CSE462/562: Database Systems (Spring 23)
Lecture 20: Transactions
4/27/2023

University at Buffalo
s Department of Computer Science
and Engineering

School of Engineering and Applied Sciences



Big picture

User applications

CSE462/562 (Spring 2023): Lecture 20

DBMS SQL Parser/API
Query Processing & Optimization
File Organization/Access Methods Transaction/
Concurrency Control/
Buffer Management Recovery
Disk space/File management
Operating System
e — e e
Hardware devices Secondary




What is a transaction?

Transaction:
BEGIN ;

INSERT INTO A VALUES (..)
SELECT * from A;
DELETE FROM A WHERE ..;
COMMIT;

« A transaction is a sequence of one or more SQL operations treated as a unit
START/BEGIN [TRANSACTION] to start a new transaction

COMMIT: make all the changes by the current transaction permanent and visible
ROLLBACK/ABORT: revert all the changes by the current transaction

Autocommit turns each statement into a transaction
e often enabled by default



Two independent motivation for transactions

* Concurrent database access

* Resilience to system failures

CSE462/562 (Spring 2023): Lecture 20



Motivation 1: concurrent Database Access

\\ | [ ] =

More software

DBMS

CSE462/562 (Spring 2023): Lecture 20

Select...
Update...
Create Table...
Drop Index...
Help...
Delete...



Concurrent access: attribute-level inconsistency

Update Account Set balance= balance+ 1000
where month(birthday) = 4

concurrent with ...

Update Account Set balance= balance- 500
where month(birthday) = 4

Actions involved: Get, Modify, Put. They may be interleaved!

Account(acctno, birthday, balance)
Sales(saleid, sale_date, acctno, amount, status)

CSE462/562 (Spring 2023): Lecture 20



Concurrent access: tuple-level inconsistency

Update Sales Set status= ‘processing’ Where saleid=87654321

concurrent with ...

Update Sales Set amt =amt * 0.8 Where saleid=87654321

Actions involved: Get, Modify, Put. They may be interleaved! Maybe only one of changes
survives in the end.

Account(acctno, birthday, balance)
Sales(saleid, sale_date, acctno, amount, status)

CSE462/562 (Spring 2023): Lecture 20



Concurrent access: table-level inconsistency

Update Sales S Set status= ‘processing’
Where exists (Select * From Account A
wWhere S.acctno = A.acctno AND A.balance>S.amount)

concurrent with ...

Update Account Set balance=balance + 1000 where month(birthday) = 4;

Actions involved: Get, Modify, Put. They may be interleaved!

Account(acctno, birthday, balance)
Sales(saleid, sale_date, acctno, amount, status)

CSE462/562 (Spring 2023): Lecture 20



Concurrent access: multi-statement inconsistency

Insert Into Archive
Select * From Sales Where status= ‘paid’;

Delete From Sales Where decision= ‘paid’;

concurrent with ...

Select Count(*) From Sales;
Select Count(*) From Archive;

Account(acctno, birthday, balance)
Sales(saleid, sale_date, acctno, amount, status)
Archive(saleid, sale_data, acctno, amount, status)

CSE462/562 (Spring 2023): Lecture 20



Concurrency goal

* Execute sequence of SQL statements so that they appear to run in isolation
e Simple solution?
* Run them serially and in isolation.
e Butit’s inefficient when they are accessing different objects.

* Need to enable concurrency whenever it is safe to do so.
* Interleaving actions from two transactions to improve the overall performance

CSE462/562 (Spring 2023): Lecture 20



Motivation 2: resilience to system failures

//ﬂ/ System Crash!
. /
@Bulk Load

[ DBMS ]

CSE462/562 (Spring 2023): Lecture 20



Example: system crash leads to data loss

Insert Into Archive
Select * From Sales Where status= ‘paid’;

Delete From Sales Where status= ‘paid’;

Crash failure

CSE462/562 (Spring 2023): Lecture 20



Example: system crash leads to data loss

Lots of updates
buffered in memory

U

[ DBMS

y .
|
/

CSE462/562 (Spring 2023): Lecture 20

—

System
Crash

/ Y
\

Dat
\




System-failure goal

« Guarantee all-or-nothing execution, regardless of failures

or

N
\//

Data System Crash!
Data

~N N _ N

CSE462/562 (Spring 2023): Lecture 20



Why using transaction?

Transaction:
BEGIN ;

INSERT INTO A VALUES (..)
SELECT * from A;

DELETE FROM A WHERE ..;
COMMIT;

* Transaction: a solution for both concurrency and failures
* Transaction appear to run in isolation in the eye of the user
 If the system fails, each transaction’s changes appear in DB either entirely or not at all.

CSE462/562 (Spring 2023): Lecture 20



ACID Properties

* The desirable properties of transaction processing in DBMS.
* Two important components
e Concurrency control

+ Logging
Atomicity
Consistency
Isolation
Durability

CSE462/562 (Spring 2023): Lecture 20



Atomicity in ACID properties

\ 4

T, write A
T, writeB
T4, commit
crash

{ DBMS ]

0

— T

\ /
Data

\ /

Each transaction is
“all-or-nothing,”
never left half done

Achieved by Logging!

System needs to UNDO T2 in this case since it has NOT
“Committed” at the time of crash.

CSE462/562 (Spring 2023): Lecture 20




Transaction Abort

* Undoes partial effects of transaction

* Can be system or user initiated

e System: crash recovery, serialization failure

* User: calling ROLLBACK or ABORT, SQL errors (e.g., division by zero)

Each transaction is
“all-or-nothing,”
never left half done

Begin Transaction;
<get input from user>
SQL commands based on

input

<confirm results with user>
If ans=‘ok’ Then Commit; Else Rollback;

CSE462/562 (Spring 2023): Lecture 20




Consistency in ACID properties

\\ \t

Each client, each transaction:

= Can assume all constraints hold when
transaction begins

= Must guarantee all constraints hold
when transaction ends

Serializability
+ Integrity constraint check for individual
statements/transactions
= constraints always hold

CSE462/562 (Spring 2023): Lecture 20



Isolation in ACID properties

\\ \t

Serializability
Operations may be
interleaved, but execution
must be equivalent to some
sequential (serial) order
of all transactions

DBMS ]
B | - Achieved by Concurrency Control!
— T _
— _ e.g., Locking.
Data
\ /

CSE462/562 (Spring 2023): Lecture 20




Durability in ACID properties

\ 4

T, write A
T, writeB
T4, commit
crash

{ DBMS ]

0

— T

\ /
Data

\ /

If system crashes
after transaction commits,
all effects of transaction
remain in database

Achieved by Logging!

System may need to REDO T1 in this case since it has
“Committed”.

CSE462/562 (Spring 2023): Lecture 20



|solation levels

* |solation Levels

* READ UNCOMMITTED
e READ COMMITTED My transaction is My transaction is
- REPEATABLE READ Repeatable Read Serializable

 SERIALIZABLE ° o o
* Per transaction '
* “In the eye of the beholder” \ \ ‘ / /

* All except serializable are defined by a [ DBMS \
few common anomalies ‘ J
* Dirty read YT

* Non-repeatable read
* Phantom read Data

CSE462/562 (Spring 2023): Lecture 20



Anomaly 1: Dirty read

* “Dirty” data item: written by an uncommitted transaction

Update Account Set balance=balance+ 1000
where month(birthday) = 4

concurrent with ...

Select Avg(balance) From Account
N

AN

e Dirty Reads: if read this value before the 15t Transaction has committed
* What happens if the 15t T rolls back after 2" T has read this value?
* non-serializable schedule

CSE462/562 (Spring 2023): Lecture 20



Anomaly 2: Non-repeatable read

e Two reads to the same item emit different values in the same transaction.

Transaction 1 Transaction 2

Select balance From Account
where acctno=12345678

Update Account Set balance= balance - 1000
where acctno = 12345678;
COMMIT;

Select balance From Account
where acctno = 12345678

Two reads in Xact 1 returns different values!
Note: it is allowed to return the value previously set in the
same transaction.

CSE462/562 (Spring 2023): Lecture 20



Anomaly 3: phantom read

* A transaction
* that might have avoided all dirty reads and non-repeatable reads
* still does not guarantee serializability: because of the phantom read

Transaction 1 Transaction 2

Select balance From Account
where month(birthday) = 4

INSERT INTO ACCOUNT VALUES
(87654321, ‘1992-04-01’, 6000);
COMMIT,

Select balance From Account
where month(birthday) = 4 Xact 1 queries the accounts whose owner were born in

April twice. The second time includes something non-
existent in the first time.

CSE462/562 (Spring 2023): Lecture 20



ANSI isolation levels

Anomalies Dirty Read Non-repeatable read Phantom Read
Isolatoin Level
Read Uncommited Possible Possible Possible
Read Committed Impossible Possible Possible
Repeatable Read Impossible Impossible Possible
Serializable * Impossible Impossible Impossible

« DBMS is allowed to provide stronger isolation level even if a weaker one is specified
 The table only describes the minimum requirements (i.e., the set of anomalies to prevent)
 e.g.,itisallowed to always provide serializable regardless of which isolation level is set

» Serializable is defined by equivalence with serial schedule instead of anomalies!
 Same as free of the three anomalies with locking (2PL, discussed in next lecture)

* Does cause issues for snapshot isolation (which admits additional anomalies, e.g., write skew)

* Further reading: Hal Berenson, Philip A. Bernstein, Jim Gray, Jim Melton, Elizabeth J. O'Neil, Patrick E. O'Neil: A
Critique of ANSI SQL Isolation Levels. SIGMOD Conference 1995: 1-10

CSE462/562 (Spring 2023): Lecture 20



READ ONLY transactions

* Helps system optimize performance

* Independent of isolation level

Set Transaction Read Only;

Set Transaction Isolation Level Repeatable Read;
Select Avg(balance) From Account;

Select Max(balance) From Account;

CSE462/562 (Spring 2023): Lecture 20



Isolation levels: summary

e Strongest isolation level: serializable
* Worst performance but easiest to reason about
* Note: serializable is often not the default isolation level in DBMS
» for performance consideration
* cause less performance surprise for novice users
* |looks better on benchmarks (if they are not careful)
* but the implication is you have to be carefully reason about the program
e or encounter weird bugs in production.
* Takeaway: Always Read the Documentation of Transaction Behaviors!

* Weaker isolation levels
* Increased concurrency + decreased overhead = increased performance
* Weaker consistency guarantees
* Some systems have default Repeatable Read or even read committed

* |solation level per transaction and “eye of the beholder”
* Each transaction’s reads must conform to its isolation level

CSE462/562 (Spring 2023): Lecture 20



Summary

e This lecture

* Transaction
e |solation level
* ACID properties

* Next lecture
* Pessimistic Concurrency Control (i.e., locking)

CSE462/562 (Spring 2023): Lecture 20



	Slide 1: CSE462/562: Database Systems (Spring 23)
	Slide 2: Big picture
	Slide 3: What is a transaction?
	Slide 4: Two independent motivation for transactions
	Slide 5: Motivation 1: concurrent Database Access
	Slide 6: Concurrent access: attribute-level inconsistency
	Slide 7: Concurrent access: tuple-level inconsistency
	Slide 8: Concurrent access: table-level inconsistency
	Slide 9: Concurrent access: multi-statement inconsistency
	Slide 10: Concurrency goal
	Slide 11: Motivation 2: resilience to system failures
	Slide 12: Example: system crash leads to data loss
	Slide 13: Example: system crash leads to data loss
	Slide 14: System-failure goal
	Slide 15: Why using transaction?
	Slide 16: ACID Properties
	Slide 17: Atomicity in ACID properties
	Slide 18: Transaction Abort
	Slide 19: Consistency in ACID properties
	Slide 20: Isolation in ACID properties
	Slide 21: Durability in ACID properties
	Slide 22: Isolation levels
	Slide 23: Anomaly 1: Dirty read
	Slide 24: Anomaly 2: Non-repeatable read
	Slide 25: Anomaly 3: phantom read
	Slide 26: ANSI isolation levels
	Slide 27: READ ONLY transactions
	Slide 28: Isolation levels: summary
	Slide 29: Summary

