CSE462/562: Database Systems (Spring 22)
Lecture 13: External sorting

4/5/2022

University at Buffalo
s Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

What is external sorting/hashing?

* Problem: sort or hashing 1TB of data over 1GB of RAM
* Why not virtual memory?
* Swaps involve expensive random |/Os
* Why not using B-Tree/extendible hashing/linear hashing?
* Dynamic structures carry additional overhead for maintenance (not needed in QP)
e Missing optimization opportunities with hybrid approach (see later)

* General wisdom:
* |/O cost dominates the total cost
* Design algorithms to reduce the number of 1/Os

CSE462/562 (Spring 2022): Lecture 13

Two-way merge-sort: a starting point

* Recall the two-way merge-sort
 given a list of items in A[0..n — 1]
* recursively divide and conquer the problem
. . . . n n
* divide the list into two halves A4 [0.. b“ , A5 HE‘ +1,n— 1]

* merge-sort A; and A, individually
* merge the two sorted list A1, 4,

5 2

5 1 2 1
merge-sort
9 divide e sublists > = merge 2
7 j‘> 73 j‘> 7 4 j‘> 3
" 1 4 10 8 4
2 5
8 7
3 8
4 10

CSE462/562 (Spring 2022): Lecture 13

External two-way merge sort

 Needs 3 buffers

* |Instead of recursion

e works bottom up from the input

Y

INPUT].~\\\\

OUTPUT

Y

Disk file

-(INPUT 2 /

Main memory buffers

CSE462/562 (Spring 2022): Lecture 13

Disk file

External two-way merge sort

 Needs 3 buffers

* |Instead of recursion

* works bottom-up from the input

Y

OUTPUT

INPUT 1 \
—>’ INPUT 2 7

Main memory buffers

Y

Disk file

3,4 16,2| |9,4| 8,7 6 13,1 [2,7| |6
3.4/ |2.6| 4,9 7.8 |56 |1,3] |2,7] |6
\ /. \ /. \ /. \ /.
N N N N
2.3 4,7 1,3 2.6
4.6 8,9 5.6 7
pd Z
_/ \
2.3 1,2
4.4 3,5
6,7 6,6
8.9 7
1,2
2.3
3,4
4.5
6,6
6,7
7.8
9

CSE462/562 (Spring 2022): Lecture 13

Input file
PASS 0

1-page runs
PASS 1

2-page runs

PASS 2

4-page runs

PASS 3

8-page runs

External two-way merge sort

Input: N pages

* Transfer cost: 2tyN([log, N| + 1)
« Seek cost: 2tsN(Jlog, N1 + 1)
 total =2(ty + tg)N([log, N| + 1)

Y

INPUT 1 \

OUTPUT

Cost for a pass: reading & writing N pages once Y
of passes: height of the tree = [log, N| + 1
Total cost: 2N ([log, N] + 1) 1/Os

INPUT 2 /

Disk file

Main memory buffers

3,4 16,2 [9,4]| |8,7 6| 3,1 |12,7] |6
3.4 |26 (4,9 |78 |5,6| |1,3] |2,7] |6
\ /. \ /. \ /. \ /.
N N N Y N
2.3 4,7 1,3 2.6
4.6 8,9 5,6 7
pd Z
_/ \
2.3 1,2
4.4 3,5
.. 6.7 6,6
Not so efficient! :
ffi 59 =
— 1,2
_’/
2.3
3,4
o | | 4,5
[| 6.6
e 2.
7,8
Disk file 9

CSE462/562 (Spring 2022): Lecture 13

Input file
PASS 0

1-page runs
PASS 1

2-page runs

PASS 2

4-page runs

PASS 3

8-page runs

External multi-way merge sort

 How do we fully utilize all the M buffers?

e Solution: (M-1)-way merge-sort

* Pass O: internal sort to produce initial runs
* read every M pages into memory
e use some internal sorting algorithm (e.g., quick sort)
* can produce even larger runs (later)
* write all the M pages as a run

-\

—

T INPUT 1
- I
g
[] INPUT 2
e O o o o o
[Iy
| T INPUTM
Disk

M Main memory buffers

N pages in input

[%] runs after pass 0

Cost:

2N pages read/written +
2 [ﬂ] seeks
M
: N
ie.2Ntr + 2 [ﬁ] ts

3,4 |6,2| (9,4] 8,7 |5,6| [3,1] |2,7
— 2,3 1,3 2.6
_//
4,4 5.6 7
6,9 7.8

-
Disk

CSE462/562 (Spring 2022): Lecture 13

Input file

PASS 0

General multi-way merge sort

e Pass 1, 2, merge as many runs as possible from previous pass into a sorted run
* maintain a min-heap/max-heap (aka priority queue)

» supports O(logM) time insertion of any item and deletion of the smallest/largest item

* acomplete binary tree where parent is smaller/larger than both children

* how to implement
* numbering nodes level by level sequentially from 1, store in an array A[1..n]

* (how to translate 1-based index to 0-based in C/C++?)

» parentof A[i] is A[i/2], left child of A[i] is A[i * 2], right child of A[i] is A[i * 2 + 1]
e push-down or push-up to maintain the variant

> INPUT 1 < >
_////,
.
| »| INPUT \
¢ o "2 —oureur of | I
e o o
| /
| INPUT M-1 —
Disk M Main memory buffers Disk 4 [1 4 3 8 >)

CSE462/562 (Spring 2022): Lecture 13

General multi-way merge sort

* Pass 1, 2, merge as many runs as possible from previous pass into a sorted run
* maintain a min-heap
* |load one page from each of the M — 1 runs
* and maintain pointers of next page to read
» for each loaded page

For illustration, let’s now assume
M = 4 instead of 3 from now on.

* insert the first key into the min-heap Run 1 Run2 Run3

* maintain next slot ids for each page 23 13 26
* Repeatedly remove the smallest item from the min heap 4.4 56 7

* and replace it with the next key in its run 6.9 78

* write out the output page once it’s full

PASS 1

CSE462/562 (Spring 2022): Lecture 13

General multi-way merge sort

* Pass 1, 2, merge as many runs as possible from previous pass into a sorted run
* maintain a min-heap
* |load one page from each of the M — 1 runs
* and maintain pointers of next page to read
» for each loaded page

For illustration, let’s now assume
M = 4 instead of 3 from now on.

* insert the first key into the min-heap Run 1 Run2 Run3

* maintain next slot ids for each page 23 13 26
* Repeatedly remove the smallest item from the min heap a4 56| _7

* and replace it with the next key in its run next 6.9 78

* write out the output page once it’s full

input / ”ew
Zy
/ output

[
(1)3
/

/

2,6

PASS 1

from run 2

M Main memory buffers

CSE462/562 (Spring 2022): Lecture 13 10

General multi-way merge sort

* Pass 1, 2, merge as many runs as possible from previous pass into a sorted run
* maintain a min-heap

* |load one page from each of the M — 1 runs
* and maintain pointers of next page to read

» for each loaded page

For illustration, let’s now assume
M = 4 instead of 3 from now on.

* insert the first key into the min-heap Run 1 Run2 Run3

* maintain next slot ids for each page 23 13 26
* Repeatedly remove the smallest item from the min heap a4 56| 7

* and replace it with the next key in its run next 6.9 78

* write out the output page once it’s full

input / next_sid

2 3

/
v
5,6
/
v

2,6

output

M Main memory buffers

Q PASS 1

CSE462/562 (Spring 2022): Lecture 13 11

General multi-way merge sort

* Pass 1, 2, merge as many runs as possible from previous pass into a sorted run
* maintain a min-heap
* |load one page from each of the M — 1 runs
* and maintain pointers of next page to read
» for each loaded page
* insert the first key into the min-heap
* maintain next slot ids for each page
* Repeatedly remove the smallest item from the min heap
e and replace it with the next key in its run
* write out the output page once it’s full

input

next_sid

4

\\‘

UT

, 6

/
/
| 4

2,6

output

M Main memory buffers

next

For illustration, let’s now assume
M = 4 instead of 3 from now on.

Run 1 Run 2 Run 3
2,3 1,3 2,6
_—n4.4 56| _—7
6,9 78 /
|

CSE462/562 (Spring 2022): Lecture 13

\l/ PASS 1

1,2

12

General multi-way merge sort

* Pass 1, 2, merge as many runs as possible from previous pass into a sorted run
* maintain a min-heap
* |load one page from each of the M — 1 runs
* and maintain pointers of next page to read
» for each loaded page
* insert the first key into the min-heap
* maintain next slot ids for each page
* Repeatedly remove the smallest item from the min heap
e and replace it with the next key in its run

* write out the output page once it’s full

input

output

M Main memory buffers

For illustration, let’s now assume
M = 4 instead of 3 from now on.

Run 1 Run 2 Run 3
2,3 1,3 2,6
4,4 5,6 7
6,9 7,8 /

|

N pages to read/write per pass

N
[logM_l [EH merge passes
Cost per merge pass:
2N pages read/written +
2N seeks

Total cost for merge passes:

2(t7 + ts)N[logy_q -]

CSE462/562 (Spring 2022): Lecture 13

\M PASS 1

1,2
2,3
3,4
4,5
6,6
6,7
7,8

9

13

Cost analysis

* Cost analysis: » gain of utilizing all available buffers
e Pass0: 2Nty + 2 [%} to " importance of a high fan-in during merging

* Pass 1,2, ..combined: 2(t; + ts)N[logM—l[%”

* Total = 2t N ([logM_l [%H + 1) + 2t ([ﬁ + N[logM_l[%ﬂ)

N M=3 =5 =9 =17 =129 =257
100 7 4 3 2 1 1
1,000 10 5 4 3 2 2
10,000 13 7 5 4 2 2
100,000 17 9 6 5 3 3
1,000,000 20 10 7 5 3 3
10,000,000 23 12 8 6 4 3
100,000,000 26 14 9 7 4 4
1,000,000,000 30 15 10 8 5 4

e Can we do it better?

CSE462/562 (Spring 2022): Lecture 13

Batching 1/Os for merge sort

e Refinement 1

* reducing random |/Os by reading/writing B pages per run during merge

* using (M — 1)-way merge sort

* memory usage increases to MB pages
* number of pages transferred do not change

* but the number of random seeks per merge pass reduced to approximately Z[E]
N N N NN\
* total cost reduced to 2t N ([logM_1 [ﬁ” + 1) + 2tg ([ﬁ] + [E] [lOQM—ﬂﬁﬂ)

input
1{(2|..|B
output
1{|12]..|B 1((2|..|B
1{|12]..|B
MB Main memory buffers

Exercise: what if we only have M pages instead of MB
pages and still read/write pages in B-page batches?

2trN | |1 N 1)+2 N N [N
o (sl 1) 26 ([+ 1ot

CSE462/562 (Spring 2022): Lecture 13

15

Pipelining output

e Refinement 2
* in most cases, do not need to write
» pipelining to the next operator
e or output to user

the final file

* Hence, no need to count the write of the final pass

* total cost reduced to tN (2 [loglMJ_l [%” + 1) + & (2 [%} + [%](Zﬂoglyl_l[%ﬂ — 1))

input
1{(2|..|B
output
1/|2|..|B 1((2..|B
1/|2|..|B
MB Main memory buffers

CSE462/562 (Spring 2022): Lecture 13

16

Tournament sort

* Refinement 3
e producing initial runs as large as possible in pass 0
« Alternative to quick-sort: “tournament sort” (a.k.a. “heapsort”, “replacement selection”)

* Keep two heaps in memory, H1 and I/, reserve an input buffer page and an output buffer page
read M-2 pages of records, inserting into HI1;
while (records left) {

m = Hl.removemin(),; put m in output buffer;
if (H1 is empty)

swap Hl1l and (pointer swap only!); start new output run;
else

read in a new record r (use 1 buffer for input pages);
if (r < m) .insert(r);
else Hl.insert(r);

}
H1l.output(); start new run; .output() ;

Tournament sort

* Tournament sort explained:

12 |

8

[10
12 | 3 |
= L 5

INPUT

CURRENT SET

OUTPUT

 1input, 1 output, M - 2 for current and next set (min heaps)
 Main idea: ensure the smallest key in the current set (H1) is greater than any key that
has been written to this output run.
* Ifit can’t be satisfied, write to the , Which goes into the next run.
* Memory usage of the min-heaps combined never exceeds the M-2 pages

CSE462/562 (Spring 2022): Lecture 13

Tournament sort

Fact: average length of a run is 2(M-2)

Total cost reduced to on average

ot (2 togp |

Worst-Case:

2M — 4

* What is min length of a run?

e How does this arise?

Best-Case:

* What is max length of a run?

* How does this arise?

N N
H + 1) + & (2 [ZM — 4} + [E](Z[logl

Quicksort is faster, but ... longer runs often means fewer passes!

CSE462/562 (Spring 2022): Lecture 13

JlZM 4

1= 1))

19

Using B+ Trees for Sorting

Scenario: Table to be sorted has B+ tree index on sorting column(s).

ldea: Can retrieve records in order by traversing leaf pages.

Is this a good idea?

Cases to consider:
- B+ treeis clustered Good idea since it’s already available!

- B+ treeis not clustered Could be a very bad idea! (Random 1/0)
unless all columns are included in the key

20

Certain basic operator implementation w/ sorting

* Some basic operators can be implemented on top of sorting
e Can use pipelining over the sort results

* Examples
* deduplication (projection in standard RA)
* maintain the last key
» for each output from the sort
* otherwise, discard it
* aggregation
* maintain the aggregation state
» for each output from the sort
* emit the finalized aggregation value if it is different from the last key (unless this is the first)
* otherwise, accumulate it to the state
* exercise: work out the details of U,N, —

* No additional I/O due to pipelining
e can support rewinding (why?)

CSE462/562 (Spring 2022): Lecture 13

21

This lecture

* Summary:
e External sorting (multi-way merge-sort)
e Certain operator implementation using sorting

* Next lecture
* join algorithms
* nested loop
* index nested loop
* hash join and hybrid hashing

CSE462/562 (Spring 2022): Lecture 13

22

