CSE462/562: Database Systems (Spring 23)
Lecture 8 & 9: Tree Index
2/23/2023 & 2/28/2023

University at Buffalo
s Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Range Searches

* Find all the students admitted in or after 20207
* If datais in sorted file, we can do binary search to find the first; and then scan to find others.

O (log, Blh + scan cost -- N: number of records; By: number of records per heap page

* Cost of binary search can be quite high. Hard to maintain. student
* Simple idea: create an index file ﬂmm
* binary search on the (smaller) index file Alice CS 2021
* But the index file could still be quite large 101 Bob CE 2020
Internal page. Solution: build a new level of indirections 102 Charlie CS 2021
Take the smallest search 103 David CS 2020
key value from each _
leaf page to build thel | k1| k2 | k’'M Leaf Pages with
index entries! ~ Data Entries:
! -~ \’ 1) One data entry
1| k2 || k3, | k4_ per record!
l\\ k2 | \\ | Leaf Page 2 Leaf Page 3 Leaf Page M 2) Sort data entries
Page 1 Page 2 Page 3 Page N/B Data File
With Data Pages

CSE462/562 (Spring 2023): Lecture 8 & 9

Tree-based Indexes

* Recall: 3 alternatives for data entries k*:
e Data record with key value k
e <k, rid of data record with search key value k>
e <Kk, list of rids of data records with search key k>

e Choice is orthogonal to the indexing technique used to locate data entries k*.

* Tree-structured indexing techniques support both range searches and equality
searches.

* [SAM: static structure; B+ tree: dynamic, adjusts gracefully under inserts and
deletes.

CSE462/562 (Spring 2023): Lecture 8 & 9

Index Entries

An index entry has the following format: (search key value, page id). The following shows an index page
with m index entries (pay attention to the special “left-most pointer”)

Note: entry O does not have a key; the range is implicitly defined by left child and K1

separator key

index entry
| |
Py K P, K o2 | P, o o o m [P m
(—OO, Kl) [K +00)
K, K , m
or [Ko» Kp) K1, K3) [K2, K3) or [Km: Kp+1)

where K|, is the key of the
parent page’s index entry
that points to this page

Question: can we use left-open and right-closed ranges?
CSE462/562 (Spring 2023): Lecture 8 & 9

where K, 1 is the key of the
next index entry of that
points to this page

ISAM

 Static structure built based on the content of a heap file.

* Supports insert/delete/search.
* Overflow pages for excessive insertions

Non-leaf ‘L
Pages ‘17 -<- ‘17
— /] \ / v \ / v \ / v \
-7

Pages D D . 7

bage Primary pages

Leaf pages contain data entries.

CSE462/562 (Spring 2023): Lecture 8 & 9

Overflow --------- > . L -

ISAM Details

* File creation: With data pages in a heap file loaded.
Leaf (data) pages allocated sequentially, and data entries sorted by search key;
Then index pages allocated.
Then space for overflow pages.

* Index entries: <search key value, page id>; they ‘direct’ search for data entries, which are in leaf pages.
* Search: Start at root; use key comparisons to go to leaf.
|/O cost: O (logp
F=fan-out, i.e., # entries per index page, N = # data entries, B, = # data entries / leaf page

* Insert: Find leaf where data entry belongs, put it there.
(Could be on an overflow page).

* Delete: Find and remove from leaf; if empty overflow page, de-allocate.

 Static tree structure: inserts/deletes affect only leaf pages.
* Not good for files with a lot of insertions/deletions
* Could have skews/long overflow chains

* No support for variable-length records in the original ISAM design
* MyISAM supports variable-length records, but no transaction support, no foreign-key integrity constraint support
* Inany case, you should not use ISAM in practice. But it is a good starting point for learning tree indexes.

CSE462/562 (Spring 2023): Lecture 8 & 9

Example ISAM

* e.g., each node can hold 2 data entries or 1 + 2 index entries
* no need for ‘next-leaf-page’ pointers. (Why?)

Root S—

Internal

Pages

20 33 51 63
(=0, 20) }l ” ‘L [33.40) [40,51) }l lil l‘L[63,+°°)

Primary 20 33) \L /[51’63)‘ \

Leaf Pages |1o* |15* | |20* |27* | |33* |37* | |4o* |46* | |51* |55* | |63* |97* |

[
»

Sequential leaf pages

CSE462/562 (Spring 2023): Lecture 8 & 9

ISAM Insertion Examples

* Inserting 23*, 48*, 41*, 42*

Root S—
Index 40
Pages
|2o ||33 | |51 ||63 |
L L
Primary / ‘ \ / ‘ \
Leat |1o* |15* | 20 |27* | |33* |37* | 40* |46* | |51* |55* | |63* |97* |
Pages
Overflow |23* | | 48* |41* |
Pages

CSE462/562 (Spring 2023): Lecture 8 & 9

ISAM Deletion Examples

e Deleting 42*, 51*, 97*

Index 40
Pages

7 1| \ 7

Leaf |1o* |15* | 20* 27% | |33* |37* | 40* |46* | |
Pages

Overflow |23* | | L48* |41* |

Pages

Note that 51 appears in index levels, but 51* not in leaf!

CSE462/562 (Spring 2023): Lecture 8 & 9

B-Tree: the most widely used index

* Dynamic structure

» Adapts to insertion/deletion

* Data entries are stored in the leaf pages; Index entries in internal pages
* Balanced: all paths from root to leaf page has the same length -- called tree height h
* There’s a min occupancy for each page except for root (usually 50%)

* Each node in the tree is a page in the file
* B-Tree internal/leaf node = B-Tree internal/leaf page

e Actually, it’s a B+-Tree

Internal l
Pages $ Ahdhd $

— [¢\ [\ A A
Leaf .o -— e PR coo -—> coo
Pages

(Sorted by search key)

CSE462/562 (Spring 2023): Lecture 8 & 9

10

B-Tree example

Where is the root pointer stored?

. Data entries (index entries) on the
ROO\ same level are sorted in each level.
Height h =3 17 |
(—o0,17) [17, +0)
5 || 13 27 || 30
ox | 3% 'ﬁ\; 7+ | g* 147 16+ 227 247 57+ 2% 337 341 38+ 30+ Pointers to Actual
J | A A A U 3 {1 | DataPages (rid)

Heap File for the Data Records

Let’s assume unique and fixed-length keys for now. Leaf node capacity: B = 4. Fan-out F = 5.

CSE462/562 (Spring 2023): Lecture 8 & 9 11

B-Tree search

Cost of B-tree search: h 1/0Os

|17
(—o0,17) [17, +0)
5 || 13 27 || 30
/ N [17,273/ [27,30~___
v - ﬁ\; —To e ool a7 777 29¢ 333438397 Pointers to Actual
! R B! T3 1=~ Data Pages (rid)

Heap File for the Data Records

* Find 28*? 29*? All > 15* and < 30*
e Starting from root and use key comparison to follow the correct pointers until reaching leaf.
* To scan arange
* Locate the lower bound of the key range
* move right on the data entries until there’re no left or you find one that’s out of range

e Can we locate the upper bound angmg\ggz !g)fitngigggﬁgaregg&g =

B-Tree insertion

* Find correct leaf L.
* Which one? see next slide

e Put data entry onto L.
* If L has enough space, done!
* Else, must split L (into L and a new node L2)
* Redistribute entries evenly, copy up middle key.
* Insert index entry pointing to L2 into parent of L with the middle key.

* This can happen recursively
* To split index node, redistribute entries evenly, but push up middle key. (Contrast with leaf splits.)

 Splits “grow” tree; root split increases height.
* Tree growth: gets wider or one level taller at top.

CSE462/562 (Spring 2023): Lecture 8 & 9

13

B-Tree insertion example -- inserting 15*

* Inserting 15*

Root

P

////
/////
|14*| I16*| | |19*| 2o*|22*| | |24*| 27 29*| | |33*| 34 38*|39*|

Find the subtree where you would do search for the insertion key.

CSE462/562 (Spring 2023): Lecture 8 & 9

14

B-Tree insertion example -- inserting 8*

* Inserting 8*

|2* |3* |5 |7* | |14*|15* 16*| | |19*| 2o*|22*| | |24*| 27 29*| | |33*| 34 38*|39*|

e Leaf page is full, what now? Split the page!
e After that, the root page also needs to be split because there’s no room for a new index entry

CSE462/562 (Spring 2023): Lecture 8 & 9

15

B-Tree insertion example -- inserting 8*

* Observe how minimum
occupancy is guaranteed in both
leaf and index page splits.

5* 7*
* Note difference between copy- I I
up and push-up; be sure you
understand the reasons for this.

Kl

5 13| ” ” “24“30“

CSE462/562 (Spring 2023): Lecture 8 & 9

16

B-Tree insertion example -- Inserting 8*

Cost of B-Tree insertion: h + 1to4h + 1 =0(h) I/Os

38* |39* |

Notice that root was split, leading to increase in height.

In this example, we can avoid split by re-distributing entries; however, this is usually not done in practice.

B-Tree deletion

 Start at root, find leaf L where entry belongs.

 Remove the entry.
e |f Lis at least half-full, done!
e |f L has less than half full,
* Try to merge L and a sibling sharing a common parent.
* Pull down the key in the parent if this is an internal page
* Or redistribute keys (i.e., rebalance) between L and a sibling sharing a common parent
* Need to update the key in the parent after rebalancing
* Rebalancing is rarely implemented in practice, why?

* |f merge occurred, must delete an index entry from parent of L. Which one?
* The one on the right.

* |f redistribute occurs, must update the index entry from parent of L. Which one?
* Still the one on the right.

* Merge could propagate to root, decreasing height.

CSE462/562 (Spring 2023): Lecture 8 & 9

18

B-Tree deletion example -- deleting 19*

e Deleting 19* is easy.
Cost=h + 11/0s.

Root\

El I
/24 30

Bl ES g I I 8 I | I I 230 2 2 e [R e R

B-Tree deletion example -- deleting 20* with merging

* Deleting 20* with merging. Index entry pointing the right sibling is deleted.

2 feolf ([I

| [207]22x] | |[e# |27 feor | | |33+ |34+ |38 |39+ |

B-Tree deletion example -- deleting 20* with merging

* Deleting 20* with merging. Index entry pointing the right sibling is deleted.

Root\

2 feolf ([I

| 5 B R [33" 34 [38" |39 |

B-Tree deletion example -- deleting 20* with merging

* Deleting 20* with merging. Index entry pointing the right sibling is deleted.
* Internal page is also under-utilized at this point, merge it with sibling.

Root\

| 5 B R [33" 34 [38" |39 |

B-Tree deletion example -- deleting 20* with merging

* Deleting 20* with merging. Index entry pointing the right sibling is deleted.
* Internal page is also under-utilized at this point, merge it with sibling.
* Root would have only one pointer at this point if we remove the index entry to the right sibling
* need to remove the root page at this point

Root\
Bl

Where’s this 17 from?

Bl ES il I I | S N O [33" 34 [38" |39 |

CSE462/562 (Spring 2023): Lecture 8 & 9 23

B-Tree deletion example -- deleting 20* with merging

» Deleting 20* with merging. Index entry pointing the right sibling is deleted.
* Internal page is also under-utilized at this point, merge it with sibling.
* Root would have only one pointer at this point if we remove the index entry to the right sibling
* need to remove the root page at this point

Cost = up to 4h 1/Os.

| 1 |33 [34- 38" [39" |

B-Tree deletion example -- deleting 20* with rebalancing

* Deleting 20* with rebalancing. Index entry pointing the right sibling is updated.
* Copy up of the smallest key on the right page

2 feolf ([I

| [207]22x] | |[e# |27 feor | | |33+ |34+ |38 |39+ |

B-Tree deletion example -- deleting 20* with rebalancing

» Deleting 20* with merging. Index entry pointing the right sibling is updated.
* Copy up of the smallest key on the right page

Cost=h+51/0s.

Root\
Bl

Where’s this 27 from?

e o lf {[I

BB i A | 2 I S I EE I | EX5 EX B

Where’s this 24 from?

CSE462/562 (Spring 2023): Lecture 8 & 9 26

B-Tree example of non-leaf rebalancing

e Suppose this is the tree we have and we just deleted 24* from the tree

* which caused a deletion of an index entry on an internal page

/’

Root\

22

Wo
\

24 deleted from here

13 ‘ 17 20
2+ [3 5¢ [7+ | 8 14* |16* 17* [18* 20% |21* 2% | 27* | 29* 33* |34* |38* |39*

CSE462/562 (Spring 2023): Lecture 8 & 9

27

B-Tree example of non-leaf rebalacing (cont’d)

* Intuitively, entries are re-distributed by pushing through’ the splitting entry in the parent

* Two choices: either keep 3 or 4 entries on the left page

e///////////// ‘\\\\\\\\\\\ﬁi Where’s this 22 from?

5 13 20 22 30
o L | L N S
3 5 [7* |8 14* |16* 17* |18* 20* [21* 22% | 27 | 29* 33* [34* |38* [39

CSE462/562 (Spring 2023): Lecture 8 & 9

Bulk loading of a B-Tree

* |f we have a large collection of records, and we want to create a B+ tree on some field,
doing so by repeatedly inserting records is very slow.
* Also leads to minimal leaf utilization --- why?

* Bulk loading can be done much more efficiently.

* fill factor: the default utilization ratio for leaf and internal pages (may vary for leaf and internal pages)
typical values: 70%/80%

* |nitialization: Sort all data entries, insert pointer to first (leaf) page in a new (root) page.

Root\x

Sorted pages of data entries; not yet in B+ tree

3* | 4* 6* |9* 10* [11* 12* (13* 20* [22* 23* |31* | 35* B6* 38* @41* | 44>

CSE462/562 (Spring 2023): Lecture 8 & 9

Bulk loading of a B-Tree

Root 10 20

Data entry pages

6 , ,12 | ,23 .35 \ not yet in B+ tree

RN Y

3* [4* 6* [9* | [10* [11* | [12* |13* | [20* R2* | R3* [31* [B5* B6* [|[38* @l1* | 44*

* Index entries for leaf pages always ~_
entered into right-most index page just Root 20

above leaf level. When this fills up, it / \

sEhts. (Split may go up right-most path to Two | »] Data entry pages

the root.) / \ \ not yet in B+ tree
* Much faster than repeated inserts, v

especially when one considers locking! ° | 112 | 12 138 |,

ARV

3 |4 %\re* 9* /Eo* 11% | [12* [13* /EO* Do+ | p3* [31* | B5* B6* | [38* ja1* || 4

CSE462/562 (Spring 2023): Lecture 8 & 9

Analysis of B-Tree storage cost

» Suppose the usable page size is P (bytes), each record is r (bytes), the index key is k
bytes, record ID or page number is g bytes, and N records in total in the heap file.

e Assume we use alternative 2 for the data entries.

* Bottom-up analysis:
 Number of pages in the heap file: M = [

|P /7]]

 Number of data entries: N (one per record)

* Size of a data entry: k + g bytes (without considering alignments)
* Number of pages in leaf level:

° N’ —
[lP/(k'l'Q)J]
 If the average leaf page utilization ratio is]\llu

N' =
Pru/tk+ ol
* Let B be the number of data entries per leaf page

= P xu/(k +)

Analysis of B-Tree storage cost

fill factor: the default utilization ratio
* Internal levels: when bulk loading the tree

* Fan-out/number of index entries per page

f= {P;::;q‘ + 1 (u is the average utilization ratio: [0.5, 1))

 Number of entries in the index level right above the leaf level: N’ (one entry per leaf-level page)
* Number of pages required in this level: N'/f
* Number of entries in the level above: N'/f
« Number of pages in the level above: N'/f?
e Recursively pages in each level:
o N, N’/f N'/f2, N'/f3 ... 1=N’/fh-1

* Soh = [logf N'|+1= [logf[%ﬂ +1

h_
* total number of internal pages 1 + f + ...+ 71 = % =O0(N") =0(N/B)

 Total number of pages in a B-Tree: O(N') = 0(%)

CSE462/562 (Spring 2023): Lecture 8 & 9

32

Data access cost using B-Tree

e Recall clustered vs. unclustered: if order of data records is the same as, or close to’,
order of index data entries, then called clustered index.

* Cost of using B-Tree to access records varies a lot depending on whether it is clustered or not

Index entries
CLUSTERED direct search for UNCLUSTERED

data entries

V. N 7 \

Data entries Data entries <> =
/A \\ DNNN (Index File) AN N~ X
/4 % (Datafile) //)(} [N7
Data Records Data Records

CSE462/562 (Spring 2023): Lecture 8 & 9

Cost of range scan with clustered B-Tree index

* All records with key >= 24. Clustered index with alternative 2.
* 61/0s
2 random I/O
* 4 sequential I/0 if heap file is laid out sequentially

Root Q

13 17 24 30

QD
|2* |3* 5¢ | 7+ |14*|16* | i|19*|20*|22*| | 24* | 27+

38* |39*

CSE462/562 (Spring 2023): Lecture 8 & 9 34

Cost of range scan with unclustered B-Tree index

* All records with key >= 24. Unclustered index with alternative 2.
 101/0Os
* All random I/Os

Root Q

13 17 24 30

|2* |3* 5¢ | 7+ |14*|16* | | 9*|2o*|22| | o4+ | 27+ 29*| 34+ |38+ |39*

i

CSE462/562 (Spring 2023): Lecture 8 & 9

35

Cost of range scan with clustered B-Tree file

* All records with key >= 24. Clustered index with alternative 1.
* 61/0s
e 3 Random I/O
* 3 Sequential I/0 if the leaf level is sequential in the file

Root

29

JIENIEA Jzol\m |l \\/34‘ L0l
k
<

I\

CSE462/562 (Spring 2023): Lecture 8 & 9

36

Trade-offs with B-Tree

* Clustered B-Tree
* One per table
* Both are good for large range scans, small range scans and point lookups
 Alternative 2/3 (clustered index)
* A bit easier to maintain — can be lax on the heap record order (“close to” the data entry order)
* Alternative 1 (clustered file)
* Harder to maintain — strictly clustered
* Need to reorganize the leaf level to make sure they are sequential
* Save space on data entries (no duplication of keys)
e Might have larger tree height

* Unclustered B-Tree
* Usually alternative 2/3
* Easiest to maintain
* Not very efficient when range scan covers too many records

* Rule of thumb: Scan no more than a tiny fraction of rows
e.g., 0.01% on 7200 rpm HDD, 0.1% on consumer-level Nand SSD
(empirical value, it may vary depending on your DBMS and storage device)

CSE462/562 (Spring 2023): Lecture 8 & 9

37

B-Tree in practice: page and record layout

» So far, we considered fixed-length keys => fixed-fanout
* Easy to define page occupancy in terms of number of slots
e Easy to implement leaf and internal nodes
e Option 1: alternating pointers and keys
e Option 2: two arrays for pointers and keys
* Both with fixed offsets!

0 H H+g H+g+k H+2g+k H+2g+2k 0 H

\ 4 \ 4 \ 4 A \4 \ 4 \ 4 \ 4 \ 4

header

Po

kq

P1

k2

P2

header

Pr k4 k
A A A
Htfgt+ (f-1)k Hgefg+fk H+fqg H+ (f+1)g H+ (f+1)g+k
""" H+ (£+1) g+ (£-1)k
\ 4 \ 4 \ 4
ke |pf Wi

CSE462/562 (Spring 2023): Lecture 8 & 9

38

B-Tree in practice: page and record layout

* But, we could have variable-length keys
* Nullable columns, string keys

 How do you organize the B-tree nodes?

* Use slotted data page

Index entry

child_pid

key payload

Header

unoccupied

index record 2

Data entry (alternative 2)

recid

index key

slot n

slot 2

slot 1

CSE462/562 (Spring 2023): Lecture 8 & 9

39

B-Tree in practice: structural modification

How do you define page utilization?
* How many bytes are used? How many slots there are?
* Issues?

Page split — that’s usually ok

Page merge
* Leaf page merge — no problem
* Internal page merge -- the key to pull down from the parent page may not fit!

Page rebalance
* Leaf or internal page rebalance
* the key to copy/push up may not fit in the parent page!
* Internal page rebalance:
* the key to pull down from the parent page may not fit here!
e Rarely implemented -- also makes concurrency control hard

CSE462/562 (Spring 2023): Lecture 8 & 9

40

B-Tree in practice: multi-field keys

* Multi-field keys are totally ordered in the lexicographical order (aka dictionary order)
* e.g., (a, b, c), order by a first, then b, finally c

* Multi-field keys in B-Tree is very useful
* You can answer certain queries with predicates of a prefix of the keys
* For instance, with a B-Tree over (age, gpa), it may be used for answering the following queries:
* age = 20 ANage < 25
* age = 20 A gpa = 3.0
* What about age = 20 A gpa = 3.0 ?

e Strategy 1: using B-Tree to locate the first data entries with
(age = 20 A gpa = 3.0) Vage > 20
then scan all data entries starting from that

» Strategy 2: for each of the distinct age >= 20, locate the first data entry with gpa >=3.0

then scan data entries starting from these first data entries separately
(aka index skip scan (e.g., Oracle) /jump scan (e.g., DB2) in various systems)

Strategy 2 only works when there are few distinct values in the prefix column

CSE462/562 (Spring 2023): Lecture 8 & 9 41

B-tree in practice: NULL values

* We need to index NULL values in B-tree indexes
* because indexed columns may have NULLs

e Caveat: SQL 3-value logic
 NULL < anything is unknown!
* B-tree requires a total order of the key

e Solution: don’t use the SQL 3-value logic

For instance, define NULL = NULL, NULL < any non-NULL value

Alternatively, NULL = NULL, NULL > any non-NULL value

Some systems support both

In the course project Taco-DB, we assume NULL < any non-NULL value for indexing

CSE462/562 (Spring 2023): Lecture 8 & 9

42

B-Tree in practice: non-unique keys

» So far, we assumed unique keys, but
* we might create indexes over non-unique columns (e.g., name)

* B-Tree can be modified to support duplicate keys, but
 How do you find the data entry for a specific record for update?

* What if we still want to uniquely identify keys in the tree?
* Include record ID as the last column
* record IDs are always unique
* Then a search with key in B-Tree only becomes prefix search:
* e.g., key = (age, gpa), actual key = (age, gpa, record id)
* Query: age = 22 A gpa = 3.77?
* Locate the first data entry such that (age = 22 A gpa = 3.7) Vage > 22
* Then scan the data entries until it falls out of range
* To uniquely locate a data entry for a record: use the full search key

CSE462/562 (Spring 2023): Lecture 8 & 9

43

B-Tree in practice: unique constraints

* B-Tree are often used for enforcing UNIQUE constraints
* e.g., sid SERIAL PRIMARY KEY
e e.g., login VARCHAR (20) UNIQUE

* Build unique B-tree index
* Reject insertion of a data entry whose key already exists in another data entry in the index
» even if the record id does not match

* However, what about NULLs?
* Nullable unigue column is allowed to contain multiple NULLs (because they are unknown values)
* Reality: some allow and some don’t
* Some DBMS disallows inserting multiple NULLs into unique B-Tree index
* non-conformant to SQL, but easier to implement (no special case handling)
 Some do allow that
e SQL-conforming, but need special handling logic for that

CSE462/562 (Spring 2023): Lecture 8 & 9

44

B-Tree in practice: handling concurrency

* Lock-based (e.g., reader-writer lock, in DBMS jargon: latches)
* Many issues:
* Should lock at most c pages at a time (c usually is 1/2/3)
e Lock coupling order (deadlock avoidance)
Insertion:
 Split will cause key space shift (how does concurrent search handle this?)
* Root split? How to install the new root with concurrent readers?
Deletion (harder):
* Page merge/reducing tree height: also causes key space changes
* Some design avoids them by deleting a page only when it’s completely empty
* Some design use mini transactions to handle SMO
File space management:
 What if a page is deleted but a concurrent reader reaches the deleted page?
* Recovery: what if crashes and we have to roll back a half completed B-tree update?

* Lock-free
* Using CAS and additional indirection (J. Levandoski, D. Lomet, S. Sengupta. ICDE ‘13)
e Other considerations?

CSE462/562 (Spring 2023): Lecture 8 & 9

45

https://www.microsoft.com/en-us/research/publication/the-bw-tree-a-b-tree-for-new-hardware/

B-Tree in practice: key compression

* We want high fan-out = low tree height = faster query/update
* But string keys are often quite long (tens of bytes vs 4 bytes/8 bytes)

* Prefix key compression: extract the common prefix and only store the unique suffix
* Sorted keys tend to have a short common prefix

Compute Compression Compile ute | ression | ile

- ‘ Comp

 Suffice truncation: store only the prefix that is enough for differentiating the subtree range
* Works for both string/multi-field keys

Devarakonda '
Murthy ‘ ‘ ban

Dannon
Yogurt

‘ David Smith Dav Dev

‘ (1,5) ‘ (2,3) ‘ (2,4) ‘ —> ‘(1,NULL)‘(2,NULL)‘ (2,4) ‘

CSE462/562 (Spring 2023): Lecture 8 & 9 46

Summary

* These lectures:
e ISAM
* B-Tree index
* How to search and scan/insert/delete in B-Tree
* Analysis of B-Tree index/file
* B-Tree in practice

* Next lecture:
* Indexing and cost analysis

CSE462/562 (Spring 2023): Lecture 8 & 9

47

	Slide 1: CSE462/562: Database Systems (Spring 23)
	Slide 2: Range Searches
	Slide 3: Tree-based Indexes
	Slide 4: Index Entries
	Slide 5: ISAM
	Slide 6: ISAM Details
	Slide 7: Example ISAM
	Slide 8: ISAM Insertion Examples
	Slide 9: ISAM Deletion Examples
	Slide 10: B-Tree: the most widely used index
	Slide 11: B-Tree example
	Slide 12: B-Tree search
	Slide 13: B-Tree insertion
	Slide 14: B-Tree insertion example -- inserting 15*
	Slide 15: B-Tree insertion example -- inserting 8*
	Slide 16: B-Tree insertion example -- inserting 8*
	Slide 17: B-Tree insertion example -- Inserting 8*
	Slide 18: B-Tree deletion
	Slide 19: B-Tree deletion example -- deleting 19*
	Slide 20: B-Tree deletion example -- deleting 20* with merging
	Slide 21: B-Tree deletion example -- deleting 20* with merging
	Slide 22: B-Tree deletion example -- deleting 20* with merging
	Slide 23: B-Tree deletion example -- deleting 20* with merging
	Slide 24: B-Tree deletion example -- deleting 20* with merging
	Slide 25: B-Tree deletion example -- deleting 20* with rebalancing
	Slide 26: B-Tree deletion example -- deleting 20* with rebalancing
	Slide 27: B-Tree example of non-leaf rebalancing
	Slide 28: B-Tree example of non-leaf rebalacing (cont’d)
	Slide 29: Bulk loading of a B-Tree
	Slide 30: Bulk loading of a B-Tree
	Slide 31: Analysis of B-Tree storage cost
	Slide 32: Analysis of B-Tree storage cost
	Slide 33: Data access cost using B-Tree
	Slide 34: Cost of range scan with clustered B-Tree index
	Slide 35: Cost of range scan with unclustered B-Tree index
	Slide 36: Cost of range scan with clustered B-Tree file
	Slide 37: Trade-offs with B-Tree
	Slide 38: B-Tree in practice: page and record layout
	Slide 39: B-Tree in practice: page and record layout
	Slide 40: B-Tree in practice: structural modification
	Slide 41: B-Tree in practice: multi-field keys
	Slide 42: B-tree in practice: NULL values
	Slide 43: B-Tree in practice: non-unique keys
	Slide 44: B-Tree in practice: unique constraints
	Slide 45: B-Tree in practice: handling concurrency
	Slide 46: B-Tree in practice: key compression
	Slide 47: Summary

