
CSE462/562: Database Systems (Spring 22)

Lecture 13: External sorting

4/5/2022

What is external sorting/hashing?
• Problem: sort or hashing 1TB of data over 1GB of RAM

• Why not virtual memory?

• Swaps involve expensive random I/Os

• Why not using B-Tree/extendible hashing/linear hashing?

• Dynamic structures carry additional overhead for maintenance (not needed in QP)

• Missing optimization opportunities with hybrid approach (see later)

• General wisdom:
• I/O cost dominates the total cost

• Design algorithms to reduce the number of I/Os

CSE462/562 (Spring 2022): Lecture 13 2

Two-way merge-sort: a starting point
• Recall the two-way merge-sort

• given a list of items in 𝐴[0. . 𝑛 − 1]
• recursively divide and conquer the problem

• divide the list into two halves 𝐴1 0. .
𝑛

2
, 𝐴2

𝑛

2
+ 1, 𝑛 − 1

• merge-sort 𝐴1 and 𝐴2 individually
• merge the two sorted list 𝐴1, 𝐴2

CSE462/562 (Spring 2022): Lecture 13

𝐴

5

9

7

1

2

8

3

4

𝐴𝟏

5

10

7

1

𝑨𝟐

2

8

3

4

𝐴𝟏

1

5

7

10

𝑨𝟐

2

3

4

8

𝑨

1

2

3

4

5

7

8

10

divide
merge-sort
sublists merge

3

External two-way merge sort
• Needs 3 buffers

• Instead of recursion
• works bottom up from the input

CSE462/562 (Spring 2022): Lecture 13

Main memory buffers

INPUT 1

INPUT 2

OUTPUT

Disk fileDisk file

4

External two-way merge sort
• Needs 3 buffers

• Instead of recursion
• works bottom-up from the input

CSE462/562 (Spring 2022): Lecture 13

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2,7

3,4 5,62,6 4,9 7,8 1,3 2,7

2,3

4,6

4,7

8,9

1,3

5,6 7

2,3

4,4

6,7

8,9

1,2

3,5

6,6

1,2

2,3

3,4

4,5

6,6

6,7

Main memory buffers

INPUT 1

INPUT 2

OUTPUT

Disk file

6

6

2,6

7

7,8

5

External two-way merge sort
• Input: N pages

• Cost for a pass: reading & writing N pages once

• # of passes: height of the tree = log2𝑁 + 1

• Total cost: 2𝑁 log2𝑁 + 1 I/Os
• Transfer cost: 2tT𝑁 log2𝑁 + 1

• Seek cost: 2𝑡𝑆𝑁 𝑙𝑜𝑔2𝑁 + 1

• total = 2 𝑡𝑇 + 𝑡𝑆 𝑁 log2𝑁 + 1

CSE462/562 (Spring 2022): Lecture 13

Main memory buffers

INPUT 1

INPUT 2

OUTPUT

Disk fileDisk file

Not so efficient!

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2,7

3,4 5,62,6 4,9 7,8 1,3 2,7

2,3

4,6

4,7

8,9

1,3

5,6 7

2,3

4,4

6,7

8,9

1,2

3,5

6,6

1,2

2,3

3,4

4,5

6,6

6,7

6

6

2,6

7

7,8

6

External multi-way merge sort
• How do we fully utilize all the 𝑀 buffers?

• Solution: (M-1)-way merge-sort

• Pass 0: internal sort to produce initial runs
• read every 𝑀 pages into memory

• use some internal sorting algorithm (e.g., quick sort)

• can produce even larger runs (later)

• write all the 𝑀 pages as a run

CSE462/562 (Spring 2022): Lecture 13
M Main memory buffers

INPUT 1

INPUT M

DiskDisk

INPUT 2

.

𝑁 pages in input

⌈
𝑁

𝑀
⌉ runs after pass 0

Cost:
2𝑁 pages read/written +

2
𝑁

𝑀
seeks

i.e. 2𝑁𝑡𝑇 + 2
𝑁

𝑀
𝑡𝑆

2,3

4,4

6,9

1,3

5,6

7,8

2,6

PASS 0

Input file3,4 6,2 9,4 8,7 5,6 3,1 2,7 6

7

7

General multi-way merge sort
• Pass 1, 2, …: merge as many runs as possible from previous pass into a sorted run

• maintain a min-heap/max-heap (aka priority queue)
• supports 𝑂 𝑙𝑜𝑔𝑀 time insertion of any item and deletion of the smallest/largest item
• a complete binary tree where parent is smaller/larger than both children
• how to implement

• numbering nodes level by level sequentially from 1, store in an array 𝐴[1. . 𝑛]
• (how to translate 1-based index to 0-based in C/C++?)

• parent of 𝐴[𝑖] is 𝐴 𝑖/2 , left child of 𝐴 𝑖 is 𝐴[𝑖 ∗ 2], right child of 𝐴[𝑖] is 𝐴[𝑖 ∗ 2 + 1]
• push-down or push-up to maintain the variant

CSE462/562 (Spring 2022): Lecture 13
M Main memory buffers

INPUT 1

INPUT M-1

OUTPUT

DiskDisk

INPUT 2

.

1

4 3

8 5 9

1 4 3 8 5 9

1

2 3

4 5 6

𝐴
8

General multi-way merge sort
• Pass 1, 2, …: merge as many runs as possible from previous pass into a sorted run

• maintain a min-heap
• load one page from each of the 𝑀 − 1 runs

• and maintain pointers of next page to read
• for each loaded page

• insert the first key into the min-heap
• maintain next slot ids for each page

• Repeatedly remove the smallest item from the min heap
• and replace it with the next key in its run
• write out the output page once it’s full

CSE462/562 (Spring 2022): Lecture 13

2,3

4,4

6,9

1,3

5,6

7,8

2,6

7

PASS 1

For illustration, let’s now assume
𝑀 = 4 instead of 3 from now on.

Run 1 Run 2 Run 3

9

General multi-way merge sort
• Pass 1, 2, …: merge as many runs as possible from previous pass into a sorted run

• maintain a min-heap
• load one page from each of the 𝑀 − 1 runs

• and maintain pointers of next page to read
• for each loaded page

• insert the first key into the min-heap
• maintain next slot ids for each page

• Repeatedly remove the smallest item from the min heap
• and replace it with the next key in its run
• write out the output page once it’s full

CSE462/562 (Spring 2022): Lecture 13

2,3

4,4

6,9

1,3

5,6

7,8

2,6

7

PASS 1

For illustration, let’s now assume
𝑀 = 4 instead of 3 from now on.

M Main memory buffers

next

2, 3

1, 3

2, 6

next_sidinput

output

1,2

2,1 2,3

Run 1 Run 2 Run 3

10

key with value 1 from run 2

General multi-way merge sort
• Pass 1, 2, …: merge as many runs as possible from previous pass into a sorted run

• maintain a min-heap
• load one page from each of the 𝑀 − 1 runs

• and maintain pointers of next page to read
• for each loaded page

• insert the first key into the min-heap
• maintain next slot ids for each page

• Repeatedly remove the smallest item from the min heap
• and replace it with the next key in its run
• write out the output page once it’s full

CSE462/562 (Spring 2022): Lecture 13

2,3

4,4

6,9

1,3

5,6

7,8

2,6

7

PASS 1

For illustration, let’s now assume
𝑀 = 4 instead of 3 from now on.

M Main memory buffers

next

2, 3

5, 6

2, 6

next_sid

1

input

output

2,1

2,3

Run 1 Run 2 Run 3

3,2

11

General multi-way merge sort
• Pass 1, 2, …: merge as many runs as possible from previous pass into a sorted run

• maintain a min-heap
• load one page from each of the 𝑀 − 1 runs

• and maintain pointers of next page to read
• for each loaded page

• insert the first key into the min-heap
• maintain next slot ids for each page

• Repeatedly remove the smallest item from the min heap
• and replace it with the next key in its run
• write out the output page once it’s full

CSE462/562 (Spring 2022): Lecture 13

2,3

4,4

6,9

1,3

5,6

7,8

2,6

7

PASS 1

For illustration, let’s now assume
𝑀 = 4 instead of 3 from now on.

M Main memory buffers

next

4, 4

5, 6

2, 6

next_sidinput

output

2,3

3,1

Run 1 Run 2 Run 3

3,2

1,2

12

General multi-way merge sort
• Pass 1, 2, …: merge as many runs as possible from previous pass into a sorted run

• maintain a min-heap
• load one page from each of the 𝑀 − 1 runs

• and maintain pointers of next page to read
• for each loaded page

• insert the first key into the min-heap
• maintain next slot ids for each page

• Repeatedly remove the smallest item from the min heap
• and replace it with the next key in its run
• write out the output page once it’s full

CSE462/562 (Spring 2022): Lecture 13

2,3

4,4

6,9

1,3

5,6

7,8

2,6

7

PASS 1

For illustration, let’s now assume
𝑀 = 4 instead of 3 from now on.

M Main memory buffers

input

output

Run 1 Run 2 Run 3

9

1,2

2,3

3,4

4,5

6,6

6,7

7,8

𝑁 pages to read/write per pass

𝑙𝑜𝑔𝑀−1
𝑁

𝑀
merge passes

Cost per merge pass:
2𝑁 pages read/written +
2𝑁 seeks

Total cost for merge passes:

2 𝑡𝑇 + 𝑡𝑆 𝑁⌈log𝑀−1⌈
𝑁

𝑀
⌉⌉

13

Cost analysis
• Cost analysis:

• Pass 0: 2𝑁𝑡𝑇 + 2
𝑁

𝑀
𝑡𝑆

• Pass 1, 2, … combined: 2 𝑡𝑇 + 𝑡𝑆 𝑁⌈log𝑀−1⌈
𝑁

𝑀
⌉⌉

• Total = 2𝑡𝑇𝑁 𝑙𝑜𝑔𝑀−1
𝑁

𝑀
+ 1 + 2𝑡𝑆

𝑁

𝑀
+ 𝑁⌈𝑙𝑜𝑔𝑀−1⌈

𝑁

𝑀
⌉⌉

• Can we do it better?

CSE462/562 (Spring 2022): Lecture 13 14

N M=3 =5 =9 =17 =129 =257

100 7 4 3 2 1 1

1,000 10 5 4 3 2 2

10,000 13 7 5 4 2 2

100,000 17 9 6 5 3 3

1,000,000 20 10 7 5 3 3

10,000,000 23 12 8 6 4 3

100,000,000 26 14 9 7 4 4

1,000,000,000 30 15 10 8 5 4

▪ gain of utilizing all available buffers
▪ importance of a high fan-in during merging

Batching I/Os for merge sort
• Refinement 1

• reducing random I/Os by reading/writing 𝐵 pages per run during merge
• using 𝑀 − 1 -way merge sort

• memory usage increases to 𝑀𝐵 pages
• number of pages transferred do not change

• but the number of random seeks per merge pass reduced to approximately 2⌈
𝑁

𝐵
⌉

• total cost reduced to 2𝑡𝑇𝑁 𝑙𝑜𝑔𝑀−1
𝑁

𝑀𝐵
+ 1 + 2𝑡𝑆

𝑁

𝑀𝐵
+ ⌈

𝑁

𝐵
⌉⌈𝑙𝑜𝑔𝑀−1⌈

𝑁

𝑀𝐵
⌉⌉

CSE462/562 (Spring 2022): Lecture 13

MB Main memory buffers

1

input

output
2 B…

1 2 B…

1 2 B…

1 2 B…

15

Exercise: what if we only have 𝑀 pages instead of 𝑀𝐵
pages and still read/write pages in 𝐵-page batches?

2𝑡𝑇𝑁 𝑙𝑜𝑔
⌊
𝑀
𝐵
⌋−1

𝑁

𝑀
+ 1 + 2𝑡𝑆

𝑁

𝑀
+ ⌈

𝑁

𝐵
⌉⌈𝑙𝑜𝑔

⌊
𝑀
𝐵
⌋−1

⌈
𝑁

𝑀
⌉⌉

Pipelining output
• Refinement 2

• in most cases, do not need to write the final file
• pipelining to the next operator
• or output to user

• Hence, no need to count the write of the final pass

• total cost reduced to 𝑡𝑇𝑁 2 𝑙𝑜𝑔 𝑀

𝐵
−1

𝑁

𝑀
+ 1 + 𝑡𝑆 2

𝑁

𝑀
+ ⌈

𝑁

𝐵
⌉(2⌈𝑙𝑜𝑔 𝑀

𝐵
−1
⌈
𝑁

𝑀
⌉⌉ − 1)

CSE462/562 (Spring 2022): Lecture 13

MB Main memory buffers

1

input

output
2 B…

1 2 B…

1 2 B…

1 2 B…

16

Tournament sort
• Refinement 3

• producing initial runs as large as possible in pass 0

• Alternative to quick-sort: “tournament sort” (a.k.a. “heapsort”, “replacement selection”)

• Keep two heaps in memory, H1 and H2, reserve an input buffer page and an output buffer page
read M-2 pages of records, inserting into H1;

while (records left) {

m = H1.removemin(); put m in output buffer;

if (H1 is empty)

swap H1 and H2 (pointer swap only!); start new output run;

else

read in a new record r (use 1 buffer for input pages);

if (r < m) H2.insert(r);

else H1.insert(r);

}

H1.output(); start new run; H2.output();

CSE462/562 (Spring 2022): Lecture 13 17

Tournament sort
• Tournament sort explained:

CSE462/562 (Spring 2022): Lecture 13 18

. . .
12

4

2

8

10
3

5

CURRENT SET
INPUT

OUTPUT

• 1 input, 1 output, M - 2 for current and next set (min heaps)
• Main idea: ensure the smallest key in the current set (H1) is greater than any key that

has been written to this output run.
• If it can’t be satisfied, write to the next set (H2), which goes into the next run.

• Memory usage of the min-heaps combined never exceeds the M-2 pages

Tournament sort

CSE462/562 (Spring 2022): Lecture 13 19

• Fact: average length of a run is 2(M-2)

• Total cost reduced to on average

𝑡𝑇𝑁 2 𝑙𝑜𝑔 𝑀
𝐵

−1

𝑁

2𝑀 − 4
+ 1 + 𝑡𝑆 2

𝑁

2𝑀 − 4
+ ⌈

𝑁

𝐵
⌉(2⌈𝑙𝑜𝑔 𝑀

𝐵
−1
⌈

𝑁

2𝑀 − 4
⌉⌉ − 1)

• Worst-Case:
• What is min length of a run?

• How does this arise?

• Best-Case:
• What is max length of a run?

• How does this arise?

• Quicksort is faster, but … longer runs often means fewer passes!

Using B+ Trees for Sorting

• Scenario: Table to be sorted has B+ tree index on sorting column(s).

• Idea: Can retrieve records in order by traversing leaf pages.

• Is this a good idea?

• Cases to consider:
• B+ tree is clustered Good idea since it’s already available!

• B+ tree is not clustered Could be a very bad idea! (Random I/O)
unless all columns are included in the key

20

Certain basic operator implementation w/ sorting
• Some basic operators can be implemented on top of sorting

• Can use pipelining over the sort results

• Examples
• deduplication (projection in standard RA)

• maintain the last key
• for each output from the sort

• emit it if it is different from the last key
• otherwise, discard it

• aggregation
• maintain the aggregation state
• for each output from the sort

• emit the finalized aggregation value if it is different from the last key (unless this is the first)
• otherwise, accumulate it to the state

• exercise: work out the details of ∪,∩,−

• No additional I/O due to pipelining
• can support rewinding (why?)

CSE462/562 (Spring 2022): Lecture 13 21

This lecture
• Summary:

• External sorting (multi-way merge-sort)

• Certain operator implementation using sorting

• Next lecture
• join algorithms

• nested loop

• index nested loop

• hash join and hybrid hashing

CSE462/562 (Spring 2022): Lecture 13 22

