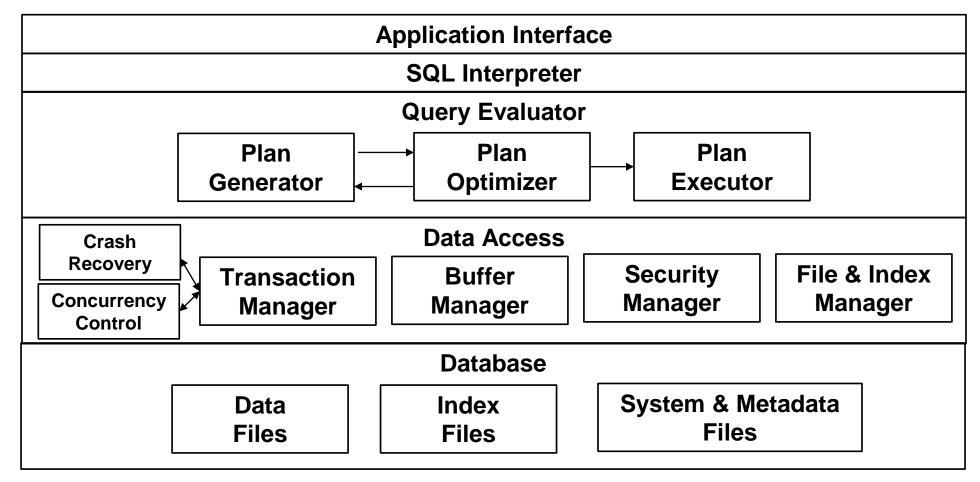
CSE462/562: Database Systems (Spring 23) Lecture 1: Introduction & Course Logistics

1/31/2023

Davis 101, TR 11:00 am – 12:20 pm. In-person attendance required.

Find more on course website & Piazza: <u>https://cse.buffalo.edu/~zzhao35/teaching/cse562_spring23/</u> https://piazza.com/buffalo/spring2023/cse462562

Today's agenda


- Introduction
 - What is a Database?
 - What is a Database Management System?
 - What is this course about and why should I care?
- Logistics

What is a Database?

- Database is
 - a collection of interrelated data
 - often organized in a certain structure for convenient and efficient access
- Databases are found almost everywhere, sometimes unnoticed
 - Business: sales, accounting, human resource, IT support, ...
 - Financial industry: banking, credit card, investment platform
 - University: student records, course registration, LMS (e.g., UB Learns), ...
 - Some less obvious examples of databases
 - Software package and configuration DB (e.g., windows registry)
 - Your photo library (e.g., Google Photos)
 - Your personal finance records

What's a DataBase Management System?

• DataBase Management System (DBMS) is a software system for convenient and efficient data access over databases.



Why using a DataBase Management System?

• Let's review an example of how to manage a database.

- Suppose I'd like to track my daily spending
- What I can do:
 - Step 1: collect all the receipts

- Step 2: do some analysis
 - How much did my spend on grocery and fast food in Febura
 - How much could I have saved if I cook by myself in Feburar
 - What about January/last quarter/last year/past five years?

- Suppose I'd like to track my daily spending
- What I can do:
 - Step 1: collect all the receipts
 - Step 2: write them down on a notebook

Data	Amount	Description
Date	Allount	Description
2/1	\$20.21	Grocery
2/2	\$10.54	Fast food
2/3	\$39.22	Cell phone bill
2/27	\$33.00	Clothes

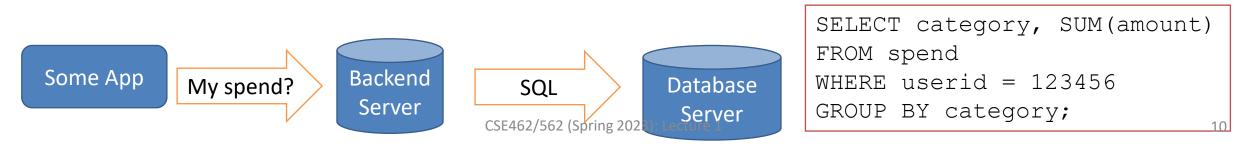
- Step 3: do some analysis
 - How much did my spend on grocery and fast food in Febura
 - How much could I have saved if I cook by myself in Feburar
 - What about January/last quarter/last year/past five years?

- Suppose I'd like to track my daily spending
- What I can do:
 - Step 1: collect all the receipts
 - Step 2: write them down on a notebook store them in a text file

Date	Amount	Description
2/1	\$20.21	Grocery
2/2	\$10.54	Fast food
2/3	\$39.22	Cell phone bill
2/27	\$33.00	Clothes

Step 3: do some analysis
How much did my spend on grocer
How much could I have saved if I cc
What about January/last quarter/la

```
f = open('myspend_feb_22.txt', 'r')
grocery = 0
fast_food = 0
for line in f:
    date, amount, desc = line.split(' ')
    if desc == 'Fast food':
        fast_food += eval(amount)
        elif desc == 'Grocery':
        grocery += eval(amount)
```


.....

- Suppose I'd like to track my daily spending
- What I can do:
 - Step 1: collect all the receipts
 - Step 2: write them down on a notebook store them in a text file use a spreadsheet
 - Step 3: do some analysis
 - How much did my spend on grocery and fast f
 - How much could I have saved if I cook by myse
 - What about January/last quarter/last year/page

Amount	Description
\$20.21	Grocery
\$10.54	Fast food
\$39.22	Cell phone bill
\$33.00	Clothes
	\$20.21 \$10.54 \$39.22

	Α	В	С	D	E
1	Date	Amount	Description		
2	1-Feb	20.21	Grocery		
3	2-Feb	10.54	Fast food		
4	3-Feb	39.22	Cell phone		
5					
6					
7		Grocery	=SUMIFS(B2:B4,C2	:C4,"Grocery	")
3 4 5	2-Feb	10.54 39.22	Fast food Cell phone	:C4,"G	irocery

- Suppose I'd like to track my daily spending
- What I can do:
 - Step 1: collect all the receipts
 - Step 2: write them down on a notebook store them in a text file use a spreadsheet use/build a personal finance app
 - Step 3: do some analysis
 - How much did my spend on grocery and fast food in Feburary?
 - How much could I have saved if I cook by myself in Feburary?
 - What about January/last quarter/last year/past five years?

Date 2/1	Amount \$20.21	Description Grocery
2/2 2/3	\$10.54 \$39.22	Fast food Cell phone bill
 2/27	\$33.00	Clothes

Why using a DataBase Management System?

• DataBase Management System (DBMS) is a software system for convenient and efficient data access over databases,

which provides:

- Data abstraction
 - Flexible data manipulation and query interfaces
 - Scalable data storage
 - Efficient query and transaction processing
- Integrity checks
- Concurrency control and atomicity
- Fault tolerance
- Security and privacy

• ...

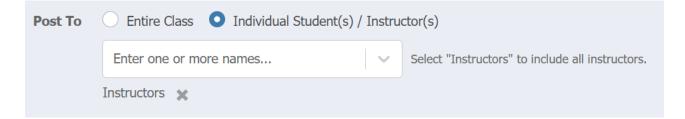
What dose this course cover?

- The design and implementation of DataBase Management System (DBMS)
 - Relational DBMS (RDBMS) as a case study
 - Stores tables that consist of rows and columns
 - Declarative query language (SQL) in the simple yet powerful relational model
 - Focus on principles and techniques generally applicable in Data Management
- Note, this course is not about (but we assume you have learned these somewhere else):
 - Database design
 - The relational model and the SQL language (we'll briefly review them)
 - Programming/data structure/algorithm analysis/math...

Why should I care about DBMS internals?

- > 60 billion dollar worth industry
 - Many more are directly or indirectly using DBMS products
- Many vendors and products:
 - Relational: MySQL, Oracle DB, Microsoft SQL Server, IBM Db2, PostgreSQL, SQLite...
 - Graph DB and Graph data processing: Neo4j, Virtuoso, GraphLab, Spark GraphX, ...
 - Stream Processing: Apache Flink, Spark Streaming, Apache Storm, ...
 - Semi-structured DB: MongoDB, CouchBase, DocumentDB, ...
 - Distributed database: Google Spanner, Microsoft CosmosDB, ...
 - .
- Used by many other research and application areas:
 - Artificial Intelligence/data mining/search engine/social media/fintech/...

Why should I care about DBMS internals?


- Huge demand in industry for those who can
 - query/manipulate data in database efficiently
 - fine-tune the imperfect DBMS/big data processing systems
 - work seamlessly with the data infrastructure team
- An actively researched area that
 - has strong real-life impacts and connection to the industry
 - has many related open engineering and research positions
- The goal of this course:
 - understanding the common problems and solutions in data management
 - gaining hands-on experience with building a complex software system
 - to be helpful in your future industrial/academic career

Logistics

- Davis 101, TR 11:00 am 12:20 pm.
 - In-person attendance required.
 - We will have random quizzes.
- Instructor: Zhuoyue Zhao
 - Office hours: Monday 9:50 am to 11:50 am, and Tuesday 1:30 pm to 3:20 pm, Davis 338I.
- TA/Grader:
 - Congying Wang -- Office hours Wednesday 1:00 pm to 3:00 pm and Thursday 2:00 pm to 4:00 pm, location Davis 300 student lounge (the open space south of Davis 302).
 - Nithin Tellapuri Q&A on Piazza, Monday and Friday 2:00 3:00 pm.
- No office hour in week 1
 - Please post on Piazza for help if there's any issue with project 1
- Find more on course website: https://cse.buffalo.edu/~zzhao35/teaching/cse562_spring23/

Logistics

- We mainly use Piazza for communication:
 - <u>https://piazza.com/buffalo/spring2023/cse462562</u>
 - Please post any request/question on Piazza instead of sending emails
 - Piazza reminds me of all unresolved questions but outlook doesn't!
- When you have any private question/request for the instructor or TA:
 - please select "Instructors" in Post To

Logistics

- Important Dates:
 - Add/drop deadline: 2/6/2023
 - Mid-term exam: 3/9/2023, Knox 104, 7:10 pm 8:40 pm
 - Last day to resign from the course: 4/21/2023
 - Final exam: 5/16/2023, 12:30 pm 2:00 pm, Knox 104
- Open-book exams (only paper materials allowed)
- Exam conflict policy:
 - No alternative time for mid-term exam (sorry, limited space availability)
 - If you have <u>final exam conflicts</u> as defined by the Office of the Registrar
 - please notify the instructor on Piazza by 2/13/2023
 - (we might not have enough seats if you do not notify us by that date)
 - you may still opt for the original final exam at any time with one-week prior notice

Grading

- Grading
 - Random in-class quizzes: 10% (you may miss up to 3 without losing points)
 - Mid-term exam: 15%
 - Final exam: 20%
 - Projects: 55% + 10% in bonus
- Grading scale for letter grades:
 - No curving.

[0, 10)	[10, 20)	[20, 30)	[30, 40)	[40, 50)	[50, 60)	[60, 70)	[70, 80)	[80, 90)	[90 <i>,</i> +∞)
F	D	C-	С	C+	В-	В	B+	A-	А

Course project

- Build a mini RDBMS through 5 projects (C++ 11)
 - Project 1 (project sign-up and C++ practice) due on 2/7, 1:00 AM.
- Each project includes:
 - Coding: private Github repo; submit tags to Autolab
 - Write-ups: submit a PDF to UBLearns with your own answers to a list of questions
- Deadlines and late submission policy:
 - coding: no late submission accepted. 10-min grace period in case of network issues.
 - If you are unable to make submission within the grace period but have committed your code by deadline, please post the commit tag on Piazza for help.
 - write-ups: due 2 days after each project deadline
- Teams allowed with up to 2 students
 - teamwork allowed only within teams and on coding
 - write-ups must be completed independently (without consulting your teammate!)

Course project

- Instructions for projects:
 - Project pages contain very detailed instructions.
 - If something requires clarification, it's most likely covered there.
 - Still have questions on project or found bugs?
 - Feel free to post it on Piazza (though we may point you back to the instructions).
 - Your team will get 1 extra credit towards your final grade for every validated bug or question that cannot be answered by the project instruction.
- Where to find project pages: <u>https://cse.buffalo.edu/~zzhao35/teaching/cse562_spring23/</u>

CSE 462/562: Database Systems (Spring 2023)

Course home Projects - Piazza UB Learns Autolab

Academic Integrity Policy

- Academic integrity is critical to the learning process. It is your responsibility to understand and follow all the departmental and university academic integrity policies.
- Zero tolerance towards academic integrity violations, which includes but are not limited to
 - Sharing/copying code in projects or
 - Plagiarizing write-ups
 - Cheating in exam
 - Making project code publicly available or available to any current or future students
 - Submitting code repository that does not belong to you
- Any AI violation will result in an F grade and will be reported to the Office of Academic Integrity
 - unless it's an honest mistake that does not give anyone any undue advantage
 - (e.g., you accidentally set your Github repo to public but changed it back before anyone accesses it)

More on Academic Integrity Policy

- Think of the course projects as take-home exams:
 - you must complete them by yourself (or with your teammate for coding only)
 - please do not discuss any project specifics outside your team
- Examples of AI violation related to course project:
 - Discussion of code with any student who is not your teammate
 - Viewing/committing/submitting code written by anyone who is not your teammate
 - verbatim or with modification
 - Discussion of project write-ups with any student (including your teammate)
 - Viewing/copying/rephrasing answers found online or from a past or current student
- What is allowed and encouraged (on Piazza/in lecture/offline, publicly or privately)
 - Ask questions about lectures
 - Discuss (the ungraded) written assignments
 - Preparation for mid-term and final exams
 - Looking up C++ references on cpprefernce.com/cplusplus.com

Next time

• Storage