CSE462/562: Database Systems (Spring 23)
Lecture 18: Query Optimization Overview
4/20/2023

University at Buffalo
s Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Query processing overview

* include multiple intermediate steps (e.qg., parsing
tree/analysis/rewriting)

oDBc/iDBC/ | SQL Query
command
line frontend

SELECT S.name,E.grade sal
FROM student S, enrollment E Parser* | (Extended) Relational Algebra
WHERE S.sid = E.sid

s name,E.grade US.adm_year=202 1AE.cno= 5625 Ns sid=E.sid E
AND S.adm year = 2021

AND E.cno = 562; Internally represented as @
Physical plan Logical plan ©
s name,E.grade
Query f
Query Optimizer
Query result Execution ndex Nested < | @":2021"@
Loop Join yy
S.name | E.grade
Alice | 4.0
. X¢ cid=F sid
Charlie| 2.3 S.sid=E.si
(2 rows)

Index Scan Index Scan
student S enrollment E

CSE462/562 (Spring 2023): Lecture 18

Scan
enrollment

** This picture by oksmith is licensed under CCO

https://openclipart.org/detail/312062/female-computer-user-16c
https://openclipart.org/artist/oksmith
https://creativecommons.org/publicdomain/zero/1.0/

Query optimization overview

* Query can be converted to relational algebra
* Relational Algebra converted to tree, joins as branches
* Each operator has implementation choices

e Operators can also be applied in different order!

SELECT R.name
FROM Enroll E, Students R
WHERE E.sid=R.sid AND
E.cno>=500 AND R.adm_year = 2020

! —

TR nameOE.cno=562AE.grade=3.0E Mg sid=r.sida R

CSE462/562 (Spring 2023): Lecture 18

TR name

aE.cno2500/\R.adm_year=2020

D<|E.sid:R.sid

N

Enroll E Students R

Query optimization overview

* Plan: Tree of R.A. ops (and some others) with choice of algorithm for each op.
- Each operator typically implemented using a pull’ interface: when an operator is ‘pulled’ for the next
output tuples, it pulls’ on its inputs and computes them.
* TwWo main issues:
- For a given query, what plans are considered?
* Algorithm to search plan space for cheapest (estimated) plan.
- How is the cost of a plan estimated?

TR name

* |deally: Want to find best plan.

aE.cno2500/\R.adm_year=2020

* Reality: Avoid worst plans!

D<|E.sid:R.sid

Relational operators have a uniform iterator interface: / \

open(), get_next(), close() Enroll E Students R

CSE462/562 (Spring 2023): Lecture 18

Cost-based query optimizer

Queries Select * _ —
 From Blah B Usually there is a heuristics-based
 Where B.blah = blah | rewriting step before the cost-based steps.

Query Parser

Query Optimizer

p— . N

‘ Plan Generator Plan Cost Estimatdr Catalog Manager

,, o] b=

CSE462/562 (Spring 2023): Lecture 18

A

Query Executor

Running example

* Notations: for relation R
* Tr: number of records, Np: number of pages in its heap file, Bg: (average) number of tuples per page
* h;: height of a B-tree index I over the file
* M: private workspace size in pages

* Running example
* Student: R(sid: int, name: varchar(19), login: varchar(19), major: char(2), adm_year: int)
* 50 bytes/tuple, B = 80, T, = 40,000, N, = 500
* Assume the student records in the table span 10 years (between 2012 and 2022)
* Enrollment: E(sid: int, semester: char(4), cno: int, grade: double)
e 20 bytes/tuple, B = 200, Tz = 200,000, N = 1000
* Assume 50% of the enrollment records belong to the graduate level (>=500) courses

» Consider a simplified cost model: cost = #page transfers (i.e., ignoring the random seeks)
e Often good enough for approximating the trend of the cost relative to data size
* Correct size estimation is key to a correct comparison of costs

* Assume we have 5 pages in the buffer

CSE462/562 (Spring 2023): Lecture 18

Motivating example

SELECT R.name

FROM Enroll E, Students R « By no means the worst plan!
WHERE E.sid=R.sid AND * Misses several opportunities: selections could have been
E.cno=562 AND R.adm_year = 2020 ‘pushed’ earlier, no use is made of any available indexes, etc.

* Goal of optimization: To find more efficient plans that
compute the same answer.
T Rname (On-the-fly)

OE.cno=562/\R.adm year=2020 (On-the-fly)

My sig-rsig (BIOCK Nested loop)

T

Enroll E Students R

Cost = 1000 + 1000 * 500 = 501,000 1/Os

CSE462/562 (Spring 2023): Lecture 18

Relational algebra equivalence

* Rules that allow the optimizer to transform a logical plan into an equivalent plan with the
same output over any database instance

e Selections:
* Cascade: 0g rg,E = 0g,09,E

* Commutative: 0g 0y, E = 0g,09 E

* Projections:
* Cascade:my Ty, ..My E =my (E) whered; €A, €+ C A,

* Only need to perform the final projection in a sequence of projections

* (Inner) Joins or Cartesian product:
 Commutative: E; Xg E, = E, Xy E; (allows switching the inner and outer)
* Associative
* Special case natural join: (E; @ E,) X E; = E; X (E, X E3)

* General theta join: (E1 Mg Ez) Mg, rg, E3 = E1 Mg p0, (Ez Mg, E3) Assuming 8, only involves
fieldsin E, and E3

* Implication: inner joins can be done in any order!

* Join reordering: an important optimization step in DBMS
CSE462/562 (Spring 2023): Lecture 18

Relational algebra equivalence

* Rules for more than one operator

» Selection can be combined with inner join/cartesian product
091(E1 Mg, Ez) = E1 Mg, pg, E2

* Projection push-down: select/join and projection commutes (provided that the predicate only involves
the projected fields)
m,09E = ogmgE when Var(6) C A
Tp,ua,(E1 Mg E3) =1y Ey g my,E; when Var(8) € A; U A, and Ay, A, only involve fields from Ey, E5, resp.

 Selection push-down: join and select commutes (provided that the selection predicate only involves

attributes from one side)
0g,(Ey Mg E;) = (aglEl) Mg E, whenVar(6,) € A(E;) (set of fields in E;)

* More rules about other operators, e.g., aggregation, set operations, sort, ...

* Note: rules involving outer joins may be different
* Exercise: Can we always push selection through outer joins? What about projections?

CSE462/562 (Spring 2023): Lecture 18

Selection push-down (no index)

* Heuristics 1: perform selections as early as possible
* Selection is often very cheap or “free” (in I/O only cost model)
* reduces intermediate size

TR name (On_the_ﬂy) TTR name (On_the_ﬂy)
OFE.cno>500AR.adm year=2020 (On-the-fly) OR.adm year=2020 (On-the-fly)
M sig=R.sia (01 0CK nested loop) Mg ciq_p.siq (BIOCK Nested loop)

/ \ o E.cnoz{ \

Enroll E Students R / (On-the-fly) Students R
/

Cost = 501,000 I/Os| Collect one page from the Enroll E
outer plan, rather than the Cost=1000 + [1000 * 0.5] x 500 = 251,000 1/Os

underlying scan.

CSE462/562 (Spring 2023): Lecture 18

Selection push-down (no index)

* Can also push-down on the other side

TR name (On-the-fly)

OR.adm year=2020 (On-the-fly)

M sideR.sid (Block nested loop)

O'E.cnoz{ \
/ (On-the-fly) stydents R

Enroll E
Cost = 251,000 1/0s

OFE.cno=500

No impact on I/0 because BNL

scans the inner plan o
every outer block.

TR name (On-the-fly)

Mg cid=R.sid (Block nested loo

T~

/ (On-the-fly) “R-admyea\r:zozo

Enroll E

CSE462/562 (Spring 2023): Lecture 18

Students R

Cost = 251,000 1/0s

nce for

P)

(On-the-fly)

Join reordering

» Different join ordering may result in different cost
* even if we use the same join algorithm
* Generally, the outer plan should have a smaller output in BNL

* what about hash join/sort merge join?
TRname (On-the-fly)

DqE.sid:R.sid

/

OFE.cno=500

(Block nested loop)

T (On-the-fly)

/ (On-the-fly) "R-adm_y«<=zozo

Enroll E

Students R

Cost=251,000 1/0s

TR name (On-the-fly)

M g sideR.sid (Block nested loop)

T

OR.adm year=2020 OF.cnoz500 (On-the-fly)

/ (On-the-fly) \

Cost =500 + [500 x 0.1] x 1000 = 50,500 1/0s

CSE462/562 (Spring 2023): Lecture 18

Materialization of inner plan

* We can also choose to materialize the inner plan for BNL to save repeated scan on the
original relation

A name - =
R. (On-the-fly) TTR name (On-the-fly)

. .. (Block nested loo
Mg sig=R.sid { P) (Block nested loop)

OR.adm year=2020 OF.cno=500 (On—the—fly)

GR_adm_year:ZOZO OE.cno=500 (m aterialize in
/ (On-the-fly) \ / (On-the-fly) \ temporary file)
Students R
Cost = 50,500 1/0s Cost =1000 + [1000 = 0.5] + 500 + [500 = 0.1] * [1000 = 0.5] = 27,000 1/Os
materializing BNL outer BNL inner
inner plan scan scan

CSE462/562 (Spring 2023): Lecture 18

Materialization of inner plan

* Sometimes with materialization, it might be cheaper to use the larger plan as the outer

TR name (On-the-fly)
TR name (On-the-fly)
. . (Block nested loo
y& P) M5 e p g (BIOCK Nested loop)
OR.adm year=2020 OE.cno=500 (materialize In / \ .- .
temporary file) OE.cno=500 ” (materlallze_ln
/ (On-the-fly) \ / (On-the-fly) R-“"m—y‘<r=2"2° temporary file)
Students R Enroll E Enroll E Students R
Cost=1000 + [1000 * 0.5] + 500 + [500 * 0.1] * [1000 * 0.5]
— 27.000 I/Os Cost =500 + [500 = 0.1] + 1000 + [1000 * 0.5] = [500 * 0.1]
= 26,550 1/0s

CSE462/562 (Spring 2023): Lecture 18

Projection push-down

* Heuristics 2: apply projection as early as possible
* helps if materializing plan output

Enrollment: E(sid: int, semester: char(3), cno: int, grade: double)

20 bytes/tuple => 1y ;4 : % = 20% in size after projection
T Rname (On-the-fly) Tt Rname (On-the-fly)
M sideR.sid (Block nested loop) M g sideR.sid (Block nested loop)
/\ o | /\ (materialize in
OR.adm year=2020 OE.cno=500 (materlallze n OR.adm year=2020 TEsia temporary f”e)
/ (On-the-fly) \ temporary file) / (On-the-fly) UE.c\nozsoo (On-the-fly)
Students R Enroll E Students R \
Enroll E

Cost =1000 + [1000 * 0.5 = 0.2]
+500 + [500 * 0.1] * [1000 * 0.5 * 0.2]
= 6,600 1/0s

Cost =1000 + [1000 * 0.5] + 500 + [500 * 0.1] = [1000 * 0.5]
= 27,000 1/0s

CSE462/562 (Spring 2023): Lecture 18

Projection push-down

* More projection push-down on the other side
R(sid: int, name: varchar(19), login: varchar(19), major: char(2), adm_year: int)

A% — 48% -- assuming VARCHAR uses \0’ at the end

50 bytes/tuple => TR name,R.sid - 0

TTR name (On_the-fly) TR name (On-the'ﬂy)

M a-rsig (BlOCK nested loop) M a-rsig (BlOCKk nested loop)

/\ (materialize in /\ (materialize in

TR.adm year=2020 Tesia temporary file) TR namersid (ON-the-fly) Tgsia temporary file)

/ (On-the-fly)

OE.cnoz500 (On-the-fly) OR.adm_year=2020 OE.cnoz500 (On-the-fly)
Students R \ / (On-the-fly) \
Enroll E Students R Enroll E
Cost = 1000 + [1000 * 0.5 * 0.2] Cost=1000 + [1000 * 0.5 * 0.2]
+500 4 [500 % 0.1] * [1000 * 0.5 * 0.2] +500 + [500 * 0.1 * 0.48] * [1000 * 0.5 * 0.2]
= 6,600 1/0s = 4,000 1/0s

CSE462/562 (Spring 2023): Lecture 18

Choice of join algorithms

* |f we switch to sort-merge join with 5 buffers
(On-the-fly)

TR name

TRname (On-the-fly)
MEsid=rsia (Merge Join)
(materialization) ™~ o

Mg sia=Rr.siq \B/0CKk nested loop) Sortg jia Sortg gy (materialization)
(materialize in / (on-the-fly)

TR namersid (ON-the-fly) Tgsia temporary file) TR name,Rsid (ON-the-fly) g sid

OR.adm year=2020 OF.cno=500 (On-the-fly) OR.adm year=2020 OE.cnoz500 (On-the-fly)
/ (On-the-fly) \ / (On-the-fly) \
Students R Enroll E Students R Enroll £

Cost = 1000 + [1000 * 0.5 * 0.2]
+500 + [500 * 0.1 % 0.48] * [1000 * 0.5 *0.2] ot =2
= 4,000 1/Os

CSE462/562 (Spring 2023): Lecture 18

Choice of join algorithms

* Sort outer:
* Size after pass 0: [500 = 0.1 * 0.48] = 24

* 4 pages/run, 6 runs
(need one input buffer for table scan)

 # merge passes = [log, 6] = 2
* Total 1/0: 500 + 24 + 2 X 2 X 24 = 620

e Sortinner: #1/0=1700
* Merge

e assuming d =5 and always fit in one page
e 24+100=124

e Total cost =620+ 1700 + 124 = 2,444 1/0s
e vs BNL: 4,000 1/0Os

(On-the-fly)

TR name

Mg sia=rsida (Merge Join)

(materialization) ™~ -
Sortg ¢id Sortg ;s (Mmaterialization)

/

TR name,R.sid (On -the-fl y)

/

OR.adm year=2020

(on-the-fly)

TTE sid

OE.cnoz500 (On-the-fly)
/ (On-the-fly) \

Students R Enroll E

Cost=7?

CSE462/562 (Spring 2023): Lecture 18

Using indexes

* If we have a clustered B-Tree index over R(adm yaer), h=3

TR name (On-the-fly)
M g-psiqg (BlOCk nested loop)
(materialize in
. Trnamersid (ON-the-fly) Tgsia temporary file)
(on-the-fly using
clustered B-Tree) ?Radm year=2020 GE.cno\ZSOO (On-the-fly)
Students R Enroll E

Cost=1000 + [1000 = 0.5 = 0.2]
+3 + [500 * 0.1 = 0.48]
+[500 * 0.1 * 0.48] * [1000 * 0.5 * 0.2]
= 3,527 1/0s

CSE462/562 (Spring 2023): Lecture 18

Using indexes

* |f we have an unclustered B-Tree index over E(sid), h =3
* Generally, index nested loop is a bad choice unless both of the following is true
e outer plan output size is small
* join is very selective

TTR name

M sideR sid (Index nested loop)

. TR name,R.sid (On -th e'ﬂy) OF cnos500
(on-the-fly using / (On-the-fly)

clustered B-Tree) ?Radm year=2020 \

/ Enroll E (using unclustered index for probing
Students R with R.sid = E.sid)

Cost=3 + [500 * 0.1 * 0.48] + [40000 * 0.1] * (3 + 5)
= 32,027 1/0Os (vs 3,527 1/Os with BNL!)

CSE462/562 (Spring 2023): Lecture 18

What’s needed for query optimization?

* Aclosed set of operators
» Relational ops (table in, table out)
* Encapsulation based on iterators

* Plan space, based on
* Based on relational equivalences

e Cost Estimation, based on
e Cost formulas

* Size estimation, based on
* Catalog information on base tables
» Selectivity (Reduction Factor) estimation

e A search algorithm
* To sift through the plan space based on cost!

CSE462/562 (Spring 2023): Lecture 18

Summary

* Today’s lecture
* Query optimization overview
» Relational algebra equivalence
* Query optimization is needed to ensure not-too-bad performance if not the best
* Need to understand the impact of cost model/physical data layout/indexing for a given query

* Next lecture(s)
* Plan size and cost estimation
* How to search in the optimization space
» System R style query optimizer

CSE462/562 (Spring 2023): Lecture 18

	Slide 1: CSE462/562: Database Systems (Spring 23)
	Slide 2: Query processing overview
	Slide 3: Query optimization overview
	Slide 4: Query optimization overview
	Slide 5: Cost-based query optimizer
	Slide 6: Running example
	Slide 7: Motivating example
	Slide 8: Relational algebra equivalence
	Slide 9: Relational algebra equivalence
	Slide 10: Selection push-down (no index)
	Slide 11: Selection push-down (no index)
	Slide 12: Join reordering
	Slide 13: Materialization of inner plan
	Slide 14: Materialization of inner plan
	Slide 15: Projection push-down
	Slide 16: Projection push-down
	Slide 17: Choice of join algorithms
	Slide 18: Choice of join algorithms
	Slide 19: Using indexes
	Slide 20: Using indexes
	Slide 21: What’s needed for query optimization?
	Slide 22: Summary

