates are dropped
e Sort -> emit a record only if it is the first record or it is different from the previous one
* Result set fits in memory => easy to implement (does not add |/O cost)
* When result sets exceed configured workspace size M,
* Need to use external hashing and sorting algorithms (next lecture)
* Optimization opportunities
* Will come back to this later after we discuss external hashing and sorting



Projection over selection: Index only scan

* Formg, g, . E,0PR
* Let Var(E) be the set of attributes in the expression E

e e.g., Var(R.sid > 100) = {R.sid}
Var(length(R.name) + length(R.login)) = {R.name, R.login}

e Suppose there’s an index I over R whose index key is K;, such that
* Uigier Var(E)) U Var(P) € K;
* we can perform an index scan without fetching the heap records (index-only scan)
* Note: attributes that only appear in the projection list can be non-key columns in index
* Might be useful even if search key does not match the index key
* Cheaper than heap scan due to high fan-out

* Cost = tree search cost + cost for scanning all matching data entries
=h X (ts + tr) + ([—] — 1) X tr (assuming leaf level is consecutive on disk due to bulk loading)

* Example: Taam year,sidOadm year=2021R, B-Tree index on R(adm year, Sld)
h=3,5s=0.1,T = [sTg] = 4000,F = 300

e cost of index-only scan=3 X 4.1 + ( 2999 — 1) X 0.1 =13.6ms

vs cost of index scan (clustered) = 3 X 4 1 + 4+ 0.1 x[0.1 x500] =21.3ms
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Aggregation y without grouping

. Q F is an aggregation function, e.g.,
Yy (E1),F2(E2),..F i (Ex) SUM,COUNT, VAR, STDDEV,AVG, MIN, MAX or UDA etc.
* Blocking

Only produce one row of output

An aggregation can be expressed as three functions: F = (F™it, pacc pfinal)
e Initialization F™: poid — A (where A is some internal state of the aggregation)
e Accumulation F*¢: (A,T) » Aor (A, T) - void
e Finalization F/"4l: A — V (where V is the final type of the aggregation)
 Some systems also have an optional combine function Feo™bine. (4 A) —» A
 allows parallelizing the aggregation

Example: AVG of integers
o AVGY™ (): create a pair of (s, ¢) -- s: sum of values, c: number of values

. AVG“CC((S, c),x) =(s+x,0)
« AVGTMal((5,¢)) =10 *s/c
Cost: does not add additional 1/0 cost
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Aggregation y without grouping

o Example: AVG of integers F is an aggregation function, e.g.,

« AVG™ (): create a pair of (s, c) -- s: sum of vaIue.S,({M.’.(.‘TQE].A.”:’.V.’?R..’ETDDEV’AVG’ MIN, MAX or UDA etc.

. AVG“CC((S, C),x) =(s+x,c)
« AVGTMA((s,¢)) =1.0 *s /¢

e Consider a column in a table with the following values
* 54,1,3,2
* Steps:
« AVG™E () =(0.0,0)
« AVG%¢((0.0,0),5) = (5.0,1)
« AVG*¢((5.0,1),4) = (9.0,2)
« AVG€((9.0,2),1) = (10.0,3)
« AVG%°¢((10.0,3),3) = (13.0,4)
« AVG%°¢((13.0,4),2) = (15.0,5)

. final . _ 5+4+1+3+2
AVGTal((15.0,5)) = 3.0 -
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Aggregation y with grouping

G1,G2,..sGpn Y F1(E1),Fy (EZ),...,Fk(Ek)Q
* Blocking
* One record per group (distinct values in G4, G, ..., G;,)
* Let group by columns be G = (G4, G, ..., Gy,)
e Solution: sorting or hashing
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Aggregation y with grouping

G1,G2,..sGpn Y F1(E1),Fy (EZ),...,Fk(Ek)Q
* Blocking
* One record per group (distinct values in G4, G, ..., G;,)
* Let group by columns be G = (G4, G, ..., Gy,)
* Sort-based solution: sort all tuples in Q on G; for each result t
1. Iftisthefirstone, g « mst and a; « F{™(),...ax « FME()

2. Iftisnotthefirstand mgt # g, emit go (Fﬁnal( 1)) - F,{inal(ak))
* Then, g « mgt and a; « Fli"it() FMt ()
3. Otherwise, a; « acc(al, g, t ), - acc(ak, g, t )
4. After the last record is read, emit the last group as g o (Flfmal(al), F,{inal(ak))

 If there are too many groups, use external sorting
e Optimization opportunities (next lecture)
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Aggregation y with grouping

* Example for sort-based solution:
e Consider two columns (x, y) with the following values
* (1,1.0),(2,2.0),(1,4.0),(2,6.0)
* xVsum(y)
Step 1: sort by x
* (1,1.0),(1,4.0),(2,2.0),(2,6.0)
Step 2: scan and calculate the group aggregates
* Scan(1,1.0):g«<x=1,a;, «<0.0+1.0=1.0
* Scan(1,4.0):ay < a; +4.0=5
e Scan (2, 2.0):
e Sincex =2#g=1,emit(g,a,) = (1,5.0) as a result
e ge—x=2,a, < 00+2.0=2.0
* Scan (2,6.0): a4 «< a; + 6.0 =8.0
Step 3: emit the final group: (g,a,) = (2, 8.0)
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Aggregation y with grouping

G1,G2,..sGpn Y F1(E1),Fy (EZ),...,Fk(Ek)Q

* Blocking

* One record per group (distinct values in G4, G, ..., G;,)
* Let group by columns be G = (G4, Gy, ..., G,) or U;<;<,, Var(G;)

» Hash-based solution: create a hash table from G to (44,45, ..., Ay)
* Maintain the hash table using the aggregation functions while reading records from Q
» After deplete the records in Q, scan the hash table, and
* emit one row for each distinct value in G and compute its final value using the finalization functions

e Again, if there are too many groups, use external hashing
e Optimization opportunities (next lecture)
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Aggregation y with grouping

* Example for hash-based solution:
e Consider two columns (x, y) with the following values

. (1,1.0),(2,2.0),(1,4.0), (2, 6.0) -
e assume h(1) =2,h(2) =0 y
* xVsum(y) )

» Step 1: create an empty hash table

e Step 2: scan records and maintain aggregates
e scan(1,1.0):x[h(1)] «x=1,a[h(1)] <« 0.0+ y =1.0
e scan(2,2.0):x[h(2)] « x =2,a4|h(2)] « 0.0 +y = 2.0
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Aggregation y with grouping

* Example for hash-based solution:
e Consider two columns (x, y) with the following values
* (1,1.0),(2,2.0),(1,4.0),(2,6.0) h(x)
e assume h(1) =2,h(2) =0 y
* xVsuM(y) ay
Step 1: create an empty hash table
Step 2: scan records and maintain aggregates
e scan(1,1.0):x[h(1)] «x=1,a,[h(1)] <« 0.0+ 7y =1.0
* scan(2,2.0):x[h(2)] « x =2,a4|h(2)] « 0.0 +y = 2.0
* scan(1,4.0):a;[h(1)] « a;[h(1)]+y=1.0+4.0=75.0
e scan(2,6.0):a;[h(2)] « a;|h(2)]+y =2.0+ 6.0 =8.0
Step 3: scan hash table and emit results
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Set operators U,N , —

* SQL performs deduplication before the set operators by default, unless one specifies ALL
e eg.,A={1,1,2},B={1, 2}
 SELECT * FROM A EXCEPT SELECT * FROM B; --resultisempty
e SELECT * FROM A EXCEPT ALL SELECT * FROM B; --resultis{1}(one row)
 UNION ALL can be made pipelining: emit everything from LHS and then RHS

* All the others are similar: using UNION as an example
 Solution: sorting or hashing
* sorting: sort A and B separately, merge them together by removing any duplicates
e Similar to a sort-merge join we will discuss in later lectures
* hashing: create a hash table over all the attributes, scan A and B
* Only keep the first occurrence of each distinct value
* Once again, optimization opportunities exist when the result set(s) of A and/or B do not fit in memory
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Summary

* This lecture:
* Operators for single-table queries and their cost

* Next lecture:
* External hashing and sorting in query processing
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