CSE462/562: Database Systems (Spring 22)
Lecture 19: Crash Recovery

5/5/2022

University at Buffalo
s Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Review: The ACID properties

- Atomicity: All actions in the Xact happen, or none happen.

. Consistency: If each Xact is consistent, and the DB starts consistent, it ends up
consistent.

e |solation: Execution of one Xact is isolated from that of other Xacts.

- Durability: If a Xact commits, its effects persist.

* Question: which ones does the Recovery Manager help with?

Atomicity & Durability (and also used for
Consistency-related rollbacks)

CSE462/562 (Spring 2022): Lecture 19

Motivation for crash recovery

* Atomicity:
* Transactions may abort (“Rollback”).
e Durability:
 What if DBMS stops running? (Causes?)

- Desired state after system restarts:
 T1 & T3 should be durable.
e T2, T4 & T5 should be aborted (effects not seen).

crash!
T] —ve— COMmMit I
T s ADOF't | :
T3 Commit |
T4 I
T5]]

CSE462/562 (Spring 2022): Lecture 19

Assumptions

* Concurrency control is in effect.
 Strict 2-PL, in particular.

» Updates are happening “in place”.
* j.e. data are overwritten on (or deleted from) the actual pages.

e Can you think of a simple scheme (requiring no logging) to guarantee Atomicity &
Durability?
 What happens during normal execution (what is the minimum lock granularity)?
 What happens when a transaction commits?
* What happens when a transaction aborts?

CSE462/562 (Spring 2022): Lecture 19

Buffer manager plays a key role

e Force policy — make sure that every update is on disk before commit.
— Provides durability without REDO logging.
— But, can cause poor performance.

e No Steal policy — don’t allow buffer-pool frames with uncommited updates to
overwrite committed data on disk.

— Useful for ensuring atomicity without UNDO logging.
— But can cause poor performance.

CSE462/562 (Spring 2022): Lecture 19

Preferred buffer management policy: steal/no-force

* This combination is most complicated but allows for highest performance.

* NO FORCE: do not have to flush all dirty pages of a transaction to disk before it commits

e complicates Durability
* What if system crashes before a modified page written by a committed transaction makes it to disk?

* Write as little as possible, in a convenient place, at commit time, to support REDOing modifications.

e STEAL: allows buffer pool with uncommitted updates to overwrite committed data on disk

e complicates Atomicity

 What if the Xact that performed updates aborts?

* What if system crashes before Xact is finished?

* Must remember the old value of P (to support UNDOing the write to page P).

CSE462/562 (Spring 2022): Lecture 19

Buffer management policies

No Force

Force

Implications

No Steal Steal
Fastest

Slowest

Performance

CSE462/562 (Spring 2022): Lecture 19

No Force

Force

No Steal Steal
No UNDO UNDO
REDO REDO
No UNDO UNDO
No REDO |No REDO

Logging/Recovery

Implications

Basic Idea: Logging

 Record REDO and UNDO information, for every update, in a /og.
e Sequential writes to log (put it on a separate disk).
* Minimal info (diff) written to log, so multiple updates fit in a single log page.

* Log: An ordered list of REDO/UNDO actions

* Log record contains:

<XID, pagelD, offset, length, old data, new data>
e and additional control info (which we’ll see soon).

CSE462/562 (Spring 2022): Lecture 19

Write-Ahead Logging (WAL)

* The Write-Ahead Logging Protocol:

@® Must flush the log record for an update before the corresponding data page gets to disk.
@ Must flush all log records for a Xact before commit

 alternatively,. transaction is not considered as committed until all of its log records including its
“commit” record are on the stable log.

e #1 (with UNDO info) helps provide Atomicity.
e #2 (with REDO info) helps provide Durability.

* This allows us to employ Steal/No-Force policy

* Exactly how is logging (and recovery) done?
 WEe’'ll look at the ARIES algorithms.
e Algorithms for Recovery and Isolation Exploiting Semantics

CSE462/562 (Spring 2022): Lecture 19

WAL & the log

e LSNs are monotonically increasing.

pageLSNs

flushedLSN

Each data page contains a pagelLSN.

Each log record has a unique Log Sequence Number (LSN).

* The LSN of the most recent log record for an update to that page.

* The max LSN flushed so far.

pageLSNi < flushedLSN

System keeps track of flushedLSN.

CSE462/562 (Spring 2022): Lecture 19

WAL: Before page iis flushed to disk, the log must satisfy:

=)

Log records
flushed to disk

flushedLSN

pageLSN

e

“Log tail”
in RAM

10

Log Records

prevLSN is the LSN of the previous log record
written by this Xact (so records of an Xact

LogRecord fields: form a linked list backwards in time)
LSN Possible log record types:
prevLSN . Update
’i;I}lDDe * Checkpoint (for log maintenance)
_ pagelD e Compensation Log Records (CLRs)
update Iength e for UNDO actions
records < offset * Commit/Abort
only before-image * End (indicates end of commit/abort)

\ after-image

CSE462/562 (Spring 2022): Lecture 19 11

Other logging-related state

* Two -in-memory tables

* Transaction Table
* One entry per currently active Xact.
* entry removed when Xact commits or aborts
* Contains XID, status (running/committing/aborting), and lastLSN (most recent LSN written by Xact).

* Dirty Page Table:
* One entry per dirty page currently in buffer pool.
e Contains recLSN -- the LSN of the log record which first caused the page to be dirty.
* If adirty page is flushed to disk, it is removed from dirty page table

CSE462/562 (Spring 2022): Lecture 19

12

The big picture: what’s stored and where

LogRecords
LSN

prevLSN

XID

type

pagelD
length

offset
before-image
after-image

Data pages
each
with a
pageLSN

Master record

CSE462/562 (Spring 2022): Lecture 19

([L

RAM

Xact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

13

Normal execution of an Xact

 Series of reads & writes, followed by commit or abort.
* We will assume that disk write is atomic.
* In practice, additional details to deal with non-atomic writes.

e Strict 2-PL.

« STEAL, NO-FORCE buffer management, with Write-Ahead Logging.

CSE462/562 (Spring 2022): Lecture 19

14

Transaction Commit

* Write commit record to log.

All log records up to Xact’s commit record are flushed to disk.
* Guarantees that flushedLSN > lastLSN.
* Note that log flushes are sequential, synchronous writes to disk.
* Many log records per log page.

Write an end record to log (no need to flush immediately)

Commit() returns.

* When does a transaction becomes durable in the database?
 When its commit log record is flushed to disk, even if there are still dirty pages in bufmagr.

CSE462/562 (Spring 2022): Lecture 19

15

Simple transaction abort

* For now, consider an explicit abort of a Xact.
* No crash involved.

* First, set the transaction state in the transaction table to aborting.
* Write an Abort log record before starting to rollback operations
 We want to “play back” the log in reverse order, UNDOing updates.
* Get lastLSN of Xact from Xact table.
* Can follow chain of log records backward via the prevLSN field.
* Write a “CLR” (compensation log record) for each undone operation.
* more details on next slide
* Once its finished, write a transaction end log record in the disk

* Q: do we need to wait for abort, CLRs and end record to be flushed?

CSE462/562 (Spring 2022): Lecture 19

16

Simple transaction abort (cont'd) o

S o>

™ N Q7
S O

N
Q,(\’&\(.Oe” >R

* To perform UNDO, must have a lock on data!
* We still have the lock because of strict 2-PL.

» Before restoring old value of a page, write a CLR:
e Must continue logging during undo in case of crash

* CLR has one extra field: undonextLSN
* Points to the next LSN to undo (i.e. the prevLSN of the record we’re currently undoing).

* CLR contains REDO info

* CLRs is never undone
* Undo needn’t be idempotent (>1 UNDO won’t happen)
* But they might be Redone when repeating history (=1 UNDO guaranteed)

* At end of all UNDOs, write an “end” log record.

CSE462/562 (Spring 2022): Lecture 19

17

Checkpointing

* Conceptually, we keep log around for all time. Obviously this has performance issues...

* Periodically, the DBMS creates a checkpoint, in order to minimize the time taken to
recover in the event of a system crash. Write to log:

* begin_checkpoint record: Indicates when chkpt began.

* end checkpoint record: Contains current Xact table and dirty page table. This is a ‘fuzzy checkpoint’:

e Other Xacts continue to run; so these tables accurate only as of the time of the begin_checkpoint
record.

* No attempt to force all dirty pages to disk; effectiveness of checkpoint limited by oldest unwritten
change to a dirty page.

* However, the more dirty page gets flushed, the shorter time will be needed in crash recovery
e Store LSN of most recent chkpt record in a safe place (master record).

CSE462/562 (Spring 2022): Lecture 19 18

Crash Recovery: Big Picture

Oldest log rec. of
Xact active at crash

Smallest recLSN in
dirty page table after
Analysis

Last chkpt

CRASH

e

0 Start from a checkpoint (found via master record).
0 Three phases. Need to do:

— Analysis - Figure out which Xacts committed
since checkpoint, which failed.

- all actions.
(repeat history)
— UNDO effects of failed Xacts.

CSE462/562 (Spring 2022): Lecture 19

19

Phase 1: the analysis phase

* Re-establish knowledge of state at checkpoint.
* via transaction table and dirty page table stored in the checkpoint

* Scan log forward from checkpoint.
* End record: Remove Xact from Xact table.
* All Other records: Add Xact to Xact table, set lastLSN=LSN, change Xact status on commit.
* also, for Update records: If page P not in Dirty Page Table, Add P to DPT, set its recLSN=LSN.

* At end of Analysis...

* transaction table says which xacts were active at time of crash.
* DPT says which dirty pages might not have made it to disk

CSE462/562 (Spring 2022): Lecture 19

20

Phase 2: the redo phase

* We Repeat History to reconstruct state at crash:
* Reapply all updates (including those of aborted Xacts), redo CLRs.

* Scan forward from log rec containing smallest recLSN in DPT. Q: why start here?

* For each update log record or CLR with a given LSN, REDO the action unless:

» Affected page is not in the Dirty Page Table, or
* Affected pageisin D.PT., but has recLSN > LSN, or
e pagelSN (in DB) > LSN. (this last case requires 1/0)

* To REDO an action:
* Reapply logged action.
e Set pagelLSN to LSN. No additional logging, no forcing!

CSE462/562 (Spring 2022): Lecture 19

21

Phase 3: the undo phase

ToUndo={lastLSNs of all Xacts in the Trans Table}
i.e., last log entry of the aborted transactions

Repeat:

* Choose (and remove) largest LSN among ToUndo.
* If this LSN is a CLR and undonextLSN==NULL

* Write an End record for this Xact.
 |f this LSN is a CLR, and undonextLSN != NULL

* Add undonextLSN to ToUndo
* Else this LSN is an update. Undo the update, write a CLR, add prevLSN to ToUndo.

Until ToUndo is empty.

CSE462/562 (Spring 2022): Lecture 19

22

Example of recovery

/ / / / / yavi

/

LSN

@
@

RAM

Xact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

ToUndo

00
05
10
20
30
40
45
50
60

—— begin_checkpoint

EEnm IIIIII_

—— end_checkpoint
—— update: T1 writes P5
—— update T2 writes P3

—= T1 abort
—— CLR: Undo T1§1 10
—— T1End

—— update: T3 writes P1
—=— update: T2 writes P5
< CRASH, RESTART

CSE462/562 (Spring 2022): Lecture 19

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
[3
R

e
[LAd
ws®

s
wn®
wnt®

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
[
.

.
.
.
.
.
3
.
.
.
.
.
.
.
03
.
.
.
*
.

.

.
o
.
o

o*
.
.
.
.
.
.
.
.
.
.
.
.
.
*
.

.
.
R

23

Example: crash during recovery

/ / / / / yavi

/

LSN

LOG

RAM

Xact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

ToUndo

00,05 —'— begin_checkpoint, end_checkpoint

10
20
30
40
45
50
60

70
80
85

90,95 crrirrse ClRisbindo.T2-LSN 20, T2 end

—i~ update: T1 writes P5
— update T2 writes P3
—-— T1 abort

— CLR: Undo T1 LSN 10
—'— T1End

— update: T3 writes P1
—— update: T2 writes P5
Sic CRASH, RESTART
—— CLR: Undo T2 LSN 60
_ CLR: Undo T3 LSN 50
—— T3 end

>X CRASH, RESTART

undonextLSN

24

Additional crash issues

 What happens if system crashes during Analysis? During REDO?

 How do you limit the amount of work in REDO?

* Flush asynchronously in the background.
 Watch “hot spots”!

* How do you limit the amount of work in UNDO?
* Avoid long-running Xacts.

CSE462/562 (Spring 2022): Lecture 19

25

Summary of logging/recovery

e Recovery Manager guarantees Atomicity & Durability.
e Use WAL to allow STEAL/NO-FORCE w/o sacrificing correctness.
* LSNs identify log records; linked into backwards chains per transaction (via prevLSN).

* pagelSN allows comparison of data page and log records.

e Checkpointing: A quick way to limit the amount of log to scan on recovery.

* Recovery works in 3 phases:
* Analysis: Forward from checkpoint.
* Redo: Forward from oldest recLSN.
* Undo: Backward from end to first LSN of oldest Xact alive at crash.

* Upon Undo, write CLRs.

* Redo “repeats history”: Simplifies the logic!

CSE462/562 (Spring 2022): Lecture 19

26

