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Query optimization
• Query can be dramatically improved by changing access methods, order of operators.

• Volcano interface

• Relational Algebra Equivalences provide theoretical foundation for valid transformations
• Naïve approach:

EQ={E}

repeat

foreach plan E in EQ

apply each equivalence rule to some subexpression of E to obtain E’

if E’ is not in EQ

add E’ to EQ  

until no new plan can be added to EQ

• The search space is intractable even with a subset of the available rules
• Consider a constrained space for 𝑅1 ⋈ 𝑅2 ⋈ ⋯ ⋈ 𝑅𝑛 where we only apply join reordering

• there are 
2 𝑛−1 !

𝑛−1 !
possible join orders  (𝑛! = 1 × 2 × ⋯× 𝑛) *

• n = 3 => 12 join orders; n = 4 => 120 join orders; n = 5 => 1680 join orders, …
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Query optimization
• Other issues with query optimization

• Cost estimation

• Choosing access path

• Optimizing multi-relation queries (aka join queries)

• We will focus on the “System-R”-style query optimizer
• The first and the most classic RDBMS (from IBM)

• Its optimizer has huge influence on query optimizers in today’s DBMS
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Highlights of System R Optimizer
• Impact:

• Most widely used currently; works well for < 10 joins.

• Cost estimation:

• Very inexact, but works fine in practice.

• Statistics, maintained in system catalogs, used to estimate cost of operations and result sizes.

• Considers combination of CPU and I/O costs.

• State-of-the-art has a lot of improvement on this topic.

• Plan Space:  Too large, must be pruned.

• Only the space of left-deep plans is considered.

• Cartesian products avoided. 
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Query blocks: unit of optimization
• An SQL query is parsed into a collection of query blocks

• and these are optimized one block at a time.

• Nested blocks are usually treated as calls to a subroutine, 
made once per outer tuple.  (This is an over-simplification 
but serves for the purpose now.)

• For each block, the plans considered are:
• All available access methods, for each relation in FROM 

clause (potentially with projection/selection push-downs).
• All left-deep join trees (i.e., right branch always a base table, 

consider all join orders and join methods.)
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Inner (Nested) block

Outer block

SELECT S.name

FROM student S

WHERE EXISTS

(SELECT  E.sid
FROM enroll E
WHERE E.sid = S.sid

AND E.grade >= 3.7)



Translating SQL to logical plan
• Inner block:

• 𝑄 𝑠𝑖𝑑 ← 𝜎𝐸.𝑠𝑖𝑑=𝑠𝑖𝑑∧𝐸.𝑔𝑟𝑎𝑑𝑒≥3.7𝐸

• Outer block:
• 𝑆 ← 𝑠𝑡𝑢𝑑𝑒𝑛𝑡
𝜋𝑆.𝑛𝑎𝑚𝑒𝜎𝑆.𝑠𝑖𝑑 𝐼𝑁 𝑄 𝑠𝑖𝑑 𝑆 (?)

• Can’t express it in standard relational algebra!

• Need to extend the relational algebra
• Choice 1: correlated evaluation (by extending the algebra)

• Treat the inner block as a function, evaluate it for every outer tuple scanned
• IN operator is implemented as a set membership testing

• Choice 2: decorrelation (by introducing semi-joins and anti-joins)

• semi-join: 𝐴 ⋉𝜃 𝐵 ≜ 𝜋𝐴 𝑅 𝐴 ⋈𝜃 𝐵 (set version)

• for multi-set version, multiplicity of the same tuple in the result is the same as that in 𝐴
• anti-join: 𝐴 ▷𝜃 𝐵 ≜ 𝐴 − 𝐴 ⋉𝜃 𝐵

• Example: 𝜋𝑛𝑎𝑚𝑒𝑆 ⋉𝑆.𝑠𝑖𝑑=𝐸.𝑠𝑖𝑑 𝜎𝐸.𝑔𝑟𝑎𝑑𝑒≥3.7𝐸

• Can we replace ⋉ with ⋈ ?  (No!)
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SELECT S.name

FROM student S

WHERE EXISTS

(SELECT  *
FROM enroll E
WHERE E.sid = S.sid

AND E.grade >= 3.7)



Cost estimation
• To compare different plans, we need to estimate the cost

• Must estimate cost of each operation in plan tree.

• Depends on input cardinalities.

• We’ve already discussed how to estimate the cost of operations (sequential scan, index scan, 
joins, etc.)

• Must estimate size of result for each operation in tree!

• Use information about the input relations.

• For selections and joins, assume independence of predicates.

• In System R, cost is boiled down to a single number: #I/O + c * #CPU instructions

• Can refine #I/O as the #page_transferred * 𝑡𝑇 + #seeks * 𝑡𝑆
• 𝑐, 𝑡𝑇 and 𝑡𝑆 are all configurable parameters – must be set correctly

• Q: Is “cost” the same as estimated “run time”?
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Statistics and catalog
• Need information about the relations and indexes involved.  Catalogs typically contain at 

least:
• # tuples (NTuples) and # pages (NPages) per relation.

• # distinct key values (NKeys) for each index.

• low/high key values (Low/High) for each index.

• Index height (IHeight)  for each tree index.

• # index pages (INPages) for each index.

• Catalogs updated periodically.
• Updating whenever data changes is too expensive; lots of approximation anyway, so slight 

inconsistency ok.

• More detailed information (e.g., histograms of the values in some field) are sometimes 
stored.
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Size estimation and selectivity

• Consider a query block:

• Maximum # tuples in result is the product of the cardinalities of relations in the FROM 
clause.

• Selectivity associated with each term reflects the impact of the term in reducing result 
size.  Result cardinality = Max # tuples  *  product of all selectivities.
• also called reduction factor (RF)
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SELECT attribute list

FROM relation list

WHERE term1 AND ... AND termk



Result size estimation
• Result cardinality = Max # tuples  *  product of all RF’s.

(Implicit assumption that
values are uniformly distributed  and terms are mutually independent!)

• Term col=value

RF = 1/NKeys(col) 

• Term col1=col2 (This is handy for joins too…)

RF  = 1/MAX(NKeys(col1), NKeys(col2))

• Term col>value, where col is in the range of (𝐿, 𝐻)

RF = (H – max(L,min(value,H)))/(H-L)
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Estimation errors
• Estimation errors lead to poor optimizer decisions

• Example: suppose there’s an employee table with level and salary columns

• Data skewness is one of the main reasons that may lead to bad estimations
• Example: with the same employee table, let’s say 𝑙𝑒𝑣𝑒𝑙 ∈ 0,10

• selectivity of 𝑙𝑒𝑣𝑒𝑙 > 6 ?

• estimation:
10−6

10−0
= 40%

• common sense tells us this is significantly lower than 40% (e.g., 20%...)
• Solution

• The assumption of mutual independence of the predicates may not hold! In other words,
• We assume Pr 𝑡𝑒𝑟𝑚1 = 𝑡𝑟𝑢𝑒 ∧ 𝑡𝑒𝑟𝑚2 = 𝑡𝑟𝑢𝑒 ∧ ⋯∧ 𝑡𝑒𝑟𝑚𝑘 = 𝑡𝑟𝑢𝑒 = Π1≤𝑖≤𝑘Pr(𝑡𝑒𝑟𝑚𝑖 = 𝑡𝑟𝑢𝑒)
• Does not always hold in practice => estimation errors!

• selectivity of level > 6 : 20%
• selectivity of 𝑠𝑎𝑙𝑎𝑟𝑦 ≥ $400,000 : 30%
• selectivity of level ≥ 6 ∧ 𝑠𝑎𝑙𝑎𝑟𝑦 ≥ $400,000 ?

• Unlikely to be 20% × 30% = 6%!   (common sense tells us this is likely to be 20% ...)

• Solution: histograms

CSE462/562 (Spring 2022): Lecture 16 11



Reduction Factors & Histograms
• We build histograms in the database catalog to provide better size estimation for

common predicates over one or more columns
• equi-width: equal key ranges, store both key ranges and values
• equi-depth: equal number of items, only store the quantiles and the total number of items!

• Example:  0.0, 0.2, 0.8, 1.3, 1.5, 1.6, 1.8, 1.85, 2.0, 2.1, 2.2, 3.0
• 4 buckets
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Range [0.0, 0.75] (0.75,1.5] (1.5,2.25] (2.25,3.0]

Count 2 3 6 1

equi-width

quantile min 25% 50% 75% 100%

key value 0.0 0.8 1.6 2.0 3.0

equi-depth



A visual comparison: equi-width vs equi-depth (1D)
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X-axis: domain of interest (e.g., age), Y-axis: frequency of values in a given range



Histogram Construction: equi-width
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Equi-width: EASY
Given the number of buckets B and domain size, this is easily done with one linear 
pass over the data using an array of counters.
Note that B determines the size of a histogram. 



Histogram Construction: equi-depth
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Equi-depth: more time consuming
Sorting and finding the quantiles. Need to handle the corner cases with many duplicate keys.



Finding selectivity using histograms
• (Implicitly) map the histogram back to an approximate relation

• then apply the predicate to the approximate relation

• Example:  1 <= x <= 1.75
• actual selectivity = 3 / 12 = 25%
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Range [0.0, 0.75] (0.75,1.5] (1.5,2.25] (2.25,3.0]

Count 2 3 6 1

equi-width

quantile min 25% 50% 75% 100%

key value 0.0 0.8 1.6 2.0 3.0

equi-depth

3 ×
1.5 − 1

0.75
+ 6 ×

1.75 − 1.5

0.75
= 4

estimated selectivity = 4/12 = 33.3%

estimated selectivity =
1.75 − 1.6

2.0 − 1.6
× 0.25 + 0.5

−
1 − 0.8

1.6 − 0.8
× 0.25 + 0.25 ≈ 28.1%

• In general, equi-depth has better error guarantees over the estimation.
• Does not mean it is always better than equi-width over a specific instance



Join size estimation
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• Does the above make sense for joins?

• Q: Given a join of R and S, what is the range of possible result sizes (in #of tuples)?
• If join is on a key for R (and a Foreign Key in S)?

• 𝑅 ⋈ 𝑆 = |𝑆|

• A common case, can treat it specially 

• General case: join on {A} ({A} is not key for either relation)
• estimate each tuple r of R generates NTuples(S)/NKeys(A,S) result tuples, so…

NTuples(R) * NTuples(S)/NKeys(A,S)

• but can also consider it starting with S, yielding: NTuples(S) * NTuples(R)/NKeys(A,R)

• If these two estimates differ, take the lower one!

• Q: Why?



Access path selection
• There are two main cases:

• Single-relation plans

• Multiple-relation plans

• For queries over a single relation, queries consist of a combination of selects, projects, 
and aggregate ops:

• Each available access path (file scan / index) is considered, and the one with the least estimated cost is 
chosen.

• The different operations are essentially carried out together (e.g., if an index is used for a selection, 
projection is done for each retrieved tuple, and the resulting tuples are pipelined into the aggregate 
computation). 

• We’ve discussed the cost estimation for these operators in previous lectures.
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Join reordering
• Fundamental decision in System R: only left-deep join trees are considered.

• As the number of joins increases, the number of alternative plans grows rapidly
• we need to restrict the search space.
• If we only consider join orders

• all possible join orders: 
2 𝑛−1 !

𝑛−1 !
• left-deep joins: 𝑛!

• In practice, plan space is slightly larger than 𝑛!
• due to the need to consider alternative join algorithms, and/or interesting orders

• Left-deep trees allow us to generate all fully pipelined plans.
• Intermediate results not written to temporary files.
• Not all left-deep trees are fully pipelined (e.g., sort-merge join).
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C

D

BA

C

D

C DBA



Enumeration of left-deep plans
• Left-deep plans differ only in the order of relations, the access method for each relation, 

and the join method for each join.
• Approach: Dynamic programming

• Enumerated using N passes (if N relations joined):
• Pass 1: Find best 1-relation plan for each relation.

• Pass 2:  Find best way to join result of each 1-relation plan (as outer) to another relation. (All 2-
relation plans.)  

• Pass N:  Find best way to join result of a (N-1)-relation plan (as outer) to the N’th relation.  (All N-
relation plans.)

• For each subset of relations, retain only:
• Cheapest plan overall, plus

• Cheapest plan for each interesting order of the tuples.
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A note on “Interesting Orders”
• An intermediate result has an “interesting order” if it is sorted              by any 

of:

• ORDER BY attributes

• GROUP BY attributes

• Join attributes of yet-to-be-planned joins
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Enumeration of left-deep plans (contd.)
• An N-1 way plan is not combined with an additional relation unless there is a join 

condition between them, unless all predicates in WHERE have been used up.
• i.e., avoid Cartesian products if possible.

• ORDER BY, GROUP BY, aggregates etc. handled as a final step, using either an `interestingly 
ordered’ plan or an additional sort/hash operator.

• In spite of the pruned search space, this approach is still exponential in the # of tables.
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Example of enumeration of left-deep plans
SELECT S.sid, COUNT(*)

FROM student S, enroll E, course C

WHERE S.sid = E.sid

AND E.dname = C.dname AND E.cno = C.cno

AND c.category = ‘elective’
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Student:
Hash and clustered B-Tree on sid

Enroll:
Clustered B-tree on (dname, cno)
Unclustered B-tree on sid

Course:
Clustered B-Tree on category

• For simplicity, let’s first ignore interesting orders.

• Pass1: Best plan(s) for accessing each relation

– Student, Enroll: Heap Scan

– Course: B-tree on category



Pass 2 in the enumeration of left-deep plans
• For each of the plans in pass 1, generate plans joining another relation as the inner, using all join methods 

(and considering all possible inner access methods as well)
• To find the best plan for 𝑆 ⋈𝑆.𝑠𝑖𝑑=𝐸.𝑠𝑖𝑑 𝐸

• If heap scan over 𝑆 is outer,
• Block nested loop with heap scan over 𝐸
• Index nested loop with unclustered B-tree over E(sid)
• Sort-merge join with 𝐸

• add sorting over S, and consider sorting E or index scan with B-tree over S(sid)
• Hash join with heap scan over E

• If heap scan over E is outer,
• Block nested loop with heap scan over S
• Index nested loop with hash index over S(sid)
• Index nested loop with B-tree index over S(sid)
• Sort-merge join with E

• add sorting over E, and consider sorting S or index scan with B-tree over S(sid)
• Hash join with heap scan over E

• To find the best plan for 𝐸 ⋈𝐸.𝑑𝑛𝑎𝑚𝑒=𝐶.𝑑𝑛𝑎𝑚𝑒∧𝐸.𝑐𝑛𝑜=𝐶.𝑐𝑛𝑜 𝐶
• What about 𝑆 ⋈ 𝐶 ? No predicate available now => don’t consider now

• Retain cheapest plan for each pair of relations, example:

• 𝑆 ⋈𝑆.𝑠𝑖𝑑=𝐸.𝑠𝑖𝑑 𝐸:   Sort-merge join between heap scan of S and heap scan of E
• 𝐸 ⋈𝐸.𝑑𝑛𝑎𝑚𝑒=𝐶.𝑑𝑛𝑎𝑚𝑒∧𝐸.𝑐𝑛𝑜=𝐶.𝑐𝑛𝑜 𝐶: Index nested loop between (index scan of 𝐶 over category) and (clustered B-Tree over 𝐸(𝑠𝑖𝑑))
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Pass 3 in the enumeration of left-deep plans
• For any triples of relations, pick one as the inner and use the best plan from pass two for the join of the 

other two relations to find the best possible plan

• For 𝑆 ⋈𝑆.𝑠𝑖𝑑=𝐸.𝑠𝑖𝑑 𝐸 ⋈𝐸.𝑑𝑛𝑎𝑚𝑒=𝐶.𝑑𝑛𝑎𝑚𝑒∧𝐸.𝑐𝑛𝑜=𝐶.𝑐𝑛𝑜 𝐶, consider
• 𝑆 ⋈ 𝐸 ⋈ 𝐶

• BNL between (Sort-merge join between heap scan of S and heap scan of E)  and heap scan over C

• SMJ between (Sort-merge join between heap scan of S and heap scan of E) and heap scan over C

• HJ between (Sort-merge join between heap scan of S and heap scan of E) and heap scan over C

• INL between (Sort-merge join between heap scan of S and heap scan of E) and heap scan over C

• 𝐸 ⋈ 𝐶 ⋈ 𝑆

• BNL between (INL between E and C) and heap scan over S

• SMJ between (INL between E and C) and heap scan over S

• HJ between (INL between E and C) and heap scan over S

• INL between (INL between E and C) and hash or B-tree over S(sid)

• Retain the one with the best cost 

• add any unapplied predicate/aggregation/deduplication/projection/sorting on top

• this is the final plan as the optimization result
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Summary
• Today’s lecture

• “System R”-style optimizer

• Nested queries

• Size estimation

• Access path selection

• Join reordering (left-deep plan only)

• Take-away: DBMS trades the quality of plan for the optimization overhead by

• approximation of cost model

• approximation in size estimation

• search space pruning

• Need many tuning to work for real-life workload

• And that requires understanding of the basics of query optimization
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