
CSE462/562: Database Systems (Spring 23)

Lecture 18: Query Optimization Overview

4/20/2023

Logical plan

Query processing overview

CSE462/562 (Spring 2023): Lecture 18

SQL Query
SELECT S.name,E.grade

FROM student S, enrollment E

WHERE S.sid = E.sid

AND S.adm_year = 2021

AND E.cno = 562;

ODBC/JDBC/
command
line frontend

SQL
Parser* (Extended) Relational Algebra

𝜋𝑆.𝑛𝑎𝑚𝑒,𝐸.𝑔𝑟𝑎𝑑𝑒𝜎𝑆.𝑎𝑑𝑚_𝑦𝑒𝑎𝑟=2021∧𝐸.𝑐𝑛𝑜=562𝑆 ⋈𝑆.𝑠𝑖𝑑=𝐸.𝑠𝑖𝑑 𝐸

* include multiple intermediate steps (e.g., parsing
tree/analysis/rewriting)

Internally represented as

Scan
student S

Scan
enrollment E

⋈𝑆.𝑠𝑖𝑑=𝐸.𝑠𝑖𝑑

𝜎𝑆.𝑎𝑑𝑚_𝑦𝑒𝑎𝑟=2021∧𝐸.𝑐𝑛𝑜=562

𝜋𝑠.𝑛𝑎𝑚𝑒,𝐸.𝑔𝑟𝑎𝑑𝑒

Query
Optimizer

Physical plan

Index Scan
student S

Index Scan
enrollment E

Index Nested
Loop Join

𝜋𝑆.𝑛𝑎𝑚𝑒,𝑆.𝑠𝑖𝑑

𝜋𝑆.𝑛𝑎𝑚𝑒,𝐸.𝑔𝑟𝑎𝑑𝑒

Query
Execution

**

** This picture by oksmith is licensed under CC0

Query result
S.name | E.grade

Alice | 4.0

Charlie| 2.3

(2 rows)

https://openclipart.org/detail/312062/female-computer-user-16c
https://openclipart.org/artist/oksmith
https://creativecommons.org/publicdomain/zero/1.0/

Query optimization overview
• Query can be converted to relational algebra

• Relational Algebra converted to tree, joins as branches

• Each operator has implementation choices

• Operators can also be applied in different order!

CSE462/562 (Spring 2023): Lecture 18

SELECT R.name

FROM Enroll E, Students R

WHERE E.sid=R.sid AND
E.cno>=500 AND R.adm_year = 2020

𝜋𝑅.𝑛𝑎𝑚𝑒𝜎𝐸.𝑐𝑛𝑜=562∧𝐸.𝑔𝑟𝑎𝑑𝑒≥3.0𝐸 ⋈𝐸.𝑠𝑖𝑑=𝑅.𝑠𝑖𝑑 𝑅
Enroll E Students R

𝝈𝑬.𝒄𝒏𝒐≥𝟓𝟎𝟎∧𝑹.𝒂𝒅𝒎_𝒚𝒆𝒂𝒓=𝟐𝟎𝟐𝟎

𝝅𝑹.𝒏𝒂𝒎𝒆

⋈𝐸.𝑠𝑖𝑑=𝑅.𝑠𝑖𝑑

Query optimization overview
• Plan: Tree of R.A. ops (and some others) with choice of algorithm for each op.

• Each operator typically implemented using a `pull’ interface: when an operator is `pulled’ for the next
output tuples, it `pulls’ on its inputs and computes them.

• Two main issues:
• For a given query, what plans are considered?

• Algorithm to search plan space for cheapest (estimated) plan.

• How is the cost of a plan estimated?

• Ideally: Want to find best plan.

• Reality: Avoid worst plans!

CSE462/562 (Spring 2023): Lecture 18

Enroll E Students R

𝝈𝑬.𝒄𝒏𝒐≥𝟓𝟎𝟎∧𝑹.𝒂𝒅𝒎_𝒚𝒆𝒂𝒓=𝟐𝟎𝟐𝟎

𝝅𝑹.𝒏𝒂𝒎𝒆

⋈𝐸.𝑠𝑖𝑑=𝑅.𝑠𝑖𝑑

Relational operators have a uniform iterator interface:

open(), get_next(), close()

Cost-based query optimizer

CSE462/562 (Spring 2023): Lecture 18

Usually there is a heuristics-based
rewriting step before the cost-based steps.

Query Parser

Query Optimizer

Plan Generator Plan Cost Estimator

Query Executor

Catalog Manager

Schema Statistics

Select *

From Blah B

Where B.blah = blah

Queries

Running example
• Notations: for relation 𝑅

• 𝑇𝑅: number of records, 𝑁𝑅: number of pages in its heap file, 𝐵𝑅: (average) number of tuples per page

• ℎ𝐼: height of a B-tree index 𝐼 over the file

• 𝑀: private workspace size in pages

• Running example
• Student: R(sid: int, name: varchar(19), login: varchar(19), major: char(2), adm_year: int)

• 50 bytes/tuple, 𝐵𝑅 = 80, 𝑇𝑅 = 40,000, 𝑁𝑅 = 500

• Assume the student records in the table span 10 years (between 2012 and 2022)

• Enrollment: E(sid: int, semester: char(4), cno: int, grade: double)

• 20 bytes/tuple, 𝐵𝐸 = 200, 𝑇𝐸 = 200,000, 𝑁𝐸 = 1000

• Assume 50% of the enrollment records belong to the graduate level (>=500) courses

• Consider a simplified cost model: cost = #page_transfers (i.e., ignoring the random seeks)
• Often good enough for approximating the trend of the cost relative to data size

• Correct size estimation is key to a correct comparison of costs

• Assume we have 5 pages in the buffer
CSE462/562 (Spring 2023): Lecture 18

Motivating example

CSE462/562 (Spring 2023): Lecture 18

Enroll E Students R

𝝈𝑬.𝒄𝒏𝒐=𝟓𝟔𝟐∧𝑹.𝒂𝒅𝒎_𝒚𝒆𝒂𝒓=𝟐𝟎𝟐𝟎

𝝅𝑹.𝒏𝒂𝒎𝒆

⋈𝐸.𝑠𝑖𝑑=𝑅.𝑠𝑖𝑑
(Block Nested loop)

(On-the-fly)

(On-the-fly)

Cost = 1000 + 1000 * 500 = 501,000 I/Os

SELECT R.name

FROM Enroll E, Students R

WHERE E.sid=R.sid AND
E.cno=562 AND R.adm_year = 2020

• By no means the worst plan!
• Misses several opportunities: selections could have been

`pushed’ earlier, no use is made of any available indexes, etc.
• Goal of optimization: To find more efficient plans that

compute the same answer.

Relational algebra equivalence
• Rules that allow the optimizer to transform a logical plan into an equivalent plan with the

same output over any database instance

• Selections:
• Cascade: 𝜎𝜃1∧𝜃2𝐸 ≡ 𝜎𝜃1𝜎𝜃2𝐸

• Commutative: 𝜎𝜃1𝜎𝜃2𝐸 ≡ 𝜎𝜃2𝜎𝜃1𝐸

• Projections:
• Cascade: 𝜋𝐴1𝜋𝐴2 …𝜋𝐴𝑛𝐸 ≡ 𝜋𝐴1 𝐸 where 𝐴1 ⊆ 𝐴2 ⊆ ⋯ ⊆ 𝐴𝑛

• Only need to perform the final projection in a sequence of projections

• (Inner) Joins or Cartesian product:
• Commutative: 𝐸1 ⋈𝜃 𝐸2 ≡ 𝐸2 ⋈𝜃 𝐸1 (allows switching the inner and outer)

• Associative

• Special case natural join: 𝐸1 ⋈ 𝐸2 ⋈ 𝐸3 ≡ 𝐸1 ⋈ 𝐸2 ⋈ 𝐸3
• General theta join: 𝐸1 ⋈𝜃1 𝐸2 ⋈𝜃2∧𝜃3 𝐸3 ≡ 𝐸1 ⋈𝜃1∧𝜃3 𝐸2 ⋈𝜃2 𝐸3

• Implication: inner joins can be done in any order!

• Join reordering: an important optimization step in DBMS
CSE462/562 (Spring 2023): Lecture 18

Assuming 𝜃2 only involves
fields in 𝐸2 and 𝐸3

Relational algebra equivalence
• Rules for more than one operator

• Selection can be combined with inner join/cartesian product
𝜎𝜃1 𝐸1 ⋈𝜃2 𝐸2 ≡ 𝐸1 ⋈𝜃1∧𝜃2 𝐸2

• Projection push-down: select/join and projection commutes (provided that the predicate only involves
the projected fields)
𝜋𝐴𝜎𝜃𝐸 ≡ 𝜎𝜃𝜋𝐴𝐸 when 𝑉𝑎𝑟 𝜃 ⊆ 𝐴
𝜋𝐴1∪𝐴2 𝐸1 ⋈𝜃 𝐸2 ≡ 𝜋𝐴1𝐸1 ⋈𝜃 𝜋𝐴2𝐸2 when 𝑉𝑎𝑟 𝜃 ⊆ 𝐴1 ∪ 𝐴2 and 𝐴1, 𝐴2 only involve fields from 𝐸1, 𝐸2, resp.

• Selection push-down: join and select commutes (provided that the selection predicate only involves
attributes from one side)
𝜎𝜃1 𝐸1 ⋈𝜃 𝐸2 ≡ 𝜎𝜃1𝐸1 ⋈𝜃 𝐸2 when 𝑉𝑎𝑟 𝜃1 ⊆ 𝐴 𝐸1 (set of fields in 𝐸1)

• More rules about other operators, e.g., aggregation, set operations, sort, …

• Note: rules involving outer joins may be different
• Exercise: Can we always push selection through outer joins? What about projections?

CSE462/562 (Spring 2023): Lecture 18

Selection push-down (no index)
• Heuristics 1: perform selections as early as possible

• Selection is often very cheap or “free” (in I/O only cost model)
• reduces intermediate size

CSE462/562 (Spring 2023): Lecture 18

Cost = 501,000 I/Os

Enroll E Students R

𝝈𝑬.𝒄𝒏𝒐≥𝟓𝟎𝟎∧𝑹.𝒂𝒅𝒎_𝒚𝒆𝒂𝒓=𝟐𝟎𝟐𝟎

𝝅𝑹.𝒏𝒂𝒎𝒆

⋈𝐸.𝑠𝑖𝑑=𝑅.𝑠𝑖𝑑
(Block nested loop)

(On-the-fly)

(On-the-fly)

Cost = 1000 + 1000 ∗ 0.5 × 500 = 251,000 I/Os

Enroll E

Students R

𝝈𝑹.𝒂𝒅𝒎_𝒚𝒆𝒂𝒓=𝟐𝟎𝟐𝟎

𝝅𝑹.𝒏𝒂𝒎𝒆

⋈𝐸.𝑠𝑖𝑑=𝑅.𝑠𝑖𝑑
(Block nested loop)

(On-the-fly)

(On-the-fly)

𝝈𝑬.𝒄𝒏𝒐≥𝟓𝟎𝟎
(On-the-fly)

Collect one page from the
outer plan, rather than the
underlying scan.

Selection push-down (no index)
• Can also push-down on the other side

CSE462/562 (Spring 2023): Lecture 18

Enroll E

Students R

𝝈𝑹.𝒂𝒅𝒎_𝒚𝒆𝒂𝒓=𝟐𝟎𝟐𝟎

𝝅𝑹.𝒏𝒂𝒎𝒆

⋈𝐸.𝑠𝑖𝑑=𝑅.𝑠𝑖𝑑
(Block nested loop)

(On-the-fly)

(On-the-fly)

𝝈𝑬.𝒄𝒏𝒐≥𝟓𝟎𝟎
(On-the-fly)

Cost = 251,000 I/Os

(On-the-fly)

Enroll E Students R

𝝅𝑹.𝒏𝒂𝒎𝒆

⋈𝐸.𝑠𝑖𝑑=𝑅.𝑠𝑖𝑑
(Block nested loop)

(On-the-fly)

𝝈𝑬.𝒄𝒏𝒐≥𝟓𝟎𝟎
(On-the-fly)

𝝈𝑹.𝒂𝒅𝒎_𝒚𝒆𝒂𝒓=𝟐𝟎𝟐𝟎

Cost = 251,000 I/Os

No impact on I/O because BNL
scans the inner plan once for
every outer block.

Join reordering
• Different join ordering may result in different cost

• even if we use the same join algorithm

• Generally, the outer plan should have a smaller output in BNL

• what about hash join/sort merge join?

CSE462/562 (Spring 2023): Lecture 18

Cost = 251,000 I/Os

Enroll EStudents R

𝝅𝑹.𝒏𝒂𝒎𝒆

⋈𝐸.𝑠𝑖𝑑=𝑅.𝑠𝑖𝑑
(Block nested loop)

(On-the-fly)

𝝈𝑬.𝒄𝒏𝒐≥𝟓𝟎𝟎 (On-the-fly)𝝈𝑹.𝒂𝒅𝒎_𝒚𝒆𝒂𝒓=𝟐𝟎𝟐𝟎

(On-the-fly)

Cost = 500 + 500 × 0.1 × 1000 = 50,500 I/Os

Enroll E Students R

𝝅𝑹.𝒏𝒂𝒎𝒆

⋈𝐸.𝑠𝑖𝑑=𝑅.𝑠𝑖𝑑
(Block nested loop)

(On-the-fly)

𝝈𝑬.𝒄𝒏𝒐≥𝟓𝟎𝟎
(On-the-fly)

𝝈𝑹.𝒂𝒅𝒎_𝒚𝒆𝒂𝒓=𝟐𝟎𝟐𝟎
(On-the-fly)

Materialization of inner plan
• We can also choose to materialize the inner plan for BNL to save repeated scan on the

original relation

CSE462/562 (Spring 2023): Lecture 18

Enroll EStudents R

𝝅𝑹.𝒏𝒂𝒎𝒆

⋈𝐸.𝑠𝑖𝑑=𝑅.𝑠𝑖𝑑
(Block nested loop)

(On-the-fly)

𝝈𝑬.𝒄𝒏𝒐≥𝟓𝟎𝟎 (On-the-fly)𝝈𝑹.𝒂𝒅𝒎_𝒚𝒆𝒂𝒓=𝟐𝟎𝟐𝟎

(On-the-fly)

Cost = 50,500 I/Os

Enroll EStudents R

𝝅𝑹.𝒏𝒂𝒎𝒆

⋈𝐸.𝑠𝑖𝑑=𝑅.𝑠𝑖𝑑
(Block nested loop)

(On-the-fly)

𝝈𝑬.𝒄𝒏𝒐≥𝟓𝟎𝟎 (materialize in

temporary file)

𝝈𝑹.𝒂𝒅𝒎_𝒚𝒆𝒂𝒓=𝟐𝟎𝟐𝟎

(On-the-fly)

Cost = 1000 + 1000 ∗ 0.5 + 500 + 500 ∗ 0.1 ∗ [1000 ∗ 0.5] = 27,000 I/Os
materializing
inner plan

BNL outer
scan

BNL inner
scan

Materialization of inner plan
• Sometimes with materialization, it might be cheaper to use the larger plan as the outer

CSE462/562 (Spring 2023): Lecture 18

Enroll EStudents R

𝝅𝑹.𝒏𝒂𝒎𝒆

⋈𝐸.𝑠𝑖𝑑=𝑅.𝑠𝑖𝑑
(Block nested loop)

(On-the-fly)

𝝈𝑬.𝒄𝒏𝒐≥𝟓𝟎𝟎 (materialize in

temporary file)

𝝈𝑹.𝒂𝒅𝒎_𝒚𝒆𝒂𝒓=𝟐𝟎𝟐𝟎

(On-the-fly)

Cost = 1000 + 1000 ∗ 0.5 + 500 + 500 ∗ 0.1 ∗ 1000 ∗ 0.5
= 27,000 I/Os

Enroll E Students R

𝝅𝑹.𝒏𝒂𝒎𝒆

⋈𝐸.𝑠𝑖𝑑=𝑅.𝑠𝑖𝑑
(Block nested loop)

(On-the-fly)

𝝈𝑬.𝒄𝒏𝒐≥𝟓𝟎𝟎
(On-the-fly)

𝝈𝑹.𝒂𝒅𝒎_𝒚𝒆𝒂𝒓=𝟐𝟎𝟐𝟎
(materialize in

temporary file)

Cost = 500 + 500 ∗ 0.1 + 1000 + 1000 ∗ 0.5 ∗ 500 ∗ 0.1
= 26,550 I/Os

Projection push-down
• Heuristics 2: apply projection as early as possible

• helps if materializing plan output

CSE462/562 (Spring 2023): Lecture 18

Enroll EStudents R

𝝅𝑹.𝒏𝒂𝒎𝒆

⋈𝐸.𝑠𝑖𝑑=𝑅.𝑠𝑖𝑑
(Block nested loop)

(On-the-fly)

𝝈𝑬.𝒄𝒏𝒐≥𝟓𝟎𝟎 (materialize in

temporary file)

𝝈𝑹.𝒂𝒅𝒎_𝒚𝒆𝒂𝒓=𝟐𝟎𝟐𝟎

(On-the-fly)

Cost = 1000 + 1000 ∗ 0.5 + 500 + 500 ∗ 0.1 ∗ 1000 ∗ 0.5
= 27,000 I/Os

Enroll E
Students R

𝝅𝑹.𝒏𝒂𝒎𝒆

⋈𝐸.𝑠𝑖𝑑=𝑅.𝑠𝑖𝑑
(Block nested loop)

(On-the-fly)

𝝈𝑬.𝒄𝒏𝒐≥𝟓𝟎𝟎

(materialize in

temporary file)
𝝈𝑹.𝒂𝒅𝒎_𝒚𝒆𝒂𝒓=𝟐𝟎𝟐𝟎

(On-the-fly)

𝝅𝑬.𝒔𝒊𝒅

(On-the-fly)

Cost = 1000 + 1000 ∗ 0.5 ∗ 0.2
+500 + 500 ∗ 0.1 ∗ 1000 ∗ 0.5 ∗ 0.2

= 6,600 I/Os

Enrollment: E(sid: int, semester: char(3), cno: int, grade: double)

20 bytes/tuple => 𝜋𝐸.𝑠𝑖𝑑 :
4

20
= 20% in size after projection

Projection push-down
• More projection push-down on the other side

CSE462/562 (Spring 2023): Lecture 18

Enroll E
Students R

𝝅𝑹.𝒏𝒂𝒎𝒆

⋈𝐸.𝑠𝑖𝑑=𝑅.𝑠𝑖𝑑
(Block nested loop)

(On-the-fly)

𝝈𝑬.𝒄𝒏𝒐≥𝟓𝟎𝟎

(materialize in

temporary file)
𝝈𝑹.𝒂𝒅𝒎_𝒚𝒆𝒂𝒓=𝟐𝟎𝟐𝟎

(On-the-fly)

𝝅𝑬.𝒔𝒊𝒅

(On-the-fly)

Cost = 1000 + 1000 ∗ 0.5 ∗ 0.2
+500 + 500 ∗ 0.1 ∗ 1000 ∗ 0.5 ∗ 0.2

= 6,600 I/Os

Enroll E
Students R

𝝅𝑹.𝒏𝒂𝒎𝒆

⋈𝐸.𝑠𝑖𝑑=𝑅.𝑠𝑖𝑑
(Block nested loop)

(On-the-fly)

𝝈𝑬.𝒄𝒏𝒐≥𝟓𝟎𝟎

(materialize in

temporary file)

𝝈𝑹.𝒂𝒅𝒎_𝒚𝒆𝒂𝒓=𝟐𝟎𝟐𝟎

(On-the-fly)

𝝅𝑬.𝒔𝒊𝒅

(On-the-fly)

𝝅𝑹.𝒏𝒂𝒎𝒆,𝑹.𝒔𝒊𝒅 (On-the-fly)

Cost = 1000 + 1000 ∗ 0.5 ∗ 0.2
+500 + 500 ∗ 0.1 ∗ 0.48 ∗ 1000 ∗ 0.5 ∗ 0.2

= 4,000 I/Os

R(sid: int, name: varchar(19), login: varchar(19), major: char(2), adm_year: int)

50 bytes/tuple => 𝜋𝑅.𝑛𝑎𝑚𝑒,𝑅.𝑠𝑖𝑑 :
4+19+1

50
= 48% -- assuming VARCHAR uses ‘\0’ at the end

Choice of join algorithms
• If we switch to sort-merge join with 5 buffers

CSE462/562 (Spring 2023): Lecture 18

Enroll E
Students R

𝝅𝑹.𝒏𝒂𝒎𝒆

⋈𝐸.𝑠𝑖𝑑=𝑅.𝑠𝑖𝑑
(Block nested loop)

(On-the-fly)

𝝈𝑬.𝒄𝒏𝒐≥𝟓𝟎𝟎

(materialize in

temporary file)

𝝈𝑹.𝒂𝒅𝒎_𝒚𝒆𝒂𝒓=𝟐𝟎𝟐𝟎

(On-the-fly)

𝝅𝑬.𝒔𝒊𝒅

(On-the-fly)

𝝅𝑹.𝒏𝒂𝒎𝒆,𝑹.𝒔𝒊𝒅 (On-the-fly)

Cost = 1000 + 1000 ∗ 0.5 ∗ 0.2
+500 + 500 ∗ 0.1 ∗ 0.48 ∗ 1000 ∗ 0.5 ∗ 0.2

= 4,000 I/Os

(on-the-fly)

Enroll E
Students R

𝝅𝑹.𝒏𝒂𝒎𝒆

⋈𝐸.𝑠𝑖𝑑=𝑅.𝑠𝑖𝑑 (Merge Join)

(On-the-fly)

𝝈𝑬.𝒄𝒏𝒐≥𝟓𝟎𝟎𝝈𝑹.𝒂𝒅𝒎_𝒚𝒆𝒂𝒓=𝟐𝟎𝟐𝟎

(On-the-fly)

𝝅𝑬.𝒔𝒊𝒅

(On-the-fly)

𝝅𝑹.𝒏𝒂𝒎𝒆,𝑹.𝒔𝒊𝒅 (On-the-fly)

𝑺𝒐𝒓𝒕𝑬.𝒔𝒊𝒅𝑺𝒐𝒓𝒕𝑹.𝒔𝒊𝒅 (materialization)
(materialization)

Cost = ?

Choice of join algorithms
• Sort outer:

• Size after pass 0: 500 ∗ 0.1 ∗ 0.48 = 24

• 4 pages/run, 6 runs
(need one input buffer for table scan)

• # merge passes = log4 6 = 2

• Total I/O: 500 + 24 + 2 × 2 × 24 = 620

• Sort inner: # I/O = 1700

• Merge
• assuming d = 5 and always fit in one page

• 24 + 100 = 124

• Total cost = 620 + 1700 + 124 = 2,444 I/Os
• vs BNL: 4,000 I/Os

CSE462/562 (Spring 2023): Lecture 18

(on-the-fly)

Enroll E
Students R

𝝅𝑹.𝒏𝒂𝒎𝒆

⋈𝐸.𝑠𝑖𝑑=𝑅.𝑠𝑖𝑑 (Merge Join)

(On-the-fly)

𝝈𝑬.𝒄𝒏𝒐≥𝟓𝟎𝟎𝝈𝑹.𝒂𝒅𝒎_𝒚𝒆𝒂𝒓=𝟐𝟎𝟐𝟎

(On-the-fly)

𝝅𝑬.𝒔𝒊𝒅

(On-the-fly)

𝝅𝑹.𝒏𝒂𝒎𝒆,𝑹.𝒔𝒊𝒅 (On-the-fly)

𝑺𝒐𝒓𝒕𝑬.𝒔𝒊𝒅𝑺𝒐𝒓𝒕𝑹.𝒔𝒊𝒅 (materialization)
(materialization)

Cost = ?

Using indexes
• If we have a clustered B-Tree index over 𝑅 𝑎𝑑𝑚_𝑦𝑎𝑒𝑟 , h = 3

CSE462/562 (Spring 2023): Lecture 18

Cost = 1000 + 1000 ∗ 0.5 ∗ 0.2
+3 + 500 ∗ 0.1 ∗ 0.48
+ 500 ∗ 0.1 ∗ 0.48 ∗ 1000 ∗ 0.5 ∗ 0.2

= 3,527 I/Os

Enroll E
Students R

𝝅𝑹.𝒏𝒂𝒎𝒆

⋈𝐸.𝑠𝑖𝑑=𝑅.𝑠𝑖𝑑
(Block nested loop)

(On-the-fly)

𝝈𝑬.𝒄𝒏𝒐≥𝟓𝟎𝟎

(materialize in

temporary file)

𝝈𝑹.𝒂𝒅𝒎_𝒚𝒆𝒂𝒓=𝟐𝟎𝟐𝟎

(on-the-fly using

clustered B-Tree)

𝝅𝑬.𝒔𝒊𝒅

(On-the-fly)

𝝅𝑹.𝒏𝒂𝒎𝒆,𝑹.𝒔𝒊𝒅 (On-the-fly)

Using indexes
• If we have an unclustered B-Tree index over 𝐸 𝑠𝑖𝑑 , h = 3

• Generally, index nested loop is a bad choice unless both of the following is true

• outer plan output size is small

• join is very selective

CSE462/562 (Spring 2023): Lecture 18

Enroll E
Students R

𝝅𝑹.𝒏𝒂𝒎𝒆

⋈𝐸.𝑠𝑖𝑑=𝑅.𝑠𝑖𝑑
(Index nested loop)

𝝈𝑬.𝒄𝒏𝒐≥𝟓𝟎𝟎
𝝈𝑹.𝒂𝒅𝒎_𝒚𝒆𝒂𝒓=𝟐𝟎𝟐𝟎

(on-the-fly using

clustered B-Tree)

(On-the-fly)
𝝅𝑹.𝒏𝒂𝒎𝒆,𝑹.𝒔𝒊𝒅 (On-the-fly)

(using unclustered index for probing

with R.sid = E.sid)

Cost = 3 + 500 ∗ 0.1 ∗ 0.48 + 40000 ∗ 0.1 ∗ 3 + 5
= 32,027 I/Os (vs 3,527 I/Os with BNL!)

assuming each student has 5
enrollment record on average

What’s needed for query optimization?
• A closed set of operators

• Relational ops (table in, table out)

• Encapsulation based on iterators

• Plan space, based on

• Based on relational equivalences

• Cost Estimation, based on

• Cost formulas

• Size estimation, based on
• Catalog information on base tables

• Selectivity (Reduction Factor) estimation

• A search algorithm

• To sift through the plan space based on cost!

CSE462/562 (Spring 2023): Lecture 18

Summary
• Today’s lecture

• Query optimization overview

• Relational algebra equivalence

• Query optimization is needed to ensure not-too-bad performance if not the best

• Need to understand the impact of cost model/physical data layout/indexing for a given query

• Next lecture(s)
• Plan size and cost estimation

• How to search in the optimization space

• System R style query optimizer

CSE462/562 (Spring 2023): Lecture 18

	Slide 1: CSE462/562: Database Systems (Spring 23)
	Slide 2: Query processing overview
	Slide 3: Query optimization overview
	Slide 4: Query optimization overview
	Slide 5: Cost-based query optimizer
	Slide 6: Running example
	Slide 7: Motivating example
	Slide 8: Relational algebra equivalence
	Slide 9: Relational algebra equivalence
	Slide 10: Selection push-down (no index)
	Slide 11: Selection push-down (no index)
	Slide 12: Join reordering
	Slide 13: Materialization of inner plan
	Slide 14: Materialization of inner plan
	Slide 15: Projection push-down
	Slide 16: Projection push-down
	Slide 17: Choice of join algorithms
	Slide 18: Choice of join algorithms
	Slide 19: Using indexes
	Slide 20: Using indexes
	Slide 21: What’s needed for query optimization?
	Slide 22: Summary

