CSE462/562: Database Systems (Spring 22)
Lecture 18: Concurrency Control

4/28/2022

University at Buffalo
s Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Transactions

* Concurrent execution of user programs is essential.

* Because disk accesses are frequent, and relatively slow, it is important to keep the CPU busy by
working on several user programs concurrently.

* A user’s program may carry out many operations on the data retrieved from the

database, but the DBMS is only concerned about what data is read/written from/to the
database.

* A transaction is the DBMS’s abstract view of a user program: a sequence of reads and
writes.

Concurrency in a DBMS

* Users submit transactions, and can think of each transaction as executing by itself.

« Concurrency is achieved by the DBMS, which interleaves actions (reads/writes of DB objects) of
various transactions, regardless of whether the DB is single-threaded or multi-threaded.
e Each transaction must leave the database in a consistent state if the DB is consistent when the
transaction begins.
 DBMS will enforce some ICs, depending on the ICs declared in CREATE TABLE statements.

* Beyond this, the DBMS does not really understand the semantics of the data. (e.g., it does not
understand how the interest on a bank account is computed).

* |ssues: Effect of interleaving transactions, and crashes.

Atomicity of transactions

* A transaction might commit after completing all its actions, or it could abort by user or
system after executing some actions.

* An important property: atomicity.

* That s, a user can think of a Xact as always executing all its actions in one step, or not executing any
actions at all.

 DBMS logs all actions so that it can undo the actions of aborted transactions.

ACID properties of Xact

Atomicity

* Consistency
* Run by itself must leave the DB in a consistent state (no IC violations)

Isolation
* “protected” from the effects of concurrently scheduled other transactions

Durability

 If a transaction has successfully completed, its effects should persist even if the system crashes before
all its changes are reflected on disk.

Example, a banking database

* Consider two transactions (Xacts):

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

There is no guarantee that T1 will execute before T2 or vice-versa, if both are submitted
together. However, the net effect must be equivalent to these two transactions running
serially in some order.

Example (cont’d)

* Consider the possible interleaving schedules

T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

But what about:

T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

The DBMS’s view of the second schedule:

T1: R(A) W(A) R(B) W(B)
T2: R(A) W(A) R(B) W(B)

Scheduling Transactions

e Serial schedule: Schedule that does not interleave the actions of different transactions.

* Fquivalent schedules: For any database state, the effect of executing the first schedule is
identical to the effect of executing the second schedule.

 Serializable schedule: A schedule that is equivalent to some serial execution of the
transactions.

(Note: If each transaction preserves consistency, every serializable schedule preserves
consistency.)

 When we discuss schedules, we only consider reads/writes/commit/abort
* |gnores computation

* Two forms of (restricted) serializability
e conflict serializable
* view serializability

Anomalies with interleaved execution

 Dirty reads (WR conflict)

T1: R(A), W(A), R(B), W(B), Abort
T2: R(A), W(A), C

* Unrepeatable reads (RW conflict)

T1: R(A), R(A), W(A), C

Anomalies with interleaved execution

* Phantom read (RW conflict w/ predicate)

T1: R(t: P(t)) R(t: P(t)) C
T2: W(A',st. A" € P)C

 Dirty write (WW conflict)

T1: W(A) W(B) C
T2: W(A) W(B) C

Conflict serializability

* Two operations of two different transactions conflict if

* Performed on the same object
e At least one of them is a write

Conflicts:
T1: Rl (A)I Wl(A)r Rl(B)I Wl(B) Rl((A))’ WZEA%
. Wi(A),R,(A
T2: R,(A), W, (A) WI(A),WZZ(A)

* We can swap two adjacent nonconflicting operations without changing the final state

T1: Rl (A), Wl(A)l R]_(B), Wl(B)
T2: R, (A), W, (A)

* Two schedules are conflict equivalent if one can be transformed into the other through swaps
* Involve the same actions of the same transactions in the same order
* Every pair of conflicting operations are ordered the same way

e Schedule S is said to be conflict serializable if it is conflict equivalent to some serial schedule S’

11

Determining conflict serializability

* Dependency graph
* One node per Xact
* edgefrom Tito Tjif
* an operation of Ti conflicts with an operation of Tj and
* Ti’s operation appears earlier in the schedule than the conflicting operation of Tj.

 Theorem: Schedule is conflict serializable if and only if its dependency graph is acyclic

T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)

A
@ @ Dependency graph

View serializability

* View serializability is based on view equivalence

e Schedules S1 and S2 are view equivalent if:

« |f Ti reads initial value of A in S1, then Ti also reads initial value of A in S2
- If Ti reads value of A written by Tj in S1, then Ti also reads value of A written by Tj in S2
- |If Ti writes final value of A in S1, then Ti also writes final value of A in S2

T1: R(A) W(A) T1: R(A),W(A)
T2: W(A) T2: W(A)
T3: W(A) T3: W(A)

View equivalent but not conflict equivalent

View serializability is “weaker” than conflict serializability!
Every conflict serializable schedule is view serializable, but not vice versa!
l.e. admits more serializable schedules

13

Transaction aborts

* So far, we have not considered transaction aborts in conflict serializability

 |f a transaction Ti is aborted, all its actions must be undone
* Not only that, if Tj reads an object last written by Ti, Tj must be aborted as well!

* Many systems avoid such cascading aborts by disallowing reading an object until it is
committed
 If Ti writes an object, Tj can read this only after Ti commits.
* Avoids non-recoverable schedules
* where Tj reads an object previously written by Ti and Tj commits before Ti does
 If there’s a crash, the system is in a non-recoverable state
* Recoverable does not mean no cascading abort

* |n order to undo the actions of an aborted transaction, the DBMS maintains a log in
which every write is recorded (to be discussed in more details later)

* This mechanism is also used to recover from system crashes
 all active Xacts at the time of the crash are aborted when the system comes back up.

14

Pessimistic Concurrency Control

e Strict Two-phase Locking (Strict 2PL) Protocol:

- Each Xact must obtain a S (shared) lock on object before reading, and an X (exclusive) lock on object
before writing.

- All locks held by a transaction are released when the transaction completes
- (Non-strict) 2PL Variant: Release locks anytime, but cannot acquire locks after releasing any lock.
If an Xact holds an X lock on an object, no other Xact can get a lock (S or X) on that object.

* Strict 2PL allows only conflict serializable schedules.
* Additionally, it simplifies transaction aborts
* (Non-strict) 2PL also allows only serializable schedules, but involves more complex abort processing

S | X
Lock
Compatibility S \/ -
Matrix X |- |-

Example: strict 2-PL

A T1 T2
Lock SIA
B upgrade C R(A)
X(A)
W(A)
request S(A) -- blocked
T1:A=A+100, B = B - 100 S(B)
T2: A=A-100,B=B+100 R(B)
X(B)
W(B)
Commit
Release A & B
S(A)
R(A)
X(A)

Example: non-strict 2-PL

A

B

T1: A=A+100,B=B-100
T2: A=A-100,B =B+ 100

No new locks/lock

upgrades at this point.

T1 T2
X(A)
X(B)
R(A)
W(A)
request S(A) -- blocked
Release A
S(A)
R(A)
X(A)
W(A)
R(B)
W(B)
Release B

Commit

17

Example: non-strict 2-PL

A

B

T1: A=A+100,B=B-100
T2: A=A-100,B =B+ 100

susceptible to cascading aborts!

Usually avoided in DBMS to avoid
wasted work.

T1 T2
X(A)
X(B)
R(A)
W(A)
request S(A) -- blocked
Release A
S(A)
R(A)
X(A)
W(A)
R(B)
W(B)
Release B
abort

abort

18

Strict 2-PL vs non-strict 2-PL

4 locks
growing l (“U,)

: computing

Commit/Abort

time

4 locks
growing { (’U,) shrinking

computing

time

Deadlocks

A

B

T1:A=A+100,B=B-100
T2:B=B+100,A=A-100

Create a waits-for graph:
Nodes are transactions

There is an edge from Ti to Tj if Ti is waiting for

Tj to release a lock
Deadline < cycle in the wait-for graph
Two ways to handle deadlocks
Deadlock prevention
Deadlock detection

T)

T1

S(A)
R(A)
X(A)
W(A)

S(B) -- blocked

T2

Deadlock!

5(B)
R(B)
X(B)
W(B)

S(A) -- blocked

20

Deadlock prevention

* Assign priorities based on timestamps.
Assume Ti wants a lock that Tj holds. Two policies are possible:
- Wait-Die: If Ti has higher ts, Ti waits for Tj; otherwise Ti aborts
- Wound-wait: If Ti has higher ts, Tj aborts; otherw”ise Ti waits

* If a transaction re-starts, make sure it gets its original timestamp
 Why? (to avoid starvation)

21

Deadlock detection

* Explicitly create a waits-for graph:
- Nodes are transactions
- There is an edge from Ti to Tj if Ti is waiting for Tj to release a lock

* Periodically check for cycles in the waits-for graph
 If there’s a cycle, abort at least one transaction in the cycle

T1: S(A), S(D), S(B)

T2: X(B) X(C)

T3: S(D), S(C), X(A)
T4: X(B)

22

Deadlock detection (cont’d)

* |n practice, most systems do detection
* Experiments show that most waits-for cycles are length 2 or 3
* Hence, only a few transactions actually need to be aborted
* Implementations can vary

e Can construct the graph and periodically look for cycles
* When is the graph created ?
* Which process checks for cycles ?

* Can also use a “time-out” scheme
* if T has been waiting on a lock for a long time, assume it’s in a deadlock and abort

23

What we have glossed over

* What should we lock?
* We assume tuples here, but that can be expensive!
* |f we do table locks, that’s too conservative
* Multi-granularity locking

* How to deal with phantoms?

* Locking in indexes
* don’t want to lock a B-tree root for a whole transaction!
* more fine-grained concurrency control in indexes

e CC w/out locking (we’ll omit it in this course)
* “optimistic” concurrency control
* “timestamp” and multi-version concurrency control
* locking usually better, though

24

Multi-granularity locks

* Hard to decide what granularity to lock (tuples vs. pages vs. tables).
* Shouldn’t have to make same decision for all transactions!

* Data “containers” are nested:

Database

Tables

contains Pagel

Y ‘

Tuples

Solution: new lock modes and protocols

* Allow Xacts to lock at each level, but with a special protocol using new “intention” locks:

* Still need S and X locks, but before locking an item, Xact must have proper intension
locks on all its ancestors in the granularity hierarchy.

0 IS—Intent to get S lock(s) at finer granularity. s [ix [sx[s [x
0 IX—Intent to get X lock(s) at finer granularity. s N vV]|
0 SIX mode: Like S & IX at the same time. Why X |+ |
useful? SIX |
S | v
X

Example: 2-level hierarchy

T1 scans R, and updates a few tuples:
* T1 gets an SIX lock on R, then get X lock on tuples that are updated.

T2 uses an index to read only part of R:
e T2 gets an IS lock on R, and repeatedly gets an S lock on tuples of R.

T3 reads all of R:
T3 gets an S lock on R.
* OR, T3 could behave like T2; can use lock escalation to decide which.

Lock escalation
* Dynamically asks for coarser-grained locks when too many
low level locks acquired

Tables
Tuples
IS | IX | S
s [y [[
X | |
SIX \/
S |+

27

Dynamic Databases — The “Phantom” Problem

 If the DB is not a fixed collection of objects, even Strict 2PL (on individual items) will not assure serializability:

e Consider T1 — “Find the highest GPA among students of each age”
* T1 locks all pages containing sailor records with age = 20
e and finds the highest GPA (say, GPA = 3.7).
* Next, T2 inserts a new student; GPA = 4.0, age = 20.
e T2 also deletes student with the highest GPA (say 3.8) among those of age = 21, and commits.
 T1 now locks all pages containing student records with age = 21, and finds highest GPA (say, GPA = 3.6).

* No serial execution could lead to T1’s result!

28

The problem

* T1 implicitly assumes that it has locked the set of all student records with age = 20.
e Assumption only holds if no student records are added while T1 is executing!
* Need some mechanism to enforce this assumption. (Index locking and predicate locking.)

* Example shows that conflict serializability guarantees serializability only if the set of
objects is fixed!

* e.g.table locks

 Solution: predicate locking

29

Predicate locking

* Grant lock on all records that satisfy some logical predicate, e.g. age > 2*salary.

* Index locking is a special case of predicate locking for which an index supports efficient
implementation of the predicate lock.

 What is the predicate in the sailor example?

* General predicate locking has a lot of locking overhead.
* too expensive!

30

Instead of predicate locking

e Full table scans lock entire tables

* Range lookups do “next-key” & gap locking
» physical stand-in for a logical range!

13

N\ e

2*

3*

)

f

scan: x>4

locks 5* and the gap before it (3, 5)

At this point,

insert 4: blocked
insert 10?

31

Lock management

Lock and unlock requests are handled by the lock manager

Lock table: a hash table over lock table entries

 for various resources, e.g., records, gaps, pages, tables, ...
Lock table entry:

- Number of transactions currently holding a lock

- Type of lock held (S, X, IS, IX, SIX)

- Pointer to queue of lock requests

Locking and unlocking have to be atomic operations

* requires latches (e.g. reader-writer locks/semaphores), which ensure that the process is not
interrupted while managing lock table entries

Lock upgrade: transaction that holds a shared lock can be upgraded to hold an exclusive lock
e Can cause deadlock problems

Deadlock prevention/detection

Locks vs Latches

What’s common ?
e Both used to synchronize concurrent tasks

What's different ?

* Locks are used for logical consistency
* Latches are used for physical consistency

Why treat ‘em differently ?
* Latches are short-duration lower-level locks that protects critical sections in the code
* depends on DBMS developer to prevent deadlocks
* Locks protects data/resources, much longer duration
* need deadlock prevention/detection, aborting transactions using priorities
* more lock modes, hierarchical

Where are latches used ?
* In alock manager!
* |In a shared memory buffer manager
* In a B+ Tree index
* In a log/transaction/recovery manager

Locks vs Latches

Latches Locks
Ownership Processes Transactions
Duration Very short Long (Xact duration)
Deadlocks No detection - code carefully ! Checked for deadlocks
Overhead Cheap - 10s of instructions Costly - 100s of instructions
(latch is directly addressable) (have to search for lock)
Modes S, X S, X, IS, IX, SIX

Granularity

Flat - no hierarchy

Hierarchical

Summary

* These lectures
e Concurrency control basics

Conflict serializability
View serializability

* Pessimistic concurrency control

strict 2-phase locking
non-strict 2-phase locking
deadlock prevention and detection
predicate locking and next-key locking
lock management

* locks vs latches

* Next lecture
e Crash recovery

35

