
CSE462/562: Database Systems (Spring 23)

Lecture 3: Buffer Management

2/7/2023

Big Picture

Operating System

CPU Memory
Secondary
Storages

Hardware devices

DBMS

User applications

Disk space/File management

File Organization/Access Methods

Query Execution

SQL Parser/API

Buffer Management

CSE462/562 (Spring 2023): Lecture 3 2

How does database access data pages?
• Data pages are stored in disk file

• suppose we want to count how many rows there are in a database table

• need to scan all pages

• page must be loaded into memory before any computation happens

db.dat

p0 p1 p2 p3 … pnp0 p1 p2 p3 pn

Read: ~10 ms Computation: < 1 𝜇𝑠

CSE462/562 (Spring 2023): Lecture 3 3

How does database access data pages?
• Data pages are stored in disk file

• suppose we want to count how many rows there are in a database table

• need to scan all pages

• page must be loaded into memory before any computation happens

db.dat

p0 p1 p2 p3 … pnp1 p2 p3 pn

Read: ~10 ms Computation: < 1 𝜇𝑠

p0

• Repeat for all the n pages
• Execution time dominated by I/O

CSE462/562 (Spring 2023): Lecture 3 4

How does database access data pages?
• Data pages are stored in disk file

• suppose we want to count how many rows there are in a database table

• need to scan all pages

• page must be loaded into memory before any computation happens

• What if we want to scan the data file for multiple passes?
• Option 1: read/write the entire page on demand before reading/writing the integer <- very slow

• Option 2: read all data pages into memory at the beginning <- not scalable

• May not fit in memory

• What to do on modify?

• Immediately write back? Or Flush when program shutsdown?

• Data persistence?

• Solution: buffer pool

CSE462/562 (Spring 2023): Lecture 3 5

Buffer management in DBMS
• Buffer manager manages a fixed-size pool of in-memory page frames which

• are of the same size as the data pages (e.g., 4KB)

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 m - 1

Frames … Buffer Pool

buffer pool size

4KB 4KB 4KB

Buffer Manager

char *frames =

malloc(PAGE_SIZE * m bytes);

CSE462/562 (Spring 2023): Lecture 3 6

Handling a page request (buffer miss)
• Handling page request

• Suppose we want to read/write a page in the file with page number = 100

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 m - 1

Frames … Buffer Pool

buffer pool size

4KB 4KB 4KB

Upper level
components

Buffer Manager

1 HandlePageRequest(pid):

2 if pid exists in some buffer frame i:

3 return &frames[i]

4 else:

5 find a free frame i

6 ReadPage(pid, &frames[i])

7 return &frames[i]

frames

CSE462/562 (Spring 2023): Lecture 3 7

Handling a page request (buffer miss)
• Handling page request

• Suppose we want to read/write a page in the file with page number = 100

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 m - 1

Frames … Buffer Pool

buffer pool size

4KB 4KB 4KB

Upper level
components

Buffer Manager

request pid = 100

1 HandlePageRequest(pid): // pid = 100

2 if pid exists in some buffer frame i:

3 return &frames[i]

4 else:

5 find a free frame i

6 ReadPage(pid, &frames[i])

7 return &frames[i]

frames

CSE462/562 (Spring 2023): Lecture 3 8

Handling a page request (buffer miss)
• Handling page request

• Suppose we want to read/write a page in the file with page number = 100

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 m - 1

Frames … Buffer Pool

buffer pool size

4KB 4KB 4KB

Upper level
components

Buffer Manager

request pid = 100

1 HandlePageRequest(pid): // pid = 100

2 if pid exists in some buffer frame i:

3 return &frames[i]

4 else:

5 find a free frame i

6 ReadPage(pid, &frames[i])

7 return &frames[i]

frames

CSE462/562 (Spring 2023): Lecture 3 9

Handling a page request (buffer miss)
• Handling page request

• Suppose we want to read/write a page in the file with page number = 100

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 m - 1

Frames … Buffer Pool

buffer pool size

4KB 4KB 4KB

Upper level
components

Buffer Manager

request pid = 100

1 HandlePageRequest(pid): // pid = 100

2 if pid exists in some buffer frame i:

3 return &frames[i]

4 else:

5 find a free frame i // i = 0

6 ReadPage(pid, &frames[i])

7 return &frames[i]

frames

CSE462/562 (Spring 2023): Lecture 3 10

Handling a page request (buffer miss)
• Handling page request

• Suppose we want to read/write a page in the file with page number = 100

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 m - 1

Frames … Buffer Pool

buffer pool size

4KB 4KB 4KB

Upper level
components

Buffer Manager

request pid = 100

1 HandlePageRequest(pid): // pid = 100

2 if pid exists in some buffer frame i:

3 return &frames[i]

4 else:

5 find a free frame i // i = 0

6 ReadPage(pid, &frames[i])

7 return &frames[i]

frames

p100

CSE462/562 (Spring 2023): Lecture 3 11

Handling a page request (buffer miss)
• Handling page request

• Suppose we want to read/write a page in the file with page number = 100

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 m - 1

Frames … Buffer Pool

buffer pool size

4KB 4KB 4KB

Upper level
components

Buffer Manager

request pid = 100

1 HandlePageRequest(pid): // pid = 100

2 if pid exists in some buffer frame i:

3 return &frames[i]

4 else:

5 find a free frame i // i = 0

6 ReadPage(pid, &frames[i])

7 return &frames[i]

frames

p100

&frames[0]

Cost: 1 I/O

CSE462/562 (Spring 2023): Lecture 3 12

Handling a page request (buffer hit)
• Handling page request

• Suppose we want to read the same page again (pid = 100)

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 m - 1

Frames … Buffer Pool

buffer pool size

4KB 4KB 4KB

Upper level
components

Buffer Manager

1 HandlePageRequest(pid):

2 if pid exists in some buffer frame i:

3 return &frames[i]

4 else:

5 find a free frame i

6 ReadPage(pid, &frames[i])

7 return &frames[i]

frames

p100

CSE462/562 (Spring 2023): Lecture 3 13

Handling a page request (buffer hit)
• Handling page request

• Suppose we want to read the same page again (pid = 100)

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 m - 1

Frames … Buffer Pool

buffer pool size

4KB 4KB 4KB

Upper level
components

Buffer Manager

second request
for pid = 100

1 HandlePageRequest(pid): // pid = 100

2 if pid exists in some buffer frame i:

3 return &frames[i]

4 else:

5 find a free frame i

6 ReadPage(pid, &frames[i])

7 return &frames[i]

frames

p100

CSE462/562 (Spring 2023): Lecture 3 14

Handling a page request (buffer hit)
• Handling page request

• Suppose we want to read the same page again (pid = 100)

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 m - 1

Frames … Buffer Pool

buffer pool size

4KB 4KB 4KB

Upper level
components

Buffer Manager

second request
for pid = 100

1 HandlePageRequest(pid): // pid = 100

2 if pid exists in some buffer frame i:

3 return &frames[i] // i = 0

4 else:

5 find a free frame i

6 ReadPage(pid, &frames[i])

7 return &frames[i]

frames

p100

&frames[0]

Cost: 0 I/O

CSE462/562 (Spring 2023): Lecture 3 15

Map page numbers to buffer frames
• How to implement line 2?

• Need to store the page numbers, but where?

• For each buffer frame, we maintain a metadata structure which includes pid.

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 m - 1

Frames … Buffer Pool

buffer pool size

4KB 4KB 4KB

2 if pid exists in some buffer frame i:

frames

p100

BufferId 0 1 2 3 4 m - 1

pid = 100 …

Buffer Meta Infometa

CSE462/562 (Spring 2023): Lecture 3 16

Map page numbers to buffer frames
• How to implement line 2?

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 m - 1

Frames … Buffer Pool

buffer pool size

4KB 4KB 4KB

2 if pid exists in some buffer frame i:

frames

p100

BufferId 0 1 2 3 4 m - 1

pid = 100 …

Buffer Meta Infometa

for (BufferId i = 0; i < m; ++i) {

if (meta[i].pid == 100)

return i;

}

return InvalidBufferId;

O(m) time -- slow!

CSE462/562 (Spring 2023): Lecture 3 17

Map page numbers to buffer frames
• How to implement line 2?

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 m - 1

Frames … Buffer Pool

buffer pool size

4KB 4KB 4KB

2 if pid exists in some buffer frame i:

frames

p100

BufferId 0 1 2 3 4 m - 1

pid = 100 …

Buffer Meta Infometa

h(pid) 0 1 2 … K-1

BufferId Hash table H

suppose h(100) == 2

0

if (H.find(100) != H.end())

return H[100];

return InvalidBufferId

O(1) time in expectation

CSE462/562 (Spring 2023): Lecture 3 18

Map page numbers to buffer frames
• Practical consideration for hash tables

• DBMS usually has its own hash tables implementation for buffer manager -- why?

• memory constraints, efficiency, concurrency control, …

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 m - 1

Frames … Buffer Pool

buffer pool size

4KB 4KB 4KB

frames

p100

BufferId 0 1 2 3 4 m - 1

pid = 100 …

Buffer Meta Infometa

h(pid) 0 1 2 … K-1

BufferId Hash table H0

CSE462/562 (Spring 2023): Lecture 3 19

Map page numbers to buffer frames
• Practical consideration for hash tables

• For Project 2: feel free to use libraries (e.g., absl::flat_hash_map, std::unordered_map)

• Tips for time and memory efficiency: avoid rehashing

• Set the initial bucket count K >= m / max_load_factor()

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 m - 1

Frames … Buffer Pool

buffer pool size

4KB 4KB 4KB

frames

p100

BufferId 0 1 2 3 4 m - 1

pid = 100 …

Buffer Meta Infometa

h(pid) 0 1 2 … K-1

BufferId Hash table H0

CSE462/562 (Spring 2023): Lecture 3 20

Buffer eviction
• What if we run out of buffer frames?

• e.g., we are scanning a table with N = 100 pages, but buffer pool size m = 10

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 9

Frames … Buffer Pool

4KB 4KB 4KB

frames

p100

BufferId 0 1 2 3 4 9

…

Buffer Meta Infometa

p101 p102 p103 p104 p109

pid = 101 pid = 102 pid = 103 pid = 104 pid = 109pid = 100
request pid = 110

CSE462/562 (Spring 2023): Lecture 3 21

Buffer eviction
• What if we run out of buffer frames?

• Buffer eviction: choose a victim to remove from the buffer pool

• Several possible policies (more on this later)

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 9

Frames … Buffer Pool

4KB 4KB 4KB

frames

p100

BufferId 0 1 2 3 4 9

…

Buffer Meta Infometa

p101 p102 p103 p104 p109

pid = 101 pid = 102 pid = 103 pid = 104 pid = 109pid = 100
request pid = 110

CSE462/562 (Spring 2023): Lecture 3 22

Buffer eviction
• What if we run out of buffer frames?

• Buffer eviction: choose a victim to remove from the buffer pool

• Several possible policies (more on this later)

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 9

Frames … Buffer Pool

4KB 4KB 4KB

frames

BufferId 0 1 2 3 4 9

…

Buffer Meta Infometa

p101 p102 p103 p104 p109

pid = 101 pid = 102 pid = 103 pid = 104 pid = 109
request pid = 110

CSE462/562 (Spring 2023): Lecture 3 23

Buffer eviction
• What if we run out of buffer frames?

• Buffer eviction: choose a victim to remove from the buffer pool

• Several possible policies (more on this later)

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 9

Frames … Buffer Pool

4KB 4KB 4KB

frames

p110

BufferId 0 1 2 3 4 9

…

Buffer Meta Infometa

p101 p102 p103 p104 p109

pid = 101 pid = 102 pid = 103 pid = 104 pid = 109pid = 110
request pid = 110

CSE462/562 (Spring 2023): Lecture 3 24

Page requested for writes
• Potential problem with page eviction?

• What if the evicted page is modified? (e.g., UPDATE A SET x = x + 10 WHERE …)

• We must write modified page back before eviction

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 9

Frames … Buffer Pool

4KB 4KB 4KB

frames

p100

BufferId 0 1 2 3 4 9

…

Buffer Meta Infometa

p101 p102 p103 p104 p109

pid = 101 pid = 102 pid = 103 pid = 104 pid = 109pid = 100
dirty = true dirty = false dirty = true dirty = true

request pid = 110

dirty = false dirty = false

WritePage(100, &frames[0])
CSE462/562 (Spring 2023): Lecture 3 25

Page requested for writes
• Potential problem with page eviction?

• What if the evicted page is modified? (e.g., UPDATE A SET x = x + 10 WHERE …)

• We must write modified page back before eviction

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 9

Frames … Buffer Pool

4KB 4KB 4KB

frames

BufferId 0 1 2 3 4 9

…

Buffer Meta Infometa

p101 p102 p103 p104 p109

pid = 101 pid = 102 pid = 103 pid = 104 pid = 109
dirty = false dirty = true dirty = true

request pid = 110

dirty = false dirty = false

CSE462/562 (Spring 2023): Lecture 3 26

Page requested for writes
• Potential problem with page eviction?

• What if the evicted page is modified? (e.g., UPDATE A SET x = x + 10 WHERE …)

• We must write modified page back before eviction

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 9

Frames … Buffer Pool

4KB 4KB 4KB

frames

p110

BufferId 0 1 2 3 4 9

…

Buffer Meta Infometa

p101 p102 p103 p104 p109

pid = 101 pid = 102 pid = 103 pid = 104 pid = 109pid = 110
dirty = false dirty = false dirty = true dirty = true

request pid = 110

dirty = false dirty = false

ReadPage(110, &frames[0])
CSE462/562 (Spring 2023): Lecture 3 27

Buffer pins
• Problems with concurrency

• One thread reading a block while the other tries to evict it

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 9

Frames … Buffer Pool

4KB 4KB 4KB

frames

p110

BufferId 0 1 2 3 4 9

…

Buffer Meta Infometa

p101 p102 p103 p104 p109

pid = 101 pid = 102 pid = 103 pid = 104 pid = 109pid = 110
dirty = false dirty = false dirty = true dirty = true dirty = false dirty = false

T1: char * frame = BufMgr.HandlePageRequest(110) // &frames[0]

CSE462/562 (Spring 2023): Lecture 3 28

Buffer pins
• Problems with concurrency

• One thread reading a block while the other tries to evict it

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 9

Frames … Buffer Pool

4KB 4KB 4KB

frames

p99

BufferId 0 1 2 3 4 9

…

Buffer Meta Infometa

p101 p102 p103 p104 p109

pid = 101 pid = 102 pid = 103 pid = 104 pid = 109pid = 99
dirty = false dirty = false dirty = true dirty = true dirty = false dirty = false

T1: char * f1 = BufMgr.HandlePageRequest(110)

T2: char * f2 = BufMgr.HandlePageRequest(99)

// &frames[0]

// &frames[0]

f1 now contains a wrong page for T1

CSE462/562 (Spring 2023): Lecture 3 29

Buffer pins
• Solution: introducing a buffer pin count per buffer frame

• Upon page request, pin count++
• Upon page release, pin count--
• Never evict a page with pin count > 0

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 9

Frames … Buffer Pool

4KB 4KB 4KB

frames

p110

BufferId 0 1 2 3 4 9

…

Buffer Meta Infometa

p101 p102 p103 p104 p109

pid = 101 pid = 102 pid = 103 pid = 104 pid = 109pid = 110
dirty = false dirty = false dirty = true dirty = true dirty = false dirty = false
pin_count = 0 pin_count = 0pin_count = 0 pin_count = 0 pin_count = 0 pin_count = 0

CSE462/562 (Spring 2023): Lecture 3 30

Buffer pins
• Solution: introducing a buffer pin count per buffer frame

• Upon page request, pin count++
• Upon page release, pin count--
• Never evict a page with pin count > 0

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 9

Frames … Buffer Pool

4KB 4KB 4KB

frames

p110

BufferId 0 1 2 3 4 9

…

Buffer Meta Infometa

p101 p102 p103 p104 p109

pid = 101 pid = 102 pid = 103 pid = 104 pid = 109pid = 110
dirty = false dirty = false dirty = true dirty = true dirty = false dirty = false
pin_count = 1 pin_count = 0pin_count = 0 pin_count = 0 pin_count = 0 pin_count = 0

T1: BufferId b1 = BufMgr.PinPage(110, &f1) // b1 = 0

CSE462/562 (Spring 2023): Lecture 3 31

Buffer pins
• Solution: introducing a buffer pin count per buffer frame

• Upon page request, pin count++
• Upon page release, pin count--
• Never evict a page with pin count > 0

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 9

Frames … Buffer Pool

4KB 4KB 4KB

frames

p110

BufferId 0 1 2 3 4 9

…

Buffer Meta Infometa

p101 p102 p103 p104 p109

pid = 99 pid = 102 pid = 103 pid = 104 pid = 109pid = 110
dirty = false dirty = false dirty = true dirty = true dirty = false dirty = false
pin_count = 1 pin_count = 0pin_count = 1 pin_count = 0 pin_count = 0 pin_count = 0

T1: BufferId b1 = BufMgr.PinPage(110, &f1) // b1 = 0

T2: BufferId b2 = BufMgr.PinPage(99, &f2) // b2 = 1

CSE462/562 (Spring 2023): Lecture 3 32

Buffer pins
• Solution: introducing a buffer pin count per buffer frame

• Upon page request, pin count++
• Upon page release, pin count--
• Never evict a page with pin count > 0

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 9

Frames … Buffer Pool

4KB 4KB 4KB

frames

p110

BufferId 0 1 2 3 4 9

…

Buffer Meta Infometa

p101 p102 p103 p104 p109

pid = 99 pid = 102 pid = 103 pid = 104 pid = 109pid = 110
dirty = false dirty = false dirty = true dirty = true dirty = false dirty = false
pin_count = 0 pin_count = 0pin_count = 1 pin_count = 0 pin_count = 0 pin_count = 0

T1: BufferId b1 = BufMgr.PinPage(110, &f1) // b1 = 0

T2: BufferId b2 = BufMgr.PinPage(99, &f2) // b2 = 1

T1: BufMgr.UnpinPage(b1)

CSE462/562 (Spring 2023): Lecture 3 33

Buffer pins
• Solution: introducing a buffer pin count per buffer frame

• Upon page request, pin count++
• Upon page release, pin count--
• Never evict a page with pin count > 0

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 9

Frames … Buffer Pool

4KB 4KB 4KB

frames

p110

BufferId 0 1 2 3 4 9

…

Buffer Meta Infometa

p101 p102 p103 p104 p109

pid = 99 pid = 102 pid = 103 pid = 104 pid = 109pid = 110
dirty = false dirty = false dirty = true dirty = true dirty = false dirty = false
pin_count = 0 pin_count = 0pin_count = 1 pin_count = 0 pin_count = 0 pin_count = 0

T1: BufferId b1 = BufMgr.PinPage(110, &f1) // b1 = 0

T2: BufferId b2 = BufMgr.PinPage(99, &f2) // b2 = 1

T1: BufMgr.UnpinPage(b1)

Question: are buffer pins necessary when the DBMS is single-threaded?

Yes. Think about why?

CSE462/562 (Spring 2023): Lecture 3 34

Eviction policy
• How do we choose a victim for eviction?

• Randomly? The one with the lowest buffer ID that is not pinned? (Inefficient!)

DB files

Main memory

Secondary storage

BufferId 0 1 2 3 4 9

Frames … Buffer Pool

4KB 4KB 4KB

frames

p110

BufferId 0 1 2 3 4 9

…

Buffer Meta Infometa

p101 p102 p103 p104 p109

pid = 99 pid = 102 pid = 103 pid = 104 pid = 109pid = 110
dirty = false dirty = false dirty = true dirty = true dirty = false dirty = false
pin_count = 0 pin_count = 0pin_count = 0 pin_count = 0 pin_count = 0 pin_count = 0

CSE462/562 (Spring 2023): Lecture 3 35

Eviction policy
• Eviction policy (aka replacement policy)

• An algorithm for choosing unpinned frames when there’s no free frame

• It can have huge impacts on the # of I/Os, depending on the access pattern

• Many common choices:

• Least recently used (LRU)

• Most recently used (MRU)

• Clock

• Database workload specific policies

• …

CSE462/562 (Spring 2023): Lecture 3 36

Least Recently Used (LRU) policy
• Least Recently Used (LRU)

• for each page in buffer pool, the order of the pages were last unpinned

• replace the frame which has the oldest (earliest) time

• very common policy: intuitive and simple

• Works well for repeated accesses to popular pages -> typical transactional workload

• Example: P stands for PinPage, and U stands for UnpinPage, m = 3
• P(1), P(2), P(3), U(2), U(3), P(4), U(1), P(3), U(3)

BufferId 0 1 2

Frames

pincount 0 0 0

CSE462/562 (Spring 2023): Lecture 3 37

Least Recently Used (LRU) policy
• Least Recently Used (LRU)

• for each page in buffer pool, the order of the pages were last unpinned

• replace the frame which has the oldest (earliest) time

• very common policy: intuitive and simple

• Works well for repeated accesses to popular pages -> typical transactional workload

• Example: P stands for PinPage, and U stands for UnpinPage, m = 3
• P(1), P(2), P(3), U(2), U(3), P(4), U(1), P(3), U(3)

BufferId 0 1 2

Frames

pincount 1 1 1

p1 p2 p3

CSE462/562 (Spring 2023): Lecture 3 38

Least Recently Used (LRU) policy
• Least Recently Used (LRU)

• for each page in buffer pool, the order of the pages were last unpinned

• replace the frame which has the oldest (earliest) time

• very common policy: intuitive and simple

• Works well for repeated accesses to popular pages -> typical transactional workload

• Example: P stands for PinPage, and U stands for UnpinPage, m = 3
• P(1), P(2), P(3), U(2), U(3), P(4), U(1), P(3), U(3)

BufferId 0 1 2

Frames

pincount 1 0 1

p1 p2 p3

LRU list:

H 1
next

prev

CSE462/562 (Spring 2023): Lecture 3 39

Least Recently Used (LRU) policy
• Least Recently Used (LRU)

• for each page in buffer pool, the order of the pages were last unpinned

• replace the frame which has the oldest (earliest) time

• very common policy: intuitive and simple

• Works well for repeated accesses to popular pages -> typical transactional workload

• Example: P stands for PinPage, and U stands for UnpinPage, m = 3
• P(1), P(2), P(3), U(2), U(3), P(4), U(1), P(3), U(3)

BufferId 0 1 2

Frames

pincount 1 0 0

p1 p2 p3

LRU list:

H 1 2
next

prev

How to implement in practice?
Exercise: how to remove a node in the middle of LRU list when there’s a buffer hit?

CSE462/562 (Spring 2023): Lecture 3 40

Least Recently Used (LRU) policy
• Least Recently Used (LRU)

• for each page in buffer pool, the order of the pages were last unpinned

• replace the frame which has the oldest (earliest) time

• very common policy: intuitive and simple

• Works well for repeated accesses to popular pages -> typical transactional workload

• Example: P stands for PinPage, and U stands for UnpinPage, m = 3
• P(1), P(2), P(3), U(2), U(3), P(4), U(1), P(3), U(3)

BufferId 0 1 2

Frames

pincount 1 0 0

p1 p2 p3

LRU list:

H 2
next

prev

1 victim for eviction

p4

1

CSE462/562 (Spring 2023): Lecture 3 41

Least Recently Used (LRU) policy
• Least Recently Used (LRU)

• for each page in buffer pool, the order of the pages that were last unpinned

• replace the frame which has the oldest (earliest) time

• very common policy: intuitive and simple

• Works well for repeated accesses to popular pages -> typical transactional workload

• Problems?
• Sequential flooding:

• # buffer frames < # pages in file means every existing page in the buffer gets evicted

• Prevents buffer hit for other transactions working on other files

• DB may know the access pattern before hand so that it can adapt its replacement policies
• e.g., using a small ring buffer for sequential scan to avoid flooding the entire buffer pool

CSE462/562 (Spring 2023): Lecture 3 42

Clock policy
• Approximate LRU

• Each buffer frame has a clock bit
• Set upon page pinned or unpinned (why?)

• When we need an eviction, move the clock hand
• Ignore any page that is still pinned

• Otherwise

• If bit is set, clear it

• If bit is clear, evict it

• i.e., second chance

10

0

CLOCK hand

0

1

0

0

0
10

0

1

1

0

0

1

0

1
1 0 0

0

1

0

CSE462/562 (Spring 2023): Lecture 3 43

Clock policy
• Approximate LRU

• Each buffer frame has a clock bit
• Set upon page pinned or unpinned (why?)

• When we need an eviction, move the clock hand
• Ignore any page that is still pinned

• Otherwise

• If bit is set, clear it

• If bit is clear, evict it

• i.e., second chance

10

0

CLOCK hand

0

1

0

0

0
10

0

1

1

0

0

1

0

1
1 0 0

0

1

0

0

clock bit
cleared

CSE462/562 (Spring 2023): Lecture 3 44

Clock policy
• Approximate LRU

• Each buffer frame has a clock bit
• Set upon page pinned or unpinned (why?)

• When we need an eviction, move the clock hand
• Ignore any page that is still pinned

• Otherwise

• If bit is set, clear it

• If bit is clear, evict it

• i.e., second chance

• Why this might be faster and easier to implement
than LRU?
• Hint: put the clock bit into the buffer meta structures

• scan buffer meta structures instead

10

0

CLOCK hand

0

1

0

0

0
10

0

1

1

0

0

1

0

1
1 0 0

0

1

0

0

evicted

CSE462/562 (Spring 2023): Lecture 3 45

Clock policy
• Approximate LRU

• Each buffer frame has a clock bit
• Set upon page pinned or unpinned (why?)

• When we need an eviction, move the clock hand
• Ignore any page that is still pinned

• Otherwise

• If bit is set, clear it

• If bit is clear, evict it

• i.e., second chance

• Alternative: third/fourth/… chance
• allowing clock counters up to 2/3/…

10

0

CLOCK hand

0

1

0

0

0
10

0

1

1

0

0

1

0

1
1 0 0

0

1

0

CSE462/562 (Spring 2023): Lecture 3 46

Buffer flush
• When are dirty pages written back to disk?

• When evicted

• During shutdown

• Forced flush: flushing certain dirty pages to disk

• when data need to be persisted for data consistency

• only unpinned page may be flushed

• other constraints apply (discussed later this semester)

CSE462/562 (Spring 2023): Lecture 3 47

DBMS vs. OS File System

OS does disk space & buffer management as well: why not let OS manage these tasks?

• Some limitations, e.g., files can’t span disks.

• Buffer management in DBMS requires ability to:
• pin a page in buffer pool, force a page to disk & order writes (important for implementing CC,

concurrency control, & recovery)

• adjust eviction policy, and prefetch pages based on access patterns in typical DB operations.

CSE462/562 (Spring 2023): Lecture 3 48

Summary
• Buffer management in DBMS

• Buffer manager implementation
• Eviction policy

• Next lecture
• Data storage layout

• Project 2 released today (2/7/2023)
• Due on Thursday, 2/16/2023, 1:00 AM EST
• Write-up due on Saturday, 2/18/2023, 1:00 AM EST
• Solution code for project 1 will be released on Piazza by the end of today.

• HW1 released today (not graded; no need to submit)
• Solution to HW 1 will be released in a week

CSE462/562 (Spring 2023): Lecture 3 49

	Slide 1: CSE462/562: Database Systems (Spring 23)
	Slide 2: Big Picture
	Slide 3: How does database access data pages?
	Slide 4: How does database access data pages?
	Slide 5: How does database access data pages?
	Slide 6: Buffer management in DBMS
	Slide 7: Handling a page request (buffer miss)
	Slide 8: Handling a page request (buffer miss)
	Slide 9: Handling a page request (buffer miss)
	Slide 10: Handling a page request (buffer miss)
	Slide 11: Handling a page request (buffer miss)
	Slide 12: Handling a page request (buffer miss)
	Slide 13: Handling a page request (buffer hit)
	Slide 14: Handling a page request (buffer hit)
	Slide 15: Handling a page request (buffer hit)
	Slide 16: Map page numbers to buffer frames
	Slide 17: Map page numbers to buffer frames
	Slide 18: Map page numbers to buffer frames
	Slide 19: Map page numbers to buffer frames
	Slide 20: Map page numbers to buffer frames
	Slide 21: Buffer eviction
	Slide 22: Buffer eviction
	Slide 23: Buffer eviction
	Slide 24: Buffer eviction
	Slide 25: Page requested for writes
	Slide 26: Page requested for writes
	Slide 27: Page requested for writes
	Slide 28: Buffer pins
	Slide 29: Buffer pins
	Slide 30: Buffer pins
	Slide 31: Buffer pins
	Slide 32: Buffer pins
	Slide 33: Buffer pins
	Slide 34: Buffer pins
	Slide 35: Eviction policy
	Slide 36: Eviction policy
	Slide 37: Least Recently Used (LRU) policy
	Slide 38: Least Recently Used (LRU) policy
	Slide 39: Least Recently Used (LRU) policy
	Slide 40: Least Recently Used (LRU) policy
	Slide 41: Least Recently Used (LRU) policy
	Slide 42: Least Recently Used (LRU) policy
	Slide 43: Clock policy
	Slide 44: Clock policy
	Slide 45: Clock policy
	Slide 46: Clock policy
	Slide 47: Buffer flush
	Slide 48: DBMS vs. OS File System
	Slide 49: Summary

