
CSE462/562: Database Systems (Spring 23)

Lecture 20: Transactions

4/27/2023

Big picture

CSE462/562 (Spring 2023): Lecture 20

Operating System

CPU Memory
Secondary
Storages

Hardware devices

DBMS

User applications

Disk space/File management

SQL Parser/API

Buffer Management

File Organization/Access Methods

Query Processing & Optimization
Transaction/
Concurrency Control/
Recovery

What is a transaction?

• A transaction is a sequence of one or more SQL operations treated as a unit
• START/BEGIN [TRANSACTION] to start a new transaction
• COMMIT: make all the changes by the current transaction permanent and visible
• ROLLBACK/ABORT: revert all the changes by the current transaction

• Autocommit turns each statement into a transaction
• often enabled by default

CSE462/562 (Spring 2023): Lecture 20

Transaction:
BEGIN;

INSERT INTO A VALUES (…)

SELECT * from A;

DELETE FROM A WHERE …;

COMMIT;

Two independent motivation for transactions
• Concurrent database access

• Resilience to system failures

CSE462/562 (Spring 2023): Lecture 20

Motivation 1: concurrent Database Access

CSE462/562 (Spring 2023): Lecture 20

DBMS

More software

Even more software

Data

Select…
Update…
Create Table…
Drop Index…
Help…
Delete…

Concurrent access: attribute-level inconsistency

CSE462/562 (Spring 2023): Lecture 20

Update Account Set balance = balance + 1000

Where month(birthday) = 4

Update Account Set balance = balance - 500

Where month(birthday) = 4

concurrent with …

Actions involved: Get, Modify, Put. They may be interleaved!

Account(acctno, birthday, balance)
Sales(saleid, sale_date, acctno, amount, status)

Concurrent access: tuple-level inconsistency

CSE462/562 (Spring 2023): Lecture 20

Update Sales Set status = ‘processing’ Where saleid = 87654321

concurrent with …

Update Sales Set amt = amt * 0.8 Where saleid = 87654321

Actions involved: Get, Modify, Put. They may be interleaved! Maybe only one of changes
survives in the end.

Account(acctno, birthday, balance)
Sales(saleid, sale_date, acctno, amount, status)

Concurrent access: table-level inconsistency

CSE462/562 (Spring 2023): Lecture 20

Update Sales S Set status = ‘processing’

Where exists (Select * From Account A

Where S.acctno = A.acctno AND A.balance > S.amount)

Update Account Set balance = balance + 1000 where month(birthday) = 4;

concurrent with …

Actions involved: Get, Modify, Put. They may be interleaved!

Account(acctno, birthday, balance)
Sales(saleid, sale_date, acctno, amount, status)

Concurrent access: multi-statement inconsistency

CSE462/562 (Spring 2023): Lecture 20

Insert Into Archive
Select * From Sales Where status = ‘paid’;

Delete From Sales Where decision = ‘paid’;

Select Count(*) From Sales;

Select Count(*) From Archive;

concurrent with …

Account(acctno, birthday, balance)
Sales(saleid, sale_date, acctno, amount, status)
Archive(saleid, sale_data, acctno, amount, status)

Concurrency goal
• Execute sequence of SQL statements so that they appear to run in isolation

• Simple solution?

• Run them serially and in isolation.

• But it’s inefficient when they are accessing different objects.

• Need to enable concurrency whenever it is safe to do so.

• Interleaving actions from two transactions to improve the overall performance

CSE462/562 (Spring 2023): Lecture 20

Motivation 2: resilience to system failures

CSE462/562 (Spring 2023): Lecture 20

DBMS

Data

Bulk Load

System Crash!

Example: system crash leads to data loss

CSE462/562 (Spring 2023): Lecture 20

DBMS

Data

Insert Into Archive
Select * From Sales Where status = ‘paid’;

Delete From Sales Where status = ‘paid’;

Crash failure

Example: system crash leads to data loss

CSE462/562 (Spring 2023): Lecture 20

DBMS

Data

Lots of updates
buffered in memory

System
Crash

System-failure goal
• Guarantee all-or-nothing execution, regardless of failures

CSE462/562 (Spring 2023): Lecture 20

DBMS

Data

Data

Data

or

System Crash!

Why using transaction?

• Transaction: a solution for both concurrency and failures
• Transaction appear to run in isolation in the eye of the user

• If the system fails, each transaction’s changes appear in DB either entirely or not at all.

CSE462/562 (Spring 2023): Lecture 20

Transaction:
BEGIN;

INSERT INTO A VALUES (…)

SELECT * from A;

DELETE FROM A WHERE …;

COMMIT;

ACID Properties
• The desirable properties of transaction processing in DBMS.

• Two important components

• Concurrency control

• Logging

CSE462/562 (Spring 2023): Lecture 20

Atomicity

Consistency

Isolation

Durability

Atomicity in ACID properties

CSE462/562 (Spring 2023): Lecture 20

Each transaction is
“all-or-nothing,”

never left half done

DBMS

Data

Achieved by Logging!

System needs to UNDO T2 in this case since it has NOT
“Committed” at the time of crash.

𝑻𝟐, 𝒘𝒓𝒊𝒕𝒆 𝑨
𝑻𝟏, 𝒘𝒓𝒊𝒕𝒆 𝑩
𝑻𝟏, 𝒄𝒐𝒎𝒎𝒊𝒕
𝒄𝒓𝒂𝒔𝒉

Transaction Abort
• Undoes partial effects of transaction

• Can be system or user initiated
• System: crash recovery, serialization failure

• User: calling ROLLBACK or ABORT, SQL errors (e.g., division by zero)

CSE462/562 (Spring 2023): Lecture 20

Begin Transaction;
<get input from user>
SQL commands based on input
<confirm results with user>
If ans=‘ok’ Then Commit; Else Rollback;

Each transaction is
“all-or-nothing,”

never left half done

Consistency in ACID properties

CSE462/562 (Spring 2023): Lecture 20

Each client, each transaction:

▪ Can assume all constraints hold when
transaction begins

▪ Must guarantee all constraints hold
when transaction ends

DBMS

Data

. . .

Serializability
+ Integrity constraint check for individual
statements/transactions
 constraints always hold

Isolation in ACID properties

CSE462/562 (Spring 2023): Lecture 20

DBMS

Data

. . . Serializability
Operations may be
interleaved, but execution
must be equivalent to some
sequential (serial) order
of all transactions

Achieved by Concurrency Control!
e.g., Locking.

Durability in ACID properties

CSE462/562 (Spring 2023): Lecture 20

DBMS

Data

𝑻𝟐, 𝒘𝒓𝒊𝒕𝒆 𝑨
𝑻𝟏, 𝒘𝒓𝒊𝒕𝒆 𝑩
𝑻𝟏, 𝒄𝒐𝒎𝒎𝒊𝒕
𝒄𝒓𝒂𝒔𝒉

If system crashes
after transaction commits,

all effects of transaction
remain in database

Achieved by Logging!

System may need to REDO T1 in this case since it has
“Committed”.

Isolation levels
• Isolation Levels

• READ UNCOMMITTED

• READ COMMITTED

• REPEATABLE READ

• SERIALIZABLE

• Per transaction
• “In the eye of the beholder”

• All except serializable are defined by a
few common anomalies
• Dirty read

• Non-repeatable read

• Phantom read

CSE462/562 (Spring 2023): Lecture 20

DBMS

Data

. . .

My transaction is
Repeatable Read

My transaction is
Serializable

Anomaly 1: Dirty read
• “Dirty” data item: written by an uncommitted transaction

CSE462/562 (Spring 2023): Lecture 20

Update Account Set balance = balance + 1000

Where month(birthday) = 4

Select Avg(balance) From Account

concurrent with …

• Dirty Reads: if read this value before the 1st Transaction has committed
• What happens if the 1st T rolls back after 2nd T has read this value?

• non-serializable schedule

Anomaly 2: Non-repeatable read
• Two reads to the same item emit different values in the same transaction.

CSE462/562 (Spring 2023): Lecture 20

Select balance From Account
Where acctno = 12345678

Update Account Set balance = balance - 1000
Where acctno = 12345678;
COMMIT;

Transaction 1 Transaction 2

Select balance From Account
Where acctno = 12345678

Two reads in Xact 1 returns different values!
Note: it is allowed to return the value previously set in the
same transaction.

Anomaly 3: phantom read
• A transaction

• that might have avoided all dirty reads and non-repeatable reads

• still does not guarantee serializability: because of the phantom read

CSE462/562 (Spring 2023): Lecture 20

Transaction 1 Transaction 2

Select balance From Account
Where month(birthday) = 4

Select balance From Account
Where month(birthday) = 4

INSERT INTO ACCOUNT VALUES
(87654321, ‘1992-04-01’, 6000);

COMMIT;

Xact 1 queries the accounts whose owner were born in
April twice. The second time includes something non-
existent in the first time.

ANSI isolation levels

CSE462/562 (Spring 2023): Lecture 20

Anomalies

Isolatoin Level

Dirty Read Non-repeatable read Phantom Read

Read Uncommited Possible Possible Possible

Read Committed Impossible Possible Possible

Repeatable Read Impossible Impossible Possible

Serializable * Impossible Impossible Impossible

• DBMS is allowed to provide stronger isolation level even if a weaker one is specified
• The table only describes the minimum requirements (i.e., the set of anomalies to prevent)
• e.g., it is allowed to always provide serializable regardless of which isolation level is set

• Serializable is defined by equivalence with serial schedule instead of anomalies!
• Same as free of the three anomalies with locking (2PL, discussed in next lecture)
• Does cause issues for snapshot isolation (which admits additional anomalies, e.g., write skew)

• Further reading: Hal Berenson, Philip A. Bernstein, Jim Gray, Jim Melton, Elizabeth J. O'Neil, Patrick E. O'Neil: A
Critique of ANSI SQL Isolation Levels. SIGMOD Conference 1995: 1-10

READ ONLY transactions
• Helps system optimize performance

• Independent of isolation level

CSE462/562 (Spring 2023): Lecture 20

Set Transaction Read Only;

Set Transaction Isolation Level Repeatable Read;

Select Avg(balance) From Account;

Select Max(balance) From Account;

Isolation levels: summary
• Strongest isolation level: serializable

• Worst performance but easiest to reason about
• Note: serializable is often not the default isolation level in DBMS

• for performance consideration
• cause less performance surprise for novice users
• looks better on benchmarks (if they are not careful)
• but the implication is you have to be carefully reason about the program

• or encounter weird bugs in production.
• Takeaway: Always Read the Documentation of Transaction Behaviors!

• Weaker isolation levels
• Increased concurrency + decreased overhead = increased performance
• Weaker consistency guarantees
• Some systems have default Repeatable Read or even read committed

• Isolation level per transaction and “eye of the beholder”
• Each transaction’s reads must conform to its isolation level

CSE462/562 (Spring 2023): Lecture 20

Summary
• This lecture

• Transaction

• Isolation level

• ACID properties

• Next lecture
• Pessimistic Concurrency Control (i.e., locking)

CSE462/562 (Spring 2023): Lecture 20

	Slide 1: CSE462/562: Database Systems (Spring 23)
	Slide 2: Big picture
	Slide 3: What is a transaction?
	Slide 4: Two independent motivation for transactions
	Slide 5: Motivation 1: concurrent Database Access
	Slide 6: Concurrent access: attribute-level inconsistency
	Slide 7: Concurrent access: tuple-level inconsistency
	Slide 8: Concurrent access: table-level inconsistency
	Slide 9: Concurrent access: multi-statement inconsistency
	Slide 10: Concurrency goal
	Slide 11: Motivation 2: resilience to system failures
	Slide 12: Example: system crash leads to data loss
	Slide 13: Example: system crash leads to data loss
	Slide 14: System-failure goal
	Slide 15: Why using transaction?
	Slide 16: ACID Properties
	Slide 17: Atomicity in ACID properties
	Slide 18: Transaction Abort
	Slide 19: Consistency in ACID properties
	Slide 20: Isolation in ACID properties
	Slide 21: Durability in ACID properties
	Slide 22: Isolation levels
	Slide 23: Anomaly 1: Dirty read
	Slide 24: Anomaly 2: Non-repeatable read
	Slide 25: Anomaly 3: phantom read
	Slide 26: ANSI isolation levels
	Slide 27: READ ONLY transactions
	Slide 28: Isolation levels: summary
	Slide 29: Summary

