
CSE462/562: Database Systems (Spring 23)

Lecture 10: Indexing and cost analysis

3/2/2023



Index classification
• Representation of data entries in index

• i.e., what kind of info is the index actually storing?

• 3 alternatives

• What selections does it support

• Indexing techniques: tree/hash/other

• Today
• Primary vs. Secondary Indexes

• Unique indexes

• Clustered vs. Unclustered Indexes

• Single Key vs. Composite Indexes

CSE462/562 (Spring 2023): Lecture 10 2



Clustered vs unclustered index
• Clustered index

• An index over a file such that the order of the data records is the same as, or “close to” that of the 
index data entries

• A file can only be clustered on one index key

• Sorted file can be used for clustering, but may be expensive to maintain

• Can we use heap file? Yes, but with some tricks.

• Using Alternative 1 in a B+-tree implies clustered, but not vice-versa.

• aka clustered file

CSE462/562 (Spring 2023): Lecture 10 3



Clustered vs unclustered index
• Assume alternative 2 for data entries, and data records are stored in a heap file.

• To build clustered index

• first sort the heap file, with some free space on each block for future updates/inserts.

• The percentage of free space in the initial sort/append is called fill factor

• Overflow pages may be needed for inserts/updates. 

• Thus, the order of data records is “close to”, if not not identical to, the sort order.

CSE462/562 (Spring 2023): Lecture 10

Index entries

Data entries

direct search for 

(Index File)

(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED

4



Access cost of clustered vs unclustered index
• Cost of accessing data records through index varies greatly based on whether index is clustered!

• e.g. range scan with 𝑛 matching data records in a B-Tree

• assuming we ignore the buffer pool’s effect

• clustered: 𝐻 +
𝑛

𝑀
I/Os

• unclustered: 𝐻 +
𝑛

𝐵
− 1 + 𝑛 I/Os

CSE462/562 (Spring 2023): Lecture 10

Index entries

Data entries

direct search for 

(Index File)

(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED

H = number 
of levels

B data entries
per leaf page
on average

M data records per 
heap page on average

5



Example: cost analysis
• Example

• page size = 4096 B
• For Table A(x, y, z), record length = 64, sizeof(x) == 8 and sizeof(y) == 8.

• number of records = 220 = 1,048,576

• There’re equal number of records with 𝑥 > 0 and 𝑥 ≤ 0
• There’s 210 = 1024 records with 𝑦 = 1

• Assumptions:
• No page header overhead

• record id and page id are both 8 bytes

• no alignment padding needed for index and data entries, no record header overhead
• Fill factor = 80% for all pages.

• Ignore the caching effect of buffer pool -> each page access = 1 I/O

• Heap file:
• Number of pages:
• Cost of finding all records with 𝑦 = 1 𝑎𝑛𝑑 𝑥 > 0:

• Cost of finding all records with 𝑥 = 1:

• Cost of insertion of a record:
• Cost of deletion of all records with y = 1:

CSE462/562 (Spring 2023): Lecture 10 6



Example: cost analysis
• Example

• page size = 4096 B
• For Table A(x, y, z), record length = 64, sizeof(x) == 8 and sizeof(y) == 8.

• number of records = 220 = 1,048,576
• There’re equal number of records with 𝑥 > 0 and 𝑥 ≤ 0
• There’s 210 = 1024 records with 𝑦 = 1

• Assumptions:
• No page header overhead
• record id and page id are both 8 bytes
• no alignment padding needed for index and data entries, no record header overhead
• Fill factor = 80% for all pages.
• Ignore the caching effect of buffer pool -> each page access = 1 I/O

• B-tree file over (𝑦), alt. 1:
• Number of pages:
• Cost of finding all records with 𝑦 = 1 𝑎𝑛𝑑 𝑥 > 0:
• Cost of finding all records with 𝑥 = 1:
• Cost of insertion of a record:
• Cost of deletion of all records with y = 1:

CSE462/562 (Spring 2023): Lecture 10 7



Example: cost analysis
• Example

• page size = 4096 B
• For Table A(x, y, z), record length = 64, sizeof(x) == 8 and sizeof(y) == 8.

• number of records = 220 = 1,048,576
• There’re equal number of records with 𝑥 > 0 and 𝑥 ≤ 0
• There’s 210 = 1024 records with 𝑦 = 1

• Assumptions:
• No page header overhead
• record id and page id are both 8 bytes
• no alignment padding needed for index and data entries, no record header overhead
• Fill factor = 80% for all pages.
• Ignore the caching effect of buffer pool -> each page access = 1 I/O

• B-tree file over (𝑦), alt. 2 and clustered:
• Number of pages:
• Cost of finding all records with 𝑦 = 1 𝑎𝑛𝑑 𝑥 > 0:
• Cost of finding all records with 𝑥 = 1:
• Cost of insertion of a record:
• Cost of deletion of all records with y = 1:

CSE462/562 (Spring 2023): Lecture 10 8



Example: cost analysis
• Example

• page size = 4096 B
• For Table A(x, y, z), record length = 64, sizeof(x) == 8 and sizeof(y) == 8.

• number of records = 220 = 1,048,576
• There’re equal number of records with 𝑥 > 0 and 𝑥 ≤ 0
• There’s 210 = 1024 records with 𝑦 = 1

• Assumptions:
• No page header overhead
• record id and page id are both 8 bytes
• no alignment padding needed for index and data entries, no record header overhead
• Fill factor = 80% for all pages.
• Ignore the caching effect of buffer pool -> each page access = 1 I/O

• B-tree file over (𝑦), alt. 2 and unclustered:
• Number of pages:
• Cost of finding all records with 𝑦 = 1 𝑎𝑛𝑑 𝑥 > 0:
• Cost of finding all records with 𝑥 = 1:
• Cost of insertion of a record:
• Cost of deletion of all records with y = 1:

CSE462/562 (Spring 2023): Lecture 10 9



Example: cost analysis
• Example

• page size = 4096 B
• For Table A(x, y, z), record length = 64, sizeof(x) == 8 and sizeof(y) == 8.

• number of records = 220 = 1,048,576
• There’re equal number of records with 𝑥 > 0 and 𝑥 ≤ 0
• There’s 210 = 1024 records with 𝑦 = 1

• Assumptions:
• No page header overhead
• record id and page id are both 8 bytes
• no alignment padding needed for index and data entries, no record header overhead
• Fill factor = 80% for all pages.
• Ignore the caching effect of buffer pool -> each page access = 1 I/O

• B-tree file over (𝑦, 𝑥), alt. 2 and clustered:
• Number of pages:
• Cost of finding all records with 𝑦 = 1 𝑎𝑛𝑑 𝑥 > 0:
• Cost of finding all records with 𝑥 = 1:
• Cost of insertion of a record:
• Cost of deletion of all records with y = 1:

CSE462/562 (Spring 2023): Lecture 10 10



Example: cost analysis
• Example

• page size = 4096 B
• For Table A(x, y, z), record length = 64, sizeof(x) == 8 and sizeof(y) == 8.

• number of records = 220 = 1,048,576
• There’re equal number of records with 𝑥 > 0 and 𝑥 ≤ 0
• There’s 210 = 1024 records with 𝑦 = 1

• Assumptions:
• No page header overhead
• record id and page id are both 8 bytes
• no alignment padding needed for index and data entries, no record header overhead
• Fill factor = 80% for all pages.
• Ignore the caching effect of buffer pool -> each page access = 1 I/O

• B-tree file over (𝑦, 𝑥), alt. 2 and unclustered:
• Number of pages:
• Cost of finding all records with 𝑦 = 1 𝑎𝑛𝑑 𝑥 > 0:
• Cost of finding all records with 𝑥 = 1:
• Cost of insertion of a record:
• Cost of deletion of all records with y = 1:

CSE462/562 (Spring 2023): Lecture 10 11



Tradeoffs between clustered and unclustered indexes

CSE462/562 (Spring 2023): Lecture 10

• What are the tradeoffs?

• Clustered Pros
• Efficient for range searches for records: sequential access in a sorted file

• May be able to do some types of compression

• Locality benefits

• Clustered Cons
• Expensive to maintain (on the fly or sloppy with reorganization)

• Unclustered
• Pros: easy and efficient to maintain, allow multiple indexes 

• Cons: expensive for range scans for records: 1 random IO for each matching record.

12



Primary, secondary and unique index
• Primary index: index key contains the primary key

• e.g., for student table, an index over (sid) is its primary index

• at most one per relation

• Unique index: index key contains a candidate key
• Primary index is a unique index, but not vice versa

• Can be clustered or unclustered.

• Secondary index (not well-defined but often used)
• It may have different meanings

• an index that is not indexed over the primary key

• unclustered

• or both

CSE462/562 (Spring 2023): Lecture 10 13



• There might be alternative file organization also considered/called as “index”
• e.g., columnstore index in MS SQL Server

• Good compression, fast scan, but more expensive to update in general

• What it really means: 
• It may be used as the primary storage format (aka clustered columnstore)

• i.e., may be thought of as a clustered file or a file organization
• It may also be used as a copy of the (subset of) data (aka unclustered columnstore)

• i.e., may be thought of as a secondary and unclustered index

Unconventional “index”

CSE462/562 (Spring 2023): Lecture 10

sid

100

101

adm_year

2021

2020

name

Charlie

David

adm_year

2021

2020

sid

102

103

name

Alice

Bob

major

CS

CE

major

CS

CS

row group 1

row group 2

Column segment: 
compressed and has 
min/max stats 

14



Summary
• This lecture

• Indexing and cost analysis

• Next lecture
• Relational model and SQL

• Reminder:
• Mid-term next Thursday (3/9/23, 7:15 PM - 8:45 PM at Knox 104)

• Open book, paper materials only (lecture slides, textbook, homework assignments, notes)

• No electronic devices (cell phone/laptop/tablets/…)

• Calculators allows

• Please arrive at least 10 minutes early.

• Mid-term Q&A during lecture on 3/9

CSE462/562 (Spring 2023): Lecture 10 15


	Slide 1: CSE462/562: Database Systems (Spring 23)
	Slide 2: Index classification
	Slide 3: Clustered vs unclustered index
	Slide 4: Clustered vs unclustered index
	Slide 5: Access cost of clustered vs unclustered index
	Slide 6: Example: cost analysis
	Slide 7: Example: cost analysis
	Slide 8: Example: cost analysis
	Slide 9: Example: cost analysis
	Slide 10: Example: cost analysis
	Slide 11: Example: cost analysis
	Slide 12: Tradeoffs between clustered and unclustered indexes
	Slide 13: Primary, secondary and unique index
	Slide 14: Unconventional “index”
	Slide 15: Summary

